WO2018165910A1 - 多孔氮化镓单晶材料、其制备方法及应用 - Google Patents

多孔氮化镓单晶材料、其制备方法及应用 Download PDF

Info

Publication number
WO2018165910A1
WO2018165910A1 PCT/CN2017/076791 CN2017076791W WO2018165910A1 WO 2018165910 A1 WO2018165910 A1 WO 2018165910A1 CN 2017076791 W CN2017076791 W CN 2017076791W WO 2018165910 A1 WO2018165910 A1 WO 2018165910A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
gallium nitride
nitride single
sample
porous
Prior art date
Application number
PCT/CN2017/076791
Other languages
English (en)
French (fr)
Inventor
陈晨龙
谢奎
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Publication of WO2018165910A1 publication Critical patent/WO2018165910A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types

Definitions

  • the present application relates to a porous gallium nitride single crystal material, a preparation method thereof and an application thereof, and belongs to the field of inorganic materials.
  • Gallium nitride has superior performances such as direct band gap width, high breakdown voltage, high electron saturation rate, high thermal conductivity, strong anti-irradiation ability and good chemical stability. So far, theoretically, electro-optical and photoelectric conversion efficiency is the highest.
  • the material can be a key basic material for the preparation of wide-spectrum, high-power, high-efficiency microelectronics, optoelectronics and other devices.
  • Gallium nitride materials have broad application prospects and huge market demands in solid-state lighting, color display, lasers, ultraviolet detectors, microwave communication devices and power electronic devices.
  • Gallium nitride based devices are generally heteroepitaxially epitaxially grown on sapphire, silicon carbide or silicon in the polar direction.
  • the severe lattice mismatch and the difference in thermal expansion coefficient between the substrate and the gallium nitride epitaxial film cause large stress and high density defects in the epitaxial layer, which greatly deteriorates the lifetime and performance of the device.
  • the gallium nitride bulk single crystal is an ideal epitaxial substrate prepared by a gallium nitride based device. If a gallium nitride wafer is used as the substrate, the crystal quality of the epitaxial film can be improved, the dislocation density can be reduced, and the device quality can be greatly improved.
  • QCSE Quantum-Confined Stark Effect
  • gallium nitride Since gallium nitride has a high melting point and causes high nitrogen decompression pressure at high temperature growth, it is difficult to prepare a single crystal material from a melt, and it is difficult to obtain a single crystal material that meets the requirements of a substrate scale by using a high temperature and high pressure technique.
  • the hydride vapor phase epitaxy (HVPE) method can produce a large-sized gallium nitride substrate, the sodium fluxing method and the ammoniacal method are used to improve the quality and size of the gallium nitride single crystal substrate, but The price is very expensive.
  • Non-polar surface gallium nitride substrates are typically fabricated using HVPE or amperometrically grown thick c-plane gallium nitride crystals, which are limited in size and are very expensive.
  • a porous single crystal of GaN (Porous Single Crystals; Mesoporous Single Crystals, abbreviated as MSCs when the pore is mesoporous) is provided, having a nanometer or micrometer scale. Holes and self-supporting structures.
  • MSCs Mesoporous Single Crystals
  • the crystal material is a bulk single crystal, as an epitaxial substrate of a gallium nitride-based device, stress release and differential elimination can be performed, which is more advantageous than a non-porous gallium nitride single crystal substrate.
  • the crystal material provides a high quality template for 3D optoelectronic devices.
  • the porous gallium nitride single crystal material is characterized in that the porous gallium nitride single crystal material contains pores having a pore diameter of 10 nm to 2000 nm.
  • the porous gallium nitride single crystal material is a porous gallium nitride single crystal film and/or a porous gallium nitride single crystal.
  • the surface of the thin film is a (0001) C plane of the porous gallium nitride single crystal, surface, At least one side of the face.
  • the porous gallium nitride single crystal thin film has a thickness of 10 nm to 20 ⁇ m.
  • the largest surface of the crystal is a (0001) C plane of the porous gallium nitride single crystal, surface, At least one side of the face.
  • one dimension of the largest surface of the porous gallium nitride single crystal crystal is from 0.1 cm to 30 cm. Further preferably, the one-dimensional dimension of the largest surface of the porous gallium nitride single crystal crystal is 1 cm to 5 cm.
  • the porous gallium nitride single crystal has a thickness of 0.1 mm to 5 cm.
  • a method of preparing any of the above porous gallium nitride single crystal materials Methods is simple in operation, good in repeatability, low in cost, and suitable for large-scale industrial production.
  • the method for preparing a gallium nitride single crystal material is characterized in that a porous gallium nitride single crystal material is obtained by contacting a lithium gallate single crystal material with a raw material gas containing ammonia gas.
  • the lithium gallate single crystal material is in contact with the raw material gas containing ammonia gas, and is at least one of a (001) plane, a (010) plane, and a (100) plane of a lithium gallate single crystal.
  • the lithium gallate single crystal material is a lithium gallate single wafer; the largest surface of the lithium gallate single wafer is a single crystal (001) plane, a (010) plane or a (100) plane and contains The raw material gas of ammonia gas is in contact.
  • the lithium gallium single crystal material is in contact with the raw material gas containing ammonia gas at a temperature of 973 K to 1773 K and a pressure of 10 Torr to 700 Torr.
  • the lower limit of the temperature range of the lithium gallium single crystal material in contact with the raw material gas containing ammonia gas is selected from the group consisting of 973K, 1073K, 1173K or 1223K, and the upper limit is selected from 1773K, 1673K, 1573K, 1473K, 1373K or 1273K. Still more preferably, the temperature at which the lithium gallate single crystal material is brought into contact with the raw material gas containing ammonia gas ranges from 1173 K to 1373 K.
  • the lower limit of the pressure range of the lithium gallium single crystal material in contact with the raw material gas containing ammonia gas is selected from 50 Torr or 100 Torr, and the upper limit is selected from 700 Torr, 600 Torr, 500 Torr, 400 Torr, 300 Torr. Or 200 Torr.
  • the lithium gallium single crystal material is reacted with the raw material gas containing ammonia gas for a reaction time of 10 min to 100 h.
  • the lithium gallium single crystal material is in contact with the raw material gas containing ammonia gas for a reaction time of 30 min to 20 h.
  • the length of the reaction time is positively correlated with the thickness of the porous gallium nitride single crystal thin film, and the longer the contact reaction time, the larger the thickness of the obtained porous gallium nitride single crystal thin film.
  • the lower limit of the time range of the lithium gallium single crystal material in contact with the raw material gas containing ammonia gas is selected from 10 min, 20 min, 30 min, 1h, 2h, 3h, 4h or 5h
  • the upper limit is selected from 20h, 18h, 15h or 10h.
  • the contact reaction time should satisfy that all of the lithium gallate single crystal material is converted into a porous gallium nitride single crystal material.
  • the porous gallium nitride single crystal material is a porous gallium nitride single crystal
  • the lithium gallium single crystal material is reacted with the ammonia-containing raw material gas for a reaction time of 10 h to 100 h.
  • Those skilled in the art can determine the appropriate contact reaction time according to actual needs and the size of the lithium gallate single crystal material used.
  • the lower limit of the time range of the lithium gallium single crystal material in contact with the raw material gas containing ammonia is selected from 24h, 36h or 48h.
  • the upper limit is selected from 100h, 96h, 84h, 72h or 60h.
  • the crystal size of the obtained porous gallium nitride single crystal crystal is equal to the size of the lithium gallate single crystal material used.
  • a person skilled in the art can obtain a desired porous gallium nitride single crystal by selecting a suitable size of a lithium gallate single crystal material according to actual needs.
  • the flow rate of ammonia gas is recorded as a, 0.05SLM ⁇ a ⁇ 10SLM;
  • the flow rate of nitrogen is recorded as b, 0SLM ⁇ b ⁇ 10SLM;
  • the flow rate of argon is recorded as c, 0SLM ⁇ c ⁇ 10SLM;
  • the flow rate of hydrogen is recorded as d, 0SLM ⁇ d ⁇ 10 SLM.
  • the lower limit of the flow rate of the ammonia gas is selected from the group consisting of 0.05 SLM, 0.5 SLM, 1 SLM, 1.5 SLM or 2 SLM, and the upper limit is selected from the group consisting of 10 SLM, 9 SLM, 8 SLM, 7 SLM, 6 SLM, 5 SLM, 4SLM or 3SLM.
  • the lower limit of the flow rate range of nitrogen gas is selected from 0SLM, 0.3SLM, 0.4SLM or 0.5SLM, and the upper limit is selected from 10SLM, 9SLM, 8SLM, 7SLM, 6SLM, 5SLM, 4SLM, 3SLM, 2SLM, 1SLM or 0.6SLM.
  • the lower limit of the flow rate of the argon gas is selected from the group consisting of 0SLM, 0.1SLM or 0.2SLM, and the upper limit is selected from the group consisting of 10SLM, 9SLM, 8SLM, 7SLM, 6SLM, 5SLM, 4SLM, 3SLM, 2SLM, 1SLM or 0.5SLM.
  • the lower limit of the flow rate of the hydrogen gas is selected from the group consisting of 0SLM, 0.05SLM, 0.1SLM, 0.2SLM or 0.3SLM, and the upper limit is selected from the group consisting of 10SLM, 9SLM, 8SLM, 7SLM, 6SLM, 5SLM , 4SLM, 3SLM, 2SLM, 1SLM, 0.5SLM or 0.4SLM.
  • the method for preparing a porous gallium nitride single crystal material comprises at least the following steps:
  • the nitridation conversion reverse epitaxial growth is further performed, and the lithium gallium hydride single crystal substrate is completely nitrided and transformed into reverse epitaxial growth to obtain a self-supporting porous gallium nitride single crystal.
  • At least one of any of the above porous gallium nitride single crystal materials and/or at least one of the porous gallium nitride single crystal materials prepared according to any of the above methods is provided in the photovoltaic material. application.
  • SLM is an abbreviation of Standard Litre Per Minute, indicating a flow rate of 1 L/min in a standard state.
  • the size of the crystal and the one-dimensional size in the largest surface of the crystal refer to the distance between the two nearest neighbors on the largest area of the crystal.
  • the porous gallium nitride single crystal material provided by the present application is the first to report a porous gallium nitride single crystal, a large-sized polar (0001) C-plane porous gallium nitride single crystal, non-polar Surface porous gallium nitride single crystal and Porous gallium nitride single crystal.
  • the preparation method of the porous gallium nitride single crystal material provided by the present application utilizes the characteristics of lithium gallium crystal crystal and the gallium nitride crystal structure and lattice matching, so that the lithium gallate single crystal substrate and the ammonia gas are The gallium nitride crystal is reversely epitaxially grown by the outer and inner nitriding at a high temperature, and the remaining products are completely volatilized.
  • the preparation method of the porous gallium nitride single crystal material provided by the present application is simple in operation, good in repeatability, low in cost, and suitable for large-scale industrial production.
  • FIG. 1 is a polar Sample # 1 (0001) C-plane scanning electron micrograph of a porous gallium nitride single crystal.
  • Figure 2 is sample 2 # ⁇ polar Scanning electron micrograph of a surface porous gallium nitride single crystal.
  • Figure 3 is sample 3 # ⁇ polar Scanning electron micrograph of a surface porous gallium nitride single crystal.
  • FIG 4 is a polar Sample M1 # (0001) X-ray diffraction of the porous film of gallium nitride single crystal C plane.
  • Figure 5 is sample M2 # ⁇ polar X-ray diffraction results of the M-faced porous gallium nitride single crystal film.
  • Figure 6 is sample M3 # ⁇ polar X-ray diffraction results of the surface porous gallium nitride single crystal film.
  • FIG 7 is a polar Sample # 1 (0001) X-ray diffraction of the porous C-plane gallium nitride single crystal.
  • Figure 8 is sample 2 # ⁇ polar X-ray diffraction results of the surface porous gallium nitride single crystal.
  • Figure 9 is sample 3 # ⁇ polar X-ray diffraction results of the surface porous gallium nitride single crystal.
  • FIG 10 is a polar Sample # 1 (0001) cathode fluorescent measurement results of the porous C-plane gallium nitride single crystal.
  • FIG 11 is a LiGaO2 crystal, sample # polar Ml (0001) C-plane gallium nitride single crystal porous film polar and sample # 1 (0001) C-plane gallium nitride single crystal porous Raman (RAMAN) measurement results .
  • a lithium gallate single wafer was prepared according to the method in the literature [Chen, CL, Li, CA, Yu, SH & Chou, MMCG Rowth and characterization of ⁇ -LiGaO 2 single crystal. J. Cryst. Growth 402, 325-329 (2014)]. get.
  • the morphology of the sample was analyzed by scanning electron microscopy using JEOL JSM 6330F.
  • the X-ray diffraction analysis of the sample was performed using Bede D1 (UK, Bede Scientific; Cu-K ⁇ 1radiation; operated at 40kV and 45mA; High-resolution X-ray diffraction analyzer.
  • the cathodoluminescence analysis of the sample was carried out using a MonoCL3 spectrometer (JEOL JSM 6330F SEM system, accelerating voltage 10 kV, room temperature) of Gatan Corporation.
  • the Raman measurement of the sample was performed using the HORIBA Jobin Yvon LabRAM HR800 micro-area Raman spectrum test system.
  • a (001)-face lithium gallium monolithic wafer having a size of 5 cm is used as a substrate, placed on a high-purity graphite heating body of a high-frequency induction furnace, and then placed in a quartz reactor, and a raw material gas containing ammonia gas is introduced.
  • the gas is composed of ammonia gas and nitrogen gas: ammonia gas 2SLM, nitrogen gas 0.5SLM) and the system is heated to 1273K, the system pressure is kept at 100 Torr, and after reacting for 30 minutes, it is cooled to room temperature, and then it is grown on a lithium gallate single wafer substrate.
  • a (001)-face lithium gallium monolithic wafer having a size of 5 cm is used as a substrate, placed on a high-purity graphite heating body of a high-frequency induction furnace, and then placed in a quartz reactor, and a raw material gas containing ammonia gas is introduced.
  • the gas is composed of ammonia gas and nitrogen gas: ammonia gas 2SLM, nitrogen gas 0.5SLM) and the system is heated to 1273K, the system pressure is kept at 100 Torr, and after reacting for 48 hours, it is cooled to room temperature to obtain a porous gallium nitride single crystal crystal sample. Recorded as sample 1 # , sample 1 # has a crystal size of 5 cm.
  • the preparation steps and conditions of the sample M2 # were the same as those of the sample M1 # in Example 1, except that a (100)-face lithium gallium monolith having a size of 5 cm was used as a substrate.
  • Sample 2 # The preparation procedure and conditions of Sample 2 # were the same as those of Sample 1 # in Example 1, except that a (100)-face lithium gallium monolith having a size of 5 cm was used as a substrate.
  • the crystal size of sample 2 # was 5 cm.
  • the preparation procedure and conditions of the sample M3 # were the same as those of the sample M1 # in Example 1, except that a (010)-face lithium gallium monolith having a size of 5 cm was used as a substrate.
  • Sample 3 # The preparation procedure and conditions of Sample 3 # were the same as those of Sample 1 # in Example 1, except that a (010)-face lithium gallium monolith having a size of 5 cm was used as a substrate.
  • the crystal size of sample 3 # was 5 cm.
  • the basic preparation steps of the sample M4 # to the sample M9 # were the same as those of the sample M1 # in Example 1, and the substrate and the reaction conditions were changed to obtain different samples.
  • the relationship between the sample number and the substrate and reaction conditions is shown in Table 1.
  • Example 5 Characterization of sample M1 # ⁇ sample M9 # , sample 1 # ⁇ sample 3 #
  • sample M1 # to sample M9 # The morphology of sample M1 # to sample M9 # was characterized by scanning electron microscopy. The results showed that samples M1 # to M9 # all had pores of 10 nm to 2000 nm.
  • sample and the sample M5 # M4 # Sample M1 # morphology similar to a typical representative samples M1 #, polarity (0001) scanning electron micrograph of the porous C-plane gallium nitride single crystal 1 shown in FIG. It can be seen from the figure that the surface uniformly distributes the hole of the sleeve structure, the hole has a typical GaN (0001) C-face hexagonal structure, and the hexagonal sides are parallel to each other.
  • the polarity (0001) C-plane scanning electron micrograph of sample 1 # is similar to sample M1 # .
  • the scanning electron micrograph of the surface porous gallium nitride single crystal crystal is shown in Fig. 3. It can be seen from the figure that the surface has a uniform distribution of the hole of the hole-hole structure, and the hole is a typical GaN hexagonal column cone. A plane projection topography. Sample 3 # non-polar The surface scanning electron micrograph is similar to the sample M3 # .
  • Example 6 Structural Characterization of Sample M1 # ⁇ Sample M9 # , Sample 1 # ⁇ sample 3 #
  • the structure M1 # to sample M9 # and sample 1 # to sample 3 # were characterized by X-ray diffraction.
  • M4 # , M5 # and M1 # have similar results, only GaN (0002), (0004) and LiGaO 2 (002), (004) signals, with sample M1 # as a typical representative, its XRD pattern is shown in Figure 4. Shown.
  • M6 # , M7 # and M2 # have similar results, only GaN
  • the signals of LiGaO 2 (200) and (400) are represented by sample M2 # , and the XRD pattern thereof is shown in Fig. 5.
  • M8 # , M9 # and M3 # have similar results, only GaN
  • the signal of LiGaO 2 (040) is represented by sample M3 # , and its XRD pattern is shown in Fig. 6.
  • the samples # 1 to Sample # 3 are gallium nitride single crystal
  • the samples Ml to Sample # # M9 are gallium nitride Single crystal film.
  • Example 7 Optical property test of sample M1 # to sample M9 # , sample 1 # to sample 3 #

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种多孔氮化镓单晶材料,其特征在于,所述多孔氮化镓单晶材料中含有孔径为10nm~2000nm的孔。该材料具有自支撑结构,为块状单晶时,作为氮化镓基器件的外延衬底,可以起到应力释放和差排消解的作用,比无孔氮化镓单晶衬底相较更具优势。此外,该晶体材料还可为3D光电器件提供优质的模板。

Description

[根据细则37.2由ISA制定的发明名称] 多孔氮化镓单晶材料、其制备方法及应用 技术领域
本申请涉及一种多孔氮化镓单晶材料、其制备方法及应用,属于无机材料领域。
背景技术
氮化镓具有直接带隙宽、击穿电压高、电子饱和速率高、热导率高、抗辐照能力强和化学稳定性良好等优越性能,是迄今为止,理论上电光、光电转换效率最高的材料,并可成为制备宽波谱、高功率、高效率的微电子、光电子等器件的关键基础材料。氮化镓材料在固态照明、彩色显示、激光器、紫外光探测器、微波通信器件和电力电子器件等领域有着广泛的应用前景和巨大的市场需求。
氮化镓基器件一般沿极性方向异质外延于蓝宝石、碳化硅或硅上。衬底和氮化镓外延膜间严重的晶格不匹配度和热膨胀系数的差异会导致外延层中产生巨大的应力和高密度的缺陷,使得器件的寿命和性能都大大下降。氮化镓块状单晶是氮化镓基器件制备的理想外延衬底。如果采用氮化镓晶片作为衬底,则可提高外延膜的晶体质量,降低位错密度,大幅提升器件品质。若采用非极性氮化镓衬底制备发光器件,则可消除量子限制斯塔克效应(Quantum-Confined Stark Effect,QCSE)造成的不良影响,更进一步提升发光器件性能。
由于氮化镓的熔点高,在高温生长时会导致高的氮离解压,所以难以用熔体制备其单晶材料,采用高温高压技术很难得到符合衬底尺度要求的单晶材料。虽然现在氢化物气相外延(HVPE)法可制作大尺寸的氮化镓衬底,通过采用钠助熔剂法和氨热法提高氮化镓单晶衬底的高品质化和大尺寸化,但是其价格非常昂贵。而非极性面氮化镓衬底一般采用HVPE或氨热法生长的厚c面氮化镓晶体切割而得,其尺寸受到了限制,并且价格非常昂贵。
现有制备纳米多孔材料的方法如模板法(use of templates)、起泡法(bubbling)、脱合金成分腐蚀法(dealloying)、柯肯特尔效应法 (Kirkendall effect),共振渗透法(collective osmotic shock)等,方法复杂,并且所能制备的最大晶体尺度仅在微米量级,无法制备宏观尺度纳米多孔单晶晶体。
因此,有必要提供一种制备大尺寸纳米多孔氮化镓单晶晶体的方法,来为氮化镓基器件提供优质的大尺寸极性(0001)C面、非极性
Figure PCTCN2017076791-appb-000001
面和
Figure PCTCN2017076791-appb-000002
面的纳米多孔氮化镓单晶衬底和模板。
发明内容
根据本申请的一个方面,提供一种氮化镓的多孔单晶(Porous Single Crystals;当多孔为介孔时,为介孔单晶Mesoporous Single Crystals,简写为MSCs)材料,具有纳米或微米尺度的孔和自支撑结构。该晶体材料为块状单晶时,作为氮化镓基器件的外延衬底,可以起到应力释放和差排消解的作用,比无孔氮化镓单晶衬底相较更具优势。此外,该晶体材料还可为3D光电器件提供优质的模板。
所述多孔氮化镓单晶材料,其特征在于,所述多孔氮化镓单晶材料中含有孔径为10nm~2000nm的孔。
作为一种实施方式,所述多孔氮化镓单晶材料是多孔氮化镓单晶薄膜和/或多孔氮化镓单晶晶体。
作为一种实施方式,所述多孔氮化镓单晶材料是多孔氮化镓单晶薄膜时,薄膜的表面为多孔氮化镓单晶的(0001)C面、
Figure PCTCN2017076791-appb-000003
面、
Figure PCTCN2017076791-appb-000004
面中的至少一面。优选地,所述多孔氮化镓单晶薄膜的厚度为10nm~20μm。
作为一种实施方式,所述多孔氮化镓单晶材料是多孔氮化镓单晶晶体时,晶体的最大表面为多孔氮化镓单晶的(0001)C面、
Figure PCTCN2017076791-appb-000005
面、
Figure PCTCN2017076791-appb-000006
面中的至少一面。优选地,所述多孔氮化镓单晶晶体的最大表面中一维的尺寸为0.1cm~30cm。进一步优选地,所述多孔氮化镓单晶晶体的最大表面中一维的尺寸为1cm~5cm。
优选地,所述多孔氮化镓单晶晶体的厚度尺寸为0.1mm~5cm。
根据本申请的又一方面,提供制备上述任一多孔氮化镓单晶材料 的方法。该方法操作简单、重复性好、成本低廉、适合大规模工业化生产。
所述制备氮化镓单晶材料的方法,其特征在于,将镓酸锂单晶材料与含有氨气的原料气接触反应,得到所述多孔氮化镓单晶材料。
作为一种实施方式,所述镓酸锂单晶材料与含有氨气的原料气接触的是镓酸锂单晶的(001)面、(010)面、(100)面中的至少一面。
作为一种实施方式,所述镓酸锂单晶材料是镓酸锂单晶片;镓酸锂单晶片面积最大的面是单晶的(001)面、(010)面或(100)面与含有氨气的原料气接触。
优选地,所述镓酸锂单晶材料与含有氨气的原料气接触反应的温度为973K~1773K,压力为10托~700托。
进一步优选地,所述镓酸锂单晶材料与含有氨气的原料气接触反应的温度范围下限选自973K、1073K、1173K或1223K,上限选自1773K、1673K、1573K、1473K、1373K或1273K。更进一步优选地,所述镓酸锂单晶材料与含有氨气的原料气接触反应的温度范围为1173K~1373K。
进一步优选地,所述镓酸锂单晶材料与含有氨气的原料气接触反应的压力范围下限选自50托或100托,上限选自700托、600托、500托、400托、300托或200托。
优选地,所述镓酸锂单晶材料与含有氨气的原料气接触反应的时间为10min~100h。
作为一种实施方式,当多孔氮化镓单晶材料为多孔氮化镓单晶薄膜时,所述镓酸锂单晶材料与含有氨气的原料气接触反应的时间为30min~20h。反应时间的长短与多孔氮化镓单晶薄膜的厚度正相关,接触反应时间越长,得到的多孔氮化镓单晶薄膜厚度越大。优选地,当多孔氮化镓单晶材料为多孔氮化镓单晶薄膜时,所述镓酸锂单晶材料与含有氨气的原料气接触反应的时间范围下限选自10min、20min、30min、1h、2h、3h、4h或5h,上限选自20h、18h、15h或10h。
当制备的多孔氮化镓单晶材料为多孔氮化镓单晶晶体时,接触反应时间应满足使镓酸锂单晶材料全部转化为多孔氮化镓单晶材料。作 为一种实施方式,当多孔氮化镓单晶材料为多孔氮化镓单晶晶体时,所述镓酸锂单晶材料与含有氨气的原料气接触反应的时间为10h~100h。本领域技术人员可根据实际需要和所采用的镓酸锂单晶材料的尺寸,确定合适的接触反应时间。优选地,当多孔氮化镓单晶材料为多孔氮化镓单晶晶体时,所述镓酸锂单晶材料与含有氨气的原料气接触反应的时间范围下限选自24h、36h或48h,上限选自100h、96h、84h、72h或60h。
采用本申请所提供的方法,所得到的多孔氮化镓单晶晶体的晶体尺寸与所采用的镓酸锂单晶材料的尺寸相等。本领域技术人员可以根据实际需要,通过选择合适尺寸的镓酸锂单晶材料,得到所需要的多孔氮化镓单晶晶体。
优选地,所述含有氨气的原料气中:
氨气的流量记为a,0.05SLM≤a≤10SLM;
氮气的流量记为b,0SLM≤b≤10SLM;
氩气的流量记为c,0SLM≤c≤10SLM;
氢气的流量记为d,0SLM≤d≤10SLM。
进一步优选地,所述含有氨气的原料气中,氨气的流量范围下限选自0.05SLM、0.5SLM、1SLM、1.5SLM或2SLM,上限选自10SLM、9SLM、8SLM、7SLM、6SLM、5SLM、4SLM或3SLM。
进一步优选地,所述含有氨气的原料气中,氮气的流量范围下限选自0SLM、0.3SLM、0.4SLM或0.5SLM,上限选自10SLM、9SLM、、8SLM、7SLM、6SLM、5SLM、4SLM、3SLM、2SLM、1SLM或0.6SLM。
进一步优选地,所述含有氨气的原料气中,氩气的流量范围下限选自0SLM、0.1SLM或0.2SLM,上限选自10SLM、9SLM、、8SLM、7SLM、6SLM、5SLM、4SLM、3SLM、2SLM、1SLM或0.5SLM。
进一步优选地,所述含有氨气的原料气中,氢气的流量范围下限选自0SLM、0.05SLM、0.1SLM、0.2SLM或0.3SLM,上限选自10SLM、9SLM、、8SLM、7SLM、6SLM、5SLM、4SLM、3SLM、2SLM、1SLM、0.5SLM或0.4SLM。
作为一种优选的实施方式,所述制备多孔氮化镓单晶材料的方法,至少包括以下步骤:
(1)采用镓酸锂单晶片为衬底;
(2)将镓酸锂单晶片衬底置于气相外延生长反应室中,在高温含氨氛围中衬底表面氮化转化逆向外延生长,即得到多孔氮化镓单晶薄膜;
(3)随着氮化时间的增加,进一步进行氮化转化逆向外延生长,将镓酸锂单晶衬底完全氮化转化逆向外延生长,即得到自支撑多孔氮化镓单晶晶体。
根据本申请的又一方面,提供上述任意多孔氮化镓单晶材料中的至少一种和/或根据上述任意方法制备得到的多孔氮化镓单晶材料中的至少一种在光电材料中的应用。
本申请中,SLM是Standard Litre Per Minute的缩写,表示标准状态下1L/min的流量。
本申请中,所述晶体的尺寸和晶体最大表面中一维的尺寸是指一块晶体上面积最大的面上相邻最远两点的距离。
本申请的有益效果包括但不限于:
(1)本申请所提供的多孔氮化镓单晶材料,首次报道了多孔氮化镓单晶晶体、大尺寸极性(0001)C面多孔氮化镓单晶晶体、非极性
Figure PCTCN2017076791-appb-000007
面多孔氮化镓单晶晶体和
Figure PCTCN2017076791-appb-000008
面的多孔氮化镓单晶晶体。
(2)本申请所提供的多孔氮化镓单晶材料的制备方法,利用镓酸锂晶体与氮化镓晶体结构相近且晶格匹配的特点,使镓酸锂单晶衬底与氨气在高温下由外及里氮化转化逆向外延生长氮化镓晶体,其余产物完全挥发。
(3)本申请所提供的多孔氮化镓单晶材料的制备方法,利用同 体积镓酸锂晶体中镓的含量比氮化镓晶体中镓的含量少的特点,使得镓酸锂单晶衬底与氨气在高温下由外及里氮化转化逆向外延生成多孔氮化镓单晶晶体。
(4)本申请所提供的多孔氮化镓单晶材料的制备方法,操作简单、重复性好、成本低廉、适合大规模工业化生产。
附图说明
图1是样品1#极性(0001)C面多孔氮化镓单晶晶体的扫描电镜照片。
图2是样品2#非极性
Figure PCTCN2017076791-appb-000009
面多孔氮化镓单晶晶体的扫描电镜照片。
图3是样品3#非极性
Figure PCTCN2017076791-appb-000010
面多孔氮化镓单晶晶体的扫描电镜照片。
图4是样品M1#极性(0001)C面多孔氮化镓单晶薄膜的X射线衍射结果。
图5是样品M2#非极性
Figure PCTCN2017076791-appb-000011
M面多孔氮化镓单晶薄膜的X射线衍射结果。
图6是样品M3#非极性
Figure PCTCN2017076791-appb-000012
面多孔氮化镓单晶薄膜的X射线衍射结果。
图7是样品1#极性(0001)C面多孔氮化镓单晶晶体的X射线衍射结果。
图8是样品2#非极性
Figure PCTCN2017076791-appb-000013
面多孔氮化镓单晶晶体的X射线衍射结果。
图9是样品3#非极性
Figure PCTCN2017076791-appb-000014
面多孔氮化镓单晶晶体的X射线衍射结果。
图10是样品1#极性(0001)C面多孔氮化镓单晶晶体的阴极荧光量测结果。
图11是LiGaO2晶体、样品M1#极性(0001)C面多孔氮化镓单晶薄膜和样品1#极性(0001)C面多孔氮化镓单晶晶体的拉曼(Raman)量测结果。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
实施例中,镓酸锂单晶片根据文献【Chen,C.L.,Li,C.A.,Yu,S.H.&Chou,M.M.C.Growth and characterization ofβ-LiGaO2single crystal.J.Cryst.Growth 402,325–329(2014)】中的方法制备得到。
实施例中,样品的形貌采用JEOL JSM 6330F型扫描电镜分析。
实施例中,样品的X-射线衍射分析采用Bede D1(UK,Bede Scientific;Cu-Kα1radiation;operated at 40kV and 45mA;
Figure PCTCN2017076791-appb-000015
)型高分辨X-射线衍射分析仪。
实施例中,样品的阴极荧光谱(Cathodoluminescence)分析采用Gatan公司的MonoCL3分光计(JEOL JSM 6330F SEM系统,加速电压10kV,室温)。
实施例中,样品的拉曼(Raman)量测采用HORIBA JobinYvon公司LabRAM HR800微区拉曼谱测试系统,
实施例1样品M1#和样品1#的制备
将尺寸为5cm的(001)面镓酸锂单晶片作为衬底,置于高频感应炉的高纯石墨加热体上,然后放入石英反应器中,通入含有氨气的原料气(原料气由氨气和氮气组成:氨气2SLM,氮气0.5SLM)并将体系加热至1273K,保持体系压力为100托,反应30分钟后,冷却至室温,即得生长在镓酸锂单晶片衬底表面的多孔氮化镓单晶薄膜样品,薄膜厚度为150nm,记为样品M1#
将尺寸为5cm的(001)面镓酸锂单晶片作为衬底,置于高频感应炉的高纯石墨加热体上,然后放入石英反应器中,通入含有氨气的原料气(原料气由氨气和氮气组成:氨气2SLM,氮气0.5SLM)并将体系加热至1273K,保持体系压力为100托,反应48小时后,冷却至室温,即得多孔氮化镓单晶晶体样品,记为样品1#,样品1#的晶体尺寸为5cm。
实施例2样品M2#和样品2#的制备
样品M2#的制备步骤和条件同实施例1中的样品M1#,不同之处在于,将尺寸为5cm的(100)面镓酸锂单晶片作为衬底。
样品2#的制备步骤和条件同实施例1中的样品1#,不同之处在于,将尺寸为5cm的(100)面镓酸锂单晶片作为衬底。样品2#的晶体尺寸为5cm。
实施例3样品M3#和样品3#的制备
样品M3#的制备步骤和条件同实施例1中的样品M1#,不同之处在于,将尺寸为5cm的(010)面镓酸锂单晶片作为衬底。
样品3#的制备步骤和条件同实施例1中的样品1#,不同之处在于,将尺寸为5cm的(010)面镓酸锂单晶片作为衬底。样品3#的晶体尺寸为5cm。
实施例4样品M4#~样品M9#的制备
样品M4#~样品M9#的基本制备步骤同实施例1中的样品M1#,改变衬底和反应条件,得到不同的样品。样品编号与衬底和反应条件的关系如表1所示。
表1
Figure PCTCN2017076791-appb-000016
Figure PCTCN2017076791-appb-000017
实施例5样品M1#~样品M9#、样品1#~样品3#的形貌表征
采用扫描电镜对样品M1#~样品M9#的形貌进行了表征,结果显示,样品M1#~样品M9#均具有10nm~2000nm的多孔。
其中,样品M4#和样品M5#的形貌与样品M1#类似,以样品M1#为典型代表,其极性(0001)C面多孔氮化镓单晶晶体的扫描电镜照片如图1所示,由图可以看出表面均匀分布套孔结构的孔洞,孔洞呈典型的GaN(0001)C面六角形结构,并且六角边相互平行分布。样品1#的极性(0001)C面扫描电镜照片与样品M1#类似。
样品M6#和样品M7#的形貌与样品M2#类似,以样品M2#为典型代表,其非极性
Figure PCTCN2017076791-appb-000018
面多孔氮化镓单晶晶体的扫描电镜照片如图2所示,由图可以看出表面均匀分布套孔结构的孔洞,孔洞呈典型的GaN六角柱锥沿
Figure PCTCN2017076791-appb-000019
面投影形貌。样品2#的非极性
Figure PCTCN2017076791-appb-000020
Figure PCTCN2017076791-appb-000021
面扫描电镜照片与样品M2#类似。
样品M8#和样品M9#的形貌与样品M3#类似,以样品M3#为典型代表,其非极性
Figure PCTCN2017076791-appb-000022
面多孔氮化镓单晶晶体的扫描电镜照片如图3所示,由图可以看出表面均匀分布套孔结构的孔洞,孔洞呈典型的GaN六角柱锥沿
Figure PCTCN2017076791-appb-000023
A面投影形貌。样品3#的非极性
Figure PCTCN2017076791-appb-000024
Figure PCTCN2017076791-appb-000025
面扫描电镜照片与样品M3#类似。
实施例6样品M1#~样品M9#、样品1#~样品3#的结构表征
采用X射线衍射的方法对样品M1#~样品M9#、样品1#~样品3#进行了结构表征。
结果显示:
M4#、M5#与M1#有类似的结果,均只有GaN(0002)、(0004)和LiGaO2(002)、(004)的信号,以样品M1#为典型代表,其XRD图谱如图4所示。
M6#、M7#与M2#有类似的结果,均只有GaN
Figure PCTCN2017076791-appb-000026
和LiGaO2(200)、(400)的信号,以样品M2#为典型代表,其XRD图谱如图5所示。
M8#、M9#与M3#有类似的结果,均只有GaN
Figure PCTCN2017076791-appb-000027
和LiGaO2(040)的信号,以样品M3#为典型代表,其XRD图谱如图6所示。
样品1#只有GaN(0002)、(0004)的信号,其(10-11)面phi扫描结果显示其具有6重对称性。
样品2#只有GaN
Figure PCTCN2017076791-appb-000028
Figure PCTCN2017076791-appb-000029
的信号。
样品3#只有GaN
Figure PCTCN2017076791-appb-000030
的信号
结合光学显微镜下的观察结果(除了孔洞的其他部位均为透明一体晶块)可知,样品1#~样品3#均为氮化镓单晶晶体,样品M1#~样品M9#均为氮化镓单晶薄膜。
实施例7样品M1#~样品M9#,样品1#~样品3#的光学性能测试
采用阴极荧光谱(CL)分析对样品M1#~样品M9#、样品1#~样品3#进行了光学表征,发现所有样品于3.4eV均具有GaN近带边发光峰,如图10所示,表明所制备的GaN具有良好的发光性质。
实施例8样品M1#~样品M9#,样品1#~样品3#的拉曼(Raman)测试
采用拉曼量测对样品M1#~样品M9#、样品1#~样品3#进行了分析,发现所有样品具有类似的结果,即因为内部多孔结构的存在,拉曼的选择定则被打破,并且有很强的E2(高)信号,多孔GaN晶体的E2(高)位于567.8cm-1,如图11所示,表明制备的GaN晶体具有高的结晶品质,良好的内部多孔结构和近乎无应力状态。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

  1. 一种多孔氮化镓单晶材料,其特征在于,所述多孔氮化镓单晶材料中含有孔径为10nm~2000nm的孔。
  2. 根据权利要求1所述的多孔氮化镓单晶材料,其特征在于,所述多孔氮化镓单晶材料是多孔氮化镓单晶薄膜和/或多孔氮化镓单晶晶体。
  3. 根据权利要求2所述的多孔氮化镓单晶材料,其特征在于,所述多孔氮化镓单晶薄膜的表面为多孔氮化镓单晶的(0001)C面、
    Figure PCTCN2017076791-appb-100001
    Figure PCTCN2017076791-appb-100002
    面、
    Figure PCTCN2017076791-appb-100003
    面中的至少一面。
  4. 根据权利要求2所述的多孔氮化镓单晶材料,其特征在于,所述多孔氮化镓单晶晶体的尺寸为0.1cm~30cm;优选地,所述多孔氮化镓单晶晶体的尺寸为1cm~5cm。
  5. 制备权利要求1至4任一项所述多孔氮化镓单晶材料的方法,其特征在于,将镓酸锂单晶材料与含有氨气的原料气接触反应,得到所述多孔氮化镓单晶材料。
  6. 根据权利要求5所述的方法,其特征在于,所述镓酸锂单晶材料与含有氨气的原料气接触的是镓酸锂单晶的(001)面、(010)面、(100)面中的至少一面。
  7. 根据权利要求5所述的方法,其特征在于,所述反应温度为973K~1773K,压力为10托~700托。
  8. 根据权利要求5所述的方法,其特征在于,所述反应时间为10min~100h。
  9. 根据权利要求5所述的方法,其特征在于,所述含有氨气的原料气中,
    氨气的流量记为a,0.05SLM≤a≤10SLM;
    氮气的流量记为b,0SLM≤b≤10SLM;
    氩气的流量记为c,0SLM≤c≤10SLM;
    氢气的流量记为d,0SLM≤d≤10SLM。
  10. 权利要求1至4任一项所述多孔氮化镓单晶材料中的至少一 种和/或根据权利要求5至9任一项所述方法制备得到的多孔氮化镓单晶材料中的至少一种在光电材料中的应用。
PCT/CN2017/076791 2017-03-13 2017-03-15 多孔氮化镓单晶材料、其制备方法及应用 WO2018165910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710146131.4A CN108570709A (zh) 2017-03-13 2017-03-13 一种多孔氮化镓单晶材料、其制备方法及应用
CN201710146131.4 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018165910A1 true WO2018165910A1 (zh) 2018-09-20

Family

ID=63522730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076791 WO2018165910A1 (zh) 2017-03-13 2017-03-15 多孔氮化镓单晶材料、其制备方法及应用

Country Status (2)

Country Link
CN (1) CN108570709A (zh)
WO (1) WO2018165910A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113990990A (zh) * 2021-09-01 2022-01-28 华灿光电(浙江)有限公司 微型发光二极管外延片及其制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110670135B (zh) * 2018-07-03 2021-03-05 中国科学院福建物质结构研究所 一种氮化镓单晶材料及其制备方法
CN111434811B (zh) * 2019-01-14 2022-04-08 中国科学院苏州纳米技术与纳米仿生研究所 自分离氮化镓单晶及其助熔剂法生长方法
CN111809239B (zh) * 2019-04-10 2022-03-22 中国科学院福建物质结构研究所 一种多孔金属氮化物单晶材料及其制备方法和应用
CN110714184A (zh) * 2019-09-29 2020-01-21 山东大学 基于多孔氮化镓的表面增强拉曼散射基底及其制备方法
CN112746319A (zh) * 2019-10-29 2021-05-04 中国科学院福建物质结构研究所 一种多孔氮化铌单晶材料及其制备方法和应用
CN111020692A (zh) * 2019-12-13 2020-04-17 中国科学院福建物质结构研究所 一种多孔Ta3N5单晶材料及其制备方法和应用
CN113718334A (zh) * 2020-05-25 2021-11-30 中国科学院福建物质结构研究所 一种多孔氮化镓单晶材料及其制备方法和应用
CN114164492B (zh) * 2020-09-11 2023-05-09 中国科学院福建物质结构研究所 大尺寸介/微孔氮化钨单晶材料及其制备方法、应用
CN113502543B (zh) * 2020-12-28 2022-10-11 中国科学院福建物质结构研究所 一种多孔钪氮化铝单晶材料、其制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045611A (en) * 1997-01-30 2000-04-04 Nippon Telegraph And Telephone Corporation Method of manufacturing a LiGaO2 single-crystal substrate
CN1599031A (zh) * 2004-07-21 2005-03-23 南京大学 一种制备高质量非极性GaN自支撑衬底的方法
CN1801459A (zh) * 2005-01-03 2006-07-12 三星电机株式会社 用于制造基于氮化镓的单晶衬底的方法和装置
US7118929B2 (en) * 2000-07-07 2006-10-10 Lumilog Process for producing an epitaxial layer of gallium nitride

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104419982B (zh) * 2013-09-05 2017-10-20 国家纳米科学中心 一种内径可控的多孔单晶氮化镓微/纳米管阵列及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045611A (en) * 1997-01-30 2000-04-04 Nippon Telegraph And Telephone Corporation Method of manufacturing a LiGaO2 single-crystal substrate
US7118929B2 (en) * 2000-07-07 2006-10-10 Lumilog Process for producing an epitaxial layer of gallium nitride
CN1599031A (zh) * 2004-07-21 2005-03-23 南京大学 一种制备高质量非极性GaN自支撑衬底的方法
CN1801459A (zh) * 2005-01-03 2006-07-12 三星电机株式会社 用于制造基于氮化镓的单晶衬底的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113990990A (zh) * 2021-09-01 2022-01-28 华灿光电(浙江)有限公司 微型发光二极管外延片及其制造方法
CN113990990B (zh) * 2021-09-01 2023-05-09 华灿光电(浙江)有限公司 微型发光二极管外延片及其制造方法

Also Published As

Publication number Publication date
CN108570709A (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
WO2018165910A1 (zh) 多孔氮化镓单晶材料、其制备方法及应用
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
CN113235047B (zh) 一种AlN薄膜的制备方法
WO2012042961A1 (ja) GaN結晶の成長方法およびGaN結晶基板
CN105914139A (zh) 一种石墨烯上自组织成核外延GaN材料的方法
JP2006111478A (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
JP2007230823A (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
CN109097834B (zh) 多孔网状结构GaN单晶薄膜、其制备方法及应用
CN108987257B (zh) 利用卤化物气相外延法在Si衬底上生长Ga2O3薄膜的方法
CN111663181B (zh) 一种氧化镓膜的制备方法及其应用
CN110670135B (zh) 一种氮化镓单晶材料及其制备方法
CN108428618A (zh) 基于石墨烯插入层结构的氮化镓生长方法
Jia et al. Growth mechanism on graphene-regulated high-quality epitaxy of flexible AlN film
CN116613056B (zh) 一种降低碳化硅外延薄膜表面缺陷的方法
JP5896470B2 (ja) AlN単結晶の製造方法
CN116446040A (zh) 一种大尺寸单晶金刚石晶片及其制备方法
CN106783553B (zh) 石墨烯/介质材料为复合衬底的三族氮化物微米柱结构及制备方法
TW201448272A (zh) 氮化鎵自承式基板的製造方法及製造裝置
CN113718334A (zh) 一种多孔氮化镓单晶材料及其制备方法和应用
CN113089091A (zh) 氮化硼模板及其制备方法
KR101539073B1 (ko) 반극성 GaN 템플레이트를 제조하기 위한 방법
JP2020200223A (ja) Iii族元素窒化物結晶の製造方法および製造装置
CN113053735B (zh) BxAlyGa(1-x-y)N自支撑单晶衬底及其制备方法
US20100242833A1 (en) AlN Crystal and Method of Its Growth
JP2014162649A (ja) SiC基板、SiC基板の製造方法、SiCエピタキシャル基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900465

Country of ref document: EP

Kind code of ref document: A1