WO2018164067A1 - 有機無機複合粒子、およびその製造方法 - Google Patents

有機無機複合粒子、およびその製造方法 Download PDF

Info

Publication number
WO2018164067A1
WO2018164067A1 PCT/JP2018/008380 JP2018008380W WO2018164067A1 WO 2018164067 A1 WO2018164067 A1 WO 2018164067A1 JP 2018008380 W JP2018008380 W JP 2018008380W WO 2018164067 A1 WO2018164067 A1 WO 2018164067A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
particle
organic
seed
composite particles
Prior art date
Application number
PCT/JP2018/008380
Other languages
English (en)
French (fr)
Inventor
岡本 直樹
Original Assignee
宇部エクシモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部エクシモ株式会社 filed Critical 宇部エクシモ株式会社
Priority to KR1020197028815A priority Critical patent/KR102605246B1/ko
Priority to EP18764057.8A priority patent/EP3594265A4/en
Priority to CN201880015075.3A priority patent/CN110382599B/zh
Priority to US16/490,724 priority patent/US11525039B2/en
Publication of WO2018164067A1 publication Critical patent/WO2018164067A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres

Definitions

  • the present invention relates to organic-inorganic composite particles and a method for producing the same.
  • a gap material is used when controlling the distance between two parts such as a substrate in an electronic member to be constant.
  • liquid crystal display elements such as liquid crystal displays (LCDs), polymer dispersed liquid crystal (PDLC) films, and organic EL displays (OLEDs) require micron-order and high-accuracy spacers in design.
  • fine particles such as resin particles and silica particles are used as spacers.
  • resin particles nor silica particles are sufficient to satisfy the above requirements.
  • the resin particles have flexibility, plastic deformation may occur when a large load is applied.
  • resin particles in a liquid crystal display element, there are concerns about unevenness in the distance between two substrates and a reduction in display image quality.
  • resin particles generally have poor particle size accuracy, which may affect gap accuracy.
  • silica particles are excellent in particle size accuracy, and gap accuracy is higher than that of resin particles. However, since silica particles are too hard and may affect the wiring, they may not be used as spacers. In addition, silica particles can be damaged when subjected to sudden impacts.
  • the resin particles have poor particle size accuracy, and the silica particles do not have flexibility. Therefore, organic-inorganic hybrid particles represented by polyorganosiloxane are promising as spacers. Organic-inorganic hybrid particles have a particle size accuracy comparable to silica particles in addition to the flexibility of resin particles.
  • the main component is polysiloxane having organic silicon in which at least one carbon atom in the organic group is directly chemically bonded to silicon atom, and after 10% deformation
  • Organic-inorganic composite particles having a residual displacement of 5% or less are disclosed (for example, Patent Document 1).
  • the ratio ( ⁇ L / R) between the indenter movement amount ⁇ L during a predetermined load holding time and the particle diameter R of the particle is 0.02 or less.
  • a prescribed spacer for a liquid crystal display element has been proposed (for example, Patent Document 2).
  • elastic fine particles used for spacers between substrates such as touch panels are fine particles having flexibility that does not damage the wiring of the substrate and having compression deformation recovery properties (elasticity) that give excellent durability (For example, Patent Document 3).
  • a spacer having flexibility such as resin particles and polyorganosiloxane particles undergoes creep deformation when a constant load is continuously applied.
  • Such a spacer as an opposing phenomenon, causes stress relaxation when kept at a constant displacement. That is, a predetermined time (stress relaxation time) is required until the stress (load) and the strain (displacement amount) balance.
  • the spacer undergoes creep deformation, for example, in the assembly process of the liquid crystal display element, it is necessary to consider the stress relaxation time. Since it takes time to bond the panels, it causes a decrease in productivity. Further, the creep deformation of the spacer can affect the alignment accuracy. In some cases, it may be necessary to readjust the load during panel bonding.
  • the residual displacement in Patent Document 1 is calculated by calculating the amount of displacement remaining in the particles immediately after unloading the particles and applying 10% deformation to the particles.
  • the residual displacement obtained in this way is not a measure of mechanical resilience against time-dependent creep deformation.
  • the time for which the load is held is 30 seconds. It is difficult to accurately evaluate the compression resistance against time-dependent creep deformation based on the indenter movement amount ⁇ L after holding the load for 30 seconds and the particle diameter R of the particles.
  • Patent Document 1 and Patent Document 3 although an allowable range for plastic deformation of particles is searched, the occurrence of creep deformation is not suppressed.
  • Patent Document 3 discloses particles having an excellent compression deformation recovery rate. However, Patent Document 3 does not describe any polyorganosiloxane particles in which the occurrence of creep deformation is suppressed.
  • an object of the present invention is to provide organic-inorganic composite particles in which creep deformation is further suppressed, and a method for producing the same.
  • the organic-inorganic composite particles according to the present invention are organic-inorganic composite particles having a particle diameter d0 made of a compound having a siloxane bond, and 180 by applying a load with a displacement amount Ds of 0.08d0 ⁇ Ds ⁇ 0.15d0. When held for 2 seconds, the following conditions (1) and (2) are satisfied.
  • the method for producing organic-inorganic composite particles according to the present invention is a method for producing organic-inorganic composite particles made of a compound having a siloxane bond, wherein non-hydrolyzable organic groups and hydrolyzable organic groups are bonded to silicon atoms. Stirring the raw material solution containing the compound and the catalyst to hydrolyze and condense the silicon compound to form seed particles made of polyorganosiloxane having Si—C bonds; and growing the seed particles. After obtaining the grown particles, the method comprises the steps of solidifying and drying the grown particles to obtain dried solid particles, and firing the dried solidified particles while maintaining the Si—C bonds.
  • the organic-inorganic composite particles are particles in which creep deformation is further suppressed because the amount of displacement with respect to the applied load is within a predetermined range.
  • the amount of displacement does not increase with time in a state where a constant load is applied.
  • seed particles are formed, grown, and then fired under predetermined conditions, so that organic-inorganic composite particles in which creep deformation is further suppressed can be obtained.
  • the organic-inorganic composite particles (hereinafter also simply referred to as composite particles) of the present embodiment are made of a compound having a siloxane bond (Si—O—Si bond).
  • the displacement with respect to the applied load is within a specific range. Specifically, when the composite particles of the present embodiment are held for 180 seconds by applying a load with a displacement amount Ds of 0.08d0 ⁇ Ds ⁇ 0.15d0, the conditions of the following formulas (1) and (2) are satisfied.
  • the particle size d0 means an average particle size obtained by the Coulter counter method.
  • D180 is the displacement of the particle size after 180 seconds from the application of the load
  • Dmax is the maximum displacement of the particle size within 180 seconds
  • d0 is the particle size of the composite particles before the load is applied.
  • the composite particles of the present embodiment have a displacement rate ((D180 ⁇ Ds) / d0) and a maximum displacement rate ((Dmax ⁇ Ds) / d0) after 180 seconds when a predetermined load is applied. Both are 1% or less. Since a predetermined load is applied and the displacement amount is obtained while holding the load for 180 seconds, the displacement amount after 180 seconds is the end displacement amount, and the displacement rate after 180 seconds is the end displacement rate.
  • FIGS. 1 and 2 the relationship between the elapsed time and the displacement amount when a load is applied to the composite particles of the present invention will be described.
  • the composite particle 10 has a particle diameter d0 in a state where no load is applied (time t0).
  • a predetermined load F having a starting displacement amount Ds (0.08d0 ⁇ Ds ⁇ 0.15d0) is applied to the composite particle 10 at time ts and held for 180 seconds.
  • the composite particle 10 is placed on a flat pressure plate, and a load F that deforms 10% of the particle size d0 is applied using a circular flat plate indenter made of diamond having a diameter of 50 ⁇ m.
  • the displacement amount of the composite particle 10 gradually increases when the load F is applied as shown in FIG. 2, and shows the maximum displacement amount Dmax at time tmax. Thereafter, the displacement amount of the composite particle 10 decreases. At t180 after 180 seconds from ts, the end displacement of the particle size of the composite particle 10 is D180 ( ⁇ Dmax).
  • the composite particle 10 of the present embodiment has an end displacement rate ((D180 ⁇ D0) / d0) of 1% or less.
  • the composite particle 10 of the present embodiment has a maximum displacement rate ((Dmax0 ⁇ D0) / d0) of 1% within 180 seconds as shown in the above formula (2).
  • the end displacement rate is preferably 0.5% or less.
  • the maximum displacement rate is preferably 0.5% or less, and more preferably 0.
  • the composite particles of the present invention preferably have a 10% compression modulus of 2 GPa or more and 20 GPa or less. Particles with a 10% compression modulus too small are too soft and have a large displacement with respect to the load. For this reason, particles having a small 10% compression modulus cannot sufficiently exhibit the function as a spacer. On the other hand, particles having an excessively large 10% compression modulus are too hard as spacers. Particles having an excessively large 10% compression modulus cause damage to peripheral members in contact with the particles.
  • the composite particle composed of a compound having a siloxane bond has a 10% compression modulus of 2 GPa or more, an appropriate substrate spacing can be maintained even if the load changes. It can be used as a spacer. If the 10% compression modulus is 20 GPa or less, the elastic properties of the composite particles are more preferable.
  • the average particle diameter of the composite particles of the present invention determined by the Coulter counter method is preferably 0.5 to 200 ⁇ m. Composite particles having an average particle size within this range can be suitably used as a spacer in an electronic member or the like.
  • the average particle size of the composite particles of the present invention is more preferably 1 to 100 ⁇ m. In particular, when used for liquid crystal panel applications, the average particle size of the composite particles is preferably 1 to 15 ⁇ m, more preferably 2 to 12 ⁇ m, and most preferably 3 to 7 ⁇ m.
  • the coefficient of variation CV value of the particle size distribution of the composite particles of the present invention is preferably 5% or less.
  • the CV value is determined by the standard deviation of the particle diameter and the average particle diameter as shown by the following mathematical formula (A1). A method for calculating the CV value will be described later.
  • CV value (%) (standard deviation of particle size / average particle size) ⁇ 100 Formula (A1)
  • the composite particles having a CV value of 5% or less can be suitably used as a spacer because the particle size variation is small.
  • the CV value of the composite particles is more preferably 2.5% or less.
  • the composite particle of this embodiment is a sphere-shaped monodisperse particle.
  • the appropriate average particle size range of the composite particles varies depending on the application. Suitable average particle sizes are, for example, 6-16 ⁇ m for organic EL applications, 7-25 ⁇ m for PDLC applications, 25-50 ⁇ m for 3D shutter applications, and 40-120 ⁇ m for LED illumination applications.
  • the production method of the present invention includes a seed particle formation step, a particle growth step, and a firing step. Hereinafter, each step will be described.
  • a silicon compound as a raw material is hydrolyzed and condensed in an aqueous solvent together with a catalyst to form droplet seed particles. Thereby, a seed particle liquid in which seed particles are dispersed in an aqueous solvent is obtained.
  • the silicon compound used as a raw material is an alkoxide in which a non-hydrolyzable organic group and a hydrolyzable organic group are bonded to a silicon atom, and is represented by the following general formula (PS1).
  • R 1 is selected from an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • R 2 is an alkyl group having 1 to 6 carbon atoms, and n is an integer of 1 to 3. When n is 2 or more, the plurality of R 1 may be the same as or different from each other. When n is 2 or less, the plurality of hydrolyzable organic groups OR 2 may be the same as or different from each other.
  • the trialkoxysilane preferably occupies 60% or more (molar conversion) of the whole raw material, and more preferably 80% or more (molar conversion).
  • Preferred trialkoxysilanes include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, Phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -acryloyloxypropyltrimethoxysilane, ⁇ -methacryl
  • methyltrimethoxysilane and vinyltrimethoxysilane are preferred because of their excellent hydrolytic condensation reactivity.
  • a silicon compound can be used individually or in combination of 2 or more types.
  • R 3 is selected from an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • Non-hydrolyzable organic group At least one hydrogen atom in the alkyl group may be substituted with a methacryloyloxy group, an acryloyloxy group, or an epoxy group.
  • R 4 is an alkyl group having 1 to 6 carbon atoms, and m is an integer of 0 to 3.
  • m is 2 or more, the plurality of R 3 may be the same as or different from each other.
  • m is 2 or less, the plurality of hydrolyzable organic groups OR 4 may be the same as or different from each other.
  • a trialkoxysilane different from the decomposable organic group OR 2 is used.
  • the silicon compound is dissolved in an aqueous solvent together with the catalyst to prepare a raw material solution.
  • the concentration of the silicon compound in the raw material solution is preferably 20% by mass or less. When the concentration of the silicon compound is in the range of 5 to 15% by mass, it is advantageous in view of the particle size and volumetric efficiency of the seed particles to be produced.
  • aqueous solvent a mixed solvent of water and a water-miscible organic solvent, or water can be used.
  • the water-miscible organic solvent include lower alcohols such as methanol, ethanol, propanol, and butanol, ketones such as acetone, dimethyl ketone, and methyl ethyl ketone, ethers such as diethyl ether, and dipropyl ether.
  • the water-miscible organic solvent can be used alone and mixed with water. Two or more water-miscible organic solvents may be combined and mixed with water.
  • the catalyst is preferably a basic catalyst, and ammonia or amine can be used.
  • the amine can be selected from, for example, monomethylamine, dimethylamine, monoethylamine, diethylamine and ethylenediamine.
  • a catalyst may be used individually or in combination of 2 or more types.
  • ammonia is preferable from the viewpoint of low toxicity, easy removal from the particles, and low cost.
  • the raw material solution may contain a stabilizer.
  • the stabilizer enhances the solubility of the silicon compound and stabilizes the generated seed particles.
  • examples of the stabilizer include a surfactant and a polymer dispersant.
  • the silicon compound represented by the general formula (PS1) has a hydrolyzable organic group (OR 2 ) bonded to a silicon atom
  • hydrolysis condensation occurs by stirring the raw material solution under predetermined conditions.
  • the raw material solution can be stirred using a known stirrer.
  • the pH at the start of the reaction is appropriately set according to the type of silicon compound as a raw material.
  • the pH at the start of the reaction is preferably 9.7 to 11.7, more preferably 9.7 to 11.2.
  • the reaction temperature is appropriately set according to the type of the silicon compound, and for example, a range of 0 to 50 ° C. is suitable.
  • seed particles made of polyorganosiloxane having a Si—C bond are generated.
  • Polyorganosiloxane is soluble in, for example, alcohol, but is insoluble in, for example, a mixture of water and alcohol. For this reason, a seed particle liquid in which droplet-like seed particles are dispersed in an aqueous solvent is obtained.
  • the droplet-like seed particles have different properties from the conventionally known solid seed particles.
  • the presence of droplet-like seed particles is basically confirmed only in the liquid in which the seed particles are formed, not the particles that have undergone the cleaning process and the drying process.
  • the droplet state can be judged by, for example, adding a large amount of alcohol to the seed particle liquid and observing dissolution of the particles.
  • the state of the liquid droplets can be determined by pressing the cover glass on the slide glass with a finger before observation with the optical microscope and then observing the collapsed state of the particles with an optical microscope.
  • the accuracy of the seed particle size can be evaluated by, for example, the CV value.
  • the CV value of the particle is obtained from the standard deviation of the particle size and the average particle size.
  • the average particle size of the seed particles is, for example, in the range of 1 to 50 ⁇ m.
  • the CV value of the seed particles is preferably 10% or less, and more preferably 5% or less.
  • phase separation occurs when a hydrophilic substance and a hydrophobic substance are mixed.
  • a substance having a hydrophilic group and a hydrophobic group in one molecule represented by a surfactant or the like forms micelles in which functional groups having the same properties face each other.
  • the aggregate formed by such a difference in ease of mixing with water is flexible and exhibits an elastic property because no bond is formed in the aggregate.
  • the hydrolyzate of the silicon compound represented by the general formula (PS1) is a hydrophilic silanol group obtained from a hydrophobic organic group (non-hydrolyzable organic group R 1 ) and a hydrolyzable organic group OR 2. And have.
  • the organic base can form an aggregate and can be a large elastic body that can be deformed in response to a load.
  • the silicon compound represented by the general formula (PS1) is reacted in an environment having a relatively large amount of catalyst, formation of Si—O—Si bonds between molecules by dehydration condensation of silanol groups is promoted. Since the degree of freedom in forming the aggregate is lost, a large aggregate cannot be obtained.
  • the dense Si—O skeleton in the seed particle is formed when the seed particle growth is completed. If the seed particles are growing, a dense Si—O skeleton is not generated.
  • the time for completing the growth of the seed particles is uniquely determined by the synthesis conditions. By synthesizing particles under the same conditions in advance using the same raw material solution and observing the state of the raw material solution and changes in the particle size, it is possible to grasp the time for completing the seed particle growth.
  • the time for completing the growth of the seed particles is the time from when the raw material solution becomes cloudy until the growth of the seed particles stops. This time is defined as the growth stop time.
  • the synthesis time in the seed particle formation step it is preferable to limit the synthesis time in the seed particle formation step to 40 to 80% of the growth stop time.
  • the synthesis time of the seed particles is too long, a dense Si—O skeleton is formed.
  • the synthesis time of seed particles is too short, it becomes difficult to obtain monodisperse seed particles.
  • the catalyst concentration in the seed particle formation step is preferably 0.001 mol / L or more when, for example, methyltrimethoxysilane is used alone, About 0.005 to 0.020 mol / L is more preferable.
  • ⁇ Particle growth process> seed particles are grown to obtain grown particles, and then the grown particles are solidified to obtain solidified particles.
  • the silicon compound represented by the general formula (PS1) is dissolved in an aqueous solvent to prepare a solution for particle growth.
  • methyltrimethoxysilane or vinyltrimethoxysilane is suitable as the silicon compound.
  • the same type of silicon compound as that used for forming the seed particles can be used, but a different type of silicon compound may be used.
  • a water-miscible organic solvent as already described, or water can be used.
  • the water-miscible organic solvent can be mixed with water alone. Two or more water-miscible organic solvents may be combined and mixed with water.
  • the solution for particle growth can be prepared using a known stirrer.
  • the stabilizer for particle growth may contain a stabilizer.
  • a stabilizer has the effect
  • Surfactant for example, an anionic surfactant, is mentioned.
  • an anionic surfactant an alkyl sulfate having an alkyl group having 6 to 30 carbon atoms is preferable.
  • the alkyl sulfate can be selected from, for example, potassium salt, sodium salt and ammonium salt, and sodium dodecyl sulfate and ammonium dodecyl sulfate are preferable.
  • the stabilizer also functions as a surface protective agent for seed particles in which the formation of the Si—O skeleton is sparse when the particle growth solution is mixed with the seed particle solution.
  • the thus-adjusted particle growth solution and the seed particle solution are mixed and stirred to allow the seed particles to absorb the silicon compound. Thereby, seed particles grow to become grown particles, and a grown particle liquid is obtained.
  • the particle growth step it is preferable to synthesize with a low catalyst concentration in order to make the Si—O skeleton sparse. Since the seed particle liquid containing the catalyst and the particle growth solution are mixed, the catalyst concentration in the liquid becomes small. For example, in the case of methyltrimethoxysilane, it is desirable to add the seed particle solution to the particle growth solution so that the catalyst concentration in the whole solution is 0.005 mol / L or less. The final catalyst concentration in the particle growth step is preferably 0.005 mol / L or less.
  • the particle growth process may be repeated multiple times. By repeating the particle growth process, the catalyst concentration in the solution may be reduced. If the amount of catalyst is too small, it will be difficult to obtain growth particles of the desired size, so it is desirable to add an appropriate catalyst as necessary to maintain an appropriate catalyst concentration of 0.005 mol / L or less. It is.
  • a catalyst is newly added to the growth particle liquid to hydrolyze and condense the silicon compound contained in the growth particles.
  • the catalyst include basic catalysts as described in the formation of seed particles.
  • the grown particles are aged and solidified to obtain solidified particles.
  • the solidified particles are made of polyorganosiloxane having Si—C bonds.
  • the fine particles contained in the solidified particles are appropriately removed by washing.
  • composite particles having a sparse Si—O skeleton and an aggregate of organic bases can be obtained.
  • the dried solidified particles are fired under the condition that the Si—C bond is maintained. By maintaining the Si—C bond, aggregates due to organic bases remain in the obtained composite particles.
  • composite particles having a compressive strength according to the application can be obtained. Firing is preferably performed at 200 ° C. to 1000 ° C. in an inert atmosphere such as nitrogen or in a vacuum. By firing under such conditions, composite particles having appropriate compressive strength and hardness as a spacer can be obtained.
  • the firing temperature is more preferably 400 to 800 ° C.
  • Calcination temperature is selected according to the type of organic group contained in the particles. In the case of particles having an organic group that easily undergoes thermal decomposition, it is desirable to treat them at a relatively low temperature within the above-mentioned firing temperature range. On the other hand, in the case of particles having an organic group which is difficult to be thermally decomposed, it is preferable to perform the treatment at a higher temperature within the above-mentioned range of the firing temperature.
  • an appropriate firing temperature is 600 to 730 ° C.
  • an appropriate firing temperature is 250 to 350 ° C.
  • an appropriate condition may be selected according to the breaking strength and elastic modulus required for the target particles.
  • the firing apparatus is not particularly limited, and an electric furnace, a rotary kiln, or the like can be used. The use of a rotary kiln is advantageous because the particles can be fired while stirring.
  • Calcination can also be performed in the presence of oxygen (for example, in air). Oxidation decomposition of organic components and generation of combustion heat are promoted by firing in the presence of oxygen. For this reason, when oxygen is present, firing is performed at a lower temperature than firing in an inert atmosphere or in a vacuum.
  • a preferable temperature range is a temperature that is at least 100 ° C. lower than the decomposition temperature of the organic group contained in the solidified particles and less than the decomposition temperature of the organic group.
  • the organic group When the temperature is immediately raised to a temperature equal to or higher than the decomposition temperature of the organic group and fired, the organic group is rapidly decomposed and desorbed, and the fracture strength of the resulting particles is reduced. In some cases, the particles can not withstand rapid contraction and cracks occur in the particles. Furthermore, the organic group is lost excessively, and particles having the required flexibility cannot be obtained. By firing at an appropriate temperature according to the type of organic group, such a problem can be avoided.
  • the particles obtained from methyltrimethoxysilane are preferably fired at a temperature in the range of 250 to 350 ° C.
  • excessive heat may be transmitted.
  • the oxygen concentration to 10% by volume or less, it is possible to avoid burning the decomposed and desorbed organic components on the spot. It is also an effective measure to immediately remove decomposed and desorbed organic components out of the system by blowing air.
  • the amount of decomposition of the organic group can be grasped, for example, by comparing the peak of the organic group before and after firing by infrared spectroscopic analysis (IR).
  • IR infrared spectroscopic analysis
  • an optimal ratio can be selected according to the required breaking strength and elastic modulus.
  • the residual ratio of the organic group is preferably 20% or more, and more preferably in the range of 30 to 90%.
  • the composite particles produced as described above are made of polysiloxane having a Si—C bond, and the amount of displacement with respect to an applied load is within a specific range.
  • the composite particles of the present embodiment have an end displacement rate ((D180 ⁇ Ds) / when applying a load that gives a displacement amount Ds (0.08d0 ⁇ Ds ⁇ 0.15d0) for 180 seconds. Since both d0) and the maximum displacement rate ((Dmax ⁇ Ds) / d0) are 1% or less, they can be deformed according to the load.
  • the amount of displacement does not increase with time when a constant load is applied.
  • the composite particle of this embodiment is a particle in which creep deformation is further suppressed.
  • the composite particles of the present embodiment are produced by forming seed particles with a limited synthesis time, growing the seed particles, and then firing them under predetermined conditions. Therefore, the composite particles have the characteristics described above. Yes.
  • the difference in the density of the Si—O skeleton thus generated is not completely eliminated even after the production process, and remains in the produced composite particles. It is known that the difference in the density of the Si—O skeleton causes a refractive index difference in the composite particles.
  • the boundary of the density of the Si—O skeleton is confirmed as an interface of a core-shell structure with the seed particles as the core and the grown portion as the shell.
  • the seed particle synthesis time is set short to be 40 to 80% of the growth stop time, so the seed particle growth is not completed. Since such seed particles are grown, composite particles having no core-shell structure can be produced. The absence of the core-shell structure in the composite particles can be confirmed by general optical observation.
  • the fact that the composite particles do not have a core-shell structure is evidence that formation of a dense Si—O skeleton in the seed particles is suppressed.
  • the density difference of the Si—O skeleton exists in the composite particles as the difference in refractive index at the interface.
  • the refractive index difference at the interface is not confirmed in the composite particle, there is no density difference of the Si—O skeleton in the composite particle. That is, the skeleton in the composite particle is uniform.
  • the formation of the dense Si—O skeleton of the seed particles is suppressed, so that the organic base in the particles is uniformly present with a high degree of freedom.
  • the composite particles aggregates with larger organic bases are formed, and the elastic properties are increased. As a result, composite particles in which creep deformation was further suppressed were obtained.
  • the composite particles of the present embodiment are used as a gap material such as a liquid crystal panel, effects such as labor saving in the bonding process and improvement in design are obtained. Since the composite particles of the present embodiment do not cause creep deformation, there is no possibility of losing display performance even when a load is applied to the liquid crystal panel for a long time.
  • the composite particles of the present embodiment and the adhesive resin are mixed and used as an adhesive for maintaining a gap, the influence of creep deformation of the adhesive resin itself can be suppressed. In this case, it can be expected that the adhesive for maintaining a gap is highly reliable even during long-term use.
  • the detection speed of the composite particles according to the present embodiment is very fast because when the load is applied, the displacement immediately changes to the displacement amount corresponding to the load. Moreover, since the composite particles of the present embodiment have such characteristics that can maintain accuracy over a long period of time, the composite particles of the present embodiment can be used as a gap holding material such as a high-sensitivity pressure sensor. Can also be suitably used.
  • the particle size of the seed particle is in a state where the raw material soaks into the particle and swells. grow up.
  • the particles in the middle of synthesis are not solid but droplets. For example, when alcohol is added to particles during synthesis, it is confirmed that the particle interface disappears and the particles are eluted. From such a phenomenon, it can be confirmed that the particles in the middle of synthesis are droplets.
  • the organic base portion exists in a state with a high degree of freedom, a larger aggregate is formed. As a result, the elastic properties of the resulting composite particles are increased, so that creep deformation is suppressed. Further, since the formation of the Si—O skeleton is hindered by the presence of the organic base having a high degree of freedom, plastic deformation caused by the Si—O skeleton can be suppressed. As a result, particles having excellent elastic properties can be obtained.
  • the amount of catalyst is relatively large and the raw material is gradually supplied.
  • Such a method is called a two-layer method or a uniform method, and grows particles while forming a Si—O skeleton.
  • the conventional manufacturing method since the existence range of the organic base is limited, a large elastic body portion is not formed.
  • the elastic modulus of the obtained particles is lowered, but it is not sufficient in terms of elastic properties and suppression of creep deformation.
  • the silicon compound as a raw material that the specific gravity must be lower than that of the solvent, and only a specific silicon compound can be used.
  • the reaction time can be remarkably shortened and productivity is improved as compared with conventional methods such as a two-layer method.
  • the growth of the particles in a short time is also one of the reasons why the formation of a Si—O skeleton is sparse and an aggregate with a large organic base is obtained.
  • the silicon compound as a raw material is not limited, and there is an advantage that the selection range of the silicon compound that can be used as the raw material is wide.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • the displacement amount (start displacement amount Ds, maximum displacement amount Dmax, end displacement amount D180) of the composite particle 10 when the load F is applied has a relationship of Dmax> D180> Ds.
  • the magnitude relationship is not limited to this.
  • the start displacement amount Ds, the maximum displacement amount Dmax, and the end displacement amount D180 can be in any magnitude relationship that maximizes Dmax.
  • the start displacement amount Ds or the end displacement amount D180 may be equal to the maximum displacement amount Dmax.
  • the displacement amount is evaluated by holding for 180 seconds with a load that deforms 10% of the particle size of the composite particle 10, but the applied load F is not limited to this. Similar results can be obtained if the composite particles 10 are held for 180 seconds under a load F that deforms 8 to 15% of the particle diameter d0 of the composite particles 10.
  • the diameter of the circular flat plate indenter that applies the load F to the composite particle 10 can be appropriately selected according to the particle diameter d0 of the composite particle 10 to be measured.
  • the diameter of the circular flat plate indenter can be changed to, for example, 200 ⁇ m or 500 ⁇ m.
  • the following functional particles can also be obtained by using the composite particles of the embodiment as mother particles and coating the surface to provide a functional layer.
  • Examples of functional particles include conductive particles and fixed particles.
  • Conductive particles can be produced by providing a conductive layer as a functional layer on the surface of composite particles as mother particles.
  • the conductive particles can be used, for example, as gap holding particles having electrical conductivity between the upper and lower substrates in a liquid crystal display element or a semiconductor element, or as an anisotropic conductive material containing the gap holding particles.
  • the electroconductive particle containing the composite particle of this embodiment becomes a spacer excellent in long-term reliability.
  • the conductive layer can be formed using any material that can provide conduction. Examples of materials that can be used include metals, metal salts, and conductive resins. A preferred material is gold, silver, or an alloy (such as solder).
  • the thickness of the conductive layer is not particularly limited, but stable conductivity can be exhibited as long as it has a thickness of 50 nm or more.
  • the adhesion between the composite particles and the conductive layer can be improved by forming a metal nucleus on the surface of the composite particles and performing a pretreatment, or by performing a surface treatment with a silane coupling agent or the like.
  • the conductive particles have an electrical resistance value of 30 ⁇ or less, electrical connection can be secured.
  • the fixed particles can be produced by providing a fixed layer made of a thermoplastic resin on the surface of the composite particles as the mother particles.
  • the fixed particles are fixed to the substrate by heating and melting the fixed layer. Even if the liquid crystal flows when the liquid crystal is injected, the spacer made of the fixed particles is fixed to the substrate, so that the movement is suppressed.
  • thermoplastic component preferably has a glass transition temperature of 150 ° C. or lower.
  • thermoplastic component include styrene resin and acrylic resin.
  • the thickness of the fixing layer is not particularly limited, but is preferably about 0.05% to 10% of the diameter of the composite particles. If the thickness of the fixing layer is within this range, a sufficient fixing force can be obtained without adversely affecting the gap width.
  • the adhesion between the composite particles and the resin layer can be improved by subjecting the surface of the composite particles to a surface treatment with a silane coupling agent or the like before the fixing layer is provided.
  • the fixed particles can be fixed on the substrate by heating under predetermined conditions. If heating is performed at 150 ° C. or less for 1 hour or less, there is no problem in productivity.
  • the sticking particles preferably have a sticking rate in a blow-off test of 50% or more.
  • Fixed particles having a fixed rate of 50% or more can withstand the flow of liquid crystal during liquid crystal injection. Since the fixed particles are not flowed to the edge portion of the panel, the in-plane gap can be stably maintained.
  • ⁇ Particle size, CV value> The average particle diameter d0 and the standard deviation of the particle diameter of the composite particles are determined using a Coulter counter (Multisizer IVe, manufactured by Beckman Coulter, Inc.).
  • the variation coefficient CV value of the particle size distribution can be calculated by the following mathematical formula (A1).
  • CV value (%) (standard deviation of particle size / average particle size) X100 Formula (A1)
  • the composite particles 10 are held at a predetermined load F for 180 seconds.
  • the composite particle 10 is placed on a flat pressure plate, and a load F that deforms 8 to 15% of the average particle diameter d0 of the composite particle 10 is applied using a circular plate indenter made of diamond having a diameter of 50 ⁇ m.
  • the displacement amount (Ds) when the predetermined load F is reached and the displacement amount after holding for 180 seconds (D180) are obtained.
  • the maximum displacement (Dmax) is also recorded in 180 seconds. Using the particle diameter d0 of composite particles and the displacement amounts D180 and Dmax, the end displacement rate ((D180-D0) / d0) and the maximum displacement rate ((Dmax-D0) / d0) are calculated.
  • the 10% compression modulus of the composite particles can be determined based on the compression behavior.
  • the compression behavior is observed by applying a load to the composite particles using a micro compression tester (MCTM-200, manufactured by Shimadzu Corporation).
  • the 10% compression modulus can be calculated by the following method.
  • the particles are deformed until they are 10% of d0.
  • a circular plate indenter made of diamond having a diameter of 50 ⁇ m is used for applying the load.
  • a load F and a compression displacement amount Dx when the particles are deformed by 10% are obtained, and a 10% compression elastic modulus E is calculated using the following mathematical formula (A2).
  • K is the Poisson's ratio (constant 0.38) of the particles.
  • ⁇ Electric resistance value> The electrical connectivity of the conductive particles is evaluated by measuring the electrical resistance value. Specifically, using a micro compression tester (manufactured by Shimadzu Corporation), the electrical resistance value is measured for each of the 20 composite particles, and the average value of the 20 measured values is taken as the electrical resistance value.
  • the fixing performance of the fixed particles is evaluated by a blow-off test.
  • the fixed particles are spread on a slide glass and heated at 120 ° C. for 30 minutes.
  • the number of particles on the slide glass is the number N0 before the blow-off test.
  • the slide glass is cooled to room temperature, and nitrogen gas is blown for 30 seconds under predetermined conditions.
  • the spraying conditions are a nozzle pressure of 0.01 MPa, a nozzle-slide glass distance of 10 mm, and a spraying angle of 45 °.
  • Example 1 (Seed particle formation process) 360 g of methyltrimethoxylane (hereinafter abbreviated as MTMS) and 48 g of ion-exchanged water as raw materials were placed in a 1 L plastic container and stirred at about 200 rpm. After 3 hours, a homogeneous solution was obtained.
  • MTMS methyltrimethoxylane
  • the particle synthesis time in the seed particle formation step in Example 1 is set to 50% of the growth stop time, that is, 10 minutes.
  • the particle size of the seed particles determined from the optical microscope image was about 6.3 ⁇ m.
  • a solution for particle growth was prepared by stirring 14962 g of water, 3000 g of MTMS, and 38 g of 1% aqueous ammonium dodecyl sulfate in a 20 L reaction vessel. To the solution for particle growth, 1500 g of seed particle solution was added and stirred at about 80 rpm while confirming the particle size with an optical microscope as needed. As a result, seed particles grew, and grown particles were obtained.
  • the ammonia concentration in the particle growth step is 0.0006 mol / L.
  • the particle size growth stopped.
  • 200 g of 25% by mass aqueous ammonia was added to age the particles.
  • the particles were solidified to obtain solidified particles.
  • the solid and liquid were separated by decantation and washed with methanol three times. Next, it was naturally dried over 2 days and further heated at 110 ° C. to be dried.
  • the dried solidified particles had an average particle size of 16.34 ⁇ m and a CV value of 1.37%.
  • Example 2 Composite particles of Example 2 were obtained in the same manner as in Example 1 except that the firing temperature of the solidified particles in the rotary kiln was changed to 680 ° C.
  • Example 3 In the firing step, a forced hot air circulation type dryer (SPHH-202, manufactured by Espec Co., Ltd.) was used, and the solidified particles were fired at 300 ° C. for 6 hours in an air atmosphere. The composite particles of Example 3 were obtained.
  • SPHH-202 manufactured by Espec Co., Ltd.
  • Example 4 (Seed particle formation process) 180 g of MTMS as a raw material and 1800 g of ion-exchanged water were placed in a 2 L glass container and stirred at about 200 rpm. After 3 hours, a homogeneous solution was obtained. 18 g of 1N ammonia water was added to the homogeneous solution to prepare a raw material solution. The seed particles were grown using this raw material solution, and the growth stop time was determined. The raw material solution became cloudy several tens of seconds after the addition of aqueous ammonia, and particle nuclei were generated in the liquid. The seed particle size growth stopped 20 minutes after the raw material solution became cloudy. The growth stop time is 20 minutes.
  • the particle synthesis time in the seed particle formation step in Example 4 is set to 50% of the growth stop time, that is, 10 minutes.
  • the particle size of the seed particles determined from the optical microscope image was about 2.1 ⁇ m.
  • a particle growth solution was prepared by stirring 17955 g of water, 1800 g of MTMS, and 45 g of 1% aqueous ammonium dodecyl sulfate in a 20 L reaction vessel. The whole seed particle solution was added to the particle growth solution and stirred at about 80 rpm while confirming the particle size with an optical microscope as needed. As a result, seed particles were grown and grown particles were obtained.
  • the ammonia concentration in the particle growth step is 0.0008 mol / L.
  • the particle size growth stopped.
  • 50 g of 25% by mass aqueous ammonia was added to age the particles.
  • the particles were solidified to obtain solidified particles.
  • particles were separated, washed and dried by the same method as in Example 1 to obtain dried solidified particles.
  • the dried solidified particles had an average particle size of 4.53 ⁇ m and a CV value of 1.68%.
  • Example 5 (Seed particle formation process) 180 g of MTMS as raw materials, 1800 g of ion-exchanged water, and 0.1 g of sodium dodecyl sulfate were placed in a 2 L glass container and stirred at about 200 rpm. After 3 hours, a homogeneous solution was obtained. 18 g of 1N ammonia water was added to the homogeneous solution to prepare a raw material solution. The seed particles were grown using this raw material solution, and the growth stop time was determined. The raw material solution became cloudy several tens of seconds after the addition of aqueous ammonia, and particle nuclei were generated in the liquid. The seed particle size growth stopped 20 minutes after the raw material solution became cloudy. The growth stop time is 20 minutes.
  • the particle synthesis time in the seed particle formation step in Example 5 is set to 50% of the growth stop time, that is, 10 minutes.
  • the particle size of the seed particles determined from the optical microscope image was about 1.1 ⁇ m.
  • a particle growth solution was prepared by stirring 17955 g of water, 1800 g of MTMS, and 45 g of 1% aqueous ammonium dodecyl sulfate in a 20 L reaction vessel. The whole seed particle solution was added to the particle growth solution and stirred at about 80 rpm while confirming the particle size with an optical microscope as needed. As a result, seed particles were grown and grown particles were obtained.
  • the ammonia concentration in the particle growth step is 0.0008 mol / L.
  • the particle size growth stopped.
  • 50 g of 25% by mass aqueous ammonia was added to age the particles.
  • the particles were solidified to obtain solidified particles.
  • particles were separated, washed and dried by the same method as in Example 1 to obtain dried solidified particles.
  • the dried solidified particles had an average particle size of 2.15 ⁇ m and a CV value of 1.98%.
  • Example 5 The dried solidified particles were fired under the same conditions as in Example 1 to obtain composite particles of Example 5.
  • the maximum displacement rate ((Dmax ⁇ D0) / d0) and end displacement rate ((D180 ⁇ D0) / d0) of the composite particles of Example 5 are summarized in Table 1 below together with other physical property values.
  • Example 6 (Seed particle formation process) 240 g of MTMS as a raw material and 24 g of ion-exchanged water were placed in a 1 L plastic container and stirred at 30 ° C. and about 200 rpm. After 3 hours, a homogeneous solution was obtained.
  • the particle synthesis time in the seed particle formation step in Example 6 is set to 50% of the growth stop time, that is, 10 minutes.
  • the particle size of the seed particles determined from the optical microscope image was about 14.8 ⁇ m.
  • particle growth process In this embodiment, the particle growth process is repeated three times to obtain solidified particles having a large particle size.
  • the same operation as the first time was performed twice more.
  • the ammonia concentration at the second time was 0.00075 mol / L, and the particle size obtained at the end of the second time was 36.4 ⁇ m.
  • the ammonia concentration in the third synthesis step was 0.00047 mol / L.
  • Example 2 Thereafter, the same aging, separation, washing and drying as in Example 1 were performed to obtain dried solid particles.
  • the dried solidified particles had an average particle size of 53.84 ⁇ m and a CV value of 2.04%.
  • Example 7 (Seed particle formation process) 240 g of MTMS as a raw material and 16 g of ion exchange water were placed in a 1 L plastic container and stirred at 30 ° C. and about 200 rpm. After 3 hours, a homogeneous solution was obtained.
  • the particle synthesis time in the seed particle formation step in Example 7 is set to 50% of the growth stop time, that is, 10 minutes.
  • the particle size of the seed particles determined from the optical microscope image was about 10.0 ⁇ m.
  • particle growth process In this embodiment, the particle growth process is repeated four times to obtain solidified particles having a large particle size.
  • Example 2 Thereafter, the same aging, separation, washing and drying as in Example 1 were performed to obtain dried solid particles.
  • the dried solidified particles had an average particle size of 106.0 ⁇ m and a CV value of 1.15%.
  • Example 7 The dried solidified particles were fired under the same conditions as in Example 1 to obtain composite particles of Example 7.
  • the maximum displacement rate ((Dmax ⁇ D0) / d0) and end displacement rate ((D180 ⁇ D0) / d0) of the composite particles of Example 7 are summarized in Table 1 below together with other physical property values.
  • Example 8 (Seed particle formation process) 240 g of MTMS as a raw material and 16 g of ion exchange water were placed in a 1 L plastic container and stirred at 33 ° C. and about 200 rpm. After 3 hours, a homogeneous solution was obtained.
  • the particle synthesis time in the seed particle formation step in Example 8 is set to 50% of the growth stop time, that is, 10 minutes.
  • the particle size of the seed particles determined from the optical microscope image was about 13.5 ⁇ m.
  • particle growth process In this embodiment, the particle growth process is repeated five times to obtain solidified particles having a large particle size.
  • Example 2 Thereafter, the same aging, separation, washing and drying as in Example 1 were performed to obtain dried solid particles.
  • the dried solidified particles had an average particle size of 156.3 ⁇ m and a CV value of 1.79%.
  • Example 8 The dried solidified particles were fired under the same conditions as in Example 1 to obtain composite particles of Example 8.
  • the maximum displacement rate ((Dmax ⁇ D0) / d0) and end displacement rate ((D180 ⁇ D0) / d0) of the composite particles of Example 8 are summarized in Table 1 below together with other physical property values.
  • Example 9 Using the composite particles obtained in Example 4 as mother particles, a conductive layer was provided on the surface by the following procedure to produce conductive particles.
  • metal nuclei were formed on the surface of a predetermined amount of composite particles.
  • 10 g of the composite particles are immersed in 130 mL of a mixed solvent of isopropyl alcohol and methanol, 0.2 g of chloroauric acid (HAuCl ⁇ 4H 2 O) and 2.6 mL of 3-aminopropyltrimethoxysilane are added.
  • HuCl ⁇ 4H 2 O chloroauric acid
  • 3-aminopropyltrimethoxysilane 3-aminopropyltrimethoxysilane
  • Example 10 Using the composite particles obtained in Example 4 as mother particles, a fixed resin layer was provided on the surface by the following procedure to prepare fixed particles.
  • the particles after stirring were separated from the liquid by a centrifuge, dispersed in methanol, and decanted. After repeating this operation several times, methanol was removed and the particles were air-dried. The air-dried particles were heated to 150 ° C. and dried to obtain composite particles surface-treated with a silane coupling agent.
  • Example 10 having a styrene layer as a fixing layer formed on the surface were obtained.
  • Example 11 Seed particle formation process 300 g of vinyltrimethoxylane (hereinafter abbreviated as VTMS) and 1500 g of ion-exchanged water as raw materials were placed in a 2 L glass container and stirred at about 200 rpm. After 1 hour, a homogeneous solution was obtained. A raw material solution was prepared by adding 0.5 g of 1N aqueous ammonia to the homogeneous solution. The seed particles were grown using this raw material solution, and the growth stop time was determined.
  • VTMS vinyltrimethoxylane
  • ion-exchanged water 1500 g
  • a raw material solution was prepared by adding 0.5 g of 1N aqueous ammonia to the homogeneous solution.
  • the seed particles were grown using this raw material solution, and the growth stop time was determined.
  • the raw material solution became cloudy 17 minutes after adding ammonia water, and particle nuclei were generated in the liquid.
  • the growth stop time is 60 minutes.
  • the particle synthesis time in the seed particle formation step in Example 11 is set to 50% of the growth stop time, that is, 30 minutes.
  • the particle size of the seed particles determined from the optical microscope image was about 6.5 ⁇ m.
  • a particle growth solution was prepared by stirring 1350 g of water, 500 g of VTMS, and 150 g of 1% aqueous ammonium dodecyl sulfate in a 5 L reaction vessel. To the solution for particle growth, 1050 g of a sheet particle solution and 0.1 g of 1N ammonia water were added, and stirred at about 80 rpm while confirming the particle size with an optical microscope as needed. The seed particles grew to obtain grown particles. The ammonia concentration in the particle growth process is 0.00013 mol / L.
  • the particle size growth stopped.
  • 10 g of 25% by mass aqueous ammonia was added to age the particles.
  • the particles were solidified to obtain solidified particles.
  • the solid and liquid were separated by decantation and washed with methanol three times. Subsequently, it was naturally dried over 2 days, and further heated at 80 ° C. to obtain dried solid particles.
  • the dried solidified particles had an average particle size of 11.12 ⁇ m and a CV value of 1.85%.
  • Example 12 Composite particles of Example 12 were obtained in the same manner as in Example 1 except that the synthesis time of the particles in the seed particle formation step was set to 80% of the growth stop time.
  • Comparative Example 1 In the firing step, composite particles of Comparative Example 1 were obtained in the same manner as in Example 1 except that a muffle furnace (KBF728N, manufactured by Koyo Thermo System Co., Ltd.) was used and fired at 360 ° C. for 6 hours in air.
  • a muffle furnace KF728N, manufactured by Koyo Thermo System Co., Ltd.
  • the dried solidified particles had an average particle size of 4.58 ⁇ m and a CV value of 1.83%.
  • Example 2 The dried solidified particles were fired under the same conditions as in Example 1 to obtain composite particles of Comparative Example 2.
  • the maximum displacement rate ((Dmax ⁇ D0) / d0) and end displacement rate ((D180 ⁇ D0) / d0) of the composite particles of Comparative Example 2 are summarized in Table 3 below together with other physical property values.
  • Comparative Example 3 The composite particles of Comparative Example 3 are produced by a conventional uniform method.
  • the particle size growth stopped.
  • 10 g of 25% by mass aqueous ammonia was added to age the particles.
  • particles were separated, washed and dried by the same method as in Example 1 to obtain dried solidified particles.
  • the dried solidified particles had an average particle size of 6.05 ⁇ m and a CV value of 1.47%.
  • Example 3 The dried solidified particles were fired under the same conditions as in Example 1 to obtain composite particles of Comparative Example 3.
  • the maximum displacement rate ((Dmax ⁇ D0) / d0) and end displacement rate ((D180 ⁇ D0) / d0) of the composite particles of Comparative Example 3 are summarized in Table 3 below together with other physical property values.
  • the composite particles of Examples 1 to 8, 11, and 12 have the maximum displacement rate ((Dmax ⁇ D0) / d0) and the end displacement rate ((D180 ⁇ D0) / d0) are both 1% or less. These composite particles are particles having small creep deformation and excellent long-term reliability.
  • Example 1 to 8, 11, and 12 seed particles were formed, and the seed particles were grown, thereby forming an aggregate of organic bases in the grown particles.
  • the final catalyst concentration in the particle growth step is relatively small, being 0.0008 mol / L or less.
  • the flexibility could be maintained.
  • Example 9 when the functional layer is provided using the composite particles of Example 4 as mother particles (Examples 9 and 10), the maximum displacement rate and the end displacement rate slightly change, but both are 1 % Or less. It has been shown that the composite particles of Example 9 provided with a conductive layer have appropriate conductivity, and the composite particles of Example 10 provided with a fixed layer have excellent adhesive properties.
  • the composite particles of Comparative Examples 1 to 3 have a maximum displacement rate ((Dmax ⁇ D0) / d0) and an end displacement rate ((D180 ⁇ D0) / d0) when a predetermined load is applied. ) Exceeds 1%.
  • the composite particles of Comparative Example 1 are presumed to have lost flexibility due to excessive loss of organic groups in the raw material (MTMS) due to firing at 360 ° C. in air.
  • the composite particles of Comparative Example 2 were produced by a conventional two-layer method, and the composite particles of Comparative Example 3 were produced by a conventional uniform method.
  • the seed particle synthesis time was set independently of the growth stop time.
  • the final catalyst amount in the particle growth step is as large as 0.008 mol / L. For this reason, in Comparative Examples 2 and 3, it is presumed that the growth of the seed particles is completed, and a dense Si—O skeleton is formed in the seed particles.
  • the composite particles of the present embodiment can be applied to any application for maintaining a gap (gap) between the upper and lower substrates at a constant distance.
  • a gap maintaining material for liquid crystal display elements including polymer dispersed liquid crystals, 3D shutters, semiconductor elements such as organic EL and LEDs, adhesives, anisotropic conductive films, and pressure sensors.
  • the composite particles of the present embodiment are particularly effective for members used in an environment where a load is applied in the medium to long term, such as a touch panel, portable, flexible, and wearable (watch).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Silicon Polymers (AREA)
  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

クリープ変形がより抑制された有機無機複合粒子、およびその製造方法を提供する。シロキサン結合を有する化合物からなる粒径d0の有機無機複合粒子10であって、変位量Dsが0.08d0≦Ds≦0.15d0となる荷重を印加して180秒間保持した際、下記式(1)および(2)の条件を満たすことを特徴とする。 (D180-Ds)/d0≦1% 式(1) (Dmax-Ds)/d0≦1% 式(2) (上記式中、d0は平均粒径、D180は荷重の印加から180秒後の粒径の変位量、Dmaxは180秒間のなかでの粒径の最大変位量である。)

Description

有機無機複合粒子、およびその製造方法
 本発明は、有機無機複合粒子、およびその製造方法に関するものである。
 一般に、電子部材における基板等、二つの部品の間隔が一定となるよう制御する際には、ギャップ材(スペーサ)が用いられる。特に、液晶ディスプレイ(LCD)、高分子分散型液晶(PDLC)フィルムなどの液晶表示素子、有機ELディスプレイ(OLED)においては、設計上、ミクロンオーダーかつ高精度なスペーサが求められている。こうした電子部材では、樹脂粒子やシリカ粒子などの微粒子がスペーサとして用いられている。
 近年、電子部材、特に液晶表示素子においては、小型化、薄型化あるいは狭額縁化が進んでいる。これに伴って、基板の配線に損傷を与えないように、高精度かつ柔軟性のあるスペーサへの要求が高まっている。
 樹脂粒子およびシリカ粒子は、いずれも上記要求を両立するには十分でない。樹脂粒子は、柔軟性を有しているものの、大きな荷重がかかると塑性変形が発生することがある。例えば液晶表示素子においては、2枚の基板間の間隔のムラ、表示画質の低下が懸念される。加えて、樹脂粒子は一般に粒径精度が悪く、ギャップ精度にも影響することがあった。
 一方、シリカ粒子は、粒径精度に優れており、ギャップの精度は樹脂粒子よりも高くなる。しかしながら、シリカ粒子は硬すぎて配線に影響を与えるおそれがあるため、スペーサとして使用できない場合がある。加えて、シリカ粒子は、突発的な衝撃が加わると損傷することがある。
 このように、樹脂粒子は粒径精度が乏しく、シリカ粒子は柔軟性を有していない。そこで、ポリオルガノシロキサンに代表される有機無機ハイブリッド粒子が、スペーサとして有望とされている。有機無機ハイブリッド粒子は、樹脂粒子並みの柔軟さに加えてシリカ粒子に匹敵する粒径精度を備えている。
 液晶表示板用スペーサに用いられる有機無機ハイブリッド粒子として、有機基中の少なくとも1個の炭素原子が直接ケイ素原子に化学結合した有機ケイ素を分子内に有するポリシロキサンを主成分とし、10%変形後の残留変位が5%以下の有機質-無機質複合体粒子が開示されている(例えば、特許文献1)。
 圧縮荷重保持時の塑性変形量が少ない液晶表示素子用スペーサとして、所定の荷重保持時間中の圧子移動量ΔLと、その粒子の粒径Rとの比率(ΔL/R)が0.02以下に規定された液晶表示素子用スペーサが提案されている(例えば、特許文献2)。
 タッチパネル等の基板間のスペーサに用いられる弾力性微粒子として、基板の配線をキズつけない柔軟性を有し、かつ優れた耐久性を与えるような圧縮変形回復性(弾力性)を有する微粒子が開示されている(例えば、特許文献3)。
特開平7-140472号公報 特開2003-043494号公報 特開平8-225625号公報
 一般的に、樹脂粒子やポリオルガノシロキサン粒子のような柔軟性を有するスペーサは、一定荷重を印加し続けるとクリープ変形が発生する。こうしたスペーサは、相対する現象として、一定変位量で保持し続けた際に応力緩和を生じる。すなわち、応力(荷重)とひずみ(変位量)とがつり合うまでには、所定の時間(応力緩和時間)を要する。
 スペーサがクリープ変形すると、例えば、液晶表示素子の組立工程では、応力緩和時間を考慮する必要が生じる。パネルの貼り合わせに時間を要するので、生産性の低下を招く原因になる。さらに、スペーサのクリープ変形は、位置合わせ精度にも影響を及ぼしうる。場合によっては、パネルの貼り合わせの途中で荷重を再調整する必要が生じる。
 従来のポリオルガノシロキサン粒子は、クリープ変形の発生抑制という点については十分ではなかった。
 特許文献1における残留変位は、粒子に荷重をかけて10%変形させた後、すぐに除荷して粒子に残留する変位量を求めて算出したものである。こうして得られた残留変位は、時間依存性のあるクリープ変形に対する機械的復元性の尺度にはならない。
 特許文献2では、荷重が保持される時間は30秒間である。荷重を30秒間保持した後の圧子移動量ΔLと、その粒子の粒径Rとに基づいて、時間依存性のあるクリープ変形に対する耐圧縮性を正確に評価することが困難である。
 特許文献1や特許文献3では、粒子の塑性変形に対する許容範囲を探っているものの、クリープ変形の発生は抑制されていない。
 特に、特許文献3では、圧縮変形回復率に優れた粒子が開示されているが、クリープ変形の発生が抑制されたポリオルガノシロキサン粒子については、特許文献3にも何ら記載されていない。
 クリープ変形が発生する粒子をスペーサとして用いると、位置合わせ等の工程において応力緩和時間を考慮しなければならず、生産性に欠ける。また、一定荷重に対する経時的な変位の変動は、スペーサとして好ましくない。
 クリープ変形が発生しない粒子であれば、応力緩和時間を配慮する必要がなく、パネル設計における条件設定も容易となる。このような粒子は、一定荷重が印加された状態で変位量が経時的に増大することはない。このため、工程の省力化や設計性の向上および長期信頼性に優れたスペーサとして有用となる。
 そこで本発明は、クリープ変形がより抑制された有機無機複合粒子、およびその製造方法を提供することを目的とする。
 本発明に係る有機無機複合粒子は、シロキサン結合を有する化合物からなる粒径d0の有機無機複合粒子であって、変位量Dsが0.08d0≦Ds≦0.15d0となる荷重を印加して180秒間保持した際、下記式(1)および(2)の条件を満たすことを特徴とする。
     (D180-Ds)/d0≦1%     式(1)
     (Dmax-Ds)/d0≦1%     式(2)
(上記式中、d0は平均粒径、D180は荷重の印加から180秒後の粒径の変位量、Dmaxは180秒間のなかでの粒径の最大変位量である。)
 本発明に係る有機無機複合粒子の製造方法は、シロキサン結合を有する化合物からなる有機無機複合粒子の製造方法であって、非加水分解性有機基および加水分解性有機基がケイ素原子に結合したケイ素化合物と、触媒とを含有する原料溶液を撹拌して、前記ケイ素化合物を加水分解縮合させ、Si-C結合を有するポリオルガノシロキサンからなるシード粒子を形成する工程と、前記シード粒子を成長させて成長粒子を得た後、前記成長粒子を固化、乾燥させて、乾燥した固化粒子を得る工程と、前記乾燥した固化粒子を、前記Si-C結合を維持しつつ焼成する工程とを備えることを特徴とする。
 本発明によれば、有機無機複合粒子は、印加された荷重に対する変位量が所定の範囲内であるので、クリープ変形がより抑制された粒子である。本発明の有機無機複合粒子は、一定荷重が印加された状態で変位量が経時的に増大することはない。
 本発明の製造方法では、シード粒子を形成し、このシード粒子を成長させた後、所定の条件で焼成するので、クリープ変形がより抑制された有機無機複合粒子を得ることができる。
本実施形態の有機無機複合粒子の変位量を説明する模式図である。 本実施形態の有機無機複合粒子に荷重を印加した際の経過時間と変位量との関係を示すグラフである。
 以下、図面を参照して本発明の実施形態について詳細に説明する。
1.全体構成
 本実施形態の有機無機複合粒子(以下、単に複合粒子とも称する)は、シロキサン結合(Si-O-Si結合)を有する化合物からなる。本発明の複合粒子は、印加された荷重に対する変位量が特定の範囲内である。具体的には、本実施形態の複合粒子は、変位量Dsが0.08d0≦Ds≦0.15d0となる荷重を印加して180秒間保持した際、下記式(1)および(2)の条件を満たす。本明細書において、粒径d0とは、コールターカウンター法により求めた平均粒径を意味する。
     (D180-Ds)/d0≦1%     式(1)
     (Dmax-Ds)/d0≦1%     式(2)
 D180は、荷重の印加から180秒後の粒径の変位量、Dmaxは180秒間のなかでの粒径の最大変位量、d0は荷重を印加する前の複合粒子の粒径である。このように、本実施形態の複合粒子は、所定の荷重を印加した際、180秒後の変位率((D180-Ds)/d0)および最大変位率((Dmax-Ds)/d0)が、いずれも1%以下である。所定の荷重を印加し、180秒間保持して荷重を印加したまま変位量を求めるので、180秒後の変位量は終了変位量であり、180秒後の変位率は終了変位率である。
 図1,2を参照して、本発明の複合粒子に荷重を印加した際の経過時間と変位量との関係を説明する。
 図1に示すように、複合粒子10は、荷重が印加されない状態(時間t0)では、粒径d0を有している。開始変位量Ds(0.08d0≦Ds≦0.15d0)となる所定の荷重Fを、時間tsで複合粒子10に印加し、180秒間保持する。本実施形態においては、複合粒子10を平面加圧板上に配置し、直径50μmのダイヤモンド製の円形平板圧子を用いて、粒径d0の10%が変形する荷重Fを印加する。
 複合粒子10の変位量は、図2に示すように荷重Fが印加されると徐々に増加して時間tmaxで最大変位量Dmaxを示す。複合粒子10の変位量は、その後、減少している。tsから180秒後のt180では、複合粒子10の粒径の終了変位量はD180(<Dmax)である。
 上記式(1)に示されるとおり、本実施形態の複合粒子10は、終了変位率((D180-D0)/d0)が1%以下である。本実施形態の複合粒子10は、上記式(2)に示されるとおり、180秒間のなかでの最大変位率((Dmax0-D0)/d0)も1%である。最大変位率および終了変位率が小さいほど、複合粒子はクリープ変形が小さく、長期信頼性(耐久性)に優れる。終了変位率は、0.5%以下であることが好ましい。最大変位率は、0.5%以下が好ましく、0であることがより好ましい。
 本発明の複合粒子は、10%圧縮弾性率が2GPa以上20GPa以下であることが好ましい。10%圧縮弾性率が小さすぎる粒子は、柔らかすぎて荷重に対する変位が大きい。このため、10%圧縮弾性率が小さすぎる粒子は、スペーサとしての機能を十分に発揮できない。一方、10%圧縮弾性率が大きすぎる粒子は、スペーサとしては硬すぎる。10%圧縮弾性率が大きすぎる粒子は、この粒子が接触している周辺部材の破損等の原因となる。
 シロキサン結合を有する化合物からなる複合粒子の10%圧縮弾性率が2GPa以上であれば、荷重が変化しても適切な基板間隔を保持できるので、10%圧縮弾性率が2GPa以上の複合粒子は、スペーサとして使用することができる。10%圧縮弾性率が20GPa以下であれば、複合粒子の弾性体的性質は、より好ましいものとなる。
 本発明の複合粒子は、コールターカウンター法により求めた平均粒径が0.5~200μmであることが好ましい。平均粒径がこの範囲内である複合粒子は、電子部材等において、スペーサとして好適に用いることができる。本発明の複合粒子の平均粒径は、1~100μmであることがより好ましい。特に、液晶パネル用途に用いる場合には、複合粒子の平均粒径は、1~15μmが好ましく、2~12μmがより好ましく、3~7μmが最も好ましい。
 また、本発明の複合粒子の粒度分布の変動係数CV値は、5%以下であることが好ましい。CV値は、下記数式(A1)で示すように、粒径の標準偏差と平均粒径とによって求められる。CV値の算出法については、追って説明する。
 CV値(%)=(粒径の標準偏差/平均粒径)×100  数式(A1)
 CV値が5%以下の複合粒子は、粒径のばらつきが小さいので、スペーサとして好適に用いることができる。複合粒子のCV値は、2.5%以下であることがより好ましい。また、本実施形態の複合粒子は、真球形状の単分散粒子であることが好ましい。
 複合粒子の適切な平均粒径の範囲は、用途に応じて異なる。適切な平均粒径は、例えば有機EL用途の場合には6~16μm、PDLC用途では7~25μm、3Dシャッター用途では25~50μm、LED照明用用途では40~120μmである。
2.製造方法
 次に、本発明の有機無機複合粒子の製造方法を説明する。
 本発明の製造方法は、シード粒子形成工程、粒子成長工程、および焼成工程を含む。以下、各工程について説明する。
<シード粒子形成工程>
 シード粒子形成工程においては、原料としてのケイ素化合物を、触媒とともに水性溶媒中で加水分解縮合させて液滴状のシード粒子を形成する。これによって、シード粒子が水性溶媒に分散したシード粒子液が得られる。原料として用いられるケイ素化合物は、非加水分解性有機基および加水分解性有機基がケイ素原子に結合したアルコキシドであり、下記一般式(PS1)で表される。
     R1 nSi(OR24-n      一般式(PS1)
 上記一般式(PS1)中、Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、および炭素数7~20のアラルキル基から選択される非加水分解性有機基である。アルキル基における少なくとも1つの水素原子は、メタクリロイルオキシ基、アクリロイルオキシ基、またはエポキシ基で置換されていてもよい。Rは炭素数1~6のアルキル基であり、nは1~3の整数である。nが2以上の場合、複数のRは互いに同一でも異なっていてもよい。nが2以下の場合、複数の加水分解性有機基ORは、互いに同一でも異なっていてもよい。
 上記一般式(PS1)で表わされるケイ素化合物は、トリアルコキシシラン(n=1)であることが好ましい。トリアルコキシシランは、原料全体の60%以上(モル換算)を占めることが好ましく、80%以上(モル換算)を占めることがより好ましい。好ましいトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アクリロイルオキシプロピルトリメトキシシラン、およびγ-メタクリロイルオキシプロピルトリメトキシシラン等が挙げられる。
 これらの中で、加水分解縮合の反応性に優れていることから、メチルトリメトキシシランおよびビニルトリメトキシシランが好適である。ケイ素化合物は、単独で、または二種以上を組み合わせて用いることができる。
 組み合わせてもよい成分としては、下記一般式(PS2)で表わされる化合物が挙げられる。
     R3 mSi(OR44-m      一般式(PS2)
 上記一般式(PS2)中、R3は、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、および炭素数7~20のアラルキル基から選択される非加水分解性有機基である。アルキル基における少なくとも1つの水素原子は、メタクリロイルオキシ基、アクリロイルオキシ基、またはエポキシ基で置換されていてもよい。R4は炭素数1~6のアルキル基であり、mは0~3の整数である。mが2以上の場合、複数のR3は互いに同一でも異なっていてもよい。mが2以下の場合、複数の加水分解性有機基OR4は、互いに同一でも異なっていてもよい。
 上記一般式(PS2)において、m=0のケイ素化合物(テトラアルコキシシラン)としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。
 上記一般式(PS2)において、m=2のケイ素化合物(ジアルコキシシラン)としては、例えばジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン等が挙げられる。
 上記一般式(PS2)において、m=3のケイ素化合物(モノアルコキシシラン)としては、例えばトリメチルメトキシシラン、トリメチルエトキシシラン、トリイソブチルメトキシシラン、ジイソブチルメチルメトキシシラン、およびトリエチルメトキシシラン等が挙げられる。
 上記一般式(PS2)においてm=1の場合には、非加水分解性有機基R3および加水分解性有機基OR4が、上記一般式(PS1)における非加水分解性有機基R1および加水分解性有機基OR2とは異なるトリアルコキシシランが用いられる。
 ケイ素化合物は、触媒とともに水性溶媒に溶解して原料溶液を調製する。原料溶液中のケイ素化合物の濃度は、20質量%以下が好ましい。ケイ素化合物の濃度が5~15質量%の範囲の場合には、生成するシード粒子の粒径および容積効率などの点から有利である。
 水性溶媒としては、水と水混和性有機溶剤との混合溶媒、または水を用いることができる。水混和性有機溶剤としては、例えばメタノール、エタノール、プロパノール、およびブタノール等の低級アルコール類、アセトン、ジメチルケトン、およびメチルエチルケトン等のケトン類、ジエチルエーテル、およびジプロピルエーテル等のエーテル類などが挙げられる。水混和性有機溶剤は、単独で水と混合して用いることができる。二種以上の水混和性有機溶剤を組み合わせて、水と混合して用いてもよい。
 触媒としては、塩基性触媒が好ましく、アンモニアまたはアミンを用いることができる。アミンは、例えばモノメチルアミン、ジメチルアミン、モノエチルアミン、ジエチルアミンおよびエチレンジアミンから選択することができる。触媒は、単独でも二種以上を組み合わせて用いてもよい。触媒の中でも、毒性が少なく、粒子から除去することが容易であり、かつ安価であるという観点から、アンモニアが好適である。
 原料溶液には、安定化剤が含有されていてもよい。安定化剤は、ケイ素化合物の溶解性を高めるとともに、生成したシード粒子を安定化させる。安定化剤としては、例えば界面活性剤および高分子分散剤が挙げられる。
 上記一般式(PS1)で表わされるケイ素化合物は、ケイ素原子に結合した加水分解性有機基(OR)を有しているので、原料溶液を所定条件で撹拌することで加水分解縮合が生じる。原料溶液は、周知の撹拌機を用いて撹拌することができる。反応開始時のpHは、原料としてのケイ素化合物の種類に応じて適宜設定される。例えばメチルトリメトキシシランの場合、反応開始時のpHは、9.7~11.7が好ましく、9.7~11.2がより好ましい。反応温度は、ケイ素化合物の種類に応じて適宜設定されるが、例えば0~50℃の範囲が好適である。
 ケイ素化合物が加水分解縮合することで、Si-C結合を有するポリオルガノシロキサンからなるシード粒子が生成される。ポリオルガノシロキサンは、例えばアルコールに対しては可溶であるものの、例えば水とアルコールとの混合液に対しては不溶である。このため、液滴状のシード粒子が水性溶媒に分散したシード粒子液が得られる。
 液滴状のシード粒子は、従来知られている固形状のシード粒子とは性状が異なる。液滴状のシード粒子は、洗浄工程や乾燥工程を経た粒子ではなく、基本的には、シード粒子が形成された液中のみで存在が確認される。液滴状態は、例えば、シード粒子液に大量のアルコールを添加し、粒子の溶解を観察して判断することができる。あるいは、光学顕微鏡観察の前に、スライドガラス上のカバーガラスを指で加圧し、その後に光学顕微鏡で粒子の潰れた状態を観察して、液滴状態を判断することもできる。
 シード粒子の粒径の精度は、例えばCV値により評価することができる。上述したように、粒子のCV値は、粒径の標準偏差と平均粒径とによって求められる。シード粒子の平均粒径は、例えば1~50μmの範囲である。シード粒子のCV値は、10%以下が好ましく、5%以下がより好ましい。
 一般に、親水性物質と疎水性物質とを混合すると相分離という現象を生ずる。あるいは、界面活性剤などに代表される一つの分子内に親水性基と疎水性基を有する物質は、同じ性質の官能基が向き合ったミセルを形成することが知られている。このような水との混ざりやすさの違いにより形成される会合体は、会合体内で結合が生じていないため柔軟であり、弾性的な性質を示す。
 一方、一般式(PS1)で表わされるケイ素化合物の加水分解物は、疎水性の有機基部(非加水分解性有機基R1)と、加水分解性有機基OR2から得られる親水性のシラノール基とを有している。有機基部は、会合体を形成して、負荷に応じて変形できる大きな弾性体部となり得る。上記一般式(PS1)で表わされるケイ素化合物を、触媒量が比較的多い環境で反応させた場合、シラノール基の脱水縮合による分子間のSi-O-Si結合の形成が促進される。会合体形成における自由度が失われるため、大きな会合体を得ることができない。
 弾性的な性質を示す大きな有機基部による会合体を得るためには、Si-O-Si結合の形成を適度に抑制することが必要となる。また、大きな有機基部による会合体を形成することで、緻密なSi-O骨格の形成が阻害されるため、架橋密度の増大を抑制することができる。会合体およびSi-O-Si結合は、それぞれソフトセグメントおよびハードセグメントとして、擬似的なエラストマー構造を形成し、結果として、適度な硬さでクリープ変形がより抑制された有機無機複合粒子が得られたと考えられる。
 シード粒子内の緻密なSi-O骨格は、シード粒子の成長が完結すると形成される。シード粒子の成長途中であれば、緻密なSi-O骨格は生じない。シード粒子の成長が完結する時間は、合成条件によって一義的に決定される。予め同一の原料溶液を用いて同条件で粒子を合成し、原料溶液の状態および粒径変化を観察することで、シード粒子の成長が完結する時間を把握できる。シード粒子の成長が完結する時間は、原料溶液が白濁してからシード粒子の成長が停止するまでの時間である。この時間を成長停止時間とする。
 本実施形態においては、シード粒子形成工程における合成時間を、成長停止時間の40~80%に制限することが好ましい。シード粒子の合成時間が長すぎる場合には、緻密なSi-O骨格が形成される。一方、シード粒子の合成時間が短すぎる場合には、単分散のシード粒子を得ることが困難となる。成長停止時間の40~80%の時間でシード粒子の合成を行なうことによって、Si-O骨格が比較的疎であるシード粒子を形成することができる。シード粒子の成長が完結する前に、粒子成長工程に供することができるので、成長粒子内での有機基部の会合体形成も阻害されにくくなる。
 荷重に応じて変形できる粒子を得るためには、触媒量を低く抑えることが求められる。原理的には、シード粒子が合成される際にも、触媒量を抑えることが望ましい。しかしながら、シード粒子の合成時に触媒量が少ないと、粒子成長に長時間を要し、最悪の場合には核が発生しないこともある。また、得られる粒子の粒径の変動が大きく、CV値で表わされる粒径精度も高くなる傾向がある。
 適切な粒径およびCV値を有するシード粒子を得るためには、シード粒子形成工程における触媒濃度は、例えばメチルトリメトキシシランを単独で使用する場合、0.001mol/L以上とすることが好ましく、0.005~0.020mol/L程度がより好ましい。
<粒子成長工程>
 粒子成長工程では、シード粒子を成長させて成長粒子を得た後、成長粒子を固化させて固化粒子を得る。まず、上記一般式(PS1)で表わされるケイ素化合物を水性溶媒に溶解して、粒子成長用溶液を調製する。すでに説明したように、ケイ素化合物としては、メチルトリメトキシシランまたはビニルトリメトキシシラン好適である。例えば、シード粒子の形成に用いたものと同種のケイ素化合物を用いることができるが、異種のケイ素化合物を用いてもよい。
 水性溶媒としては、すでに説明したような水混和性有機溶媒、または水を用いることができる。上述したように、水混和性有機溶剤は、単独で水と混合することができる。水混和性有機溶媒は、二種以上を組み合わせて水と混合してもよい。粒子成長用溶液は、周知の撹拌機を用いて調製することができる。
 粒子成長用溶液には、安定化剤が含有されていてもよい。安定化剤は、ケイ素化合物の溶解性を高める作用を有する。安定化剤は特に限定されないが、界面活性剤、例えばアニオン系界面活性剤が挙げられる。アニオン性界面活性剤としては、炭素数6~30のアルキル基を有するアルキル硫酸塩が好ましい。
 アルキル硫酸塩は、例えばカリウム塩、ナトリウム塩およびアンモニウム塩から選択することができ、ドデシル硫酸ナトリウムやドデシル硫酸アンモニウムが好適である。安定化剤は、粒子成長用溶液をシード粒子液と混合する際、Si-O骨格の形成が疎であるシード粒子の表面保護剤としても機能する。
 こうして調整された粒子成長用溶液とシード粒子液とを混合し、撹拌することで、シード粒子にケイ素化合物を吸収させる。これにより、シード粒子が成長して成長粒子となって、成長粒子液が得られる。
 粒子成長工程では、Si-O骨格を疎にするために、触媒濃度が低い状態で合成することが好ましい。触媒が含有されたシード粒子液と粒子成長用溶液とを混合するので、液中の触媒濃度は小さくなる。例えばメチルトリメトキシシランの場合、溶液全体における触媒濃度が0.005mol/L以下になるように、シード粒子液を粒子成長用溶液中に添加することが望ましい。粒子成長工程における最終触媒濃度は、0.005mol/L以下であることが好ましい。
 目的とされる成長粒子の粒径が大きい場合には、粒子成長工程を複数回繰り返してもよい。粒子成長工程を繰り返すことによって、溶液中の触媒濃度が低下することがある。触媒が少なすぎる場合には、目的の大きさの成長粒子を得ることが困難になるので、必要に応じて適宜触媒を加えて、0.005mol/L以下の適切な触媒濃度に保つことが望まれる。
 成長粒子が目的の粒径に達したら、成長粒子液に新たに触媒を添加して、成長粒子に含まれるケイ素化合物を加水分解縮合させる。触媒としては、シード粒子の形成において説明したような塩基性触媒が挙げられる。ケイ素化合物の加水分解縮合を進行させることによって、成長粒子が熟成して固化し、固化粒子が得られる。固化粒子は、Si-C結合を有するポリオルガノシロキサンからなる。
 固化粒子と水性溶媒とを分離した後、固化粒子に含まれる微小粒子等を洗浄により適宜除去する。洗浄後の固化粒子を乾燥することで、Si-O骨格が疎であり、かつ、有機基部による会合体を有する複合粒子が得られる。
<焼成工程>
 乾燥後の固化粒子は、Si-C結合が維持される条件で焼成する。Si-C結合が維持されることによって、得られる複合粒子中に有機基部による会合体が残留する。適切な条件で焼成することによって、用途に応じた圧縮強度を備えた複合粒子を得ることができる。焼成は、窒素などの不活性雰囲気下または真空中、200℃~1000℃で行なうことが好ましい。こうした条件で焼成を行なうことにより、スペーサとして適切な圧縮強度と硬さとを備えた複合粒子が得られる。焼成温度は、400~800℃がより好ましい。
 焼成温度は、粒子に含まれている有機基の種類に応じて選択する。熱分解しやすい有機基を有する粒子の場合、上述の焼成温度範囲内で、比較的低い温度で処理するのが望ましい。一方、熱分解しにくい有機基を有する粒子の場合には、上述の焼成温度の範囲内で、より高温で処理するのが好ましい。
 例えば、メチルトリメトキシシラン由来の粒子の場合、適切な焼成温度は600~730℃であり、ビニルトリメトキシシラン由来の粒子の場合には、適切な焼成温度は250~350℃である。いずれの場合も、目的の粒子に要求される破壊強度や弾性率に応じて適切な条件を選択すればよい。焼成装置は特に限定されず、電気炉やロータリーキルンなどを用いることができる。ロータリーキルンを用いる場合には、粒子を攪拌しつつ焼成できるので有利である。
 焼成は、酸素共存下(例えば、空気中)で行なうことも可能である。酸素共存下での焼成によって、有機成分の酸化分解や燃焼熱の発生が促進される。このため、酸素が存在する場合には、不活性雰囲気下または真空中における焼成よりも低い温度で焼成する。好ましい温度範囲は、固化粒子中に含まれる有機基の分解温度より100℃低い温度以上で、かつ当該有機基の分解温度未満の範囲である。
 当該有機基の分解温度以上の温度に直ちに昇温して焼成すると、当該有機基が急激に分解、脱離して、得られる粒子の破壊強度が低下する。場合によっては、急激な収縮に耐えきれずに粒子に割れが生じる。さらに、当該有機基が過剰に失われて、求められる柔軟性を有する粒子を得ることができない。有機基の種類に応じた適切な温度で焼成することで、そのような問題を避けることができる。
 具体的には、メチルトリメトキシシランから得られる粒子に対しては、250~350℃の範囲の温度で焼成処理するのが好ましい。分解、脱離した有機成分がその場で燃焼した場合には、過剰に熱が伝わることがある。例えば酸素濃度を10容量%以下に低減することによって、分解、脱離した有機成分がその場で燃焼するのを避けることができる。分解、脱離した有機成分を、送風などで直ちに系外に除去することも、有効な措置の1つである。
 有機基の分解量は、例えば、赤外分光分析(IR)によって焼成前後の当該有機基のピークを比較することで把握することが可能である。分解量の割合は、必要となる破壊強度や弾性率に応じて最適な割合を選定することができる。有機基の残存率は、20%以上であることが好ましく、30~90%の範囲がより好ましい。
3.作用および効果
 上記のように製造された複合粒子は、Si-C結合を有するポリシロキサンからなり、印加された荷重に対する変位量が特定の範囲内である。具体的には、本実施形態の複合粒子は、変位量Ds(0.08d0≦Ds≦0.15d0)となる荷重を印加して180秒間保持した際、終了変位率((D180-Ds)/d0)および最大変位率((Dmax-Ds)/d0)が、いずれも1%以下であるので、荷重に応じて変形できる。
 しかも、本実施形態の複合粒子は、一定荷重が印加された状態で、変位量が経時的に増大することはない。本実施形態の複合粒子は、クリープ変形がより抑制された粒子である。
 本実施形態の複合粒子は、制限された合成時間でシード粒子を形成し、このシード粒子を成長させた後、所定の条件で焼成することによって製造されるので、上述したような特性を備えている。
 一般的に、ポリオルガノシロキサン粒子の合成においては、触媒(アンモニア)の濃度が高ければ緻密な粒子が成長し、触媒の濃度が低ければ、粒子は疎な状態で成長することが知られている。シード粒子の合成の際、触媒量は比較的多く、緻密なSi-O骨格がシード粒子内に形成される。このため、シード粒子におけるSi-O骨格の密度と成長した部分におけるSi-O骨格の密度とは異なるものとなる。
 こうして生じるSi-O骨格の密度の違いは、製造工程を経ても完全に解消されるものではなく、製造された複合粒子中にも残存する。Si-O骨格の密度の違いは、複合粒子における屈折率差を引き起こすことが知られている。Si-O骨格の密度の境界は、シード粒子をコアとし、成長した部分をシェルとするコアシェル構造の界面として確認される。
 本実施形態の製造方法では、シード粒子の合成時間を短く設定して成長停止時間の40~80%としているので、シード粒子の成長は完結していない。このようなシード粒子を成長させるので、コアシェル構造が存在しない複合粒子を製造することができる。複合粒子中にコアシェル構造が存在しないことは、一般的な光学観察により確認することができる。
 複合粒子がコアシェル構造を有しないことは、シード粒子内における緻密なSi-O骨格の形成が抑制されたことを示す証拠となる。上述したとおり、Si-O骨格の密度差は、界面の屈折率差として複合粒子中に存在する。複合粒子中に界面の屈折率差が確認されない場合、複合粒子中にはSi-O骨格の密度差は存在しない。すなわち、複合粒子内の骨格が一様である。
 コアシェル構造を有しない複合粒子は、シード粒子の緻密なSi-O骨格の形成が抑制されたことに起因して、粒子内の有機基部は自由度が高い状態で一様に存在する。複合粒子には、より大きな有機基部による会合体が形成されて弾性体的性質が増す。その結果、クリープ変形がより抑制された複合粒子が得られた。
 本実施形態の複合粒子を液晶パネル等のギャップ材として使用した場合、貼り合わせ工程の省力化、設計性向上といった効果が得られる。本実施形態の複合粒子は、クリープ変形を生じないことから、液晶パネルに長期的に荷重が印加された場合でも、表示性能を喪失するおそれがない。
 本実施形態の複合粒子と接着剤樹脂とを混合し、ギャップ保持用接着剤として用いる場合には、接着剤樹脂自体のクリープ変形の影響を抑制することができる。この場合には、長期使用時にも信頼性の高いギャップ保持用接着剤となることが期待できる。
 本実施形態の複合粒子は、荷重が印加されると、その荷重に応じた変位量に直ちに変化することから検出速度が非常に速い。しかも、本実施形態の複合粒子は、長期的に精度を維持することができる、このような特性を有しているので、本実施形態の複合粒子は、高感度圧力センサ等のギャップ保持材としても好適に使用できる。
 本実施形態の製造方法では、原料となるケイ素化合物を触媒とともに水性溶媒中で撹拌してシード粒子が形成されるので、原料が粒子内に染み込んで膨潤のような状態でシード粒子の粒径が成長する。合成途中の粒子は、固体状ではなく液滴状である。例えば、合成途中の粒子にアルコールを添加すると、粒子界面が消失して、粒子が溶出していることが確認される。こうした現象から、合成途中の粒子が液滴状であることを確認することができる。
 液滴状のシード粒子内には、有機基部が自由度の高い状態で存在するために、より大きな会合体が形成される。これによって、得られる複合粒子の弾性体的性質が増すことから、クリープ変形が抑制される。さらに、自由度の高い有機基部の存在によりSi-O骨格の形成を妨害するため、Si-O骨格に起因する塑性変形を抑制することができる。その結果、弾性体的性質に優れた粒子が得られる。
 なお、従来の一般的なポリオルガノシロキサン粒子の合成方法では、触媒量が比較的多く、徐々に原料が供給される。こうした方法は、二層法や均一法と称され、Si-O骨格を形成しながら粒子成長していく。従来の製造方法では、有機基部の存在範囲が限られるので、大きな弾性体部は形成されない。
 従来の製造方法では、得られる粒子の弾性率は低下するが、弾性体的性質、クリープ変形の抑制の点では十分ではなかった。また、従来の二層法では、比重が溶媒よりも低くなければならないという原料としてのケイ素化合物に制限があり、特定のケイ素化合物しか用いることができなかった。
 本実施形態の製造方法では、二層法等の従来の方法と比較すると、反応時間を著しく短縮でき、生産性が向上する。粒子が短時間で成長することも、Si-O骨格の形成が疎となって大きな有機基部による会合体が得られる一因である。しかも、本実施形態の製造方法では、原料としてのケイ素化合物が制限されず、原料として使用できるケイ素化合物の選択の幅が広い点も優位点である。
4.変形例
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
 上記実施形態においては、荷重Fを印加した際の複合粒子10の変位量(開始変位量Ds、最大変位量Dmax、終了変位量D180)は、Dmax>D180>Dsの関係としたが、変位量の大小関係はこれに限定されない。開始変位量Ds、最大変位量Dmax、終了変位量D180は、Dmaxが最大となる任意の大小関係とすることができる。開始変位量Dsまたは終了変位量D180が、最大変位量Dmaxと等しくてもよい。
 また、上記実施形態においては、複合粒子10の粒径の10%が変形する荷重で180秒間保持して変位量を評価したが、印加する荷重Fはこれに限定されない。複合粒子10の粒径d0の8~15%変形する荷重Fで180秒間保持すれば、同様の結果を得ることができる。
 複合粒子10に荷重Fを印加する円形平板圧子の直径は、測定される複合粒子10の粒径d0に応じて適宜選択することできる。円形平板圧子の直径は、例えば、200μm、500μmに変更することができる。
 実施形態の複合粒子を母粒子として、表面に被覆処理を施して機能層を設けることで、以下のような機能性粒子を得ることもできる。機能性粒子としては、導電性粒子および固着粒子が挙げられる。
 導電性粒子は、母粒子としての複合粒子の表面に機能性層としての導電層を設けることによって、製造することができる。導電性粒子は、例えば、液晶表示素子、半導体素子における、上下基板間の電気伝導性を有するギャップ保持粒子として、あるいは、このギャップ保持粒子を含有する異方性導電材料等として用いることができる。
 このような導電性粒子は、中長期的に荷重のかかる環境下でもギャップ変動しないため、安定した電気接続性を維持することができる。本実施形態の複合粒子を含む導電性粒子は、長期信頼性に優れたスペーサとなる。
 導電層は、導通の得られる任意の材料を用いて形成することができる。使用し得る材料としては、例えば金属、金属塩、および導電性樹脂などが挙げられる。好ましい材料は、金、銀、または合金(はんだ等)である。導電層の厚さは特に限定されないが、50nm以上の厚さを有していれば、安定した導電性を発揮できる。複合粒子の表面に金属核を形成させて前処理を施したり、シランカップリング剤等による表面処理を施すことによって、複合粒子と導電層との密着性を高めることができる。
 導電性粒子は、電気抵抗値が30Ω以下であれば、電気的接続を確保できる。
 固着粒子は、母粒子としての複合粒子の表面に熱可塑性樹脂からなる固着層を設けることによって、製造することができる。固着粒子を液晶表示素子用の面内スペーサとして使用する場合には、固着層が加熱溶融することで固着粒子が基板に固着する。固着粒子からなるスペーサは、液晶注入時に液晶が流動しても、基板に固着しているので移動が抑制される。
 固着層の形成には、熱可塑性成分を含有する任意の材料を用いることができる。熱可塑性成分は、ガラス転移点温度が150℃以下であることが好ましい。熱可塑性成分としては、例えばスチレン樹脂、アクリル樹脂等が挙げられる。固着層の厚さは、特に限定されないが、複合粒子の直径の0.05%~10%程度が好ましい。固着層の厚さがこの範囲内であれば、ギャップ幅に悪影響を及ぼさずに十分な固着力を得ることができる。
 固着層を設ける前に、複合粒子の表面にシランカップリング剤等による表面処理を施すことによって、複合粒子と樹脂層との密着性を高めることができる。
 固着粒子は、所定条件で加熱して基板上に固定化することができる。150℃以下で1時間以内の加熱を行なえば、生産性に問題を及ぼすことはない。
 固着粒子は、吹き飛ばし試験における固着率が50%以上であることが好ましい。固着率が50%以上の固着粒子は、液晶注入時における液晶の流動に耐えることができる。固着粒子がパネルの縁部分に流されることはないので、面内のギャップを安定に保持することができる。
5.評価方法
 後述する実施例においては、有機無機複合粒子の各物性値を、以下の手法により評価する。
<粒径、CV値>
 複合粒子の平均粒径d0および粒径の標準偏差は、コールターカウンター(マルチサイザーIVe、ベックマン・コールター(株)製)を用いて求める。粒度分布の変動係数CV値は、下記数式(A1)により算出することができる。
    CV値(%)=(粒径の標準偏差/平均粒径)X100   数式(A1)
<終了変位率、最大変位率>
 図1に示したように、複合粒子10を所定の荷重Fで180秒間保持する。平面加圧板上に複合粒子10を配置し、直径50μmのダイヤモンド製の円形平板圧子を用いて、複合粒子10の平均粒径d0の8~15%が変形する荷重Fを印加する。
 所定の荷重Fに達したときの変位量(Ds)、および180秒保持後の変位量(D180)を求める。180秒間のなかで最大の変位量(Dmax)も記録する。複合粒子の粒径d0、変位量D180およびDmaxを用いて、終了変位率((D180-D0)/d0)および最大変位率((Dmax-D0)/d0)を算出する。
<10%圧縮弾性率>
 複合粒子の10%圧縮弾性率は、圧縮挙動に基づいて求めることができる。圧縮挙動は、微小圧縮試験機(MCTM-200、(株)島津製作所製)を用いて複合粒子に荷重を印加して観察する。10%圧縮弾性率は、以下の方法により算出することができる。
 試料としての複合粒子を、平面加工板(材質:SKS平板)上に散布し、半径r(=d0/2)の試料の1個について、一定速度で荷重を印加して圧縮変位量が粒径d0の10%となるまで粒子を変形させる。荷重の印加には、直径50μmのダイヤモンド製の円形平板圧子を用いる。粒子が10%変形した際の荷重Fと、圧縮変位量Dxを求め、下記数式(A2)を用いて、10%圧縮弾性率Eを算出する。なお、Kは粒子のポアソン比(定数0.38)である。
Figure JPOXMLDOC01-appb-M000001
<電気抵抗値>
 導電性粒子の電気接続性は、電気抵抗値を測定して評価する。具体的には、微小圧縮試験機((株)島津製作所製)を用いて、20個の複合粒子それぞれについて電気抵抗値を測定し、20個の測定値の平均値を電気抵抗値とする。
<固着率>
 固着粒子の固着性能は、吹き飛ばし試験により評価する。吹き飛ばし試験を行なうには、まず、固着粒子をスライドガラス上に散布し、120℃にて30分加熱する。スライドガラス上の粒子個数を、吹き飛ばし試験前の個数N0とする。
 その後、スライドガラスを室温まで冷却し、窒素ガスを所定の条件で30秒間吹き付ける。吹き付けの条件は、ノズル圧0.01MPa、ノズル-スライドガラス間距離10mm、吹き付け角度45°とする。吹き飛ばし試験後にスライドガラス上に存在する粒子の個数をN1として、下記数式(A3)により固着率bpを算出する。
    bp=(N1/N0)x100    数式(A3)
6.実施例
 次に、本発明に係る実施例について説明する。
<実施例1>
(シード粒子形成工程)
 原料としてのメチルトリメトキシラン(以下、MTMSと略記する)360gとイオン交換水48gを1Lプラスチック容器に収容し、約200rpmで撹拌した。3時間後、均一な溶液が得られた。
 水1800gと1規定アンモニア水溶液18gを2Lガラス容器に収容し、前述の均一溶液を加えて原料溶液を調製した。この原料溶液を用いてシード粒子を成長させて、成長停止時間を求めた。原料溶液は、均一溶液を加えてから数十秒で白濁し、液中に粒子の核が発生した。シード粒子の粒径成長は、原料溶液が白濁してから20分で停止した。成長停止時間は20分である。
 実施例1におけるシード粒子形成工程での粒子の合成時間は、成長停止時間の50%、すなわち10分に設定する。
 前述と同様の原料溶液を用いて、10分間合成を行なってシード粒子を形成し、シード粒子液が得られた。光学顕微鏡画像から求めたシード粒子の粒径は、約6.3μmであった。
(粒子成長工程)
 水14962g、MTMS3000g、および1%ドデシル硫酸アンモニウム水溶液38gを20L反応容器内で撹拌して、粒子成長用溶液を調製した。粒子成長用溶液にシード粒子液1500gを加え、光学顕微鏡で粒径を随時確認しつつ、約80rpmで撹拌した。これによってシード粒子が成長して、成長粒子が得られた。粒子成長工程におけるアンモニア濃度は、0.0006mol/Lとなる。
 約2時間経過後、粒径の成長が停止した。ここで、25質量%アンモニア水200gを添加して粒子を熟成させた。粒子は固化して、固化粒子が得られた。その後、デカンテーションにより固液分離し、メタノールで3回洗浄した。次いで、2日間かけて自然乾燥し、さらに110℃で加熱して乾燥させた。乾燥した固化粒子は、平均粒径が16.34μm、CV値が1.37%であった。
(焼成工程)
 乾燥させた固化粒子を、傾斜型ロータリーキルン((株)長門電気工作所製)で撹拌しつつ窒素雰囲気下640℃で6時間焼成して、実施例1の複合粒子を得た。
 実施例1の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<実施例2>
 ロータリーキルンでの固化粒子の焼成温度を680℃に変更した以外は実施例1と同様の手法により、実施例2の複合粒子を得た。
 実施例2の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<実施例3>
 焼成工程において、強制熱風循環方式の乾燥機(エスペック(株)製、SPHH-202)を用い、固化粒子を、空気雰囲気下300℃で6時間焼成した以外は、実施例1と同様の手法により実施例3の複合粒子を得た。
 実施例3の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<実施例4>
(シード粒子形成工程)
 原料としてのMTMS180gとイオン交換水1800gを2Lのガラス容器に収容し、約200rpmで撹拌した。3時間後、均一な溶液が得られた。均一溶液に1規定アンモニア水18gを加えて、原料溶液を調製した。この原料溶液を用いてシード粒子を成長させて、成長停止時間を求めた。原料溶液は、アンモニア水を加えてから数十秒で白濁し、液中に粒子の核が発生した。シード粒子の粒径成長は、原料溶液が白濁してから20分で停止した。成長停止時間は20分である。
 実施例4におけるシード粒子形成工程での粒子の合成時間は、成長停止時間の50%、すなわち10分に設定する。
 前述と同様の原料溶液を用いて、10分間合成を行なってシード粒子を形成し、シード粒子液が得られた。光学顕微鏡画像から求めたシード粒子の粒径は、約2.1μmであった。
(粒子成長工程)
 水17955g、MTMS1800g、および1%ドデシル硫酸アンモニウム水溶液45gを20L反応容器内で撹拌して、粒子成長用溶液を調製した。粒子成長用溶液にシード粒子液を全量加え、光学顕微鏡で粒径を随時確認しつつ約80rpmで撹拌した。これによってシード粒子が成長し、成長粒子が得られた。粒子成長工程におけるアンモニア濃度は、0.0008mol/Lとなる。
 約1時間経過後、粒径の成長が停止した。ここで、25質量%アンモニア水50gを添加して粒子を熟成させた。粒子は固化して、固化粒子が得られた。その後、実施例1と同様の手法により、粒子の分離、洗浄、乾燥を行なって乾燥した固化粒子を得た。乾燥した固化粒子は、平均粒径が4.53μm、CV値が1.68%であった。
(焼成工程)
 乾燥した固化粒子を、実施例1と同様の条件で焼成して実施例4の複合粒子を得た。実施例4の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<実施例5>
(シード粒子形成工程)
 原料としてのMTMS180g、イオン交換水1800g、およびドデシル硫酸ナトリウム0.1gを2Lガラス容器に収容し、約200rpmで撹拌した。3時間後、均一な溶液が得られた。均一溶液に1規定アンモニア水18gを加えて、原料溶液を調製した。この原料溶液を用いてシード粒子を成長させて、成長停止時間を求めた。原料溶液は、アンモニア水を加えてから数十秒で白濁し、液中に粒子の核が発生した。シード粒子の粒径成長は、原料溶液が白濁してから20分で停止した。成長停止時間は20分である。
 実施例5におけるシード粒子形成工程での粒子の合成時間は、成長停止時間の50%、すなわち10分に設定する。
 前述と同様の原料溶液を用いて、10分間合成を行なってシード粒子を形成し、シード粒子液が得られた。光学顕微鏡画像から求めたシード粒子の粒径は、約1.1μmであった。
(粒子成長工程)
 水17955g、MTMS1800g、および1%ドデシル硫酸アンモニウム水溶液45gを20L反応容器内で撹拌して、粒子成長用溶液を調製した。粒子成長用溶液にシード粒子液を全量加え、光学顕微鏡で粒径を随時確認しつつ約80rpmで撹拌した。これによってシード粒子が成長し、成長粒子が得られた。粒子成長工程におけるアンモニア濃度は、0.0008mol/Lとなる。
 約1時間経過後、粒径の成長が停止した。ここで、25質量%アンモニア水50gを添加して粒子を熟成させた。粒子は固化して、固化粒子が得られた。その後、実施例1と同様の手法により、粒子の分離、洗浄、乾燥を行なって乾燥した固化粒子を得た。乾燥した固化粒子は、平均粒径が2.15μm、CV値が1.98%であった。
(焼成工程)
 乾燥した固化粒子を、実施例1と同様の条件で焼成して実施例5の複合粒子を得た。実施例5の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<実施例6>
(シード粒子形成工程)
 原料としてのMTMS240gとイオン交換水24gを1Lプラスチック容器に収容し、30℃、約200rpmで撹拌した。3時間後、均一な溶液が得られた。
 水1200gと1規定アンモニア水12gを2Lガラス容器に収容し、20℃、80rmpで撹拌しつつ、前述の均一溶液を全量加えて原料溶液を調製した。この原料溶液を用いてシード粒子を成長させて、成長停止時間を求めた。原料溶液は、均一溶液を加えてから数十秒で白濁し、液中に粒子の核が発生した。シード粒子の粒径成長は、原料溶液が白濁してから20分で停止した。成長停止時間は20分である。
 実施例6におけるシード粒子形成工程での粒子の合成時間は、成長停止時間の50%、すなわち10分に設定する。
 前述と同様の原料溶液を用いて、10分間合成を行なってシード粒子を形成し、シード粒子液が得られた。光学顕微鏡画像から求めたシード粒子の粒径は、約14.8μmであった。
(粒子成長工程)
 本実施例においては、粒子成長工程を3回繰り返して、粒径の大きな固化粒子を得る。
・初回
 水936g、MTMS192g、および1%ドデシル硫酸アンモニウム水溶液24gを2L反応容器内で撹拌して、粒子成長用溶液を調製した。粒子成長用溶液にシード粒子液500g加え、25℃、50rpmで撹拌した。このとき、アンモニア濃度は0.0025mol/Lとなる。シード粒子が成長して、35分後には、23.7μmの粒径の粒子が確認された。
・2回目以降
 初回と同様の操作を、さらに2回行なった。なお、2回目におけるアンモニア濃度は、0.00075mol/Lであり、2回目終了時に得られた粒径は36.4μmであった。最終合成工程である3回目におけるアンモニア濃度は、0.00047mol/Lであった。
 その後、実施例1と同様の熟成、分離、洗浄、乾燥を行なって、乾燥した固化粒子を得た。乾燥した固化粒子は、平均粒径が53.84μm、CV値が2.04%であった。
(焼成工程)
 乾燥した固化粒子を、実施例1と同様の条件で焼成して実施例6の複合粒子を得た。実施例6の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<実施例7>
(シード粒子形成工程)
 原料としてのMTMS240gとイオン交換水16gを1Lプラスチック容器に収容し、30℃、約200rpmで撹拌した。3時間後、均一な溶液が得られた。
 水1200gと1規定アンモニア水12gを2Lガラス容器に収容し、20℃、80rpmで撹拌しつつ、前述の均一溶液を全量加えて原料溶液を調製した。この原料溶液を用いてシード粒子を成長させて、成長停止時間を求めた。原料溶液は、均一溶液を加えてから数十秒で白濁し、液中に粒子の核が発生した。シード粒子の粒径成長は、原料溶液が白濁してから20分で停止した。成長停止時間は20分である。
 実施例7におけるシード粒子形成工程での粒子の合成時間は、成長停止時間の50%、すなわち10分に設定する。
 前述と同様の原料溶液を用いて、10分間合成を行なってシード粒子を形成し、シード粒子液が得られた。光学顕微鏡画像から求めたシード粒子の粒径は、約10.0μmであった。
(粒子成長工程)
 本実施例においては、粒子成長工程を4回繰り返して、粒径の大きな固化粒子を得る。
・初回
 水936g、MTMS192g、および1%ドデシル硫酸アンモニウム水溶液24gを2L反応容器内で撹拌して、粒子成長用溶液を調製した。粒子成長用溶液にシード粒子液400gを加え、25℃50rpmで撹拌した。このとき、アンモニア濃度は0.0021mol/Lとなる。シード粒子が成長し、40分後には、粒径15.8μmの粒径の粒子が確認された。
・追加(2回目、3回目、4回目)
 初回と同様の操作を、さらに3回行なった。2回目においては、アンモニア濃度は0.00050mol/Lであり、終了時の粒径は27.7μmであった。3回目においては、アンモニア濃度は0.00037mol/Lであり、終了時の粒径は49.5μmであった。最終合成工程である4回目では、アンモニア濃度は0.00016mol/Lであった。
 その後、実施例1と同様の熟成、分離、洗浄、乾燥を行なって乾燥した固化粒子を得た。乾燥した固化粒子は、平均粒径が106.0μm、CV値が1.15%であった。
(焼成工程)
 乾燥した固化粒子を、実施例1と同様の条件で焼成して実施例7の複合粒子を得た。実施例7の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<実施例8>
(シード粒子形成工程)
 原料としてのMTMS240gとイオン交換水16gを1Lプラスチック容器に収容し、33℃、約200rpmで撹拌した。3時間後、均一な溶液が得られた。
 水1200gと1規定アンモニア水12gを2Lガラス容器に収容し、20℃、80rpmで撹拌しつつ、前述の均一溶液を全量加えて原料溶液を調製した。この原料溶液を用いてシード粒子を成長させて、成長停止時間を求めた。原料溶液は、均一溶液を加えてから数十秒で白濁し、液中に粒子の核が発生した。シード粒子の粒径成長は、原料溶液が白濁してから20分で停止した。成長停止時間は20分である。
 実施例8におけるシード粒子形成工程での粒子の合成時間は、成長停止時間の50%、すなわち10分に設定する。
 前述と同様の原料溶液を用いて、10分間合成を行なってシード粒子を形成し、シード粒子液が得られた。光学顕微鏡画像から求めたシード粒子の粒径は、約13.5μmであった。
(粒子成長工程)
 本実施例においては、粒子成長工程を5回繰り返して、粒径の大きな固化粒子を得る。
・初回
 水936g、MTMS192g、および1%ドデシル硫酸アンモニウム水溶液24gを2L反応容器内で撹拌して、粒子成長用溶液を調製した。粒子成長用溶液にシード粒子液400gを加え、25℃50rpmで撹拌した。このとき、アンモニア濃度は0.0021mol/Lとなる。シード粒子が成長し、40分後には、粒径23.2μmの粒子が確認された。
・追加(2回目、3回目、4回目、5回目)
 初回と同様の操作を、さらに4回行なった。なお、2回目においては、アンモニア濃度は0.00050mol/Lであり、終了時の粒径は38.6μmであった。3回目においては、アンモニア濃度は0.00037mol/Lであり、終了時の粒径は56.9μmであった。4回目においては、アンモニア濃度は0.00035mol/Lであり、終了時の粒径は77.7μmであった。最終合成工程である5回目においては、アンモニア濃度は、0.00015mol/Lであった。
 その後、実施例1と同様の熟成、分離、洗浄、乾燥を行なって乾燥した固化粒子を得た。乾燥した固化粒子は、平均粒径が156.3μm、CV値が1.79%であった。
(焼成工程)
 乾燥した固化粒子を、実施例1と同様の条件で焼成して実施例8の複合粒子を得た。実施例8の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<実施例9>
 実施例4で得られた複合粒子を母粒子として用い、以下の手順で表面に導電層を設けて導電性粒子を作製した。
 まず、所定量の複合粒子の表面に金属核を形成した。金属核の形成にあたっては、複合粒子10gを、イソプロピルアルコールとメタノールとの混合溶媒130mLに浸漬し、塩化金酸(HAuCl・4HO) 0.2gと3-アミノプロピルトリメトキシシラン2.6mlを加え、テトラヒドロホウ酸ナトリウム(NaBH) 0.084gで還元した。
 表面に金属核が形成された粒子10gを水475mLに分散させ、ポリビニルピロリドン28g、硝酸銀28.65g、および25質量%アンモニア水溶液375mLを加えた。3.57mol/Lホルマリン水溶液250mLを加えて液中の銀イオンを還元することにより、複合粒子の表面に銀被膜を形成した。こうして、導電層としての銀被膜を有する本実施例の複合粒子が得られた。銀被膜の金属厚みは0.14μmであった。
 実施例9の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表2にまとめる。
<実施例10>
 実施例4で得られた複合粒子を母粒子として用い、以下の手順で表面に固着樹脂層を設けて固着粒子を作製した。
(シランカップリング剤表面処理)
 実施例4で得られた複合粒子100gに、メタノール1200gと25質量%アンモニア水500gを加えて、粒子分散液を調製した。得られた粒子分散液を、30℃にて100rpmで攪拌しつつ、3-メタクリロキシプロピルトリメトキシシラン40gを5g/minで滴下した。粒子分散液は、70℃にて3時間撹拌した。
 撹拌後の粒子は、遠心分離機により液体から分離し、メタノールに分散してデカンテーションを行なった。この操作を数回繰り返した後、メタノールを除去して粒子を風乾した。風乾後の粒子は、150℃に加熱して乾燥させて、シランカップリング剤で表面処理された複合粒子が得られた。
(固着層被覆)
 表面処理後の複合粒子50gを、メタノール1000gとエチレングリコール2500gとの混合液に分散させた。得られた粒子分散液を、30℃にて100rpmで攪拌しつつ、ポリビニルピロリドン(PVP)150gを添加した。添加から30分後、PVPが十分に溶解していることを確認し、スチレン120g、2,2’-アゾビスイソブチロニトリル25g、およびメルカプト酢酸3gを加えた。混合物は、65℃にて60rpmで8時間撹拌した。
 粒子は、遠心分離機により液体から分離した後、水に分散してデカンテーションを行なった。この操作を数回繰り返した後、粒子の水分散液を液体窒素により凍結させ、凍結乾燥機を用いて乾燥させた。こうして、表面に固着層としてのスチレン層が形成された実施例10の複合粒子が得られた。
 実施例10の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表2にまとめる。
<実施例11>
(シード粒子形成工程)
 原料としてのビニルトリメトキシラン(以下、VTMSと略記する)300gとイオン交換水1500gを2Lガラス容器に収容し、約200rpmで撹拌した。1時間後、均一な溶液が得られた。均一溶液に1規定アンモニア水0.5gを加えて、原料溶液を調製した。この原料溶液を用いてシード粒子を成長させて、成長停止時間を求めた。
 原料溶液は、アンモニア水を加えてから17分後に白濁し、液中に粒子の核が発生した。シード粒子の粒径成長は、原料溶液が白濁してから60分で停止した。成長停止時間は60分である。
 実施例11におけるシード粒子形成工程での粒子の合成時間は、成長停止時間の50%、すなわち30分に設定する。
 前述と同様の原料溶液を用いて、30分間合成を行なってシード粒子を形成し、シード粒子液が得られた。光学顕微鏡画像から求めたシード粒子の粒径は、約6.5μmであった。
(粒子成長工程)
 水1350g、VTMS500g、および1%ドデシル硫酸アンモニウム水溶液150gを5L反応容器内で撹拌して、粒子成長用溶液を調製した。粒子成長用溶液に、1050gのシート粒子液と1規定アンモニア水0.1gと加え、光学顕微鏡で粒径を随時確認しつつ約80rpmで撹拌した。シード粒子が成長して、成長粒子が得られた。粒子成長工程でのアンモニア濃度は、0.00013mol/Lとなる。
 約3時間経過後、粒径の成長が停止した。ここで、25質量%アンモニア水10gを添加して粒子を熟成させた。粒子は固化して、固化粒子が得られた。その後、デカンテーションにより固液分離し、メタノールで3回洗浄した。次いで、2日間かけて自然乾燥し、さらに80℃加熱して乾燥した固化粒子を得た。乾燥した固化粒子は、平均粒径が11.12μm、CV値が1.85%であった。
(焼成工程)
 乾燥した固化粒子を、前述と同様のロータリーキルンで撹拌しつつ、窒素雰囲気下200℃で6時間焼成して、実施例11の複合粒子を得た。
 実施例11の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに下記表1にまとめる。
<実施例12>
 シード粒子形成工程での粒子の合成時間を成長停止時間の80%に設定した以外は、実施例1と同様の手法により実施例12の複合粒子を得た。
 実施例12の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表1にまとめる。
<比較例1>
 焼成工程において、マッフル炉(光洋サーモシステム(株)製、KBF728N)を用い、空気中360℃で6時間焼成した以外は実施例1と同様の手法により、比較例1の複合粒子を得た。
 比較例1の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表3にまとめる。
<比較例2>
 従来の二層法により、比較例2の複合粒子を作製する。
 イオン交換水1600gと25質量%アンモニア水1gを2Lガラス容器に収容し、約20rpmで撹拌した。ここに、MTMS160gを徐々に加え、アンモニアを含む水相の上にMTMS相を形成させた。本合成におけるアンモニアは、0.008mol/Lとなる。
 約5時間経過後、MTMS相が消失して均一となった。ここに、25質量%アンモニア水10gを加えて粒子を熟成させた。次いで、実施例1と同様の手法により、粒子の分離、洗浄、乾燥を行なって乾燥した固化粒子を得た。乾燥した固化粒子は、平均粒径が4.58μm、CV値が1.83%であった。
 乾燥した固化粒子を、実施例1と同様の条件で焼成して比較例2の複合粒子を得た。比較例2の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表3にまとめる。
<比較例3>
 従来の均一法により、比較例3の複合粒子を作製する。
 MTMS360gとイオン交換水48gを1Lプラスチック容器に収容し、約200rpmで撹拌した。3時間経過後、均一なMTMS水溶液が得られた。
 水1800gと1規定アンモニア水18gとを2Lガラス容器に収容し、MTMS水溶液を全量加えた。得られた混合物中におけるアンモニア濃度は、0.008mol/Lとなる。
 約1時間経過後、粒径の成長が停止した。ここで、25質量%アンモニア水10gを添加して粒子を熟成させた。次いで、実施例1と同様の手法により、粒子の分離、洗浄、乾燥を行なって乾燥した固化粒子を得た。乾燥した固化粒子は、平均粒径が6.05μm、CV値が1.47%であった。
 乾燥した固化粒子を、実施例1と同様の条件で焼成して比較例3の複合粒子を得た。比較例3の複合粒子の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)を、その他の物性値とともに、下記表3にまとめる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記表1に示すように、実施例1~8、11、12の複合粒子は、所定の荷重を印加した際の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)がいずれも1%以下である。これらの複合粒子は、クリープ変形が小さく、長期信頼性に優れた粒子である。
 実施例1~8,11,12では、シード粒子を形成し、このシード粒子を成長させたことによって、成長粒子中に有機基部による会合体が形成された。いずれの場合も、粒子成長工程における最終触媒濃度は比較的小さく、0.0008mol/L以下である。しかも、実施例1~8,11,12では、Si-C結合が維持される条件で焼成されたので柔軟性を維持することができた。
 上記表2に示すように、実施例4の複合粒子を母粒子として機能層を設けた場合(実施例9、10)には、最大変位率および終了変位率は若干変化するものの、いずれも1%以下に保たれている。導電層を設けた実施例9の複合粒子は適切な導電性を有し、固着層を設けた実施例10の複合粒子は、優れた固着性を有することが示されている。
 上記表3に示すように、比較例1~3の複合粒子は、所定の荷重を印加した際の最大変位率((Dmax-D0)/d0)および終了変位率((D180-D0)/d0)がいずれも1%を超えている。比較例1の複合粒子は、空気中360℃で焼成したことにより原料(MTMS)中の有機基が過剰に失われ、柔軟性を維持できなかったものと推測される。
 比較例2の複合粒子は従来の二層法により製造し、比較例3の複合粒子は従来の均一法により製造した。比較例2,3においては、シード粒子の合成時間は、成長停止時間とは無関係に設定された。しかも、粒子成長工程における最終触媒量が0.008mol/Lと多い。このため、比較例2,3では、シード粒子の成長が完結して、シード粒子中に緻密なSi-O骨格が形成されたものと推測される。この場合には、Si-C結合を維持できる条件(窒素雰囲気中、640℃)で焼成しても、実施例の複合粒子のようなSi-O骨格が疎で柔軟な粒子とすることはできない。
 本実施形態の複合粒子は、上下基板間の隙間(ギャップ)を一定の距離に保持するための任意の用途に適用することができる。例えば、高分子分散型液晶や3Dシャッター等を含む液晶表示素子、有機ELやLED等の半導体素子、接着剤、異方性導電膜、および圧力センサ等のギャップ保持材として広く用いることができる。
 本実施形態の複合粒子は、タッチパネル、ポータブル、フレキシブル、およびウェアラブル(時計等)といった、中長期的に荷重が加わる環境下で使用する部材において、特に効果を発揮する。
 

Claims (10)

  1.  シロキサン結合を有する化合物からなる粒径d0の有機無機複合粒子であって、変位量Dsが0.08d0≦Ds≦0.15d0となる荷重を印加して180秒間保持した際、下記式(1)および(2)の条件を満たすことを特徴とする有機無機複合粒子。
         (D180-Ds)/d0≦1%     式(1)
         (Dmax-Ds)/d0≦1%     式(2)
    (上記式中、d0は平均粒径、D180は荷重の印加から180秒後の粒径の変位量、Dmaxは180秒間のなかでの粒径の最大変位量である。)
  2.  10%圧縮弾性率が2~20GPaであることを特徴とする請求項1記載の有機無機複合粒子。
  3.  前記平均粒径が0.5~200μmであり、粒度分布の変動係数CV値が5%以下であることを特徴とする請求項1または2記載の有機無機複合粒子。
  4.  表面が導電層により被覆されていることを特徴とする請求項1~3のいずれか1項記載の有機無機複合粒子。
  5.  表面が固着層により被覆されていることを特徴とする請求項1~3のいずれか1項記載の有機無機複合粒子。
  6.  シロキサン結合を有する化合物からなる有機無機複合粒子の製造方法であって、
     非加水分解性有機基および加水分解性有機基がケイ素原子に結合したケイ素化合物と、触媒とを含有する原料溶液を撹拌して、前記ケイ素化合物を加水分解縮合させ、Si-C結合を有するポリオルガノシロキサンからなるシード粒子を形成する工程と、
     前記シード粒子を成長させて成長粒子を得た後、前記成長粒子を固化、乾燥させて、乾燥した固化粒子を得る工程と、
     前記乾燥した固化粒子を、前記Si-C結合を維持しつつ焼成する工程と
    を備えることを特徴とする有機無機複合粒子の製造方法。
  7.  前記非加水分解性有機基は、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、および炭素数7~20のアラルキル基からなる群から選択され、前記加水分解性有機基は、炭素数1~6のアルコキシ基であることを特徴とする請求項6記載の有機無機複合粒子の製造方法。
  8.  前記触媒は、アンモニアであることを特徴とする請求項6または7記載の有機無機複合粒子の製造方法。
  9.  前記シード粒子の成長は、界面活性剤の存在下で行なわれることを特徴とする請求項6~8のいずれか1項記載の有機無機複合粒子の製造方法。
  10.  前記乾燥した固化粒子の焼成は、不活性雰囲気下または真空中で行なわれることを特徴とする請求項6~9のいずれか1項記載の有機無機複合粒子の製造方法。
     
PCT/JP2018/008380 2017-03-07 2018-03-05 有機無機複合粒子、およびその製造方法 WO2018164067A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197028815A KR102605246B1 (ko) 2017-03-07 2018-03-05 유기 무기 복합 입자 및 그의 제조 방법
EP18764057.8A EP3594265A4 (en) 2017-03-07 2018-03-05 ORGANIC-INORGANIC COMPOSITE PARTICLES AND THEIR PRODUCTION PROCESS
CN201880015075.3A CN110382599B (zh) 2017-03-07 2018-03-05 有机无机复合颗粒及其制造方法
US16/490,724 US11525039B2 (en) 2017-03-07 2018-03-05 Organic-inorganic composite particles and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042761 2017-03-07
JP2017042761A JP6216474B1 (ja) 2017-03-07 2017-03-07 有機無機複合粒子

Publications (1)

Publication Number Publication Date
WO2018164067A1 true WO2018164067A1 (ja) 2018-09-13

Family

ID=60096059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008380 WO2018164067A1 (ja) 2017-03-07 2018-03-05 有機無機複合粒子、およびその製造方法

Country Status (7)

Country Link
US (1) US11525039B2 (ja)
EP (1) EP3594265A4 (ja)
JP (1) JP6216474B1 (ja)
KR (1) KR102605246B1 (ja)
CN (1) CN110382599B (ja)
TW (1) TWI813558B (ja)
WO (1) WO2018164067A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147617A (ja) * 2019-03-11 2020-09-17 宇部エクシモ株式会社 親水性粒子の製造方法
CN113881084A (zh) * 2020-07-03 2022-01-04 宇部爱科喜模株式会社 亲水性粒子的制造方法以及亲水性粒子
WO2023136204A1 (ja) * 2022-01-12 2023-07-20 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109313954B (zh) * 2016-06-14 2022-04-26 华盛顿大学 聚合物-二氧化硅混合pdot及其使用方法
CN111512400B (zh) 2018-02-06 2023-03-10 三菱综合材料株式会社 银包覆树脂粒子
KR102103261B1 (ko) * 2018-11-28 2020-04-24 한국생산기술연구원 양자점 씨드를 이용한 양자점 제조방법 및 그에 의해 제조된 양자점
IE87388B1 (en) * 2020-09-03 2023-04-26 Ube Exsymo Co Ltd Hydrophilic particle manufacturing method and hydrophilic particle
WO2024095877A1 (ja) * 2022-10-31 2024-05-10 宇部エクシモ株式会社 シリカ粒子及びオルガノポリシロキサン粒子、並びにこれらの製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140472A (ja) 1993-11-17 1995-06-02 Nippon Shokubai Co Ltd 液晶表示板用スペーサーおよびこれを用いた液晶表示板
JPH08225625A (ja) 1994-10-28 1996-09-03 Sekisui Finechem Co Ltd 弾力性微粒子及びその製造方法並びに弾力性導電微粒子
JP2003043494A (ja) 2001-08-02 2003-02-13 Sekisui Chem Co Ltd 液晶表示素子用スペーサ及び液晶表示素子
JP2004224876A (ja) * 2003-01-22 2004-08-12 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2004262981A (ja) * 2003-02-27 2004-09-24 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2004292644A (ja) * 2003-03-27 2004-10-21 Ube Nitto Kasei Co Ltd 双子型ポリオルガノシロキサン粒子およびその製造方法
JP2004339296A (ja) * 2003-05-14 2004-12-02 Ube Nitto Kasei Co Ltd ポリマー粒子の製造方法およびそれに用いる装置
JP2004339297A (ja) * 2003-05-14 2004-12-02 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2008088430A (ja) * 2006-09-08 2008-04-17 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2010260881A (ja) * 2009-04-06 2010-11-18 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法及びシリカ粒子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503932A (en) * 1993-11-17 1996-04-02 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
JP5041625B2 (ja) * 2000-06-23 2012-10-03 宇部日東化成株式会社 ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP4026812B2 (ja) * 2002-07-15 2007-12-26 宇部日東化成株式会社 導電性粒子およびその製造方法
KR100952094B1 (ko) * 2003-02-27 2010-04-13 우베-니토 카세이 가부시키가이샤 폴리오르가노실록산 입자의 제조 방법 및 실리카 입자의제조 방법
JP5699230B2 (ja) * 2012-12-06 2015-04-08 積水化学工業株式会社 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140472A (ja) 1993-11-17 1995-06-02 Nippon Shokubai Co Ltd 液晶表示板用スペーサーおよびこれを用いた液晶表示板
JPH08225625A (ja) 1994-10-28 1996-09-03 Sekisui Finechem Co Ltd 弾力性微粒子及びその製造方法並びに弾力性導電微粒子
JP2003043494A (ja) 2001-08-02 2003-02-13 Sekisui Chem Co Ltd 液晶表示素子用スペーサ及び液晶表示素子
JP2004224876A (ja) * 2003-01-22 2004-08-12 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2004262981A (ja) * 2003-02-27 2004-09-24 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2004292644A (ja) * 2003-03-27 2004-10-21 Ube Nitto Kasei Co Ltd 双子型ポリオルガノシロキサン粒子およびその製造方法
JP2004339296A (ja) * 2003-05-14 2004-12-02 Ube Nitto Kasei Co Ltd ポリマー粒子の製造方法およびそれに用いる装置
JP2004339297A (ja) * 2003-05-14 2004-12-02 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2008088430A (ja) * 2006-09-08 2008-04-17 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
JP2010260881A (ja) * 2009-04-06 2010-11-18 Ube Nitto Kasei Co Ltd ポリオルガノシロキサン粒子の製造方法及びシリカ粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594265A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147617A (ja) * 2019-03-11 2020-09-17 宇部エクシモ株式会社 親水性粒子の製造方法
CN113881084A (zh) * 2020-07-03 2022-01-04 宇部爱科喜模株式会社 亲水性粒子的制造方法以及亲水性粒子
CN113881084B (zh) * 2020-07-03 2024-02-06 宇部爱科喜模株式会社 亲水性粒子的制造方法以及亲水性粒子
WO2023136204A1 (ja) * 2022-01-12 2023-07-20 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体

Also Published As

Publication number Publication date
JP6216474B1 (ja) 2017-10-18
TW201902994A (zh) 2019-01-16
CN110382599B (zh) 2022-02-11
EP3594265A4 (en) 2020-12-23
KR20190123770A (ko) 2019-11-01
TWI813558B (zh) 2023-09-01
EP3594265A1 (en) 2020-01-15
US20200002480A1 (en) 2020-01-02
US11525039B2 (en) 2022-12-13
JP2018145320A (ja) 2018-09-20
CN110382599A (zh) 2019-10-25
KR102605246B1 (ko) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6216474B1 (ja) 有機無機複合粒子
KR101424089B1 (ko) 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
US10752755B2 (en) Composition for heat-dissipating member, heat-dissipating member, electronic instrument, and method for producing heat-dissipating member
TW201000559A (en) Thermally conductive silicone composition and electronic device
US9534087B2 (en) Method for manufacturing polysilsesquioxane by using carbon dioxide solvent and polysilsesquioxane manufactured using the same
EP3109290A1 (en) Water-repellant/oil-repellant film and production method therefor
JP2004035293A (ja) シリカ系粒子、その製造方法及び導電性シリカ系粒子
TWI506076B (zh) Organic and inorganic composite particles, conductive particles, conductive materials and connecting structures
JP5340686B2 (ja) 重合体微粒子、重合体微粒子の製造方法、および導電性微粒子
JP6266973B2 (ja) 有機無機ハイブリッド粒子、導電性粒子、導電材料及び接続構造体
JP5147095B2 (ja) シリカ系フィラーおよびそれを含む透明樹脂組成物
TWI757308B (zh) 含有金屬非質子性有機矽烷氧化物化合物之配方
JP7015137B2 (ja) 有機無機複合粒子
JP3824766B2 (ja) オルガノポリシロキサン微粒子、その製造方法および液晶表示装置
JP5626788B2 (ja) 封止材用塗料およびその用途
JP3824767B2 (ja) オルガノポリシロキサン微粒子、その製造方法および液晶表示装置
JP5582734B2 (ja) ポリオルガノシロキサン粒子の製造方法
CN110408070B (zh) 一种高阈值耐刮擦高透射率的基频激光薄膜及其制备方法
JP2016219545A (ja) 太陽電池用コーティング膜
KR100793594B1 (ko) 열경화형 막 형성용 코팅 조성물 및 이로부터 제조된 막
JPH11116680A (ja) ポリオルガノシロキサン微粒子の製造方法
JP2004224876A (ja) ポリオルガノシロキサン粒子の製造方法およびシリカ粒子の製造方法
TWI534231B (zh) 黏著劑組成物及封裝膠帶
JPH11181352A (ja) シリカコーティング膜形成用塗布液
JP2015218246A (ja) 熱伝導性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028815

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018764057

Country of ref document: EP

Effective date: 20191007