WO2018163929A1 - 低屈折率膜形成用液組成物及びこれを用いた低屈折率膜の形成方法 - Google Patents

低屈折率膜形成用液組成物及びこれを用いた低屈折率膜の形成方法 Download PDF

Info

Publication number
WO2018163929A1
WO2018163929A1 PCT/JP2018/007484 JP2018007484W WO2018163929A1 WO 2018163929 A1 WO2018163929 A1 WO 2018163929A1 JP 2018007484 W JP2018007484 W JP 2018007484W WO 2018163929 A1 WO2018163929 A1 WO 2018163929A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
film
low refractive
index film
epoxy resin
Prior art date
Application number
PCT/JP2018/007484
Other languages
English (en)
French (fr)
Inventor
怜子 日向野
和彦 山▲崎▼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020197020587A priority Critical patent/KR20190121293A/ko
Priority to CN201880007719.4A priority patent/CN110291165A/zh
Priority to US16/478,630 priority patent/US20190338159A1/en
Publication of WO2018163929A1 publication Critical patent/WO2018163929A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • C03C17/326Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a liquid composition for forming a low refractive index film comprising an epoxy resin having a naphthalene skeleton, silica sol, and an organic solvent, and a method for forming a low refractive index film using the same. More specifically, even when the thickness of the film formed on the surface of the transparent substrate exceeds 1 ⁇ m, the formed film has no cracks, high film hardness, and can be used for an antireflection film having a refractive index of 1.4 or less.
  • the present invention relates to a liquid composition for forming a low refractive index film and a method for forming a low refractive index film using the same.
  • a liquid composition for forming a low refractive index film containing silica sol from the group consisting of silica sol (a) having a particle size of 5 to 30 nm, hydrolyzate of alkoxysilane, hydrolyzate of metal alkoxide and metal salt It comprises at least one selected component (b), and is organic in a proportion of 10 to 50 parts by weight in terms of (b) converted to metal oxide with respect to 100 parts by weight of SiO 2 in (a).
  • a coating solution contained in a solvent is disclosed (for example, see Patent Document 1).
  • the silica sol contained in this coating solution contains a solid content of 5 to 50% by weight as SiO 2 . According to this coating solution, it is said that a low refractive index antireflection film having excellent mechanical strength and high adhesion to a substrate can be obtained.
  • composition containing an epoxy resin having a naphthalene skeleton an epoxy resin containing an epoxy resin having at least one selected from a naphthalene skeleton and a dicyclopentadiene skeleton as a condensed cyclic structure (hereinafter referred to as a special epoxy resin).
  • an epoxy resin composition for fiber-reinforced composite material containing colloid-dispersed nanosilica fine particles see, for example, Patent Document 2. It is described that the colloidally dispersed nanosilica fine particles contained in the epoxy resin composition are silica fine particles dispersed without aggregation of the nanosilica fine particles in a liquid such as an epoxy resin by the action of surface charge or the like.
  • the preferred blending amount of the colloid-dispersed nanosilica fine particles is 2 to 40 parts by mass with respect to 100 parts by mass of the epoxy resin component.
  • the dispersibility of the silica fine particles in the epoxy resin can be maintained by setting the amount of the colloid-dispersed nanosilica fine particles to 40 parts by mass or less with respect to 100 parts by mass of the epoxy resin component.
  • This epoxy resin composition exhibits high elastic modulus, high heat resistance and high toughness as a matrix resin for fiber reinforced composite materials, and also exhibits high tensile strength and high adhesion to carbon fibers as a fiber reinforced composite material. It is said that.
  • JP-A-8-122501 (Claim 1, paragraph [0006])
  • JP 2010-202727 A (Claim 1, Claim 5, Paragraph [0019], Paragraph [0021], Paragraph [0040])
  • a coating liquid as a liquid composition for forming a low refractive index film shown in Patent Document 1 is applied to the surface of a transparent substrate and cured to form a low refractive index film having a thickness of more than 1 ⁇ m, it is included in the coating liquid.
  • At least one component selected from the group consisting of a hydrolyzate of alkoxysilane, a hydrolyzate of metal alkoxide, and a metal salt contracts during the film formation process. It was.
  • the epoxy resin composition disclosed in Patent Document 2 has a function as a matrix resin for a fiber-reinforced composite material.
  • the fiber-reinforced composite is obtained by impregnating the epoxy resin composition with a reinforcing fiber and curing it by heating. Used to obtain material.
  • colloidally dispersed nano silica fine particles are dispersed at a small ratio of 2 to 40 parts by mass with respect to 100 parts by mass of the epoxy resin component in order to make the epoxy resin function as a matrix resin.
  • Patent Document 2 describes that when the amount of silica fine particles is increased, it becomes impossible to maintain a good dispersion state in the epoxy resin.
  • the liquid composition for forming a low refractive index film of the present invention also contains an epoxy resin having a naphthalene skeleton and silica particles, but is composed of a silica sol rich material containing more silica sol than the epoxy resin. For this reason, as in the epoxy resin composition shown in Patent Document 2, when the blending ratio of the epoxy resin and the silica particles is used, even if it is suitable for forming a fiber-reinforced composite material, the film has cracks. However, there has been a problem that a liquid composition for forming a low refractive index film having a high film hardness and a refractive index of 1.4 or less that can be used for an antireflection film cannot be realized.
  • the object of the present invention is to use an antireflection film having no crack, high film hardness, and refractive index of 1.4 or less even when the thickness of the film formed on the surface of the transparent substrate exceeds 1 ⁇ m.
  • An object of the present invention is to provide a liquid composition for forming a possible low refractive index film and a method for forming a low refractive index film using the same.
  • a first aspect of the present invention is: (A) an epoxy resin having a naphthalene skeleton in the molecular structure; (B) a silica sol in which spherical colloidal silica particles and beaded colloidal silica particles are dispersed in a liquid medium; and (C) And a liquid composition for forming a low refractive index film containing 100 to 3000% by mass of SiO 2 contained in the silica sol when the solid content after drying and curing of the epoxy resin is 100% by mass. It is.
  • the second aspect of the present invention is a method for forming a low refractive index film by applying the liquid composition for forming a low refractive index film of the first aspect to the surface of a transparent substrate.
  • the third aspect of the present invention is a method for producing a transparent substrate with a low refractive index film, which has a low refractive index film formed by the method of the second aspect on the surface of the substrate.
  • the liquid composition for forming a low refractive index film according to the first aspect of the present invention is composed of silica sol rich in which more silica sol is contained than epoxy resin, and in this silica sol, spherical colloidal silica particles and beaded colloidal silica particles are contained. Dispersed in a liquid medium. Therefore, when this liquid composition is applied to a transparent substrate and cured to form a low refractive index film, irregularities including minute holes are formed on the surface of the transparent substrate, and the refractive index is 1.4 or less. It is possible to form a low refractive index film.
  • an epoxy resin having a naphthalene skeleton in the molecular structure has good miscibility with silica sol.
  • the low refractive index film is formed with the above liquid composition for forming a low refractive index film. Therefore, the formed low refractive index film has a refractive index as low as 1.4 or less, and even when the film thickness exceeds 1 ⁇ m, the formed film has no cracks and high film hardness and transparency.
  • the film has a film thickness exceeding 1 ⁇ m, is crackless, has high film hardness and transparency, and has a refractive index of 1.4 or less. A transparent substrate with a low low refractive index film adhered thereto is obtained.
  • the epoxy resin composition is shown as a matrix resin for a fiber-reinforced composite material, but the epoxy resin of this embodiment is different from the epoxy resin of Patent Document 2.
  • the epoxy resin having a naphthalene skeleton in the molecular structure is a component of the liquid composition of the present embodiment (hereinafter referred to as “binder component”), and a low refractive index film is bonded to the base substrate. The skeleton component of the low refractive index film is applied.
  • the epoxy resin having a naphthalene skeleton in the molecular structure (A) of this embodiment is an epoxy resin having a skeleton containing at least one naphthalene ring in one molecule, and examples thereof include naphthol series and naphthalene diol series. It is done.
  • the epoxy resin having a naphthalene skeleton in the molecular structure is not particularly limited as long as it contains the naphthalene type epoxy resin described above, and may be used alone or in combination of two or more.
  • a liquid (liquid at 25 ° C.) bifunctional naphthalene type epoxy resin is preferable because of its low viscosity.
  • the liquid epoxy resin and solid epoxy resin may be used in combination.
  • More preferable naphthalene type epoxy resins include 1,4-diglycidyl ether naphthalene, 1,6-diglycidyl ether naphthalene, 1,4-diglycidyl ester naphthalene, and 1,8-tetraglycidylamine naphthalene.
  • the (B) silica sol of this embodiment is a sol in which spherical colloidal silica particles and beaded colloidal silica particles are dispersed in a liquid medium.
  • silica particles contained in the silica sol in addition to the bead shape, spherical, needle-like or plate-like ones are widely known, but in this embodiment, the spherical colloidal silica particles and the beaded colloidal silica particles A silica sol in which both are dispersed is used.
  • the refractive index of the coating film is not sufficiently lowered, and when only the beaded colloidal silica particles are used, a coating film having a low film hardness is formed. Therefore, a silica sol in which both are dispersed is used.
  • the spherical colloidal silica particles preferably have an average particle size of 2 to 80 nm. If it is 2 nm or less, it is difficult to exist in a monodispersed state, and it is easy to take an aggregated form. If it is 80 nm or more, unevenness on the surface of the coating film increases, and the haze of the film tends to increase.
  • the beaded colloidal silica particles are obtained by joining a plurality of spherical colloidal silica particles having an average particle diameter of 5 to 50 nm with metal oxide-containing silica.
  • the average particle diameter of the plurality of spherical colloidal silica particles constituting the bead-like colloidal silica particles is set in the above range because the refractive index of the formed film is sufficiently low when the average particle diameter is less than the lower limit value. On the other hand, if the upper limit is exceeded, the haze of the film tends to increase due to the unevenness of the film surface.
  • the average particle diameter of the plurality of spherical colloidal silica particles constituting the beaded colloidal silica particles is more preferably in the range of 5 to 30 nm.
  • the average particle size of the spherical colloidal silica particles refers to a particle size obtained by averaging the particle sizes obtained by measuring 200 particle shapes obtained by TEM observation. Moreover, as a metal oxide containing silica which joins a spherical colloidal silica particle, an amorphous silica, an amorphous alumina, etc. are illustrated, for example.
  • the silica sol of this embodiment preferably has a SiO 2 concentration of 5 to 40% by mass. If the SiO 2 concentration of the silica sol is less than 5% by mass, the refractive index of the formed film may not be sufficiently reduced. On the other hand, if it exceeds 40% by mass, the SiO 2 in the silica sol is likely to aggregate and the liquid May become unstable. More preferably, the silica sol has a SiO 2 concentration of 10 to 30 mass%.
  • the spherical colloidal silica particles of the present embodiment are preferably contained in an amount of 0.5 to 30% by mass as a component when the silica sol is dried and cured (hereinafter referred to as “solid content of silica sol”).
  • the solid content of silica sol is preferably 70 to 99.5% by mass. The reason is to obtain a high film refractive index and high film hardness. The more rosary colloidal silica particles are contained, the lower the refractive index of the film. By including two types of colloidal silica particles in the silica sol, the refractive index of the film can be easily adjusted. On the other hand, since only a beaded colloidal silica particle forms a coating film having a low film hardness, it is preferable to include spherical colloidal silica particles.
  • the spherical colloidal silica particles in the silica sol of this embodiment are prepared by ion exchange of sodium silicate and preparing active silicic acid, and then adding this to a seed particle-containing aqueous solution whose pH is adjusted with NaOH under heating. It can be produced by a water glass method.
  • silica sol described in JP-A No. 61-158810 can be used.
  • Japanese Patent Application Laid-Open No. 61-158810 first, an aqueous solution of alkali silicate having a concentration of 0.5 to 7% by mass is brought into contact with a strong acid type cation exchange resin and dealkalized to prepare a silicic acid solution.
  • An acid is added to the silicic acid solution, and the silicic acid solution is acid-treated at a pH of 2.5 or lower and a temperature of 0 to 98 ° C. to obtain an acidic silicic acid colloidal solution. Impurities in the obtained acidic silicic acid colloid liquid are removed to prepare an oligosilicic acid solution.
  • a part of this oligosilicic acid solution is added with ammonia or amine, and heated at a temperature of 60-98 ° C. at pH 7-10 to prepare a heel sol. The remainder of the oligosilicic acid solution is gradually added dropwise to the heel sol to grow colloidal particles to obtain a silica sol.
  • Spherical colloidal silica particles are produced by hydrolyzing an alkyl silicate (tetraalkoxysilane) in the presence of a basic catalyst, simultaneously with condensation and particle growth, called the so-called Stöber method. It can produce by the method to do.
  • high-purity spherical silica described in JP-A-63-291807 can be used.
  • a silica gel is produced by reacting a silicate ester with water in the presence of an acid or an alkali catalyst, and the produced silica gel is separated, dried and fired to produce a synthetic silica. To do. At this time, in a mixed solution of silicate ester, water and catalyst, an organic solvent incompatible with water and a nonionic surfactant are present to form silica gel while forming a water-in-oil emulsion.
  • the bead-shaped colloidal silica particles in the silica sol of the present embodiment are preferably those in which a plurality of spherical silica particles are joined by a joint such as a metal oxide-containing silica.
  • the bead-shaped colloidal silica particles use the acidic sol containing the spherical colloidal silica particles prepared earlier, and then go through the process of producing spherical silica particles by the water glass method, so that the spherical silica particles contain the metal oxide. It can be obtained by bonding with silica.
  • a silica sol in which such beaded colloidal silica particles are dispersed for example, a silica sol described in Japanese Patent No.
  • the silica sol of Japanese Patent No. 4328935 has a SiO 2 concentration of 50% by weight or less and is a stable sol.
  • the shape of the colloidal silica particles dispersed in a liquid medium of the silica sol have a size of 50 ⁇ 500 nm as a particle diameter measured D 1 by a dynamic light scattering method. When observed by an electron microscope, the particles are composed of spherical colloidal silica particles and silica that joins the spherical colloidal silica particles, and the spherical colloidal silica particles have a shape connected only in one plane.
  • the above-described production method of the spherical colloidal silica particles and the beaded colloidal silica particles is an example, and the present invention is not limited to the above-described method, and the spherical colloidal silica particles and the beaded colloidal silica particles are produced by various methods. be able to.
  • the liquid medium of the silica sol of the present embodiment that is, the dispersion medium of the silica sol is preferably the same medium as the organic solvent described below, but is not limited thereto.
  • the silica sol becomes an organosilica sol, is active by silanol groups present on the surface of the colloidal silica particles, and eventually becomes irreversibly converted to silica gel as the medium is removed.
  • the organic solvent that is the liquid medium of the organosilica sol include the following organic solvents that do not inhibit the activity of the colloidal silica particles.
  • the silica sol contains a liquid solvent.
  • the liquid composition for forming a low refractive index film of the present embodiment contains an organic solvent in addition to this liquid solvent is to adjust the transparency, film thickness, and adhesion to the base material of the low refractive index film. It is.
  • the organic solvent is widely selected from a liquid solvent of silica sol and other solvents.
  • the organic solvent (C) of this embodiment alcohol, ketone, glycol ether, or glycol ether acetate is preferably used.
  • Examples of the alcohol include methanol, ethanol, propanol, isopropyl alcohol (IPA), and the like.
  • Examples of ketones include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and the like.
  • glycol ethers ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monoethyl ether, dipropylene glycol monoethyl ether , Triethylene glycol monobutyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether and the like.
  • glycol ether acetate ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether Examples include acetate, dipropylene glycol monoethyl ether acetate, polyethylene glycol monomethyl ether acetate, and the like.
  • ethanol IPA, MEK, MIBK
  • ethylene glycol monomethyl ether ethylene glycol monomethyl ether acetate
  • propylene glycol monomethyl ether dipropylene glycol monomethyl ether or propylene glycol monomethyl ether
  • Acetate is particularly preferred.
  • the content of the organic solvent varies depending on the target film thickness.
  • the content of the organic solvent is preferably 0.5 to 90 parts by mass with respect to 100 parts by mass of the liquid composition for forming a low refractive index film.
  • the coating property of the liquid composition for forming a low refractive index film on a transparent substrate may be inferior, and a uniform low refractive index film may be difficult to obtain.
  • the upper limit is exceeded, the film thickness becomes thin and the antireflection function may not be easily exhibited.
  • the ratio of the organic solvent is particularly preferably 1 to 80 parts by mass.
  • solid content of the epoxy resin when the solid content after drying and curing of the epoxy resin (hereinafter referred to as “solid content of the epoxy resin” or “binder solid content”) is 100 mass%, the SiO 2 content contained in the silica sol is 100 to 100%.
  • the epoxy resin (A) and the silica sol (B) are mixed so as to contain 3000 mass%, preferably 300 to 2000 mass%, more preferably 500 to 2000 mass%, and still more preferably 1000 to 1700 mass%. To do. If the SiO 2 content contained in the silica sol is less than 100% by mass, the refractive index of the film after formation may not be sufficiently reduced. On the other hand, if it exceeds 3000% by mass, the components will be insufficient, thereby Hardness decreases.
  • the solid content after firing the silica sol (B) at 650 ° C. for 30 minutes in advance is determined, and when the epoxy resin (A) and the silica sol (B) are mixed, the SiO 2 min is determined based on the SiO 2 min contained in the silica sol (B). Is mixed with the epoxy resin of (A) and the silica sol of (B).
  • the low refractive index film-forming liquid composition thus prepared is applied to the transparent substrate surface to form a low refractive index film.
  • the transparent substrate include a transparent glass substrate, a transparent resin substrate, and a transparent resin film.
  • the glass of the glass substrate include glasses having high visible light transmittance such as clear glass, high transmittance glass, soda lime glass, and green glass.
  • the resin for the resin substrate or the resin film include resins such as acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET).
  • the liquid composition for forming a low refractive index film is applied to the surface of the transparent substrate, dried at a predetermined temperature, and then heat-treated to form a film thickness of 0.1 to 2.0 ⁇ m on the transparent substrate surface, preferably Can form a low refractive index film without cracks of 0.6 to 1.2 ⁇ m. That is, a low refractive index film having no cracks can be formed even with a film thickness exceeding 1 ⁇ m.
  • Examples of the coating method of the liquid composition for forming a low refractive index film include spin coating, die coating, and spraying.
  • the temperature for drying the liquid composition for forming a low refractive index film may be 40 to 300 ° C., and the time may be 5 to 120 minutes, but is not limited thereto.
  • the heat treatment is carried out by holding at a temperature of 50 to 300 ° C. for 5 to 60 minutes in an oxidizing atmosphere. This temperature and holding time are determined according to the required film hardness.
  • the glass 10 with a low refractive index film in which the low refractive index film 12 is formed on the surface of the transparent glass substrate 11 is formed.
  • the heat treatment is performed by holding at a temperature of 40 to 120 ° C. for 5 to 120 minutes in an oxidizing atmosphere. This temperature and holding time are determined according to the required film hardness and the heat resistance of the underlying film. As described above, as shown in FIG.
  • the resin film 20 with a low refractive index film in which the low refractive index film 22 is formed on the surface of the transparent resin film 21 is formed. If the film thickness of the low refractive index film 12 or 22 is less than 0.1 ⁇ m, there is a problem that sufficient reflection of the transparent substrate cannot be suppressed, and if it exceeds 2.0 ⁇ m, stress is concentrated inside the film and cracks are likely to occur. There is a bug.
  • Table 1 shows seven types of resins used in Examples 1 to 8 and Comparative Examples 2 to 6 of the present invention.
  • J1 EXA-4700 (manufactured by DIC)
  • J2 HP-4700 (manufactured by DIC)
  • J3 HP-4710 (manufactured by DIC)
  • J4 HP-6000 (manufactured by DIC)
  • J5 HP-4032SS (manufactured by DIC)
  • J6 EPICLON 850 (manufactured by DIC)
  • Acrylic resin J7 Acrydic A-9585 (manufactured by DIC) is shown.
  • EXA-4700 manufactured by DIC
  • DIC naphthalene skeleton in the molecular skeleton which is a binder component
  • spherical colloidal silica particles and beaded colloidal silica particles are propylene glycol monomethyl ether (hereinafter referred to as PGME).
  • the silica sol dispersed in the liquid medium was mixed.
  • the mixing ratio of the binder component and the silica sol at this time is such that the component after the drying and curing of the epoxy resin as the binder component, that is, the binder solid content is 100 mass%, the SiO 2 content contained in the silica sol is 2000 mass.
  • % Were mixed in a ratio containing%. This ratio is shown in Table 2 below as (SiO 2 content in silica sol / binder solid content). In Example 1, it is 20/1.
  • PGME was added as an organic solvent to prepare a liquid composition for forming a low refractive index film. PGME for adjusting the viscosity was added so as to have a ratio of 10% by mass with respect to 100% by mass of the liquid composition for forming a low refractive index film.
  • Examples 2 to 8, Comparative Examples 1 to 6 The resins as binder components in Examples 2 to 8 and Comparative Examples 2 to 6 were selected from the types of resins shown in Table 1 as shown in Table 2 below.
  • a hydrolyzate of silicon alkoxide was selected as the binder component of Comparative Example 1. This hydrolyzate of silicon alkoxide uses tetramethoxysilane as the silicon alkoxide, with respect to 1 part by mass of tetramethoxysilane, 1.2 parts by mass of water, 0.02 part by mass of formic acid, and isopropyl alcohol (IPA as an organic solvent). ) was added and the mixture was stirred at 55 ° C. for 1 hour.
  • IPA isopropyl alcohol
  • Examples 2 to 8 Comparative Examples 1 to 3, and Comparative Examples 5 and 6, a silica sol in which spherical colloidal silica particles and beaded colloidal silica particles were dispersed in a PGME liquid medium was used.
  • Comparative Example 4 a silica sol in which spherical colloidal silica particles were dispersed in a PGME liquid medium was used.
  • the binder component of the resin and the silica sol were mixed so that the ratio of SiO 2 content / binder solid content in the silica sol was the ratio shown in Table 2.
  • Example 2 the solvent shown in Table 2 was selected as the liquid solvent for silica sol and the organic solvent for mixing the binder component and silica sol.
  • PGME was used as the solvent.
  • Examples 4 and 8 propylene glycol 1-monomethyl ether 2-acetate (PGMEA) was used as the solvent.
  • PGMEA propylene glycol 1-monomethyl ether 2-acetate
  • Example 7 methyl ethyl ketone (MEK) was used as the solvent.
  • the organic solvent for adjusting the viscosity of the liquid composition for forming a low refractive index film was added in the same ratio as in Example 1.
  • the film thickness was measured by cross-sectional observation using a scanning electron microscope (SU-8000 manufactured by Hitachi High-Technologies Corporation).
  • Presence / absence of cracks in film The presence / absence of cracks in the film was confirmed by observing a range of 1 cm ⁇ 1 cm using visual observation and a stereoscopic microscope (magnification 50 times). When there is no crack at all visually and in the stereomicroscope, it is defined as “good”, and when the crack cannot be confirmed visually, it is “acceptable” when there are 3 or less cracks of 10 ⁇ m or less in the stereomicroscope. When a crack could be confirmed both visually and with a stereomicroscope, it was defined as “defective”.
  • Comparative Example 2 since an epoxy resin having no naphthalene skeleton was used as a binder component, cracks did not occur even when the film thickness of the low refractive index film was 1.5 ⁇ m, but the refractive index was as high as 1.43 and the film The hardness was “B”, which was inferior.
  • Comparative Example 3 since acrylic resin was used as the binder component, cracks did not occur even when the film thickness of the low refractive index film was 1.5 ⁇ m, but the refractive index was as high as 1.47 and the film hardness was “HB”. It was inferior.
  • Comparative Example 4 an epoxy resin having a naphthalene skeleton was used as the binder component.
  • the colloidal silica particles in the silica sol are only spherical colloidal silica particles and do not contain beaded colloidal silica particles, the film thickness of the low refractive index film is small. Cracks did not occur even at 1.5 ⁇ m, and the film hardness was excellent as “H”, but the refractive index was as high as 1.45.
  • Comparative Example 5 using an epoxy resin having a naphthalene skeleton as a binder component is contained and the spherical colloidal silica particles as colloidal silica particles in the silica sol and beaded colloidal silica particles, SiO 2 minutes contained in silica sol
  • An epoxy resin having a naphthalene skeleton as a binder component so that the binder solid content is 2100 mass% (SiO 2 in silica sol / binder solid content 8/21) with respect to 800 mass%. Since they were mixed, cracks did not occur even when the film thickness of the low refractive index film was 1.5 ⁇ m, and the film hardness was excellent as “H”, but the refractive index was as high as 1.55.
  • an epoxy resin having a naphthalene skeleton in the molecular structure is used as a binder component, and a silica sol in which spherical colloidal silica particles and beaded colloidal silica particles are dispersed in a liquid medium is used.
  • the solid content of the resin is 100% by mass
  • the low refractive index film was formed by applying the liquid composition for forming a low refractive index film, no cracks occurred in the film thickness range of 0.6 to 2.0 ⁇ m, and the refractive index of the film was 1.21.
  • the film hardness was all H or higher, and it was excellent at ⁇ 1.36.
  • a glass or film with a low refractive index film can be obtained by applying a liquid composition for forming a low refractive index film to a transparent substrate such as glass or film to form a low refractive index film.
  • the low refractive index film is used for display panels, solar cells, optical lenses, mirrors, glasses and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明の低屈折率膜形成用液組成物は、(A)分子構造中にナフタレン骨格を有するエポキシ樹脂と、(B)球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子が液体媒体中に分散したシリカゾルと、(C)有機溶媒と、を含み、前記エポキシ樹脂の乾燥硬化後の固形分を100質量%とするとき、前記シリカゾルに含有されるSiO2分を100~3000質量%含む。

Description

低屈折率膜形成用液組成物及びこれを用いた低屈折率膜の形成方法
 本発明は、ナフタレン骨格を有するエポキシ樹脂と、シリカゾルと、有機溶媒と、を含む低屈折率膜形成用液組成物及びこれを用いた低屈折率膜の形成方法に関する。更に詳しくは、透明基体表面に形成した膜の厚さが1μmを超える場合にも、形成した膜にクラックがなく、膜硬度が高く、屈折率が1.4以下の反射防止膜に利用可能な低屈折率膜を形成するための液組成物及びこれを用いた低屈折率膜の形成方法に関するものである。
 本願は、2017年3月8日に、日本に出願された特願2017-043546号に基づき優先権を主張し、その内容をここに援用する。
 従来、シリカゾルを含む低屈折率膜形成用液組成物として、5~30nmの粒子径を有するシリカゾル(a)と、アルコキシシランの加水分解物、金属アルコキシドの加水分解物及び金属塩からなる群より選ばれた少なくとも1種の成分(b)と、からなり、且つ(a)のSiO100重量部に対して、(b)を金属酸化物に換算して10~50重量部の割合で有機溶媒に含有した塗布液が開示されている(例えば、特許文献1参照。)。この塗布液に含まれるシリカゾルは、SiOとして5~50重量%濃度の固形分を含有する。
 この塗布液によれば、機械的強度に優れ、基材との密着力が高い低屈折率反射防止膜が得られるとされている。
 一方、ナフタレン骨格を有するエポキシ樹脂を含む組成物として、ナフタレン骨格、ジシクロペンタジエン骨格から選ばれる少なくとも1種を有するエポキシ樹脂を縮合環式構造として含むエポキシ樹脂(以下、特殊なエポキシ樹脂という。)と、コロイド分散型ナノシリカ微粒子と、を含む繊維強化複合材料用エポキシ樹脂組成物が開示されている(例えば、特許文献2参照。)。このエポキシ樹脂組成物に含まれるコロイド分散型ナノシリカ微粒子は、表面電荷などの作用により、エポキシ樹脂などの液中でナノシリカ微粒子が凝集することなく分散したシリカ微粒子である旨が記載されている。また、コロイド分散型ナノシリカ微粒子の好ましい配合量は、エポキシ樹脂成分100質量部に対して、2~40質量部であって、2質量部以上であれば、エポキシ樹脂組成物の弾性率を高めることができる一方、コロイド分散型ナノシリカ微粒子の配合量を多くすると、エポキシ樹脂中での良好な分散状態を維持することが難しくなる旨が記載されている。更に、コロイド分散型ナノシリカ微粒子の配合量をエポキシ樹脂成分100質量部に対して40質量部以下にすることにより、シリカ微粒子のエポキシ樹脂に対する分散性を維持することができる旨が記載されている。このエポキシ樹脂組成物は、繊維強化複合材料用のマトリックス樹脂として、高い弾性率と高い耐熱性および高い靭性を示し、かつ、繊維強化複合材料として高い引張り強度および炭素繊維との高い接着性を示すとされている。
特開平8-122501号公報(請求項1、段落[0006]) 特開2010-202727号公報(請求項1、請求項5、段落[0019]、段落[0021]、段落[0040])
 特許文献1に示される低屈折率膜形成用液組成物としての塗布液を透明基体表面に塗布し、硬化して厚さ1μmを超える低屈折率膜を形成した場合、塗布液に含まれているアルコキシシランの加水分解物、金属アルコキシドの加水分解物及び金属塩からなる群より選ばれた少なくとも1種の成分が膜形成過程で収縮するため、その収縮応力により膜にクラックを生じる不具合があった。
 一方、特許文献2に示されるエポキシ樹脂組成物は、繊維強化複合材料用のマトリックス樹脂としての機能を有し、このエポキシ樹脂組成物に強化繊維を含浸させ、加熱により硬化させることにより繊維強化複合材料を得るために用いられる。特許文献2に示されるエポキシ樹脂組成物は、エポキシ樹脂をマトリックス樹脂として機能させるために、エポキシ樹脂成分100質量部に対して2~40質量部という少ない割合でコロイド分散型ナノシリカ微粒子を分散させている。シリカ微粒子の配合量を多くすると、エポキシ樹脂中での良好な分散状態を維持できなくなることが特許文献2には記載されている。本発明の低屈折率膜形成用液組成物もナフタレン骨格を有するエポキシ樹脂を含み、かつシリカ粒子を含むけれども、エポキシ樹脂よりもシリカゾルを多く含むシリカゾルリッチで構成される。このため、特許文献2に示されるエポキシ樹脂組成物のように、エポキシ樹脂とシリカ粒子の配合割合にした場合には、繊維強化複合材料を形成するには好適であっても、膜にクラックがなく、膜硬度が高く、屈折率が1.4以下の反射防止膜に利用可能な低屈折率膜を形成するための液組成物を実現することができない課題があった。
 本発明の目的は、透明基体表面に形成した膜の厚さが1μmを超える場合にも、形成した膜にクラックがなく、膜硬度が高く、屈折率が1.4以下の反射防止膜に利用可能な低屈折率膜を形成するための液組成物及びこれを用いた低屈折率膜の形成方法を提供することにある。
 本発明の第1の観点は、(A)分子構造中にナフタレン骨格を有するエポキシ樹脂と、(B)球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子が液体媒体中に分散したシリカゾルと、(C)有機溶媒と、を含み、前記エポキシ樹脂の乾燥硬化後の固形分を100質量%とするとき、前記シリカゾルに含有されるSiO分を100~3000質量%含む低屈折率膜形成用液組成物である。
本発明の第2の観点は、第1の観点の低屈折率膜形成用液組成物を透明基体表面に塗布して低屈折率膜を形成する方法である。
 本発明の第3の観点は、第2の観点の方法で形成された低屈折率膜を基体表面に備えた低屈折率膜付き透明基体を製造する方法である。
 本発明の第1の観点の低屈折率膜形成用液組成物は、エポキシ樹脂よりもシリカゾルが多く含まれるシリカゾルリッチで構成される上、このシリカゾルでは球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子が液体媒体中に分散している。そのため、この液組成物を透明基体に塗布して硬化することにより低屈折率膜を形成したときに、透明基体の表面に微小な空孔を含む凹凸が形成され、屈折率が1.4以下の低屈折率膜を形成することができる。また、分子構造中にナフタレン骨格を有するエポキシ樹脂はシリカゾルとの混合性が良い。即ち、このエポキシ樹脂をシリカゾルと混合させても、エポキシ樹脂自体は溶解し、シリカゾルの分散安定性は崩れることがないため、シリカ粒子が凝集することがない。そのため、形成した膜の厚さが1μmを超える場合にも、形成した膜にクラックがなく、膜硬度と透明性の高い反射防止膜に利用可能な低屈折率膜を形成することができる。
 本発明の第2の観点の低屈折率膜を形成する方法では、上記低屈折率膜形成用液組成物で低屈折率膜を形成する。そのため、形成された低屈折率膜は、屈折率が1.4以下と低く、膜の厚さが1μmを超える場合にも、形成した膜にクラックがなく、膜硬度と透明性が高い。
 本発明の第3の観点の低屈折率膜付き透明基体を製造する方法では、1μmを超える膜厚を有し、クラックレスで、膜硬度と透明性が高く、屈折率が1.4以下と低い低屈折率膜が密着した透明基体が得られる。
本実施形態の低屈折率膜形成用液組成物を用いて透明なガラス基板表面に低屈折率膜を形成した低屈折率膜付きガラスの断面図である。 本実施形態の低屈折率膜形成用液組成物を用いて透明な樹脂フィルム表面に低屈折率膜を形成した低屈折率膜付き樹脂フィルムの断面図である。
 次に本発明を実施するための形態を説明する。
〔(A)分子構造中にナフタレン骨格を有するエポキシ樹脂〕
 前述した特許文献2では、エポキシ樹脂組成物が繊維強化複合材料用のマトリックス樹脂として示されているが、本実施形態のエポキシ樹脂は特許文献2のエポキシ樹脂とは異なる。本実施形態の(A)分子構造中にナフタレン骨格を有するエポキシ樹脂は、本実施形態の液組成物の成分(以下、「バインダ成分」という。)であり、低屈折率膜を下地基体に結着させ、低屈折率膜の骨格成分となる。本実施形態の(A)分子構造中にナフタレン骨格を有するエポキシ樹脂は、1分子内に少なくとも1個以上のナフタレン環を含んだ骨格を有するエポキシ樹脂であり、ナフトール系、ナフタレンジオール系等が挙げられる。ナフタレン型エポキシ樹脂としては、1,3-ジグリシジルエーテルナフタレン、1,4-ジグリシジルエーテルナフタレン、1,5-ジグリシジルエーテルナフタレン、1,6-ジグリシジルエーテルナフタレン、2,6-ジグリシジルエーテルナフタレン、2,7-ジグリシジルエーテルナフタレン、1,3-ジグリシジルエステルナフタレン、1,4-ジグリシジルエステルナフタレン、1,5-ジグリシジルエステルナフタレン、1,6-ジグリシジルエステルナフタレン、2,6-ジグリシジルエステルナフタレン、2,7-ジグリシジルエステルナフタレン、1,3-テトラグリシジルアミンナフタレン、1,4-テトラグリシジルアミンナフタレン、1,5-テトラグリシジルアミンナフタレン、1,6-テトラグリシジルアミンナフタレン、1,8-テトラグリシジルアミンナフタレン、2,6-テトラグリシジルアミンナフタレン、2,7-テトラグリシジルアミンナフタレン等が例示される。分子構造中にナフタレン骨格を有するエポキシ樹脂としては、上記したナフタレン型エポキシ樹脂を含むものであればよく、1種単独で用いてもよいし、2種以上を併用してもよい。特に、液状(25℃において液状)の2官能ナフタレン型エポキシ樹脂が低粘度である点から好ましい。液状の上記エポキシ樹脂と固形のエポキシ樹脂を併用してもよい。分子構造中にナフタレン骨格を有するエポキシ樹脂を用いることで、膜厚が1μmを超えてもクラックがなく、膜硬度の高い低屈折率膜を形成するための液組成物とすることができる。より好ましいナフタレン型エポキシ樹脂としては、1,4-ジグリシジルエーテルナフタレン、1,6-ジグリシジルエーテルナフタレン、1,4-ジグリシジルエステルナフタレン、1,8-テトラグリシジルアミンナフタレンが挙げられる。
〔(B)シリカゾル〕
 本実施形態の(B)シリカゾルは、球状コロイダルシリカ粒子と数珠状コロイダルシリカ粒子とが液体媒体中に分散したゾルである。一般に、シリカゾルに含まれるシリカ粒子としては、数珠状の他に、球状、針状又は板状のもの等が広く知られているが、本実施形態では、球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子の双方が分散したシリカゾルを用いる。球状コロイダルシリカ粒子だけを用いると、塗膜の屈折率が十分に下がらず、数珠状コロイダルシリカ粒子だけを用いると、膜の硬度が低い塗膜となるため、双方が分散したシリカゾルを用いる。
 球状コロイダルシリカ粒子は、平均粒径2~80nmが好ましい。2nm以下であると単一分散状態で存在し難く、凝集した形態をとり易くなり、80nm以上であると塗膜の表面の凹凸が大きくなり、膜のヘイズが増大し易くなる。一方、上記数珠状コロイダルシリカ粒子は、平均粒子径が5~50nmの複数の球状コロイダルシリカ粒子が、金属酸化物含有シリカによって接合されたものである。ここで、数珠状コロイダルシリカ粒子を構成する複数の球状コロイダルシリカ粒子の平均粒子径を上記範囲に設定しているのは、平均粒子径が下限値未満では形成後の膜の屈折率が十分に低下しにくくなり、一方、上限値を越えると膜表面の凹凸により膜のヘイズが増大し易くなるからである。このうち、上記数珠状コロイダルシリカ粒子を構成する複数の球状コロイダルシリカ粒子の平均粒子径は5~30nmの範囲であることが更に好ましい。なお、上記球状コロイダルシリカ粒子の平均粒子径とは、TEM観察により得られた粒子形状を200点計測した粒子径を平均して求められる粒子径をいう。また、球状コロイダルシリカ粒子を接合する金属酸化物含有シリカとしては、例えば非晶質のシリカ、又は、非晶質のアルミナ等が例示される。
 本実施形態のシリカゾルは、そのSiO濃度が5~40質量%であるものが好ましい。シリカゾルのSiO濃度が5質量%未満であると、形成後の膜の屈折率が十分に低下しない場合があり、一方、40質量%を超えると、シリカゾル中のSiOが凝集し易く液が不安定となる場合がある。シリカゾルのSiO濃度が10~30質量%であるものがより好ましい。
 本実施形態の球状コロイダルシリカ粒子は、シリカゾルを乾燥硬化したときの成分(以下、「シリカゾルの固形分」という。)で0.5~30質量%含まれることが好ましく、数珠状コロイダルシリカ粒子はシリカゾルの固形分で70~99.5質量%含まれることが好ましい。その理由は高い膜の屈折率と高い膜硬度を得るためである。数珠状コロイダルシリカ粒子を多く含む程、膜の屈折率は低下する。シリカゾル中に2種類のコロイダルシリカ粒子を含むことで、膜の屈折率を簡便に調整することができる。一方、数珠状コロイダルシリカ粒子のみでは膜硬度の弱い塗膜となるため、球状コロイダルシリカ粒子を含むことが好ましい。
 本実施形態のシリカゾル中の球状コロイダルシリカ粒子は、ケイ酸ソーダをイオン交換し、活性ケイ酸を調製後、これを加熱下において、NaOHでpH調整した種粒子含有水溶液中に添加し、粒子成長させる水ガラス法にて作製することができる。本実施形態では、例えば、特開昭61-158810号公報に記載されているシリカゾル等を使用することもできる。特開昭61-158810号公報では、まず、濃度が0.5~7質量%であるアルカリ珪酸塩の水溶液を、強酸型陽イオン交換樹脂と接触させて脱アルカリして珪酸液を調製する。この珪酸液に酸を加え、pH2.5以下温度0~98℃で珪酸液を酸処理し、酸性珪酸コロイド液を得る。得られた酸性珪酸コロイド液中の不純物を除去してオリゴ珪酸溶液を調製する。このオリゴ珪酸溶液の一部にアンモニア又はアミンを加え、pH7~10で60~98℃の温度で加熱してヒールゾルを調製する。このヒールゾルにオリゴ珪酸溶液の残部を、徐々に滴下してコロイド粒子を成長させて、シリカゾルを得る。
 また、球状コロイダルシリカ粒子は、アルコキシド法、特に、いわゆるStoeber法と呼ばれる、ケイ酸アルキル(テトラアルコキシシラン)を塩基性触媒の存在下で加水分解すると同時に縮合・粒子成長を行いながらシリカ粒子を製造する方法で作製できる。本実施形態では、例えば、特開昭63-291807号公報に記載されている高純度球状シリカ等を使用することもできる。特開昭63-291807号公報では、酸若しくはアルカリ触媒の存在下で、珪酸エステルと水とを反応させてシリカゲルを生成させ、生成したシリカゲルを分離した後、乾燥及び焼成して合成シリカを製造する。この時、珪酸エステル、水及び触媒の混合溶液中に、水に相溶性のない有機溶剤と非イオン界面活性剤とを存在させ、油中水滴型エマルジョンを形成しながらシリカゲルを生成させる。
 本実施形態のシリカゾル中の数珠状のコロイダルシリカ粒子は、具体的には、複数の球状シリカ粒子が、金属酸化物含有シリカ等の接合部によって接合されたものであることが好ましい。数珠状のコロイダルシリカ粒子は、先に作製した球状のコロイダルシリカ粒子を含有する酸性ゾルを用い、更に水ガラス法による球状シリカ粒子を製造する過程を経ることで、球状シリカ粒子を金属酸化物含有のシリカ等によって接合することにより得られる。このような数珠状コロイダルシリカ粒子が分散したシリカゾルとしては、例えば、特許第4328935号に記載されているシリカゾル等を使用することができる。特許第4328935号のシリカゾルは、SiO濃度50重量%以下の濃度を有し、安定なゾルである。シリカゾルの液状媒体中に分散しているコロイダルシリカ粒子の形状は、動的光散乱法による測定粒子径Dとして50~500nmの大きさを有する。電子顕微鏡によって観察すると、この粒子は、球状コロイダルシリカ粒子と、この球状コロイダルシリカ粒子を接合するシリカと、からなり、球状コロイダルシリカ粒子が一平面内のみにつながった形状を有する。そして、数珠状コロイダルシリカ粒子は、つながり度合として球状コロイダルシリカ粒子の平均粒子径(窒素ガス吸着法によって測定された比表面積Sm/gからD=2720/Sの式により得られる平均粒子径)Dと上記Dの比D/D値が3以上である数珠状である。なお、球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子の上述した製造方法は一例であって、本発明は上述した方法に限らず、様々な方法で球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子を製造することができる。
〔液体媒体〕
 本実施形態のシリカゾルの液体媒体、即ちシリカゾルの分散媒としては、次に述べる有機溶媒と同一の媒体が好ましいが、これに限るものではない。液体媒体が有機溶媒である場合、シリカゾルはオルガノシリカゾルとなり、そのコロイダルシリカ粒子表面に存在するシラノール基によって活性であり、媒体の除去につれて終局的に不可逆的にシリカゲルに変わる。オルガノシリカゾルの液体媒体である有機溶媒としては、このコロイダルシリカ粒子の活性を阻害しないような次に述べる有機溶媒が挙げられる。
〔(C)有機溶媒〕
 前述したように、シリカゾルは液体溶媒を含む。本実施形態の低屈折率膜形成用液組成物にこの液体溶媒の他に有機溶媒を含ませるのは、低屈折率膜の透明性、膜厚、下地基材との密着性を調整するためである。このため、有機溶媒はシリカゾルの液体溶媒及びそれ以外の溶媒から広く選択される。本実施形態の(C)有機溶媒としては、アルコール、ケトン、グリコールエーテル、又はグリコールエーテルアセテートを使用するのが好ましい。有機溶媒として、最終的に得られる低屈折率膜形成用液組成物の塗布性を向上させるために、アルコール、グリコールエーテル又はグリコールエーテルアセテートを使用するのが特に好ましい。
 上記アルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコール(IPA)等が例示される。また、ケトンとしては、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等が例示される。また、グリコールエーテルとしては、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテル等が例示される。また、グリコールエーテルアセテートとしては、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ポリエチレングリコールモノメチルエーテルアセテート等が例示される。このうち、膜形成時に良好な塗布性が得られることから、エタノール、IPA、MEK、MIBK、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル又はプロピレングリコールモノメチルエーテルアセテートが特に好ましい。
 また、上記有機溶媒の含有量は、目標とする膜の厚さによって異なる。上記有機溶媒の含有量は、低屈折率膜形成用液組成物100質量部に対して0.5~90質量部含むことが好ましい。下限値以下では、低屈折率膜形成用液組成物の透明基体への塗布性に劣り、かつ均一な低屈折率膜が得られにくい場合がある。一方、上限値を越えると、膜厚が薄くなり反射防止機能が発現しにくい場合がある。このうち、有機溶媒の割合は1~80質量部が特に好ましい。
〔低屈折率膜形成用液組成物の調製方法〕
 本実施形態の低屈折率膜形成用液組成物は、(A)分子構造中にナフタレン骨格を有するエポキシ樹脂と、(B)球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子が液体媒体中に分散したシリカゾルと、を混合して混合液を調製し、この混合液に(C)有機溶媒を混合して低屈折率膜形成用組成物を調製する。ここで、エポキシ樹脂の乾燥硬化後の固形分(以下、「エポキシ樹脂の固形分」又は「バインダ固形分」という。)を100質量%とするとき、シリカゾルに含有されるSiO分を100~3000質量%、好ましくは300~2000質量%、より好ましくは500~2000質量%、さらに好ましくは1000~1700質量%含むように、(A)のエポキシ樹脂と、(B)のシリカゾルと、を混合する。シリカゾルに含有されるSiO分が100質量%未満であると、形成後の膜の屈折率が十分に低下しない場合があり、一方、3000質量%を超えると、成分が不足し、これにより膜硬度が低下する。なお、SiO分を規定する方法としては、(A)のエポキシ樹脂と、(B)のシリカゾルとを混合する前に、あらかじめ(B)のシリカゾルを650℃で30分焼成した後の固形分の量(SiO分)を求めておき、(A)のエポキシ樹脂と、(B)のシリカゾルとを混合する際に、(B)のシリカゾルに含まれるSiO分を基に、SiO分が所定の範囲となるよう(A)のエポキシ樹脂と、(B)のシリカゾルとを混合する。
〔低屈折率膜の形成方法〕
 このように調製された低屈折率膜形成用液組成物を透明基体表面に塗布して低屈折率膜を形成する。透明基体としては、透明なガラス基板、透明な樹脂基板、透明な樹脂フィルム等が挙げられる。ガラス基板のガラスとしては、クリアガラス、高透過ガラス、ソーダライムガラス、グリーンガラス等の高い可視光透過率を有するガラスが挙げられる。樹脂基板又は樹脂フィルムの樹脂としては、ポリメチルメタクリレート等のアクリル系樹脂やポリフェニレンカーボネート等の芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)等の芳香族ポリエステル系樹脂等の樹脂が挙げられる。
 上記透明基体表面に上記低屈折率膜形成用液組成物を塗布し、所定の温度で乾燥した後、加熱処理することで、透明基体表面に、膜厚が0.1~2.0μm、好ましくは0.6~1.2μmのクラックのない低屈折率膜を形成することができる。即ち、1μmを超える膜厚でもクラックのない低屈折率膜を形成することができる。低屈折率膜形成用液組成物の塗布方法としては、スピンコート法、ダイコート法又はスプレー法等が例示される。低屈折率膜形成用液組成物を乾燥させる際の温度は40~300℃であってもよく、時間は5~120分間であってもよいが、これに限定されることはない。透明基体が透明なガラス基板である場合には、加熱処理を酸化雰囲気下、50~300℃の温度で5~60分間保持することにより行う。この温度と保持時間は要求される膜硬度に応じて決められる。以上により、図1に示すように、透明なガラス基板11表面に低屈折率膜12が形成された低屈折率膜付きガラス10が形成される。また、基材が透明な樹脂フィルムである場合には、加熱処理を酸化雰囲気下、40~120℃の温度で5~120分間保持することにより行う。この温度と保持時間は要求される膜硬度と、下地フィルムの耐熱性に応じて決められる。以上により、図2に示すように、透明な樹脂フィルム21表面に低屈折率膜22が形成された低屈折率膜付き樹脂フィルム20が形成される。低屈折率膜12又は22の膜厚が0.1μm未満では、十分な透明基体の反射を抑制できない不具合があり、2.0μmを超えると、膜内部に応力が集中しクラックが発生し易くなる不具合がある。
 次に本発明の実施例を比較例とともに詳しく説明する。
〔7種類の樹脂〕
 本発明の実施例1~8及び比較例2~6に用いられる7種類の樹脂を、表1に示す。表1には、分子構造中にナフタレン骨格を有するエポキシ樹脂として、J1:EXA-4700(DIC社製)、J2:HP-4700(DIC社製)、J3:HP-4710(DIC社製)、J4:HP-6000(DIC社製)、J5:HP-4032SS(DIC社製)を示し、ナフタレン骨格を有しないエポキシ樹脂として、J6:EPICLON 850(DIC社製)を示し、エポキシ樹脂でない樹脂として、アクリル樹脂のJ7:アクリディックA-9585(DIC社製)を示す。
Figure JPOXMLDOC01-appb-T000001
<実施例1>
 バインダ成分である分子骨格中にナフタレン骨格を有するエポキシ樹脂としてのJ1:EXA-4700(DIC社製)を、球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子をプロピレングリコールモノメチルエーテル(以下、PGMEという。)の液体媒体中に分散したシリカゾルに混合した。このときのバインダ成分とシリカゾルとの混合割合は、バインダ成分であるエポキシ樹脂の乾燥硬化後の成分、即ちバインダ固形分を100質量%とするときに、シリカゾルに含有されるSiO分を2000質量%を含む比率で混合した。この比率を(シリカゾル中のSiO分/バインダ固形分)として、以下の表2に示す。実施例1では20/1である。この混合液を塗布に適した粘度とするため、有機溶媒としてPGMEを加えて、低屈折率膜形成用液組成物を調製した。この粘度調整のためのPGMEは、低屈折率膜形成用液組成物100質量%に対して10質量%の割合になるように添加した。
<実施例2~8、比較例1~6>
 実施例2~8、比較例2~6のバインダ成分である樹脂として、表1に示す種類の樹脂の中から、以下の表2に示すように選定した。一方、比較例1のバインダ成分は、ケイ素アルコキシドの加水分解物を選定した。このケイ素アルコキシドの加水分解物は、ケイ素アルコキシドとしてテトラメトキシシランを用い、テトラメトキシシラン1質量部に対して、水1.2質量部、ギ酸を0.02質量部、有機溶媒としてイソプロピルアルコール(IPA)を2.0質量部添加して、55℃で1時間撹拌することにより得られた。
 実施例2~8、比較例1~3及び比較例5、6では、球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子がPGMEの液体媒体中に分散したシリカゾルを用いた。一方、比較例4では、球状コロイダルシリカ粒子がPGMEの液体媒体中に分散したシリカゾルを用いた。また、実施例2~8、比較例2~6では、シリカゾル中のSiO分/バインダ固形分の比率が表2に示す比率になるように、樹脂のバインダ成分とシリカゾルとを混合した。比較例5では、特許文献2の請求項5に記載された比率の範囲中で、シリカ粒子が最多となる比率で配合した。具体的には、エポキシ樹脂100質量部とシリカ粒子40質量部と特殊なエポキシ樹脂5質量部となるように配合した。この配合比率では、(シリカゾル中のSiO分/バインダ固形分)が40/105となり、表2では8/21で示している。比較例1では、シリカゾル中のSiO分/バインダ固形分の比率が表2に示す比率になるように、またケイ素アルコキシドの加水分解物の乾燥硬化後の固形分の比率が表2に示す比率になるように、ケイ素アルコキシドの加水分解物のバインダ成分とシリカゾルとを混合した。
 更に、実施例2~8、比較例1~6では、シリカゾルの液体溶媒及びバインダ成分とシリカゾルとを混合する有機溶媒を表2に示す溶媒を選定した。具体的には、実施例2~3、5、6及び比較例1~6では上記溶媒として、PGMEを用いた。実施例4、8では上記溶媒として、プロピレングリコール1-モノメチルエーテル2-アセテート(PGMEA)を用いた。また実施例7では上記溶媒として、メチルエチルケトン(MEK)を用いた。低屈折率膜形成用液組成物の粘度調整のための有機溶媒は、実施例1と同じ割合で添加した。
Figure JPOXMLDOC01-appb-T000002
<比較試験及び評価>
 実施例1~8及び比較例1~6で得られた低屈折率膜形成用液組成物を50mm×50mmの厚さ0.7mmの透明なソーダライムガラス基板表面に1000rpmの回転速度で60秒間それぞれスピンコートし、130℃で20分間乾燥した後、200℃で5分間焼成して、14種類の評価用の低屈折率膜付きガラスを得た。ガラス基板表面に形成された14種類の低屈折率膜について、膜厚と、可視光線透過率と、屈折率と、膜のクラックの有無と、膜硬度とを、以下に示す方法でそれぞれ評価した。これらの結果を表2に示す。
(1)膜厚
 膜厚は、走査型電子顕微鏡(日立ハイテクノロジーズ社製SU-8000)による断面観察により測定した。
(2)可視光線の透過率
 分光光度計(日立ハイテクノロジーズ社製U-4100)を用い、規格(JIS R 3216-1998)に従い、波長450nmの可視光線透過率を測定した。可視光透過率の評価は、低屈折率膜付きガラスの波長450nmにおける透過率が93%以上のときを「良」とし、90%以上93%未満のときを「可」とし、90%未満を「不良」とした。
(3)屈折率
 分光エリプソメトリー装置(J.A.Woollam Japan社製M-2000)を用いて測定し、解析した光学定数における633nmの値を屈折率とした。
(4)膜のクラックの有無
 膜のクラックの有無は、目視及び実体顕微鏡(倍率50倍)を用いて1cm×1cmの範囲を観察することによって確認した。目視及び実体顕微鏡の双方にてクラックが全く無いないときを「良」とし、目視にてクラックが確認できないものの、実体顕微鏡にて10μm以下のクラックが3本以下であるときを「可」とし、目視・実体顕微鏡の双方にてクラックが確認できるときを「不良」とした。
(5)膜硬度
 JIS-S6006が規定する試験用鉛筆を用いて、JIS-K5400が規定する鉛筆硬度評価法に従い、750gのおもりを用いて各硬度の鉛筆で所定の表面を3回繰り返し引っ掻き、傷が1本できるまでの硬度を測定した。数字が高いほど、高硬度を示す。H以上を膜硬度が優れていて、H未満(F、HB、B)を膜硬度が劣っていると評価した。
 表2から明らかなように、比較例1では、バインダ成分としてケイ素アルコキシドの加水分解物を用いたため、低屈折率膜の屈折率は1.21と低かった。また、その膜厚が0.7μmであってもクラックが発生しかつ膜硬度は「F」で劣っていた。
 比較例2では、バインダ成分としてナフタレン骨格を有しないエポキシ樹脂を用いたため、低屈折率膜の膜厚が1.5μmでもクラックが発生しなかったが、その屈折率は1.43と高くかつ膜硬度は「B」で劣っていた。
 比較例3では、バインダ成分としてアクリル樹脂を用いたため、低屈折率膜の膜厚が1.5μmでもクラックが発生しなかったが、その屈折率は1.47と高くかつ膜硬度は「HB」で劣っていた。
 比較例4では、バインダ成分としてナフタレン骨格を有するエポキシ樹脂を用いたが、シリカゾル中のコロイダルシリカ粒子が球状コロイダルシリカ粒子のみで数珠状コロイダルシリカ粒子を含まないため、低屈折率膜の膜厚が1.5μmでもクラックが発生せず、膜硬度は「H」と優れていたが、その屈折率は1.45と高かった。
 比較例5では、バインダ成分としてナフタレン骨格を有するエポキシ樹脂を用い、シリカゾル中のコロイダルシリカ粒子として球状コロイダルシリカ粒子と数珠状コロイダルシリカ粒子とを含んでいたが、シリカゾルに含有されるSiO分が800質量%に対してバインダ固形分が2100質量%(シリカゾル中のSiO分/バインダ固形分=8/21)の比率になるように、シリカゾルとバインダ成分であるナフタレン骨格を有するエポキシ樹脂とを混合したため、低屈折率膜の膜厚が1.5μmでもクラックが発生せず、膜硬度は「H」と優れていたが、その屈折率は1.55と高かった。
 比較例6では、バインダ成分としてナフタレン骨格を有するエポキシ樹脂を用い、シリカゾル中のコロイダルシリカ粒子として球状コロイダルシリカ粒子と数珠状コロイダルシリカ粒子とを含んでいたが、シリカゾルに含有されるSiO分が90質量%に対してバインダ固形分が1000質量%(シリカゾル中のSiO分/バインダ固形分=9/10)の比率になるように、シリカゾルとバインダ成分であるナフタレン骨格を有するエポキシ樹脂を混合したため、低屈折率膜の膜厚が1.5μmでもクラックが発生せず、膜硬度は「H」と優れていたが、その屈折率は1.53と高かった。
 これに対して、実施例1~8では、バインダ成分として分子構造中にナフタレン骨格を有するエポキシ樹脂を用い、球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子が液体媒体中に分散したシリカゾルを用い、エポキシ樹脂の固形分を100質量%とするとき、シリカゾルに含有されるSiO分を100~3000質量%(シリカゾル中のSiO分/バインダ固形分=1/1~30/1)の比率で含む低屈折率膜形成用液組成物を塗布して低屈折率膜を形成したため、膜厚が0.6~2.0μmの範囲で膜にクラックは発生せず、膜の屈折率は1.21~1.36と低く、膜硬度はすべてH以上であって優れていた。
 本発明では、低屈折率膜形成用液組成物をガラス、フィルムなどの透明基体に塗布して低屈折率膜を形成することにより低屈折率膜付きガラス又はフィルムを得ることができる。低屈折率膜は、ディスプレイパネル、太陽電池、光学レンズ、ミラー、メガネ等に利用される。
 10  低屈折率膜付きガラス
 11  透明なガラス基板
 12  低屈折率膜
 20  低屈折率膜付き樹脂フィルム
 21  透明な樹脂フィルム
 22  低屈折率膜

Claims (3)

  1.  (A)分子構造中にナフタレン骨格を有するエポキシ樹脂と、
     (B)球状コロイダルシリカ粒子及び数珠状コロイダルシリカ粒子が液体媒体中に分散したシリカゾルと、
     (C)有機溶媒と、を含み、
     前記エポキシ樹脂の乾燥硬化後の固形分を100質量%とするとき、前記シリカゾルに含有されるSiO分を100~3000質量%含む低屈折率膜形成用液組成物。
  2.  請求項1記載の低屈折率膜形成用液組成物を透明基体表面に塗布して低屈折率膜を形成する方法。
  3.  請求項2記載の方法で形成された低屈折率膜を基体表面に備えた低屈折率膜付き透明基体を製造する方法。
PCT/JP2018/007484 2017-03-08 2018-02-28 低屈折率膜形成用液組成物及びこれを用いた低屈折率膜の形成方法 WO2018163929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197020587A KR20190121293A (ko) 2017-03-08 2018-02-28 저굴절률막 형성용 액 조성물 및 이것을 사용한 저굴절률막의 형성 방법
CN201880007719.4A CN110291165A (zh) 2017-03-08 2018-02-28 低折射率膜形成用液体组合物及使用该组合物的低折射率膜的形成方法
US16/478,630 US20190338159A1 (en) 2017-03-08 2018-02-28 Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043546A JP2018145339A (ja) 2017-03-08 2017-03-08 低屈折率膜形成用液組成物及びこれを用いた低屈折率膜の形成方法
JP2017-043546 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018163929A1 true WO2018163929A1 (ja) 2018-09-13

Family

ID=63447719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007484 WO2018163929A1 (ja) 2017-03-08 2018-02-28 低屈折率膜形成用液組成物及びこれを用いた低屈折率膜の形成方法

Country Status (6)

Country Link
US (1) US20190338159A1 (ja)
JP (1) JP2018145339A (ja)
KR (1) KR20190121293A (ja)
CN (1) CN110291165A (ja)
TW (1) TW201843255A (ja)
WO (1) WO2018163929A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023160441A (ja) 2022-04-22 2023-11-02 キヤノン株式会社 無機粒子を含む多孔質層を有する物品および無機粒子を含む多孔質層を形成するための塗工液
CN114879401B (zh) * 2022-04-28 2023-10-31 Tcl华星光电技术有限公司 显示模组

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158810A (ja) 1984-12-28 1986-07-18 Shokubai Kasei Kogyo Kk 高純度シリカゾルの製造法
JPS63291807A (ja) 1987-05-22 1988-11-29 Tonen Sekiyukagaku Kk 高純度球状シリカの製造方法
JPH08122501A (ja) 1994-10-20 1996-05-17 Nissan Chem Ind Ltd 低屈折率反射防止膜
JP2002088223A (ja) * 2000-09-13 2002-03-27 Shin Etsu Chem Co Ltd 光透過性エポキシ樹脂組成物及び半導体装置
JP4328935B2 (ja) 1998-09-10 2009-09-09 日産化学工業株式会社 数珠状のシリカゾル、その製法及びインクジェット記録媒体
JP2010202727A (ja) 2009-03-02 2010-09-16 Mitsubishi Rayon Co Ltd 繊維強化複合材料用エポキシ樹脂組成物およびそれを用いた繊維強化複合材料
JP2013253145A (ja) * 2012-06-06 2013-12-19 Mitsubishi Materials Corp 低屈折率膜形成用組成物及びこれを用いた低屈折率膜の形成方法
JP2014005338A (ja) * 2012-06-22 2014-01-16 Dic Corp 硬化性組成物、硬化物、及びプリント配線基板
JP2015038197A (ja) * 2013-07-19 2015-02-26 味の素株式会社 樹脂組成物
WO2015122395A1 (ja) * 2014-02-12 2015-08-20 富士フイルム株式会社 硬化性樹脂組成物、これを用いた反射防止膜、固体撮像素子およびカメラモジュール
WO2016080503A1 (ja) * 2014-11-20 2016-05-26 ソマール株式会社 粉体塗料
WO2016117592A1 (ja) * 2015-01-20 2016-07-28 三菱マテリアル株式会社 低屈折率膜形成用液組成物
JP2017043546A (ja) 2015-08-24 2017-03-02 エスエス製薬株式会社 感冒用医薬組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709527B1 (ko) * 2003-02-21 2007-04-20 아사히 가세이 가부시키가이샤 실리카 함유 적층체, 및 다공성 실리카층 형성용 도포조성물
CN100375908C (zh) * 2003-06-18 2008-03-19 旭化成株式会社 抗反射膜
CN101493533B (zh) * 2009-02-11 2011-03-30 广东东邦科技有限公司 一种反射型防眩性偏光片、其专用涂层及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158810A (ja) 1984-12-28 1986-07-18 Shokubai Kasei Kogyo Kk 高純度シリカゾルの製造法
JPS63291807A (ja) 1987-05-22 1988-11-29 Tonen Sekiyukagaku Kk 高純度球状シリカの製造方法
JPH08122501A (ja) 1994-10-20 1996-05-17 Nissan Chem Ind Ltd 低屈折率反射防止膜
JP4328935B2 (ja) 1998-09-10 2009-09-09 日産化学工業株式会社 数珠状のシリカゾル、その製法及びインクジェット記録媒体
JP2002088223A (ja) * 2000-09-13 2002-03-27 Shin Etsu Chem Co Ltd 光透過性エポキシ樹脂組成物及び半導体装置
JP2010202727A (ja) 2009-03-02 2010-09-16 Mitsubishi Rayon Co Ltd 繊維強化複合材料用エポキシ樹脂組成物およびそれを用いた繊維強化複合材料
JP2013253145A (ja) * 2012-06-06 2013-12-19 Mitsubishi Materials Corp 低屈折率膜形成用組成物及びこれを用いた低屈折率膜の形成方法
JP2014005338A (ja) * 2012-06-22 2014-01-16 Dic Corp 硬化性組成物、硬化物、及びプリント配線基板
JP2015038197A (ja) * 2013-07-19 2015-02-26 味の素株式会社 樹脂組成物
WO2015122395A1 (ja) * 2014-02-12 2015-08-20 富士フイルム株式会社 硬化性樹脂組成物、これを用いた反射防止膜、固体撮像素子およびカメラモジュール
WO2016080503A1 (ja) * 2014-11-20 2016-05-26 ソマール株式会社 粉体塗料
WO2016117592A1 (ja) * 2015-01-20 2016-07-28 三菱マテリアル株式会社 低屈折率膜形成用液組成物
JP2017043546A (ja) 2015-08-24 2017-03-02 エスエス製薬株式会社 感冒用医薬組成物

Also Published As

Publication number Publication date
KR20190121293A (ko) 2019-10-25
JP2018145339A (ja) 2018-09-20
CN110291165A (zh) 2019-09-27
TW201843255A (zh) 2018-12-16
US20190338159A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
TWI579341B (zh) 低折射率膜形成用組成物及使用此之低折射率膜之形成方法
WO2007097284A1 (ja) 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材
WO2013023403A1 (zh) 改性聚乙烯醇基膜及其制备方法和偏光片
JP2017039928A (ja) 反射防止膜形成用組成物、反射防止膜およびその形成方法
CN107629760B (zh) 一种透明防雾剂及其制备方法
JP2004142161A (ja) 表面防汚性複合樹脂フィルム、表面防汚性物品、化粧板
TWI662081B (zh) 低折射率膜形成用液體組成物
KR101659709B1 (ko) 중공형 알루미노실리케이트 입자 및 이의 제조방법
WO2018163929A1 (ja) 低屈折率膜形成用液組成物及びこれを用いた低屈折率膜の形成方法
JP4540979B2 (ja) ハードコート膜付基材および該ハードコート膜形成用塗布液
CN113122081B (zh) 一种透明、高硬、可多功能集成的自修复涂料及其制备方法与应用
JP2009203285A (ja) 被膜形成用コーティング材組成物及び反射防止基材
JP2012246440A (ja) 無機コーティング組成物
JP7317203B2 (ja) 自己修復又は繰返し使用可能な製品、その製造方法及び適用
JPWO2015170647A1 (ja) ガラス物品
JP2012148952A (ja) 低反射膜形成用塗布液およびその調製方法およびそれを用いた低反射部材
CN110564187A (zh) 一种减反射无氟超疏水自清洁纳米薄膜及其制备方法
KR102611723B1 (ko) 유리용 접착제, 유리용 접착제의 제조방법 및 유리 접착체의 제조방법
JP2012168377A (ja) 紫外線遮蔽粒子、紫外線遮蔽ハードコート用樹脂組成物、紫外線遮蔽ハードコート膜、自動車用プラスチック製ヘッドレンズカバー
WO2016072509A1 (ja) 水性塗布液、膜及びその製造方法、積層体、並びに太陽電池モジュール
KR102188211B1 (ko) 저굴절률막 형성용 조성물 및 그 제조 방법 그리고 저굴절률막의 형성 방법
TWI743304B (zh) 紅外線遮蔽膜形成用塗料、附有紅外線遮蔽膜之透明基體、及其製造方法
CN108572404B (zh) 光学构件、摄像设备和光学构件的制造方法
JP5782916B2 (ja) 変性中空シリカ微粒子を含有する反射防止フィルム用組成物と、これを用いた反射防止フィルム
JPS63305175A (ja) コ−ティング用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197020587

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764399

Country of ref document: EP

Effective date: 20191008

122 Ep: pct application non-entry in european phase

Ref document number: 18764399

Country of ref document: EP

Kind code of ref document: A1