WO2018163883A1 - 蒸着基材用ポリエチレン系フィルム及びそれを用いた蒸着フィルム - Google Patents
蒸着基材用ポリエチレン系フィルム及びそれを用いた蒸着フィルム Download PDFInfo
- Publication number
- WO2018163883A1 WO2018163883A1 PCT/JP2018/006946 JP2018006946W WO2018163883A1 WO 2018163883 A1 WO2018163883 A1 WO 2018163883A1 JP 2018006946 W JP2018006946 W JP 2018006946W WO 2018163883 A1 WO2018163883 A1 WO 2018163883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- vapor deposition
- film
- polyethylene
- less
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/022—Mechanical properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
Definitions
- the present invention relates to a polyethylene film for a vapor deposition substrate using a polyethylene resin and a vapor deposition film in which a vapor deposition layer is vapor-deposited on the polyethylene film.
- Vapor-deposited polyethylene films are widely used in packaging materials such as food packaging and clothing packaging, gold and silver thread, labels, stickers, and reflective sheets. Several original films for vapor deposition have been proposed so far. ing.
- Patent Document 1 improves the slipping property by using an inorganic antiblocking agent having a particle size of 2 to 5 ⁇ m while adding no organic lubricant, but the type of antiblocking agent is particularly limited.
- the antiblocking agent is zeolite as in the example, when vapor deposition is performed on a long film containing zeolite, the barrier property of the vapor deposition film becomes insufficient.
- the size of vapor deposition machines is increasing. Therefore, even if it is a case where it evaporates using the large-sized vapor deposition machine on the raw material for vapor deposition which lengthened and widened, the vapor deposition film is calculated
- An object of the present invention is to provide a polyethylene-based film for a vapor deposition substrate having excellent barrier properties even at a location where the winding is hard or a location where the winding is hard at the long winding core. Moreover, it raises as a subject to provide the vapor deposition film using the said polyethylene-type film for vapor deposition base materials.
- the polyethylene film for use as a base material for the vapor deposition layer has a laminate layer on the surface on the vapor deposition layer side, a seal layer on the other surface, and a predetermined hardness on the seal layer.
- the average particle diameter of the inorganic particles is within a predetermined range and / or
- the surface of the laminate layer is smooth by making the seal layer into a predetermined surface shape.
- the present invention is a polyethylene film for use as a base material for a vapor deposition layer, wherein the polyethylene film includes a laminate layer which is a surface on the vapor deposition layer side and a seal layer which is the other surface.
- the sealing layer contains inorganic particles, the Mohs hardness of the inorganic particles contained in the sealing layer is 3 or less, and at least one of the following (i) and (ii): It is characterized by being a polyethylene-type film for vapor deposition base materials characterized by satisfying.
- the average particle size of the inorganic particles contained in the seal layer is 5 ⁇ m or more and 15 ⁇ m or less.
- the three-dimensional surface roughness SRa of the surface of the seal layer is 0.2 ⁇ m or less, and the seal layer The maximum peak height SRmax of the surface is 6 ⁇ m or less.
- the density of the polyethylene resin used for the laminate layer is 0.91 to 0.95 g / cm 3
- the density of the polyethylene resin used for the seal layer is 0.90 to 0.94 g / cm 3. Is preferred.
- the content of inorganic particles in the seal layer is preferably 0.5 to 3.0% by mass.
- the three-dimensional surface roughness SRa of the seal layer surface is preferably 0.2 ⁇ m or less, and the maximum peak height SRmax of the seal layer surface is preferably 5 ⁇ m or less.
- the density of the polyethylene resin used for the laminate layer is higher than the density of the polyethylene resin used for the seal layer.
- the content of inorganic particles in the laminate layer is preferably less than 0.1% by mass.
- the present invention also includes a deposited film in which a deposited layer is deposited on the surface of a laminate layer of a polyethylene film for a deposited substrate.
- the polyethylene film of the present invention has excellent barrier properties over its entire length and width even when it is vapor-deposited at high speed using a large-sized vapor deposition machine.
- the film of the present invention is a polyethylene film for use as a base material for a vapor deposition layer.
- the polyethylene-based film has at least a laminate layer (hereinafter also referred to as A layer) which is a surface on the vapor deposition layer side and a seal layer (hereinafter also referred to as B layer) which is the other surface. Yes. It is preferable to have an intermediate layer interposed between the laminate layer and the seal layer.
- At least the laminate layer (A layer) and the seal layer (B layer) are formed of a polyethylene resin, and preferably the intermediate layer is also formed of a polyethylene resin.
- the B layer contains predetermined inorganic particles described later.
- the polyethylene film preferably has a thickness of 300 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, still more preferably 20 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 30 ⁇ m or more and 50 ⁇ m or less.
- the polyethylene-based resin is a resin mainly composed of polyethylene, and specifically, a resin in which an ethylene-derived component is more than 50% by mass and 100% by mass or less in 100% by mass of the polyethylene-based resin.
- the ethylene-derived component is preferably 60% by mass or more and 100% by mass or less, more preferably 70% by mass or more and 100% by mass or less, and further preferably 80% by mass or more and 100% by mass or less.
- the polyethylene resin of the seal layer (B layer) is preferably low density polyethylene (LDPE), more preferably linear low density polyethylene (LLDPE).
- the polyethylene resin may be polyethylene obtained by polymerizing only ethylene, or may be an ethylene / ⁇ -olefin copolymer obtained by copolymerizing ethylene and an ⁇ -olefin other than ethylene. Is preferably an ethylene / ⁇ -olefin copolymer.
- the ethylene / ⁇ -olefin copolymer is an ethylene / ⁇ -olefin having a structural unit derived from ethylene as a main component and one or more structural units derived from an ⁇ -olefin other than ethylene. It is a copolymer.
- the ethylene / ⁇ -olefin copolymer is preferably a linear ethylene / ⁇ -olefin copolymer.
- the ⁇ -olefin other than ethylene forming the linear ethylene / ⁇ -olefin copolymer used in the B layer is represented by the general formula R—CH ⁇ CH 2 (wherein R represents an alkyl group having 1 to 14 carbon atoms).
- R represents an alkyl group having 1 to 14 carbon atoms.
- R represents an alkyl group having 1 to 14 carbon atoms.
- propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, 4-methyl -1-hexene and the like can be mentioned.
- the ⁇ -olefin other than ethylene is preferably an ⁇ -olefin having 3 to 10 carbon atoms, and more preferably an ⁇ -olefin having 3 to 8 carbon atoms.
- One or more ⁇ -olefins other than ethylene may be used.
- the polyethylene resin used in the B layer is preferably polyethylene polymerized using a metallocene catalyst (metallocene catalyst polyethylene).
- Metallocene-catalyzed polyethylene has a narrow molecular weight distribution compared to polyethylene produced by other production methods such as polyethylene polymerized using Ziegler-Natta catalyst, thus suppressing the transfer of low molecular weight components to the A layer It becomes a film with a smooth surface.
- the metallocene catalyst is not particularly limited. From the metallocene, that is, a transition metal component composed of a complex composed of two substituted or unsubstituted cyclopentadienyl rings and various transition metals, and an organoaluminum component, particularly an aluminoxane.
- a known metallocene catalyst can be used.
- the density of the polyethylene resin used for the B layer is preferably 0.94 g / cm 3 or less, more preferably 0.90 to 0.94 g / cm 3 , and 0.90 to 0.93 g / cm 3. 3 is more preferable, and 0.90 to 0.92 g / cm 3 is particularly preferable.
- a low density polyethylene having a density of 0.94 g / cm 3 or less the polyethylene film becomes a film excellent in vapor deposition workability in which wrinkles and bumps are hardly generated during vapor deposition.
- low density polyethylene a low-temperature heat sealability (hereinafter, referred to as a laminate film) obtained by laminating another film such as a polyethylene terephthalate film or a nylon film on the deposited film (hereinafter simply referred to as a laminate film). It is simply called low temperature heat sealability.
- low-density polyethylene even if polyethylene films are stacked, adhesion (blocking) does not occur between the films, and even if they occur, they can be easily peeled off (that is, excellent in blocking resistance). If the density of the polyethylene resin is less than 0.90 g / cm 3 , the vapor deposition processability may be lowered, or the blocking resistance may be lowered. On the other hand, if the density of the polyethylene resin exceeds 0.94 g / cm 3 , the low temperature heat sealability may be insufficient.
- the polyethylene resin used for the B layer preferably has a melt flow rate (MFR) of 1 to 10 g / 10 min, more preferably 2 to 8 g / 10 min, and 3.5 to 6 g / 10 min. Is more preferable. If the MFR is less than 1 g / 10 min, the extrudability of the resin during film production is poor, and the film-forming property may be poor. Moreover, when MFR exceeds 10 g / 10min, there exists a possibility that vapor deposition workability may fall or blocking resistance may fall. In the present specification, MFR is measured in accordance with JIS K 7210.
- the melting point of the polyethylene resin used for the B layer is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, further preferably 105 ° C. or higher, and particularly preferably 110 ° C. or higher. . If the melting point is less than 80 ° C., blocking tends to occur.
- the upper limit of the melting point of the polyethylene resin is not particularly limited, but is, for example, 150 ° C. or lower, preferably 130 ° C. or lower. When the melting point is 150 ° C. or less, the film is excellent in film formability. If there are two or more melting point peaks, the highest temperature is taken as the melting point.
- the Mohs hardness of the inorganic particles used for the B layer is 3 or less, and preferably 2 or less.
- the protrusions are formed on the surface of the B layer with inorganic particles.
- the hardness of the inorganic particles exceeds 3
- the protrusions are transferred to the vapor deposition layer when the vapor deposition film is wound on a roll. Transferred, the vapor deposition layer tends to be deficient, and the barrier properties are lowered.
- the minimum of the Mohs hardness of an inorganic particle is not specifically limited, For example, it is 0.1 or more, Preferably it is 0.5 or more.
- the Mohs hardness of an inorganic particle is below the Mohs hardness of the said vapor deposition material. Even when the protrusions formed on the B layer by the inorganic particles are strongly in contact with the vapor deposition layer provided on the A layer side, the Mohs hardness of the inorganic particles is 3 or less and the Mohs hardness of the inorganic particles is lower. The protrusion does not easily penetrate the vapor deposition layer, and is pushed in so as to slowly break through the vapor deposition layer.
- a slight crack may occur in the portion where the vapor deposition layer is extended, but even if a depression is formed in the vapor deposition layer due to the protrusion, the vapor deposition layer is likely to remain except at the location where the crack occurs. Further, when another film such as a polyethylene terephthalate film or a polyamide film is laminated on the vapor deposition layer, cracks of the slight vapor deposition layer are blocked, and thus high barrier properties are obtained.
- the protrusions pass through the vapor deposition layer instantaneously, and the vapor deposition layer is pushed to the periphery of the hole formed by the protrusions, and the barrier property is lowered. Even if another film is laminated on the layer, the barrier property is not recovered.
- examples of the inorganic particles include talc and calcium carbonate, and are not particularly limited as long as the inorganic particles have a Mohs hardness of 3 or less.
- the appearance and barrier properties of the film can be improved.
- the average particle size of the inorganic particles contained in the seal layer is 5 ⁇ m or more and 15 ⁇ m or less.
- the three-dimensional surface roughness SRa of the surface of the seal layer is 0.2 ⁇ m or less, and the seal layer The maximum peak height SRmax of the surface is 6 ⁇ m or less.
- the average particle diameter of the inorganic particles used in the B layer is 5 ⁇ m or more and 15 ⁇ m or less, not only the appearance and barrier properties of the film, but also the slipping property and blocking resistance can be improved.
- the average particle size of the inorganic particles is preferably 6 ⁇ m or more and 12 ⁇ m or less, and more preferably 7 ⁇ m or more and 10 ⁇ m or less.
- the three-dimensional surface roughness SRa on the surface of the B layer is 0.2 ⁇ m or less and the maximum peak height SRmax on the surface of the B layer is 6 ⁇ m or less, both the appearance of the film and the barrier property can be achieved.
- the three-dimensional surface roughness SRa is more preferably 0.05 to 0.17 ⁇ m, and further preferably 0.10 to 0.15 ⁇ m.
- the maximum peak height SRmax is more preferably 5 ⁇ m or less, further preferably 1 to 5 ⁇ m, particularly preferably 1 to 4.5 ⁇ m, Most preferably, it is 2 to 4.5 ⁇ m.
- the three-dimensional surface roughness SRa and the maximum peak height SRma can be adjusted by the average particle diameter and the addition amount of inorganic particles.
- the three-dimensional surface roughness SRa is a difference in height direction between the roughness curved surface and the center surface of the roughness curved surface, and is an average value of absolute values thereof.
- the maximum peak height SRmax is the maximum of the roughness curved surface. The difference between the value and the minimum value.
- the content of inorganic particles in the B layer is preferably 0.5 to 3.0% by mass. If it is less than 0.5% by mass, the barrier property may be lowered, the blocking resistance may be lowered, or the vapor deposition processability may be lowered. If the amount is more than 3.0% by mass, the appearance of the film may be deteriorated, or the filter supplied may be clogged when the polyester supplied to the extruder is melted and filtered.
- the content of inorganic particles is more preferably 1.0 to 2.0% by mass.
- the content of the organic lubricant in the B layer is preferably 0.2% by mass or less, and more preferably less than 0.1% by mass. When the content of the organic lubricant exceeds 0.2% by mass, the adhesion may be lowered when a laminate film is obtained.
- the organic lubricant include unsaturated fatty acid amides such as oleic acid amide, erucic acid amide, stearic acid amide, behenic acid amide, ethylene bisoleic acid amide, and ethylene biserucic acid amide, and polymer waxes.
- the content of the organic lubricant is more preferably 0.05% by mass or less, and further preferably 0% by mass (the B layer contains no organic lubricant).
- the B layer can be used as a sealing layer for packaging materials. That is, it can be set as a packaging material by sealing B layers. Therefore, the polyethylene film of the present invention preferably has a low temperature heat sealability.
- ⁇ Laminate layer (A layer)> Polyethylene resin
- the polyethylene resin that forms the laminate layer (A layer) is composed of the same monomers (polyethylene, ⁇ -olefin, etc.) as the polyethylene resin that forms the seal layer (B layer). It can be selected from a range equivalent to the range shown in (B layer).
- the polyethylene-based resin of layer A may also be a polyethylene obtained by polymerizing only ethylene, or an ethylene obtained by copolymerizing ethylene and an ⁇ -olefin other than ethylene.
- An ⁇ -olefin copolymer may be used, and an ethylene / ⁇ -olefin copolymer is preferable. Specific examples of the ⁇ -olefin are the same as in the case of the B layer.
- the density of the polyethylene resin used in the A layer can be selected from different ranges and B layer is preferably specifically a 0.91 ⁇ 0.95g / cm 3, less bleeding out of the low molecular weight component In view of the above, it is more preferably 0.92 to 0.95 g / cm 3 , further preferably 0.925 to 0.94 g / cm 3 , and 0.93 to 0.935 g / cm 3 . It is particularly preferred.
- the density is out of the above range, the metal gloss of the deposited layer (hereinafter simply referred to as gloss) may be lowered, or the film may be curled.
- the density of the polyethylene used for the A layer is preferably higher than the density of the polyethylene used for the B layer, and the density of the polyethylene used for the A layer is 0.01 g / cm higher than the density of the polyethylene used for the B layer. More preferably, it is 3 or more.
- the polyethylene resin used for the A layer has a melt flow rate (MFR) of preferably 1 to 10 g / 10 min, more preferably 2 to 8 g / 10 min, and 3.5 to 6 g / 10 min. Is more preferable. If the MFR is less than 1 g / 10 min, the extrudability of the resin during film production is poor, and the film-forming property may be poor. Moreover, when MFR exceeds 10 g / 10min, there exists a possibility that the blocking resistance of a film may fall.
- MFR melt flow rate
- the melting point of the polyethylene resin used for the A layer is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, and further preferably 120 ° C. or higher.
- the melting point is lower than 110 ° C.
- the surface of the A layer is softened when forming the vapor deposition layer, and the glossiness of the vapor deposition layer may be lowered.
- fusing point of a polyethylene-type resin is not specifically limited, For example, it is 160 degrees C or less, Preferably it is 140 degrees C or less.
- the melting point is 160 ° C. or lower, the film-forming property is excellent. If there are two or more melting point peaks, the highest temperature is taken as the melting point.
- the polyethylene resin used in the A layer is preferably polyethylene (metallocene catalyst-based polyethylene) polymerized using a metallocene catalyst.
- Metallocene-catalyzed polyethylene has a narrow molecular weight distribution compared to polyethylene produced by other production methods such as polyethylene polymerized using a Ziegler-Natta catalyst, so that the bleed-out of low molecular weight components can be reduced.
- the definition of a polyethylene-type resin is the same as B layer.
- the content of the inorganic particles in the A layer is preferably less than 0.1% by mass. Moreover, it is preferable that the content rate of the organic lubricant in A layer is less than 0.1 mass%. Specific examples of the organic lubricant and inorganic particles are the same as those described in the B layer. In the A layer, the organic lubricant and inorganic particles are more preferably 0.05% by mass or less, and 0% (the layer A contains neither organic lubricant nor inorganic particles). Is more preferable.
- polyethylene-based resin used for the A layer examples thereof include Umerit (registered trademark) 3540F and 4040FC manufactured by Ube Maruzen Polyethylene.
- the polyethylene-based film of the present invention may have an intermediate layer between the A layer and the B layer as necessary, and preferably has one or more intermediate layers.
- the resin used for the intermediate layer is not particularly limited, but is preferably a polyethylene resin.
- the polyethylene resin forming the intermediate layer is composed of the same monomers (polyethylene, ⁇ -olefin, etc.) as the polyethylene resin forming the seal layer (B layer), and the proportion of polyethylene is also the seal layer (B layer) Can be selected from a range equivalent to the range shown in.
- the polyethylene resin of the intermediate layer may also be polyethylene obtained by polymerizing only ethylene, or ethylene obtained by copolymerizing ethylene and an ⁇ -olefin other than ethylene.
- An ⁇ -olefin copolymer may be used, and an ethylene / ⁇ -olefin copolymer is preferable.
- Specific examples of the ⁇ -olefin are the same as in the case of the B layer.
- the manufacturing method of the polyethylene-based resin is the same as in the case of the B layer.
- the density of the polyethylene resin is preferably 0.94 g / cm 3 or less, more preferably 0.90 to 0.94 g / cm 3 , and preferably 0.90 to 0.93 g / cm 3. Further preferred is 0.90 to 0.92 g / cm 3 .
- the MFR, melting point, etc. of the polyethylene-based resin of the intermediate layer can be set in the same range as the B layer.
- the content of the organic lubricant and the inorganic particles in the intermediate layer is preferably less than 0.1% by mass. Specific examples of the organic lubricant and inorganic particles are the same as those described in the B layer.
- the content of the organic lubricant and the inorganic particles is more preferably 0.05% by mass or less, and 0% by mass (the organic layer and the inorganic particles are not contained in the intermediate layer). More preferably.
- the polyethylene film of the present invention can be produced, for example, by forming into a film by a melt extrusion molding method such as a T-die method or an inflation method, a cast molding method, a press molding method, etc. In order to obtain a widened film, it is preferable to produce the film using a T-die method.
- the coextrusion method is advantageous from the viewpoint of productivity, but the laminating method is not particularly limited as long as the performance can be maintained.
- the recovered raw material may be used to increase the smoothness of the A layer or to reduce the production cost.
- the polyethylene-based film of the present invention has an antioxidant, a heat stabilizer, an ultraviolet inhibitor, an ultraviolet absorber, a nucleus within a range in which the adhesion strength between the deposited layer and the A layer does not deteriorate and the low temperature heat sealability does not deteriorate.
- An agent or the like may be added.
- the content of the inorganic particles in the A layer is set not to be 0.1% by mass or more.
- a known surface treatment may be performed before vapor deposition on the surface of the A layer of the film, for example, corona discharge treatment, flame treatment, plasma treatment, ozone treatment, etc.
- the surface treatment may be performed on the surface of the A layer.
- it is preferable to perform the treatment so that the wetting tension measured by JIS K 6768 after discharge is 37 mN / m or more, and more preferably 39 mN / m or more.
- ⁇ Deposition layer> When a vapor deposition material is vapor-deposited on the surface of the A layer of the polyethylene film of the present invention, the surface of the A layer containing little or no inorganic particles is flat, so that a vapor deposition film having a dense vapor deposition layer is obtained. On the other hand, although there are protrusions due to inorganic particles on the surface of the B layer, they are not sharp protrusions but gentle protrusions.
- the protrusions are transferred to the vapor deposition layer when the vapor deposition film is wound on a roll, the hardness of the inorganic particles is lower than the hardness of the vapor deposition material, so that the vapor deposition layer is less likely to be damaged and the barrier property is maintained. can do.
- the protrusions are provided on the surface of the B layer, the blocking between the B layer and the A layer is difficult to occur, that is, the blocking resistance is improved.
- the vapor deposition process can be performed smoothly, and wrinkles and bumps are hardly generated in the obtained vapor deposition film.
- the method for depositing the deposition material on the polyethylene film of the present invention is not particularly limited, and may be performed using a known means. For example, electrothermal heating, sputtering, It can be performed by ion plating, ion beam or the like.
- the thickness of the vapor-deposited layer of the vapor-deposited film thus obtained is not particularly limited, but is generally several hundred angstroms or about 2 to 4 in terms of optical density (OD value) from the viewpoint of adhesion, durability and economy. is there.
- the vapor deposition material vapor-deposited on the surface of A layer is a metal.
- the metal is not particularly limited, and examples thereof include aluminum, gold, silver, copper, zinc, nickel, chromium, titanium, selenium, germanium, tin, and the like, such as workability, gloss, safety, and cost. Aluminum is preferred from the viewpoint.
- Mohs hardness The Mohs hardness of the mineral before grinding as inorganic particles was determined from the Mohs hardness table. Specifically, the minerals before grinding were rubbed in order from a standard material having a low hardness, and whether or not the measurement object was damaged was visually confirmed to determine the hardness of the measurement object.
- the Mohs hardness was also measured by a method different from the above determination method.
- a Raman spectrum was measured by the measurement method described later on the residue obtained by ashing the film or the film in a hot solvent and then filtering the filtered residue.
- the Mohs hardness of the corresponding mineral was calculated
- the Mohs hardness determined by Raman spectroscopy was the same as that of the mineral before pulverization.
- ⁇ Average particle size> The average particle size of the inorganic particles was measured using a laser diffraction particle size distribution analyzer (SALD-3100, manufactured by Shimadzu Corporation) in a wet manner on a volume distribution basis.
- SALD-3100 laser diffraction particle size distribution analyzer
- ⁇ Surface roughness> In accordance with JIS B 0601, using a three-dimensional surface roughness meter (Surforder ET4000A manufactured by Kosaka Laboratory Ltd.), 100 measurements were performed at a cutoff of 0.08 mm, 1 ⁇ m length, 2 ⁇ m pitch, and the surface of layer B The three-dimensional surface roughness SRa and the maximum height SRmax were determined.
- ⁇ Blocking resistance> A set of 12 cm ⁇ 10 cm polyethylene film overlaid on the surface of the B layer and the surface of the A layer and 10 cm ⁇ 10 cm of paper on top of each other. I sandwiched it with a glass plate. A 50 kg load was applied on the glass plate and left at 40 ° C. for 48 hours. After returning to normal temperature, the laminate was cut to a width of 25 mm. Using an Autograph (registered trademark) manufactured by Shimadzu Corporation, the peel strength (unit: N / 25 mm) when the cut laminate was peeled 180 ° at a tensile speed of 200 mm / min was measured, and the following criteria were used. evaluated.
- N1100 manufactured by Toyobo Co., Ltd.
- the film was aged at 40 ° C. for 48 hours.
- the layer subjected to the above aging was peeled 180 ° at a tensile rate of 200 mm / min.
- the interlaminar peel strength (unit: N / 15 mm) was measured.
- ⁇ Vapor deposition processability> A 500 m roll was prepared using the vapor deposition film. The state of the vapor deposition film of the obtained roll was observed and evaluated as follows. ⁇ : Wrinkles and bumps were hardly generated. ⁇ : Wrinkles and bumps were generated a little. ⁇ : Wrinkles and bumps were generated a lot. ⁇ : Wrinkles and bumps were generated a lot.
- ⁇ Oxygen permeability of the deposited film> A 500 m roll was prepared using the vapor deposition film. Next, roll hardness was measured at a pitch of 2 cm in the width direction of a 500 m roll using a Prosec Co. Parotester. Subsequently, a sample was taken out from a place where the roll hardness was 600 to 650. Finally, according to the method of JIS K 716-2A, the oxygen permeability of the above sample was measured at a temperature of 23 ° C. and a humidity of 65% using an oxygen permeability measuring device (OX-TRAN 2/21 manufactured by MOCON). Measurements were made. When measuring the oxygen permeability, the layer B, which is a non-deposition surface, was mounted so as to be on the humidity control side.
- OX-TRAN 2/21 oxygen permeability measuring device
- the layer B of the last aged laminate film was heat sealed at a seal temperature of 150 ° C., a seal pressure of 0.2 MPa, and a seal time of 1 second, and then the laminate film was cut to a width of 15 mm. Peel strength between the vapor-deposited layer and the A layer when the laminate film was peeled 180 ° at a tensile rate of 200 mm / min with a tensile tester (Autograph (registered trademark) AGS-J 100NJ, manufactured by Shimadzu Corporation) The unit was N / 15 mm).
- Example 1 [B layer composition] Sumicacene (registered trademark) E FV402 (metallocene catalyst system LLDPE, density: 0.913 g / cm 3 , MFR: 3.8 g / 10 min, melting point: 116 ° C.) manufactured by Sumitomo Chemical Co., Ltd. Talc with Mohs hardness of 1 and average particle size of 8 ⁇ m Were mixed to prepare a master batch containing 15% by mass of talc.
- E FV402 metalocene catalyst system LLDPE, density: 0.913 g / cm 3 , MFR: 3.8 g / 10 min, melting point: 116 ° C.
- Umeruten (registered trademark) 2040FC metalocene catalyst system LLDPE, density: 0.918 g / cm 3 , MFR: 4.0 g / 10 min, melting point: 116 ° C.
- the composition for B layer was produced using the composition which mixed 10 mass%. While 100% by mass of the B layer composition contains 1.5% by mass of talc, no organic lubricant was added to the B layer composition.
- composition for layer A A composition for layer A is prepared using only Umerit (registered trademark) 3540FC (metallocene catalyst system LLDPE, density: 0.931 g / cm 3 , MFR: 4.0 g / 10 min, melting point: 123 ° C.) manufactured by Ube Maruzen Polyethylene. did. In addition, the inorganic particle and the organic lubricant were not added to the composition for A layer.
- Umerit registered trademark
- 3540FC metalocene catalyst system LLDPE, density: 0.931 g / cm 3 , MFR: 4.0 g / 10 min, melting point: 123 ° C.
- An intermediate layer composition is prepared using only Umerit (registered trademark) 2040FC (metallocene catalyst system LLDPE, density: 0.931 g / cm 3 , MFR: 4.0 g / 10 min, melting point: 123 ° C.) manufactured by Ube Maruzen Polyethylene. did. In addition, the inorganic particles and the organic lubricant were not added to the intermediate layer composition.
- Umerit registered trademark
- 2040FC metalocene catalyst system LLDPE, density: 0.931 g / cm 3 , MFR: 4.0 g / 10 min, melting point: 123 ° C.
- composition for A layer, the composition for intermediate layer, and the composition for B layer are used in the order of the composition for A layer, the composition for intermediate layer, and the composition for B layer using an extruder having a T die.
- the melt extrusion was performed at 240 ° C. so that the thickness ratio of the A layer, the intermediate layer, and the B layer was 1: 1: 2.
- the surface of the A layer was subjected to corona discharge treatment.
- the film was wound on a roll at a speed of 150 m / min to obtain a laminated film having a thickness of 40 ⁇ m and a wet tension of 45 mN / m on the treated surface.
- the roll of the obtained laminated film is set in a vacuum vapor deposition machine, aluminum is vapor-deposited on the corona-treated surface of the laminated film at a degree of vacuum of 10 ⁇ 4 torr or less, and the film is wound on a roll and provided with an aluminum vapor deposition layer.
- a deposited film was obtained.
- the thickness of the vapor deposition layer was adjusted so that the aluminum vapor deposition layer had an optical density (OD value) of 3.
- the Mohs hardness of aluminum is 2.75.
- the evaluation results of this film are shown in Table 1.
- the three-dimensional surface roughness SRa was 0.12 ⁇ m, and the maximum height SRmax was 4.3 ⁇ m.
- the vapor deposition film of Example 1 increased the number of holes in the vapor deposition layer due to the transfer of inorganic particles (surface layer and winding hardness with a high-intensity LED light) even at locations with high winding hardness (locations measured with a paro tester of 600 to 650).
- the defect condition was examined in comparison with a low point, and the barrier property was excellent.
- the vapor deposition film of Example 1 showed the value equivalent to the oxygen barrier property of the film which vapor-deposited aluminum on the biaxially stretched nylon film.
- the laminated film of Example 1 was excellent in blocking resistance, and the vapor deposition film of Example 1 was excellent in vapor deposition processability and glossiness. Moreover, the laminate film produced using the vapor deposition film of Example 1 was excellent in adhesiveness and low-temperature heat sealability.
- Example 2 A laminated film and a deposited film were obtained in the same manner as in Example 1 except that the amount of talc added in the composition for layer B was 0.5% by mass. Although it was slightly inferior to Example 1 in blocking resistance and vapor deposition workability, it was sufficiently high performance. Moreover, it was excellent in barrier property, glossiness, adhesiveness, and low temperature heat sealability.
- Example 3 A laminated film in the same manner as in Example 1 except that the inorganic particles contained in the composition for the B layer were changed from talc to CUBE-80KAS manufactured by Maruo Calcium Co., Ltd. (calcium carbonate particles having a Mohs hardness of 3 and an average particle size of 8 ⁇ m). A vapor deposited film was obtained. Also in Example 3, it was excellent in barrier property, blocking resistance, vapor deposition workability, glossiness, adhesion, and low-temperature heat sealability.
- Example 4 From Ube Maruzen Polyethylene Corporation Umerit (registered trademark) 2040FC to Ube Maruzen Polyethylene Corporation Umerit (registered trademark) 0540F (density: 0.904 g / cm 3 , MFR: 4.0 g / 10 min) , Melting point: 111 ° C.) A laminated film and a vapor-deposited film were obtained in the same manner as in Example 1, except that the melting point was 111 ° C. Also in Example 4, it was excellent in barrier property, blocking resistance, vapor deposition processability, glossiness, adhesion, and low-temperature heat sealability.
- Example 5 From Ube Maruzen Polyethylene Corporation Umerit (registered trademark) 3540FC to Ube Maruzen Polyethylene Corporation Umerit (registered trademark) 4040FC (density: 0.938 g / cm 3 , MFR: 3.5 g / 10 min) , Melting point: 126 ° C.)
- a laminated film and a vapor-deposited film were obtained in the same manner as in Example 1, except that the melting point was 126 ° C. Although the glossiness was inferior to that of Example 1, the performance was sufficiently high. Moreover, it was excellent in barrier property, blocking resistance, vapor deposition workability, adhesion, and low-temperature heat sealability.
- Example 6 Composition for layer B using a composition obtained by mixing 89.9% by mass of Umeru (registered trademark) 2040FC manufactured by Ube Maruzen Polyethylene Co., Ltd., 0.1% by mass of erucamide as an organic lubricant, and 10% by mass of the masterbatch.
- a laminated film and a deposited film were obtained in the same manner as in Example 1 except that the product was prepared. Also in Example 6, it was excellent in barrier property, blocking resistance, vapor deposition workability, glossiness, and low-temperature heat sealability.
- Example 7 Resin contained in the composition for the B layer is made from Umerit (registered trademark) 2040FC manufactured by Ube Maruzen Polyethylene Co., Ltd. to Exelen (registered trademark) FX307 manufactured by Sumitomo Chemical Co., Ltd. (density: 0.89 g / cm 3 , MFR: 3.2 g / 10 min, A laminated film and a deposited film were obtained in the same manner as in Example 1 except that the melting point was 83 ° C. Although the glossiness was inferior to that of Example 1, the performance was sufficiently high. Moreover, it was excellent in barrier property, adhesiveness, and low-temperature heat-sealing property.
- Example 8 A laminated film was obtained in the same manner as Example 1. High adhesion aluminum vapor deposition was performed on the laminated film obtained in Example 1 to obtain a vapor deposition film. Specifically, without performing corona treatment on the surface of layer A, after introducing argon into a low-temperature plasma treatment apparatus in a vacuum vapor deposition apparatus and performing plasma discharge treatment, a laminated film with a vacuum degree of 10 ⁇ 4 torr or less A vapor deposition film provided with an aluminum vapor deposition layer was obtained in the same manner as in Example 1 except that aluminum deposition was performed on the plasma-treated surface. Also in Example 8, the barrier property, blocking resistance, vapor deposition processability, glossiness, adhesion, and low-temperature heat sealability were excellent, and the barrier property and adhesion were superior to Example 1.
- Example 1 A laminated film and a vapor-deposited film were obtained in the same manner as in Example 1 except that the inorganic particles contained in the composition for the B layer were changed from talc to zeolite having a Mohs hardness of 4 and an average particle size of 5 ⁇ m. Although the three-dimensional surface roughness SRa and the maximum height SRmax were substantially the same as those in Example 1, a significant decrease in the barrier properties of the deposited film having a roll hardness of 600 or more and 650 or less was observed.
- Example 2 A laminated film and a deposited film were obtained in the same manner as in Example 1 except that the inorganic particles contained in the composition for the B layer were changed from talc to amorphous silica having a Mohs hardness of 7 and an average particle size of 5 ⁇ m. Although the three-dimensional surface roughness SRa and the maximum height SRmax were substantially the same as those in Example 1, a significant decrease in the barrier properties of the deposited film having a roll hardness of 600 or more and 650 or less was observed.
- Example 3 A laminated film and a vapor-deposited film were obtained in the same manner as in Example 1 except that the average particle diameter of talc contained in the composition for layer B was 20 ⁇ m.
- the oxygen barrier property of the vapor deposition film having a roll hardness of 600 or more and 650 or less was greatly reduced, and the glossiness of the vapor deposition layer was also low.
- Table 1 shows configurations and various physical properties of Examples and Comparative Examples.
- the polyethylene film for the vapor deposition substrate of the present invention has excellent barrier properties over the entire length and width even when it is vapor-deposited at high speed using a large vapor deposition machine with a winding length exceeding 10,000 m. It is also highly useful and industrially valuable. Therefore, it can be used as an industrial material in addition to packaging materials such as foods, pharmaceuticals, and miscellaneous goods.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
(i)上記シール層に含有されている上記無機粒子の平均粒径が5μm以上15μm以下である
(ii)上記シール層表面の三次元表面粗さSRaが0.2μm以下であり、上記シール層表面の最大山高さSRmaxが6μm以下である
(ポリエチレン系樹脂)
ポリエチレン系樹脂とは、ポリエチレンを主体とした樹脂であり、具体的には、ポリエチレン系樹脂100質量%中において、エチレン由来成分が50質量%超100質量%以下である樹脂のことである。エチレン由来成分が60質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましく、80質量%以上100質量%以下であることがさらに好ましい。シール層(B層)のポリエチレン系樹脂は、好ましくは低密度ポリエチレン(LDPE)であり、より好ましくは直鎖低密度ポリエチレン(LLDPE)である。
B層に用いられる無機粒子のモース硬度は3以下であり、2以下であることが好ましい。フィルムに滑り性を付与するために無機粒子でB層表面に突起が形成されているが、無機粒子の硬度が3を超えると蒸着フィルムがロールに巻き取られたときに上記突起が蒸着層へ転写され、蒸着層に欠損が生じやすくなり、ひいてはバリア性が低下してしまう。無機粒子のモース硬度の下限は特に限定されないが、例えば0.1以上であり、好ましくは0.5以上である。また、無機粒子のモース硬度が上記蒸着材料のモース硬度以下であることが好ましい。
無機粒子のモース硬度が3以下であり、無機粒子のモース硬度が低ければ低いほど、上記無機粒子によりB層に形成された突起が、A層側に設けられた蒸着層に強く接触した場合でも、突起は蒸着層を簡単には貫通せず、蒸着層を押し延ばしながらゆっくりと突き破るように押し込まれる。そのため、蒸着層が押し延ばされた部分にわずかに割れが生じることはあるが、上記突起により蒸着層に窪みができたとしても、上記割れが生じた箇所以外では蒸着層は残存し易い。また、蒸着層上に、ポリエチレンテレフタレートフィルムやポリアミドフィルムなどの別のフィルムをラミネートすると、わずかに存在する蒸着層の割れが塞がれるため、高いバリア性を有する。
一方、無機粒子のモース硬度が3を超えると上記突起は瞬間的に蒸着層を貫通して、突起によって出来た穴の周縁に蒸着層が押しやられて、バリア性が低下してしまい、仮に蒸着層上に上記別のフィルムをラミネートしてもバリア性は回復しない。
(i)上記シール層に含有されている上記無機粒子の平均粒径が5μm以上15μm以下である
(ii)上記シール層表面の三次元表面粗さSRaが0.2μm以下であり、上記シール層表面の最大山高さSRmaxが6μm以下である
(ポリエチレン系樹脂)
ラミネート層(A層)を形成するポリエチレン系樹脂は、シール層(B層)を形成するポリエチレン系樹脂と同様の単量体(ポリエチレン、α-オレフィン等)から構成され、ポリエチレンの割合もシール層(B層)で示した範囲と同等の範囲から選択できる。
本発明のポリエチレン系フィルムは、A層とB層との間に必要により中間層を有してもよく、中間層を1層以上有していることが好ましい。中間層に用いられる樹脂は、特に限定されないが、ポリエチレン系樹脂であることが好ましい。
中間層を形成するポリエチレン系樹脂は、シール層(B層)を形成するポリエチレン系樹脂と同様の単量体(ポリエチレン、α-オレフィン等)から構成され、ポリエチレンの割合もシール層(B層)で示した範囲と同等の範囲から選択できる。
本発明のポリエチレン系フィルムは、例えば、Tダイ法、インフレーション法等の溶融押出成形法、キャスト成形法、プレス成形法等によってフィルム状に製膜することにより作製することができるが、長尺化及び広幅化したフィルムとするためにはTダイ法を用いて作製することが好ましい。
本発明のポリエチレン系フィルムのA層表面に蒸着材料を蒸着すると、無機粒子がほとんど又は全く含まれていないA層表面は平坦であるため、緻密な蒸着層を備えた蒸着フィルムとなる。一方、B層表面には無機粒子に起因する突起があるものの、急峻な突起ではなく、なだらかな突起である。そのため、蒸着フィルムがロールに巻き取られたときに上記突起が蒸着層へ転写されたとしても、無機粒子の硬度が蒸着材料の硬度より低いので、蒸着層に欠損が生じにくく、バリア性を維持することができる。また、B層表面に突起が設けられていることによって、B層とA層とのブロッキングが生じにくい、すなわち、耐ブロッキング性が向上するため、蒸着基材用フィルムからなるフィルムロールからフィルムを繰り出して、蒸着加工がスムーズに行うことができ、得られた蒸着フィルムにシワやコブが生じにくい。
無機粒子として粉砕前の鉱物のモース硬度をモース硬度表から求めた。具体的には、粉砕前の鉱物に対し硬度の小さい標準物質から順番にこすり合わせ、測定物に傷がつくかつかないかを目視で確認し、測定物の硬度を判定した。
<ラマン散乱測定の測定条件>
照射光波長:532nm
アパーチャー:50μmΦ
対物レンズの倍率:50倍
対物レンズの開口数:0.6
露光時間:30秒
露光回数(積算回数):2回
無機粒子の平均粒径をレーザー回折式粒度径分布測定装置(島津製作所社製SALD-3100)を用いて、湿式で、体積分布基準で測定した。
ポリエチレン樹脂の密度は、JIS K 6922-1に準拠し、メルトインデクサーの押出物で測定した。
JIS B 0601に準拠し、三次元表面粗さ計(小坂研究所社製 Surfcorder ET4000A)を使用して、カットオフ0.08mm、1μm長さ、2μmピッチで100本の測定を行い、B層表面の三次元表面粗さSRa、最大高さSRmaxを求めた。
12cm×10cmのサイズのポリエチレン系フィルムをB層の表面とA層の表面とで重ねた上に10cm×10cmの紙を乗せたものを1セットとし、5セット重ねた積層体を厚さ5mmのガラス板で挟みこんだ。このガラス板の上に50kgの荷重をかけ40℃で48時間放置した。常温に戻したあと上記積層体を25mm幅にカットした。島津製作所社製オートグラフ(登録商標)を用いて、上記カットした積層体を引張速度200mm/分で180°剥離した際の剥離強度(単位はN/25mm)を測定して、以下の基準により評価した。
◎:0.2N/25mm以下
○:0.2N/25mmより大きく0.5N/25mm以下
△:0.5N/25mmより大きく1N/25mm以下
×:1N/25mmより大きい
光沢計(日本電色社工業社製VG2000型)を用いて、JIS K5600-4-7に準拠して蒸着フィルムにおける蒸着層の金属光沢度を測定して、以下の基準により評価した。
◎:1000%以上
○:700%以上1000%未満
△:500%以上700%未満
×:500%未満
厚さ15μmのナイロンフィルム(東洋紡社製「N1100」)に東洋モートン社製の接着剤であるTM569/CAT10Lを固形分で3g/m2の厚みで塗布した。次に上記接着剤の上に蒸着フィルムの蒸着面を貼り合わせてラミネートフィルムとした後、40℃で48時間エージングした。引張試験機(島津製作所社製オートグラフ(登録商標)AGS-J 100NJ)で、上記エージングを行ったものを引張速度200mm/分の条件で、180°剥離した際の蒸着層とA層との間の剥離強度(単位はN/15mm)を測定した。
蒸着フィルムを用いて、500m巻のロールを作製した。得られたロールの蒸着フィルムの状態を観察し、下記のように評価した。
◎:シワ及びコブがほとんど発生していなかった
○:シワやコブが少し発生していた
△:シワやコブが多く発生していた
×:シワやコブが非常に多く発生していた
蒸着フィルムを用いて、500m巻のロールを作製した。次にプロセク社製パロテスターを用いて、500m巻のロールの幅方向に2cmピッチでロール硬度を測定した。続いてロール硬度が600~650となる箇所からサンプルを取り出した。最後にJIS K 7126-2A法に準じて、酸素透過度測定装置(MOCON社製OX-TRAN2/21)を用いて、温度23℃、湿度65%の条件にて、上記サンプルの酸素透過度の測定を行った。酸素透過度の測定の際、非蒸着面であるB層を調湿側になるように装着した。
蒸着フィルムを用いて、500m巻のロールを作製した。次に、プロセク社製パロテスターを用いて、500m巻のロールの幅方向に2cmピッチでロール硬度を測定した。続いて、ロール硬度が600~650となる箇所からサンプルを取り出した。最後に、JIS K 7129B法に準じて、水蒸気透過度測定装置(MOCON社製PERMATRAN-W3/33)を用いて、温度37.8℃、湿度90%の条件にて蒸着フィルムの水蒸気透過度測定を行った。水蒸気透過度の測定の際、非蒸着面であるB層を高湿度側になるように装着した。
蒸着フィルムを用いて、500m巻のロールを作製し、その後、30℃の環境下で1ヶ月放置した。次に、厚さ15μmのナイロンフィルム(東洋紡社製「N1100」)に東洋モートン社製の接着剤であるTM569/CAT10Lを固形分で3g/m2の厚みで塗布した。続いて、上記接着剤の上に、1ヶ月放置した上記蒸着フィルムの蒸着面を貼り合わせてラミネートフィルムとした後、40℃で48時間エージングした。最後にエージングしたラミネートフィルムのB層をシール温度150℃、シール圧力0.2MPa、シール時間1秒でヒートシールした後、ラミネートフィルムを15mm幅でカットした。引張試験機(島津製作所社製オートグラフ(登録商標)AGS-J 100NJ)で、カットしたラミネートフィルムを引張速度200mm/分で180°剥離した際の蒸着層とA層との間の剥離強度(単位はN/15mm)を測定した。
[B層用組成物]
住友化学社製スミカセン(登録商標)E FV402(メタロセン触媒系LLDPE、密度:0.913g/cm3、MFR:3.8g/10min、融点:116℃)にモース硬度1、平均粒径8μmのタルクを混合して、タルクが15質量%含有されたマスターバッチを作製した。次に、宇部丸善ポリエチレン社製ユメリット(登録商標)2040FC(メタロセン触媒系LLDPE、密度:0.918g/cm3、MFR:4.0g/10min、融点:116℃)90質量%と、上記マスターバッチ10質量%とを混合した組成物を用いてB層用組成物を作製した。B層用組成物100質量%中にタルクが1.5質量%含有されているが、B層用組成物には有機滑剤は添加されていなかった。
[A層用組成物]
宇部丸善ポリエチレン社製ユメリット(登録商標)3540FC(メタロセン触媒系LLDPE、密度:0.931g/cm3、MFR:4.0g/10min、融点:123℃)のみを用いてA層用組成物を作製した。なお、A層用組成物には無機粒子及び有機滑剤は添加されていなかった。
[中間層用組成物]
宇部丸善ポリエチレン社製ユメリット(登録商標)2040FC(メタロセン触媒系LLDPE、密度:0.931g/cm3、MFR:4.0g/10min、融点:123℃)のみを用いて中間層用組成物を作製した。なお、中間層用組成物には無機粒子及び有機滑剤は添加されていなかった。
さらに、実施例1の積層フィルムは、耐ブロッキング性に優れており、実施例1の蒸着フィルムは、蒸着加工性及び光沢性に優れていた。また、実施例1の蒸着フィルムを用いて作製されたラミネートフィルムは、密着性及び低温ヒートシール性に優れていた。
B層用組成物におけるタルクの添加量が0.5質量%である以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。実施例1よりやや耐ブロッキング性や蒸着加工性は劣るが十分に高い性能であった。また、バリア性、光沢性、密着性、及び低温ヒートシール性に優れていた。
B層用組成物に含有する無機粒子をタルクから丸尾カルシウム社製CUBE-80KAS(モース硬度3、平均粒径8μmである炭酸カルシウム粒子)に代えた以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。実施例3においても、バリア性、耐ブロッキング性、蒸着加工性、光沢性、密着性、及び低温ヒートシール性に優れていた。
B層用組成物に含有する樹脂を宇部丸善ポリエチレン社製ユメリット(登録商標)2040FCから宇部丸善ポリエチレン社製ユメリット(登録商標)0540F(密度:0.904g/cm3、MFR:4.0g/10min、融点:111℃)に代えた以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。実施例4においても、バリア性、耐ブロッキング性、蒸着加工性、光沢性、密着性、及び低温ヒートシール性に優れていた。
A層用組成物に含有する樹脂を宇部丸善ポリエチレン社製ユメリット(登録商標)3540FCから宇部丸善ポリエチレン社製ユメリット(登録商標)4040FC(密度:0.938g/cm3、MFR:3.5g/10min、融点:126℃)に代えた以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。実施例1より光沢性は劣るが十分に高い性能であった。また、バリア性、耐ブロッキング性、蒸着加工性、密着性、及び低温ヒートシール性に優れていた。
宇部丸善ポリエチレン社製ユメリット(登録商標)2040FC 89.9質量%と、有機滑剤としてエルカ酸アミド0.1質量%と、上記マスターバッチ10質量%とを混合した組成物を用いてB層用組成物を作製した以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。実施例6においても、バリア性、耐ブロッキング性、蒸着加工性、光沢性、及び低温ヒートシール性に優れていた。
B層用組成物に含有する樹脂を宇部丸善ポリエチレン社製ユメリット(登録商標)2040FCから住友化学社製エクセレン(登録商標)FX307(密度:0.89g/cm3、MFR:3.2g/10min、融点:83℃)に代えた以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。実施例1より光沢性は劣るが十分に高い性能であった。また、バリア性、密着性、及び低温ヒートシール性に優れていた。
実施例1と同様にして積層フィルムを得た。実施例1で得られた積層フィルムに高密着アルミニウム蒸着を行い蒸着フィルムを得た。具体的には、A層表面にコロナ処理を行わずに、真空蒸着機内の低温プラズマ処理装置内にアルゴンを導入し、プラズマ放電処理を行った後に、10-4torr以下の真空度で積層フィルムのプラズマ処理面にアルミニウム蒸着を施した以外は、実施例1と同様にして、アルミニウム蒸着層を備えた蒸着フィルムを得た。実施例8においても、バリア性、耐ブロッキング性、蒸着加工性、光沢性、密着性、及び低温ヒートシール性に優れており、実施例1よりもバリア性及び密着性に優れていた。
B層用組成物に含有する無機粒子をタルクからモース硬度4、平均粒径5μmのゼオライトに代えた以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。三次元表面粗さSRa、最大高さSRmaxは実施例1とほぼ同等であったが、ロール硬度が600以上650以下である蒸着フィルムのバリア性の大幅な低下が認められた。
B層用組成物に含有する無機粒子をタルクからモース硬度7、平均粒径5μmの非結晶性シリカに代えた以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。三次元表面粗さSRa、最大高さSRmaxは実施例1とほぼ同等であったが、ロール硬度が600以上650以下である蒸着フィルムのバリア性の大幅な低下が認められた。
B層用組成物に含有するタルクの平均粒径を20μmにした以外は実施例1と同様にして積層フィルム、蒸着フィルムを得た。ロール硬度が600以上650以下である蒸着フィルムの酸素バリア性が大幅に低下しており、蒸着層の光沢性も低いものであった。
Claims (10)
- 蒸着層の基材として用いるためのポリエチレン系フィルムであって、
上記ポリエチレン系フィルムは、蒸着層側の表面となるラミネート層と、他方の表面となるシール層とを少なくとも有し、
上記シール層は、無機粒子を含んでおり、上記シール層に含有されている上記無機粒子のモース硬度が3以下であり、かつ、以下の(i)及び(ii)の少なくとも一方を満たすことを特徴とする蒸着基材用ポリエチレン系フィルム。
(i)上記シール層に含有されている上記無機粒子の平均粒径が5μm以上15μm以下である
(ii)上記シール層表面の三次元表面粗さSRaが0.2μm以下であり、上記シール層表面の最大山高さSRmaxが6μm以下である - 蒸着層の基材として用いるためのポリエチレン系フィルムであって、
上記ポリエチレン系フィルムは、蒸着層側の表面となるラミネート層と、他方の表面となるシール層とを少なくとも有し、
上記シール層は、無機粒子を含んでおり、上記シール層に含有されている上記無機粒子のモース硬度が3以下であり、かつ、上記シール層に含有されている上記無機粒子の平均粒径が5μm以上15μm以下である蒸着基材用ポリエチレン系フィルム。 - 蒸着層の基材として用いるためのポリエチレン系フィルムであって、
上記ポリエチレン系フィルムは、蒸着層側の表面となるラミネート層と、他方の表面となるシール層とを少なくとも有し、
上記シール層は、無機粒子を含んでおり、上記シール層に含有されている上記無機粒子のモース硬度が3以下であり、かつ、上記シール層表面の三次元表面粗さSRaが0.2μm以下であり、上記シール層表面の最大山高さSRmaxが6μm以下である蒸着基材用ポリエチレン系フィルム。 - 上記ラミネート層に用いられるポリエチレン系樹脂の密度は0.91~0.95g/cm3であり、上記シール層に用いられるポリエチレン系樹脂の密度は0.90~0.94g/cm3である請求項1~3のいずれか1項に記載の蒸着基材用ポリエチレン系フィルム。
- 上記シール層中の無機粒子の含有量は0.5~3.0質量%である請求項1~4のいずれか1項に記載の蒸着基材用ポリエチレン系フィルム。
- 上記シール層表面の三次元表面粗さSRaが0.2μm以下であり、上記シール層表面の最大山高さSRmaxが5μm以下である請求項1~5のいずれか1項に記載の蒸着基材用ポリエチレン系フィルム。
- 上記ラミネート層に用いられるポリエチレン系樹脂の密度が上記シール層に用いられるポリエチレン系樹脂の密度よりも高い請求項1~6のいずれか1項に記載の蒸着基材用ポリエチレン系フィルム。
- 上記ラミネート層における無機粒子の含有率は0.1質量%未満である請求項1~7のいずれか1項に記載の蒸着基材用ポリエチレン系フィルム。
- 上記ラミネート層及び上記シール層の間に介在する中間層を有する請求項1~8のいずれか1項に記載の蒸着基材用ポリエチレン系フィルム。
- 請求項1~9のいずれか1項に記載の蒸着基材用ポリエチレン系フィルムのラミネート層表面に蒸着層が蒸着された蒸着フィルム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019504479A JP7044105B2 (ja) | 2017-03-07 | 2018-02-26 | 蒸着基材用ポリエチレン系フィルム及びそれを用いた蒸着フィルム |
KR1020197026266A KR102412325B1 (ko) | 2017-03-07 | 2018-02-26 | 증착 기재용 폴리에틸렌계 필름 및 그것을 사용한 증착 필름 |
CN201880015106.5A CN110352130B (zh) | 2017-03-07 | 2018-02-26 | 蒸镀基材用聚乙烯系膜及使用其的蒸镀膜 |
PH12019502029A PH12019502029A1 (en) | 2017-03-07 | 2019-09-06 | Polyethylene-based film for vapor deposition substrates and vapor deposition film using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017043096 | 2017-03-07 | ||
JP2017-043096 | 2017-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163883A1 true WO2018163883A1 (ja) | 2018-09-13 |
Family
ID=63448584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006946 WO2018163883A1 (ja) | 2017-03-07 | 2018-02-26 | 蒸着基材用ポリエチレン系フィルム及びそれを用いた蒸着フィルム |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP7044105B2 (ja) |
KR (1) | KR102412325B1 (ja) |
CN (1) | CN110352130B (ja) |
PH (1) | PH12019502029A1 (ja) |
TW (1) | TWI804486B (ja) |
WO (1) | WO2018163883A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020003946A1 (ja) * | 2018-06-25 | 2021-08-26 | 尾池工業株式会社 | 蒸着フィルムおよび蒸着フィルムの製造方法 |
JP2021160271A (ja) * | 2020-03-31 | 2021-10-11 | 大日本印刷株式会社 | 蒸着基材、積層体および包装容器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202106515A (zh) * | 2019-04-26 | 2021-02-16 | 日商東洋紡股份有限公司 | 聚乙烯系樹脂多層膜、以及使用該聚乙烯系樹脂多層膜之蒸鍍膜、積層體、包裝體 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06270357A (ja) * | 1993-03-19 | 1994-09-27 | Kohjin Co Ltd | 蒸着用ポリエチレン系多層フィルム |
JPH07166328A (ja) * | 1993-12-09 | 1995-06-27 | Dainippon Printing Co Ltd | 蒸着フィルムおよびその包装体 |
JPH09193324A (ja) * | 1996-01-24 | 1997-07-29 | Tosoh Corp | 金属蒸着用ポリエチレン系フィルム |
WO2005005137A2 (ja) * | 2003-07-15 | 2005-01-20 | Idemitsu Unitech Co Ltd | フィルム、積層体及び包装体 |
JP2015030113A (ja) * | 2013-07-31 | 2015-02-16 | 大日本印刷株式会社 | 包装材料 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2903546B2 (ja) * | 1989-06-13 | 1999-06-07 | 東洋紡績株式会社 | ガスバリアフイルムの製造方法 |
CN1127406C (zh) * | 1999-08-27 | 2003-11-12 | 东丽株式会社 | 层压薄膜和使用它的蒸镀薄膜 |
JP4569987B2 (ja) | 2000-02-16 | 2010-10-27 | 大日本印刷株式会社 | 透明バリア性フィルムおよびそれを使用した積層材 |
JP2001316489A (ja) * | 2000-04-28 | 2001-11-13 | Mitsui Chemicals Inc | ポリオレフィン系フィルム |
-
2018
- 2018-02-26 JP JP2019504479A patent/JP7044105B2/ja active Active
- 2018-02-26 WO PCT/JP2018/006946 patent/WO2018163883A1/ja active Application Filing
- 2018-02-26 CN CN201880015106.5A patent/CN110352130B/zh active Active
- 2018-02-26 KR KR1020197026266A patent/KR102412325B1/ko active IP Right Grant
- 2018-03-02 TW TW107107084A patent/TWI804486B/zh active
-
2019
- 2019-09-06 PH PH12019502029A patent/PH12019502029A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06270357A (ja) * | 1993-03-19 | 1994-09-27 | Kohjin Co Ltd | 蒸着用ポリエチレン系多層フィルム |
JPH07166328A (ja) * | 1993-12-09 | 1995-06-27 | Dainippon Printing Co Ltd | 蒸着フィルムおよびその包装体 |
JPH09193324A (ja) * | 1996-01-24 | 1997-07-29 | Tosoh Corp | 金属蒸着用ポリエチレン系フィルム |
WO2005005137A2 (ja) * | 2003-07-15 | 2005-01-20 | Idemitsu Unitech Co Ltd | フィルム、積層体及び包装体 |
JP2015030113A (ja) * | 2013-07-31 | 2015-02-16 | 大日本印刷株式会社 | 包装材料 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020003946A1 (ja) * | 2018-06-25 | 2021-08-26 | 尾池工業株式会社 | 蒸着フィルムおよび蒸着フィルムの製造方法 |
JP7373854B2 (ja) | 2018-06-25 | 2023-11-06 | 尾池工業株式会社 | 蒸着フィルムおよび蒸着フィルムの製造方法 |
JP2021160271A (ja) * | 2020-03-31 | 2021-10-11 | 大日本印刷株式会社 | 蒸着基材、積層体および包装容器 |
JP7540183B2 (ja) | 2020-03-31 | 2024-08-27 | 大日本印刷株式会社 | 蒸着基材、積層体および包装容器 |
Also Published As
Publication number | Publication date |
---|---|
PH12019502029A1 (en) | 2020-06-15 |
CN110352130A (zh) | 2019-10-18 |
TW201836851A (zh) | 2018-10-16 |
JPWO2018163883A1 (ja) | 2020-01-16 |
TWI804486B (zh) | 2023-06-11 |
KR102412325B1 (ko) | 2022-06-22 |
JP7044105B2 (ja) | 2022-03-30 |
CN110352130B (zh) | 2021-06-01 |
KR20190126323A (ko) | 2019-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2497029C (en) | Metallized multilayer film | |
JP6996339B2 (ja) | 蒸着基材用ポリエチレン系フィルム及びそれを用いた蒸着フィルム | |
KR101490546B1 (ko) | 필름 구조물 및 그 필름 구조물을 갖는 판지 | |
US6165599A (en) | Biaxially oriented film prepared from metallocene catalyzed polypropylene | |
EP2419273B1 (en) | Film composition and method of making the same | |
WO2004022336A1 (en) | Multilayer films | |
US11613111B2 (en) | Functional tie-layer formulations in biaxially oriented films containing HDPE | |
US20200369014A1 (en) | Polyethylene film compositions, laminates, and methods for making the same | |
WO2022019192A1 (ja) | 積層フィルム | |
WO2018163883A1 (ja) | 蒸着基材用ポリエチレン系フィルム及びそれを用いた蒸着フィルム | |
EP0909636B1 (en) | Metallizable polypropylene films | |
EP3999307B1 (en) | Heat-stable biaxially oriented polypropylene films | |
JP2008246947A (ja) | 表面保護フィルム | |
JP2024050552A (ja) | ポリエチレン系樹脂多層フィルム、及びそれらを用いた蒸着フィルム、積層体、包装体 | |
WO2010016403A1 (ja) | 表面保護フィルム | |
JP2007045048A (ja) | ポリプロピレン系複合無延伸フィルム | |
JP2011020299A (ja) | 表面保護フィルム | |
JP4525811B2 (ja) | 表面保護フィルム | |
EP3500429B1 (en) | Coated, metallized films | |
WO2000061679A1 (en) | Biaxially oriented film prepared from metallocent catalyzed polypropylene | |
WO2024161917A1 (ja) | 二軸配向ポリプロピレンフィルム及びその積層体 | |
WO2024161916A1 (ja) | 二軸配向ポリプロピレンフィルム及びその積層体 | |
WO2024161918A1 (ja) | 二軸配向ポリプロピレンフィルム及びその積層体 | |
WO2024176056A1 (en) | Reclaimed-pp-containing opp film | |
TW202436129A (zh) | 雙軸配向聚丙烯膜及其積層體 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764034 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019504479 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197026266 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18764034 Country of ref document: EP Kind code of ref document: A1 |