WO2018159673A1 - エリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤 - Google Patents

エリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤 Download PDF

Info

Publication number
WO2018159673A1
WO2018159673A1 PCT/JP2018/007497 JP2018007497W WO2018159673A1 WO 2018159673 A1 WO2018159673 A1 WO 2018159673A1 JP 2018007497 W JP2018007497 W JP 2018007497W WO 2018159673 A1 WO2018159673 A1 WO 2018159673A1
Authority
WO
WIPO (PCT)
Prior art keywords
erythritol
weight
granule
parts
less
Prior art date
Application number
PCT/JP2018/007497
Other languages
English (en)
French (fr)
Inventor
雄輝 木村
巧 栃尾
香奈子 蓑田
浩充 山本
Original Assignee
物産フードサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 物産フードサイエンス株式会社 filed Critical 物産フードサイエンス株式会社
Priority to US16/489,027 priority Critical patent/US20200000729A1/en
Priority to JP2019503059A priority patent/JP7085527B2/ja
Publication of WO2018159673A1 publication Critical patent/WO2018159673A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing

Definitions

  • the present invention relates to a granule containing erythritol as a main component (erythritol granule), and more specifically, an erythritol granule suitable for tablet production by a dry direct compression method, a method for producing the granule, a method for producing a tablet using the granule, and Regarding tablets.
  • Erythritol is a sugar alcohol that has a favorable sweetness similar to sugar, without a simple backlash. Erythritol also has a flavoring effect that suppresses unpleasant tastes such as zero calories, non-cariogenicity, relatively low laxative effect, does not affect blood sugar levels, bitterness and blue odor Therefore, it is expected to be used as an excipient for producing tablets such as drugs and supplements.
  • tablette compression method a material such as medicinal ingredients and additives such as excipients are mixed and compressed as it is without adding water.
  • a “wet granulation tableting method” in which a mixture of a drug and an additive is granulated using a suitable solvent such as a binder solution or water, and the mixture is dried and then tableted.
  • the former can be applied even when the medicinal component is weak in water, and since the process is simple, process management is easy, and the manufacturing cost of the product can be reduced. More and more cases are being adopted.
  • Patent Document 1 discloses a composition containing erythritol and reduced starch saccharified product. A method for producing granules that are granulated by extrusion molding is disclosed.
  • Patent Document 2 discloses a method for producing granules by charging erythritol powder into a fluidized bed granulation coating apparatus and spraying the erythritol solution.
  • Patent Document 3 discloses a method for producing direct-dried erythritol spherical granules for granulating erythritol ultrafine powder having an average particle size of 0.4 ⁇ m to 23 ⁇ m.
  • Patent Document 1 uses reduced starch syrup, reduced maltose syrup, etc., it is impossible to produce granules for tableting that take advantage of the characteristics of erythritol, such as zero calories and blood sugar level.
  • the method described in Patent Document 2 requires a step of selectively recovering particles having a predetermined particle size range by sieving the granulated product ([Claim 1], paragraphs [0023] and [0039]), there is a concern that the manufacturing cost increases because the number of processes increases and the product yield decreases.
  • Patent Document 3 is a method of producing granules only with erythritol without using a binder or the like.
  • the present invention has been made to solve such problems, and has sufficient binding properties while retaining the properties of erythritol, and erythritol granules that can be used for tablet production by a direct compression method and
  • An object of the present invention is to provide a method for producing the same, a method for producing a tablet using the same, and a tablet.
  • erythritol has good compatibility with hydroxypropylcellulose (HPC) or hydroxypropylmethylcellulose (HPMC) and is suitable for tablet production by a direct compression method by granulation using these. It has been found that granules having physical properties and retaining the properties of erythritol can be easily and efficiently produced. Accordingly, the following inventions have been completed based on this finding.
  • HPC hydroxypropylcellulose
  • HPMC hydroxypropylmethylcellulose
  • a first aspect of the erythritol granule according to the present invention is an erythritol granule containing HPC or HPMC, and a sample obtained by adding 1.6 mg of magnesium stearate to 160 mg of the erythritol granule is 8 mm in diameter.
  • a sample obtained by adding 1.6 mg of magnesium stearate to 160 mg of the erythritol granule is 8 mm in diameter.
  • it When it is filled in a mortar and compressed at a compression rate of 10 mm / min and a pressure of 0 to 100 MPa, it has a physical property that the average yield pressure in the range of 30 to 100 MPa is less than 2941 MPa.
  • the second aspect of the erythritol granule according to the present invention contains more than 1.48% by mass and less than 15.25% by mass of HPC, or more than 1.48% by mass and less than 10.71% by mass of HPMC. Is.
  • the erythritol granule which concerns on this invention can be used suitably for the tablet manufacture by the dry-type direct tableting method (direct compression method).
  • the erythritol granule according to the present invention is obtained by adding 1 part by weight of magnesium stearate to 100 parts by weight of the erythritol granule and then compressing it with a tableting pressure of 5.0 to 6.0 kN by a direct compression method.
  • a tableting pressure of 5.0 to 6.0 kN by a direct compression method.
  • the tablets When tablets are molded into 200 mg tablets with a diameter of 8 mm, it is preferable that the tablets have a physical property of 3.5 kgf or more.
  • the method for producing erythritol granule according to the present invention comprises a granulating step of spraying a spray liquid containing HPC and / or HPMC on the erythritol powder while flowing or stirring the erythritol powder, followed by drying.
  • a granulating step of spraying a spray liquid containing HPC and / or HPMC on the erythritol powder while flowing or stirring the erythritol powder, followed by drying.
  • the granulation step is preferably performed by a fluidized bed granulation method.
  • the spray liquid contains HPC at a concentration of more than 2.5% by mass and less than 30% by mass, or HPMC is more than 2.5% by mass and more than 20% by mass. It is preferable that it is contained at a concentration of less than%.
  • the spray liquid preferably further contains erythritol.
  • the spray liquid contains erythritol at a concentration of less than 35% by mass, and the weight ratio of erythritol and HPC is the following (a) or (b):
  • the weight ratio of erythritol to HPMC is either (c) or (d) below;
  • HPC is more than 2.5 parts by weight with respect to 33 parts by weight of erythritol Less than 30 parts by weight;
  • HPC 5 parts by weight of HPC; more than 3.3 parts by weight of erythritol; less than 35 parts by weight;
  • HPMC is 5 parts by weight, and erythritol is more than 0 part by weight and less than 35 parts by weight.
  • the manufacturing method of the tablet which concerns on this invention has a tableting process of tableting the mixture of the erythritol granule which concerns on this invention, a medicinal ingredient, or a food material by the direct compression method.
  • the tablet according to the present invention comprises the erythritol granule according to the present invention and a medicinal component or a food material.
  • the erythritol granule according to the present invention has sufficient binding properties while retaining the properties of erythritol. According to the present invention, the erythritol granule can be easily and efficiently produced. Moreover, the said erythritol granule can be easily manufactured by the direct compression method using the characteristic of erythritol.
  • Example 3 It is a photograph which shows the mode of adhesion of the spray liquid in the nozzle opening part of a granulation apparatus. It is an electron microscope observation image of each sample in Example 3, Comprising: The powdered erythritol (ungranulated ERT) which is not granulated, the erythritol granule (No. 6) which does not contain a binder, hydroxypropyl methylcellulose (HPMC), respectively. ) Containing erythritol granules (No. 2 and No. 8). It is a figure which shows the Heckel plot measured in Example 4, Comprising: The above figure is a Heckel plot of the erythritol granule (No.
  • tablette refers to a product obtained by compression molding a granular material into a small fixed shape. That is, the tablets according to the present invention include foods and drinks such as health foods (supplements) and confectionery (tablets) in addition to pharmaceuticals and quasi drugs.
  • erythritol granule refers to a granule mainly composed of erythritol or an aggregate thereof, and may be composed of erythritol alone or may contain components other than erythritol.
  • the particle diameter of the granules may be larger than the particle diameter of the erythritol powder, but from the viewpoint of use in tablet production by the direct compression method, the median diameter (d50) is preferably 50 ⁇ m or more and less than 250 ⁇ m. .
  • the present invention provides erythritol granules having physical properties suitable for tablet production by the direct compression method and retaining the properties of erythritol.
  • the erythritol granule according to the present invention has a structure having many pores (porous), and therefore, it is manufactured with high moldability, binding property at the time of tablet production. It has tableting suitability such as high hardness.
  • the average yield pressure is the value of the compression pressure (P) when the granule is filled in a mortar of a universal testing machine and compressed, and the granule layer at the compression pressure It can be determined by creating a plot (Heckel plot) of the relationship between the natural number of reciprocals of the porosity (In (1 / ⁇ )) and the value thereof.
  • the average yield pressure is defined as the reciprocal of the slope of the linear portion of the Heckel plot, and the lower the average yield pressure related to the stage where the granular layer exhibits plastic deformation, the easier it is to deform plastically, that is, the higher the tableting ability.
  • the erythritol granules of the present invention having a porous structure and suitable for tableting can be exemplified by the following values when expressed in terms of the average yield pressure: 160 mg of the erythritol and 1.6 mg of magnesium stearate (lubricant)
  • 160 mg of the erythritol and 1.6 mg of magnesium stearate (lubricant) When a sample having a diameter of 8 mm is filled into a mortar having a diameter of 8 mm and compressed at a compression rate of 10 mm / min and a pressure of 0 to 100 MPa, the average yield pressure in the range of 30 to 100 MPa is around 1400 MPa or 1200 MPa.
  • 1600 MPa or less 1000 MPa or more and 1800 MPa or less, 800 MPa or more and 2000 MPa or less, 600 MPa or more and 2200 MPa or less, 400 MPa or more and 2400 MPa or less, 200 MPa or more and 2600 MPa or less, 2800 MPa or less, or 2941 MPa or less.
  • the first embodiment of the erythritol granule according to the present invention is an erythritol granule containing HPC or HPMC, and a sample obtained by adding 1.6 mg of magnesium stearate to 160 mg of the erythritol granule has a diameter of 8 mm.
  • the mortar is filled and compressed at a compression rate of 10 mm / min and a pressure of 0 to 100 MPa, it has a physical property that the average yield pressure in the range of 30 to 100 MPa is less than 2941 MPa.
  • the second aspect of the erythritol granule according to the present invention is an erythritol granule containing HPC or HPMC, which is more than 1.48% by mass and less than 15.25% by mass, or more than 1.48% by mass. It contains less than 10.71% by mass of HPMC.
  • the hardness of tablets produced by direct compression method without adding medicinal ingredients or food materials alone, or by adding a lubricant to this, is also an indicator of tableting suitability of the erythritol granules. It becomes.
  • the erythritol granules of the present invention having a porous structure and suitable for tableting can be exemplified by the following values if expressed in terms of tablet hardness; magnesium stearate (smooth lubricant) with respect to 100 parts by weight of the erythritol granules.
  • the tablet has a hardness of 3.5 kgf or more.
  • the erythritol granule may contain food additives such as other binders, sugar alcohols, fragrances, coloring agents, preservatives, and pharmaceutical additives as long as the characteristics of the present invention are not impaired.
  • food additives such as other binders, sugar alcohols, fragrances, coloring agents, preservatives, and pharmaceutical additives as long as the characteristics of the present invention are not impaired.
  • examples of other binders include methyl cellulose, hydroxyethyl methyl cellulose, pullulan, sodium alginate, agar, gelatin, sodium carboxymethyl cellulose, polyvinyl pyrrolidone, and polyvinyl alcohol.
  • Erythritol is a sugar alcohol having the chemical name 1,2,3,4-Butanetol and is also called erythritol.
  • the powdered erythritol may be a commercially available product, or may be produced and used according to a method known to those skilled in the art.
  • As a known production method there can be mentioned a method obtained by culturing and producing erythritol-producing bacteria using glucose or the like as a carbon source and purifying it.
  • examples of the erythritol-producing bacterium include microorganisms belonging to the genus Trigonopsis or Candida (Japanese Patent Publication No.
  • microorganisms belonging to the genus Tolropsis, Hansenula, Pichia or Debaryomyces Japanese Patent Publication No. 51-211072.
  • Microorganisms belonging to the genus Moniliera Japanese Patent Laid-Open Nos. 60-110295 and 10-215887
  • microorganisms belonging to the genus Aureobasiduum Japanese Patent Publication No. 63-9831
  • microorganisms belonging to the genus Yellowia JP, 10-215887, A
  • Purification of erythritol can be performed according to conventional methods such as cell separation, chromatographic fractionation of erythritol, desalting, decolorization, crystallization, crystal decomposition and drying.
  • HPC Hydroxypropyl cellulose
  • a commercially available HPC can be used, and its viscosity, molecular weight, particle diameter, molar substitution degree, hydroxypropoxyl group content, etc. depend on the desired physical properties and granulation method of erythritol granules. Can be set as appropriate.
  • HPC HPC SSL SFP; viscosity of 2 to 2.9 millipascal seconds (mPa ⁇ s) (20 ° C./2% aqueous solution), molecular weight of about 40000, and median diameter of 20 ⁇ m; Nippon Soda) is used.
  • HPMC Hydroxypropyl methylcellulose
  • a commercially available HPMC can be used, and its viscosity, molecular weight, particle diameter, substitution degree or content of methoxyl group and hydroxypropoxyl group, etc. are desired physical properties and granulation method in erythritol granule, etc. It can be set appropriately depending on the situation.
  • the viscosity is 3 to 15 mPa ⁇ s (20 ° C./2% aqueous solution), the methoxyl group content is 28.0 to 30.0 mass% (per dry weight), and hydroxypropoxyl HPMC (TC-5; Shin-Etsu Chemical Co., Ltd.) having a group content of 7.0 to 12.0% by mass (per dry weight) is used.
  • the erythritol granule can be produced, for example, by a granulation step of spraying a spray liquid containing HPC and / or HPMC on the erythritol powder while flowing or stirring the erythritol powder and then drying. That is, this invention also provides the manufacturing method of an erythritol granule which has the said process.
  • the above granulation step can be performed by a fluidized bed granulation method as shown in the test method (2) of the examples described later, and can also be performed by a stirring granulation method, a spray drying method, or the like.
  • the fluidized bed granulation method is one method of wet granulation, in which hot air is sent from the lower part of the granulation chamber to form a layer in which the particles flow by rolling up the raw material granules. Then, a liquid (a spray solution) is sprayed, and the raw material granular material is grown into a granular material (granule) by aggregation or coating.
  • Granulation by the fluidized bed granulation method can be performed by a commercially available granulator.
  • the spray liquid containing HPC and / or HPMC is sprayed on the erythritol powder while stirring the erythritol powder with hot air, Erythritol granules can be produced by drying.
  • HPC and / or HPMC solvent in the spray liquid examples include water and alcohols such as ethanol, and mixtures thereof.
  • food additives and pharmaceutical additives such as another binder, sugar alcohol, a fragrance
  • examples of other binders include methyl cellulose, hydroxyethyl methyl cellulose, pullulan, sodium alginate, agar, gelatin, sodium carboxymethyl cellulose, polyvinyl pyrrolidone, and polyvinyl alcohol.
  • the concentration of HPC in the spray liquid is, for example, 2.5 to 30% by mass, 2.6 to 29% by mass, 2.7 to 28% by mass, 2.8 to 27% by mass, 2.9 to 26% by mass, 3.0-25% by mass, 3.1-24% by mass, 3.2-23% by mass, 3.3-22% by mass, 3.4-21% by mass, 3.5-21% by mass, etc. be able to.
  • the concentration of HPMC in the spray liquid is, for example, 2.5 to 20% by mass, 2.6 to 19% by mass, 2.7 to 18% by mass, 2.8 to 17% by mass, 2.9 to 16% by mass, 3.0-15% by mass, 3.1-14% by mass, 3.2-13% by mass, 3.3-12% by mass, 3.4-11% by mass, 3.5-11% by mass %.
  • the spray solution preferably further contains erythritol in addition to HPC or HPMC.
  • erythritol in addition to HPC or HPMC.
  • the concentration of erythritol in the spray liquid can be the maximum amount in which erythritol can be dissolved, and specifically, less than 35% by mass. Moreover, it is preferable that the weight ratio of erythritol (ERT) and HPC is either of the following (a) or (b).
  • the weight ratio of ERT to HPMC is preferably either (c) or (d) below;
  • HPC is more than 2.5 parts by weight and less than 30 parts by weight
  • HPT is 5 parts by weight
  • ERT is more than 3.3 parts by weight and less than 35 parts by weight
  • C is 33 parts by weight
  • HPMC is more than 2.5 parts by weight and less than 20 parts by weight
  • D ERT is more than 0 parts by weight and less than 35 parts by weight with respect to 5 parts by weight of HPMC.
  • Example 3 As shown in Example 3 and Example 4 to be described later, by making the content ratio of HPC or HPMC and ERT in the spray liquid one of the above (a) to (d), a tablet with higher hardness can be produced. Possible erythritol granules can be produced.
  • the granulating apparatus in the granulating step is, for example, a normal fluidized bed granulator, a forced circulation fluidized bed granulator, a batch fluidized bed granulator such as a spouted bed granulator, a box type continuous fluidized bed, or the like.
  • a continuous fluidized bed granulator such as a granulator or a cylindrical continuous fluidized bed granulator can be used.
  • the position of the spray nozzle of the spray liquid in the granulator may be, for example, any of a bottom spray system, a top spray system, and a tangential spray system.
  • the granulation conditions can be appropriately set according to the charged amount of erythritol and the desired physical properties of the erythritol granules.
  • the hot air inlet temperature is 60 to 100 ° C.
  • the air volume is 0.4 to 0.8 m 3 / min.
  • the spraying pressure of the spray liquid can be 0.1 to 0.3 MPa.
  • the tablet production method includes a tableting process in which a mixture of the erythritol granule according to the present invention and a medicinal component or a food material is tableted by a direct compression method.
  • a tableting step if a mixture of erythritol granules and medicinal ingredients is tableted, a pharmaceutical or quasi-drug product having a tablet dosage form can be produced, and the mixture of erythritol granules and food material is tableted. If it does, food / beverage products, such as confectionery (tablet confectionery) and a supplement which have a tablet dosage form, can be manufactured.
  • the mixture in the tableting step may contain substances other than erythritol granules and medicinal ingredients or food materials as long as the characteristics of the present invention are not impaired.
  • substances include lubricants and binders for improving processing characteristics, food additives and pharmaceutical additives for improving tablet flavor, palatability, storage stability, and the like.
  • the lubricant include magnesium stearate, glycerin fatty acid ester, sorbitan acid fatty acid ester, and sucrose fatty acid ester.
  • Erythritol and Binder “Erythritol 100M (white powder, pharmaceutical additive standard) (product food science company)” was used as the powdered erythritol. Moreover, the binder shown in Table 1 was used.
  • Granule-shaped erythritol (erythritol granule; ERT granule) was produced from powdered erythritol by a fluidized bed granulation method. That is, a powdered erythritol is charged into a granulator “Multiplex FD-MP-01ND” (Paulec Co., Ltd.), the hot air inlet temperature is 80 ° C., the air volume is 0.6 m 3 / min, and the spray pressure is 0.2 MPa. Then, granulation was performed while spraying the spray solution. As the spray solution, a solution in which a binder and / or erythritol was dissolved in water was used.
  • Tableting method Tablets were produced by direct compression method using ERT granules. That is, after adding 1 part by weight of magnesium stearate as a lubricant to 100 parts by weight of ERT granule, it is charged in a desktop type single tableting machine “MINIPRESS MII (RIVA SA)”. It was compression molded into a tablet shape with a tableting pressure of 0 to 6.0 kN. The tablet size was 8 mm in diameter and the weight per tablet was 200 mg. That is, a tablet was produced by applying a tableting pressure of 5.0 to 6.0 kN to the tablet area ( ⁇ ⁇ 0.4 cm ⁇ 0.4 cm ⁇ 0.5 cm 2 ).
  • Fluidity of ERT Granules The degree of fluidity of ERT granules was evaluated by calculating a fluidity index based on Carr's powder physical property evaluation criteria. That is, first, “apparent specific gravity”, “compression degree”, “repose angle”, “spatula angle” and “aggregation degree” were measured using a powder property evaluation apparatus “Powder Tester PT-X (Hosokawa Micron)”. After calculating each index based on the measured value, the index was added to obtain a liquidity index.
  • the degree of fluidity is “good (abbreviation:))” if the fluidity index is 70 or more and 100 or less, “normal (abbreviation: ⁇ )” if it is 60 or more and less than 70, and if it is 40 or more and less than 60. When “slightly bad (abbreviation: ⁇ )” and 0 or more and less than 40, it was evaluated as “bad (abbreviation: ⁇ )”.
  • [4-3] Particle size of ERT granule The particle size distribution of the ERT granule was measured using a micro electromagnetic vibrating sieve M-2 type (Tsutsui Rikagaku Kikai). Based on the measured value, the median diameter (d50) was calculated. When d50 was 50 ⁇ m or more and less than 250 ⁇ m, it was evaluated as “suitable as a tableting granule (abbreviation: ⁇ )”, and when d50 was less than 50 ⁇ m or 250 ⁇ m or more, it was evaluated as “unsuitable as a tableting granule (abbreviation: x)”.
  • Tablet Hardness The tablet hardness of the tablets produced using ERT granules was measured using a Monsanto hardness meter (Minato Medical). If the tablet hardness is 4.5 kgf (kgf) or more, the product hardness is “preferable ( ⁇ )”. If the tablet hardness is 3.5 kgf or more and less than 4.5 kgf, “appropriate ( ⁇ )”, less than 3.5 kgf If there was, it was evaluated as “unsuitable ( ⁇ )”.
  • Example 1 Examination of binder Hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) were dissolved in water so that the final concentration was 5%. When CMC had a concentration of 5%, the viscosity was too high to spray, so it was dissolved in water to a concentration of 1%. These were used as spray solutions to produce ERT granules. After obtaining 1-5, tablets were manufactured and evaluated. The results are shown in Table 3.
  • Example 2 Effect of blending erythritol in spray solution Powdered erythritol was dissolved in water to a final concentration of 33%. It was set to 6. Also, after dissolving HPC, HPMC, PVP and PVA in water so that the final concentration is 5%, CMC is dissolved in water so that the final concentration is 1%, so that powdered erythritol has a final concentration of 33%. Added to the spray solution No. 7-11. Using these sprays, ERT granules were produced. After obtaining 6-11, tablets were prepared and evaluated. The results are shown in Table 4. In Table 4, No. 1 of Example 1 is shown for comparison. The results of 1 to 5 are also shown.
  • No. 7 and no. No. 8 has no spray solution adhering to the nozzle opening, the fluidity of the ERT granule is normal, the particle size of the ERT granule is suitable as a tableting granule, and there is a tablet moldability, tablet hardness Was also suitable as the hardness of the product.
  • No. 7 and no. No. 1 and No. 1 are compared. No. 7 had higher tablet hardness.
  • no. 8 and no. 2 and no. No. 8 had higher tablet hardness. That is, it has been clarified that erythritol granules capable of producing tablets with higher hardness can be produced by adding erythritol to a spray liquid containing HPC or HPMC. From this result, it was revealed that erythritol granules suitable for tablet production by the direct compression method can be obtained by granulating while spraying a spray liquid containing erythritol in addition to HPC or HPMC.
  • No. No. 6 had no tablet moldability and could not be compressed. That is, it has been clarified that when granulation is performed while spraying a spray solution containing only erythritol but not containing HPC or HPMC, erythritol granules suitable for tablet production by the direct compression method cannot be obtained.
  • Example 3 Electron microscope observation No powdered erythritol (ungranulated ERT), No. 1 in Example 1. 2 and No. 2 in Example 2. 6 and no. Eight ERT granules were observed with a scanning electron microscope at 1000 times or 2000 times and 5000 times. The observation image is shown in FIG. For reference, Table 5 shows the composition of each sample and the evaluation results of ERT granules.
  • ERT granule is a non-granulated ERT and no.
  • the structure was more porous (porous). From this result, it became clear that the erythritol granule of the present invention has a porous structure as compared with the erythritol granule not containing the binder and the powdered erythritol not granulated.
  • the erythritol granule of the present invention is considered to have achieved high tableting suitability such as high moldability and binding property during tablet production and high hardness in the produced tablet due to the porous structure.
  • Example 4 Average yield pressure of ERT granule
  • First stage initial compression. Rearrangement and destruction of the secondary particles occur and become primary particles.
  • Second stage Plastic deformation of primary particles occurs.
  • Third stage In addition to plastic deformation of primary particles, primary particle breakage and re-parallelism also occur.
  • K is the slope of the straight line portion of the Heckel plot, and the reciprocal of K indicates the average yield pressure (Py).
  • the average yield pressure is an index indicating the ease of plastic deformation of the powder layer, and it can be determined that the lower the value, the easier the plastic deformation, that is, the easier the tablet production.
  • Ungranulated powdered erythritol (ungranulated ERT), No. 1 in Example 1. 2 and No. 2 in Example 2.
  • the average yield pressure was determined for 8 ERT granules. Specifically, 160 mg of ungranulated ERT or No. 2 or No. A sample prepared by adding 1.6 mg of magnesium stearate to 8 ERT granules is filled in a mortar (diameter 8 mm) of a precision universal testing machine (AUTOGRAPH, Shimadzu Corporation), and a compression rate of 10 mm / min, 0 to 100 MPa. Compressed with pressure.
  • AUTOGRAPH precision universal testing machine
  • the volume of the powder layer was calculated from the position of the wrinkles at each compression pressure, and the porosity ( ⁇ ) (%) of the powder layer was calculated based on the volume.
  • the compression pressure (P) is plotted on the horizontal axis, and the natural logarithm (In (1 / ⁇ )) of the reciprocal of the porosity of the powder layer is plotted on the vertical axis, thereby creating a Heckel plot. Based on the shape of the created Heckel plot (FIG.
  • the average yield pressure of the second stage which is a stage where plastic deformation of the powder particles occurs
  • the average yield pressure of the third stage which is a stage where fracture and rearrangement occur
  • the average yield pressure of the third stage is also No. 2 with respect to 2941 MPa of ungranulated ERT. 2 and no. No. 3 was significantly smaller at 1441 MPa.
  • the erythritol granule of the present invention having a porous structure has a lower average yield pressure in the stage where the powder layer exhibits plastic deformation compared to powdered erythritol which is not granulated, that is, plasticity It was revealed that the granules were easy to deform and easy to produce tablets. Further, from this result, the average yield pressure of the erythritol granule of the present invention is about 1400 MPa, or 1200 MPa to 1600 MPa, 1000 MPa to 1800 MPa, 800 MPa to 2000 MPa in the range of 30 to 100 MPa under the compression conditions of Example 4. Hereinafter, it became clear that the pressure was 600 MPa to 2200 MPa, 400 MPa to 2400 MPa, 200 MPa to 2600 MPa, 2800 MPa, or 2941 MPa.
  • Blending amount of binder (1) Blending amount of HPC HPC was dissolved in water to a final concentration of 1 to 30%, and powdered erythritol was added to a final concentration of 33%. After using these as a spray solution to produce ERT granules, tablets were produced and evaluated. The results are shown in Table 7.
  • the HPC concentration in the spray liquid was 30% (HPC concentration in the ERT granule was 15.25%), the viscosity of the spray liquid was too high to spray, and granulation was impossible. From this result, in the ERT granule containing HPC, the HPC concentration is more than 1.48% and less than 15.25%, or the HPC concentration in the spray liquid is less than 30% and the erythritol is 33 parts by weight and the HPC is 2 It has been clarified that when the content is more than 5 parts by weight and less than 30 parts by weight, erythritol granules suitable for tablet production by the direct compression method can be obtained.
  • the spray liquid was too viscous to be sprayed and granulation was impossible.
  • the HPMC concentration in the spray liquid was more than 1.48% and less than 10.71%, or the HPMC concentration in the spray liquid was less than 20% and the HPMC was 2.1 with respect to 33 parts by weight of erythritol. It has been clarified that when the content is more than 5 parts by weight and less than 20 parts by weight, erythritol granules suitable for tablet production by the direct compression method can be obtained.
  • Example 6 Blending amount of erythritol in spray solution (1)
  • Spray solution containing HPC HPC is dissolved in water to a final concentration of 5%, and powdered erythritol has a final concentration of 3.3 to 35%. It added so that it might become. After using these as a spray solution to produce ERT granules, tablets were produced and evaluated. The results are shown in Table 9.
  • the ERT concentration in the spray liquid is 3.3%, 6.7%, 16.7% and 33.3%, there is no adhesion of the spray liquid at the nozzle opening, and the flow of the ERT granules
  • the particle size of the ERT granule is suitable as a tableting granule, the tablet has moldability, and the tablet hardness is also suitable as the hardness of the product.
  • the ERT concentration in the spray liquid was 35%, erythritol could not be completely dissolved, so the concentration was not uniform and granulation was impossible.
  • Example 7 Manufacture of supplement HPMC was dissolved in water to a final concentration of 5%, and powdered erythritol was added to a final concentration of 33.3%. This was used as a spray solution to produce ERT granules. Subsequently, ERT granule was mixed at a ratio of 49%, N-acetylglucosamine at 50% and magnesium stearate (lubricant) at 1%, and tableted by the method described in Test Method (3) to obtain the supplement. Manufactured and evaluated for tablet formability and tablet hardness. As a comparative example, a supplement was prepared by tableting in the same manner using powdered erythritol instead of ERT granules, and evaluated. The results are shown in Table 11.
  • the supplement of Example 7 had tablet moldability, and the tablet hardness was also suitable as the product hardness.
  • the refreshing and high-quality sweetness of erythritol was felt, and the bitterness and astringency derived from N-acetylglucosamine were also suppressed, which was delicious.
  • the supplement of Comparative Example has no tablet moldability, and the tablet hardness is not suitable as the product hardness. From this result, it became clear that tablets having sufficient hardness can be produced by the direct compression method using the erythritol granules according to the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Preparation (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

【課題】 エリスリトールの特性を保持しつつ十分な結着性を有するエリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤を提供する。 【解決手段】 ヒドロキシプロピルセルロースまたはヒドロキシプロピルメチルセルロースを含有するエリスリトール顆粒であって、160mgの前記エリスリトール顆粒に1.6mgのステアリン酸マグネシウムを添加してなる試料を直径8mmの臼に充填し、10mm/分の圧縮速度、0~100MPaの圧力にて圧縮した場合に、30~100MPaの範囲における平均降伏圧が2941MPa未満となる物性を有するエリスリトール顆粒。本発明によれば、エリスリトールの特性を保持しつつ、十分な結着性を有するエリスリトール顆粒を得ることができる。

Description

エリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤
 本発明は、エリスリトールを主成分とする顆粒(エリスリトール顆粒)に関し、より詳細には、乾式直接打錠法による錠剤製造に好適なエリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤に関する。
 エリスリトールは、あっさりとして後引きがなく、砂糖に似た好ましい甘味質を持つ糖アルコールである。エリスリトールはまた、カロリーがゼロであること、非う蝕性であること、緩下作用が比較的小さいこと、血糖値に影響しないこと、苦みや青臭みなどの好ましくない味を抑制する矯味矯臭効果を有すること等の有用な性質を有しているため、薬物やサプリメント等の錠剤を製造する際の賦形剤として、利用が期待されている。
 一方、錠剤を製造する方法(打錠方法)には、薬効成分等の材料と賦形剤等の添加物とを混合して、加水せずそのまま打錠する「乾式直接打錠法(直打法)」と、薬物と添加物との混合物を結合剤溶液や水等の適当な溶媒を用いて造粒し、これを乾燥した後に打錠する「湿式造粒打錠法」とがある。これらのうち前者は、薬効成分等が水に弱い場合であっても適用でき、工程がシンプルなため工程管理が容易で、製品の製造コストも低減しうる等の利点を有することから、近年、採用されるケースが増えてきている。
 この点、上述のエリスリトールは結晶性が強く吸湿性が低いため、直打法で打錠する際に必要となる結着性が小さいという問題がある。そこで、エリスリトールを主成分とし、かつ結着性を有する打錠用の顆粒が研究開発されており、例えば、特許文献1には、エリスリトールと還元でん粉糖化物とを含む組成物を練捏して圧出成形して造粒する顆粒物の製造方法が開示されており、特許文献2には、エリスリトール粉末を流動層造粒コーティング装置に仕込み、エリスリトール溶液を噴霧する造粒物の製造方法が開示されており、特許文献3には、平均粒径0.4μm~23μmのエリスリトール極微細粉末を造粒する直打用エリスリトール球形顆粒の製造方法が開示されている。
特許第2852498号公報 特許第3491887号公報 特許第6061768号公報
 しかしながら、特許文献1に記載の方法は、還元水飴や還元麦芽糖水飴等を用いるため、ゼロカロリーや血糖値に影響しない等のエリスリトールの特質を生かした打錠用顆粒を製造できない。また、特許文献2に記載の方法は、造粒物をふるいで篩過して所定の粒度範囲のものを選択的に回収する工程が必要であり([請求項1]、段落[0023]および[0039])、工程数が多くなることや製品歩留まりが低下することから、製造に係るコストが大きくなる懸念がある。また、特許文献3に記載の方法は、結合剤等を使用せずエリスリトールのみで顆粒を製造する方法であり、発明者らの知見によれば、十分な結着性を有する打錠用顆粒を製造できないと考えられる。したがって、エリスリトールの特性を保持しつつ、十分な結着性を備えた打錠用エリスリトール顆粒および当該打錠用エリスリトール顆粒をより簡便かつ効率的に製造する方法の開発が求められていた。
 本発明は、このような課題を解決するためになされたものであって、エリスリトールの特性を保持しつつ十分な結着性を有し、直打法による錠剤製造に用いることができるエリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤を提供することを目的とする。
 本発明者らは、鋭意研究の結果、エリスリトールがヒドロキシプロピルセルロース(HPC)またはヒドロキシプロピルメチルセルロース(HPMC)と相性が良く、これらを用いて造粒することにより、直打法による錠剤製造に好適な物性を具備し、かつエリスリトールの特性を保持した顆粒を簡便かつ効率的に製造できることを見出した。そこで、この知見に基づいて、下記の各発明を完成した。
(1)本発明に係るエリスリトール顆粒の第1の態様は、HPCまたはHPMCを含有するエリスリトール顆粒であって、160mgの当該エリスリトール顆粒に1.6mgのステアリン酸マグネシウムを添加してなる試料を直径8mmの臼に充填し、10mm/分の圧縮速度、0~100MPaの圧力にて圧縮した場合に、30~100MPaの範囲における平均降伏圧が2941MPa未満となる物性を有するものである。
(2)本発明に係るエリスリトール顆粒の第2の態様は、1.48質量%超15.25質量%未満のHPC、または、1.48質量%超10.71質量%未満のHPMCを含有するものである。
(3)本発明に係るエリスリトール顆粒は、乾式直接打錠法(直打法)による錠剤製造に好適に用いることができる。
(4)本発明に係るエリスリトール顆粒は、エリスリトール顆粒100重量部に対してステアリン酸マグネシウムを1重量部の割合で添加した後、直打法により5.0~6.0kNの打錠圧で打錠して、直径が8mmで1錠当たり200mgの錠剤に成型した場合に、当該錠剤の硬度が3.5kgf以上となる物性を有することが好ましい。
(5)本発明に係るエリスリトール顆粒の製造方法は、エリスリトールの粉末を流動または攪拌しながら、当該エリスリトールの粉末にHPCおよび/またはHPMCを含有する噴霧液を噴霧した後、乾燥させる造粒工程を有する。
(6)本発明に係るエリスリトール顆粒の製造方法において、前記造粒工程は流動層造粒法により行われることが好ましい。
(7)本発明に係るエリスリトール顆粒の製造方法において、前記噴霧液は、HPCを2.5質量%超30質量%未満の濃度で含有するもの、または、HPMCを2.5質量%超20質量%未満の濃度で含有するものであることが好ましい。
(8)本発明に係るエリスリトール顆粒の製造方法において、前記噴霧液は、さらにエリスリトールを含有することが好ましい。
(9)本発明に係るエリスリトール顆粒の製造方法において、前記噴霧液は、エリスリトールを35質量%未満の濃度で含有し、かつ、エリスリトールとHPCとの重量比が下記(a)もしくは(b)のいずれか、または、エリスリトールとHPMCとの重量比が下記(c)もしくは(d)のいずれかであることが好ましい;(a)エリスリトールが33重量部に対して、HPCが2.5重量部超30重量部未満、(b)HPCが5重量部に対して、エリスリトールが3.3重量部超35重量部未満、(c)エリスリトールが33重量部に対して、HPMCが2.5重量部超20重量部未満、(d)HPMCが5重量部に対して、エリスリトールが0重量部超35重量部未満。
(10)本発明に係る錠剤の製造方法は、本発明に係るエリスリトール顆粒と薬効成分または食品材料との混合物を、直打法により打錠する打錠工程を有する。
(11)本発明に係る錠剤は、本発明に係るエリスリトール顆粒と薬効成分または食品材料とを含むことを特徴とする。
 本発明に係るエリスリトール顆粒は、エリスリトールの特性を保持しつつ、十分な結着性を有するものである。本発明によれば、当該エリスリトール顆粒を簡便かつ効率的に製造することができる。また、当該エリスリトール顆粒を用いて、エリスリトールの特性を利用した錠剤を直打法により簡便に製造することができる。
造粒装置のノズル開口部における噴霧液の付着の様子を示す写真である。 実施例3における各試料の電子顕微鏡観察画像であって、それぞれ造粒していない粉末状のエリスリトール(未造粒ERT)、結合剤を含有しないエリスリトール顆粒(No.6)、ヒドロキシプロピルメチルセルロース(HPMC)を含有するエリスリトール顆粒(No.2およびNo.8)に係る観察画像である。 実施例4で測定したヘッケルプロットを示す図であって、上図は、未造粒ERTおよびHPMCを含有する噴霧液を噴霧しながら造粒したエリスリトール顆粒(No.2)のヘッケルプロットであり、下図は、未造粒ERTならびにHPMCおよびエリスリトールを含有する噴霧液を噴霧しながら造粒したエリスリトール顆粒(No.8)のヘッケルプロットである。
 以下、本発明に係るエリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤について詳細に説明する。
 本発明において、「錠剤」は、粉粒体を小型の一定形状に圧縮成型したものをいう。すなわち、本発明に係る錠剤には、医薬品や医薬部外品のほか、健康食品(サプリメント等)や菓子(錠果)等の飲食品が含まれる。
 本発明において、「エリスリトール顆粒」とは、エリスリトールを主成分とする顆粒またはその集合体をいい、エリスリトールのみからなるものでもよく、エリスリトール以外の成分を含有するものであってもよい。顆粒の粒子径は、エリスリトールの粉末の粒子径よりも大きいものであればよいが、直打法による錠剤製造に使用する観点からは、メジアン径(d50)が50μm以上250μm未満であることが好ましい。
 本発明は、直打法による錠剤製造に好適な物性を具備し、かつエリスリトールの特性を保持したエリスリトール顆粒を提供する。後述する実施例3に示すように、本発明に係るエリスリトール顆粒は、細孔の多い(ポーラスな)構造を有しており、それ故に、錠剤製造時の高い成型性、結着性、製造された錠剤における高い硬度等の打錠適性を有している。
 ここで、顆粒の打錠適性を示す指標として、平均降伏圧がある。平均降伏圧は、後述する実施例4に示すように、当該顆粒を万能試験機の臼に充填し、圧縮していった場合の圧縮圧(P)の値と、当該圧縮圧における顆粒層の空隙率の逆数の自然体数(In(1/ε))の値との関係をプロットしたもの(ヘッケルプロット)を作成することにより求めることができる。平均降伏圧はヘッケルプロットの直線部分の傾きの逆数として定義され、顆粒層が塑性変形を示す段階に係る平均降伏圧が低いほど、塑性変形しやすい、すなわち打錠適性が高いことを示す。ポーラス構造を有し、打錠適性を備える本発明のエリスリトール顆粒について、平均降伏圧で示せば、以下の値を例示することができる;当該エリスリトール160mgにステアリン酸マグネシウム(滑沢剤)1.6mgを添加してなる試料を直径8mmの臼に充填し、10mm/分の圧縮速度、0~100MPaの圧力にて圧縮した場合の30~100MPaの範囲における平均降伏圧が、1400MPa前後、あるいは、1200MPa以上1600MPa以下、1000MPa以上1800MPa以下、800MPa以上2000MPa以下、600MPa以上2200MPa以下、400MPa以上2400MPa以下、200MPa以上2600MPa以下、2800MPa以下、または2941MPa以下。
 すなわち、本発明に係るエリスリトール顆粒の第1の態様は、HPCまたはHPMCを含有するエリスリトール顆粒であって、160mgの前記エリスリトール顆粒に1.6mgのステアリン酸マグネシウムを添加してなる試料を直径8mmの臼に充填し、10mm/分の圧縮速度、0~100MPaの圧力にて圧縮した場合に、30~100MPaの範囲における平均降伏圧が2941MPa未満となる物性を有するものである。
 また、ポーラス構造を有し、打錠適性を備える本発明のエリスリトール顆粒について、結合剤の含有量で示せば、HPCであれば1.48質量%超15.25質量%未満、HPMCであれば1.48質量%超10.71質量%未満ということができる。すなわち、本発明に係るエリスリトール顆粒の第2の態様は、HPCまたはHPMCを含有するエリスリトール顆粒であって、1.48質量%超15.25質量%未満のHPC、または、1.48質量%超10.71質量%未満のHPMCを含有するものである。
 薬効成分や食品材料などを混合せず、エリスリトール顆粒のみ、あるいはこれに滑沢剤を添加したのみで、そのまま直打法により製造した錠剤の硬度もまた、当該エリスリトール顆粒の打錠適性を示す指標となる。ポーラス構造を有し、打錠適性を備える本発明のエリスリトール顆粒について、錠剤の硬度で示せば、以下の値を例示することができる;当該エリスリトール顆粒100重量部に対してステアリン酸マグネシウム(滑沢剤)を1重量部の割合で添加した後、直打法により5.0~6.0kNの打錠圧で打錠して、直径が8mmで1錠当たり200mgの錠剤に成型した場合に、当該錠剤の硬度が3.5kgf以上。
 エリスリトール顆粒は、本発明の特徴を損なわない限りにおいて、他の結合剤や糖アルコール、香料や着色料、保存料などの食品添加物や医薬品添加物を含有していてもよい。ここで、他の結合剤としては、例えば、メチルセルロース、ヒドロキシエチルメチルセルロース、プルラン、アルギン酸ナトリウム、寒天、ゼラチン、カルボキシメチルセルロースナトリウム、ポリビニルピロリドン、ポリビニルアルコールなどを挙げることができる。
 エリスリトールは、化学名が1,2,3,4-Butaneterolである糖アルコールであり、エリトリトールとも呼ばれる。粉末状のエリスリトールは、市販されているものを用いてもよく、当業者に公知の方法に従って製造して用いてもよい。公知の製造方法としては、グルコースなどを炭素源としてエリスリトール生産菌を培養して生産させ、これを精製して得る方法を挙げることができる。ここで、エリスリトール生産菌としては、例えば、トリゴノプシス属またはカンジダ属に属する微生物(特公昭47-41549号公報)、トルロプシス属、ハンゼヌラ属、ピヒア属またはデバリオミセス属に属する微生物(特公昭51-21072号公報)、モニリエラ属に属する微生物(特開昭60-110295号公報、特開平10-215887)、オーレオバシデュウム属に属する微生物(特公昭63-9831号公報)、イエロビア属に属する微生物(特開平10-215887号公報)などを挙げることができ、培養条件は、各菌に適した通常の条件で行うことができる。また、エリスリトールの精製は、菌体分離、クロマトグラフィーによるエリスリトールの分取、脱塩、脱色、晶析、結晶分解および乾燥の工程を常法に従って行うことができる。
 ヒドロキシプロピルセルロース(HPC)は、セルロースの骨格にヒドロキシプロポキシル基(-OCHCHOHCH)が導入されてなる、セルロース誘導体である。本発明において、HPCは市販のものを用いることができ、その粘度、分子量、粒子径、モル置換度ないしヒドロキシプロポキシル基の含有量などは、エリスリトール顆粒における所望の物性や造粒方法などに応じて適宜設定することができる。後述する実施例1~5においては、粘度が2~2.9ミリパスカル秒(mPa・s)(20℃/2%水溶液)、分子量が約40000、メジアン径が20μmのHPC(HPC SSL SFP;日本曹達)を用いている。
 ヒドロキシプロピルメチルセルロース(HPMC)は、セルロースの骨格にメトキシル基(-OCH)およびヒドロキシプロポキシル基(-OCHCHOHCH)が導入されてなる、セルロース誘導体である。本発明において、HPMCは市販のものを用いることができ、その粘度、分子量、粒子径、メトキシル基およびヒドロキシプロポキシル基の置換度ないし含有量などは、エリスリトール顆粒における所望の物性や造粒方法などに応じて適宜設定することができる。後述する実施例1~5においては、粘度が3~15mPa・s(20℃/2%水溶液)、メトキシル基の含有量が28.0~30.0質量%(乾燥重量当たり)、ヒドロキシプロポキシル基の含有量が7.0~12.0質量%(乾燥重量当たり)のHPMC(TC-5;信越化学)を用いている。
 エリスリトール顆粒は、例えば、エリスリトールの粉末を流動または攪拌しながら、当該エリスリトールの粉末にHPCおよび/またはHPMCを含有する噴霧液を噴霧した後、乾燥させる造粒工程により製造することができる。すなわち、本発明は、上記工程を有するエリスリトール顆粒の製造方法をも提供する。
 上記造粒工程は、後述する実施例の試験方法(2)に示すように流動層造粒法により行うことができるほか、攪拌造粒法、噴霧乾燥法などにより行うこともできる。ここで、流動層造粒法とは、湿式造粒の一方法であり、造粒室の下部から熱風を送り込み、原料粉粒体を空中に巻き上げることにより粒子が流動する状態になる層を形成してから、液体(噴霧液)を噴霧して、凝集または被覆により原料粉粒体を粒状物(顆粒)に成長させる方法である。流動層造粒法による造粒は、市販の造粒装置により行うことができる。
 すなわち、上記造粒工程を流動層造粒法により行う場合は、エリスリトールの粉末を熱風で攪拌しながら、当該エリスリトールの粉末にHPCおよび/またはHPMCを含有する噴霧液を噴霧した後、当該熱風により乾燥させることにより、エリスリトール顆粒を製造することができる。
 噴霧液におけるHPCおよび/またはHPMCの溶媒は、例えば、水やエタノールなどのアルコール、あるいはこれらの混合物などを挙げることができる。また、噴霧液には、本発明の特徴を損なわない限りにおいて、他の結合剤や糖アルコール、香料や着色料、保存料などの食品添加物や医薬品添加物を添加して用いてもよい。ここで、他の結合剤としては、例えば、メチルセルロース、ヒドロキシエチルメチルセルロース、プルラン、アルギン酸ナトリウム、寒天、ゼラチン、カルボキシメチルセルロースナトリウム、ポリビニルピロリドン、ポリビニルアルコールなどを挙げることができる。
 噴霧液におけるHPCの濃度は、例えば、2.5~30質量%、2.6~29質量%、2.7~28質量%、2.8~27質量%、2.9~26質量%、3.0~25質量%、3.1~24質量%、3.2~23質量%、3.3~22質量%、3.4~21質量%、3.5~21質量%などとすることができる。また、噴霧液におけるHPMCの濃度は、例えば、例えば、2.5~20質量%、2.6~19質量%、2.7~18質量%、2.8~17質量%、2.9~16質量%、3.0~15質量%、3.1~14質量%、3.2~13質量%、3.3~12質量%、3.4~11質量%、3.5~11質量%などとすることができる。
 噴霧液は、HPCまたはHPMCの他に、さらにエリスリトールを含有することが好ましい。後述する実施例2に示すように、HPCまたはHPMCを含有する噴霧液にエリスリトールを添加することにより、硬度がより高い錠剤の製造が可能なエリスリトール顆粒を製造することができる。
 噴霧液におけるエリスリトールの濃度は、エリスリトールが溶解可能な最大量とすることができ、具体的には、35質量%未満とすることができる。また、エリスリトール(ERT)とHPCとの重量比は、下記(a)もしくは(b)のいずれかであることが好ましい。ERTとHPMCとの重量比は、下記(c)もしくは(d)のいずれかであることが好ましい;
 (a)ERTが33重量部に対して、HPCが2.5重量部超30重量部未満、
 (b)HPCが5重量部に対して、ERTが3.3重量部超35重量部未満、
 (c)ERTが33重量部に対して、HPMCが2.5重量部超20重量部未満、
 (d)HPMCが5重量部に対して、ERTが0重量部超35重量部未満。
 後述する実施例3および実施例4に示すように、噴霧液におけるHPCまたはHPMCとERTとの含有割合を上記(a)~(d)のいずれかとすることにより、硬度がより高い錠剤の製造が可能なエリスリトール顆粒を製造することができる。
 造粒工程における造粒装置は、例えば、通常流動層型造粒機や強制循環型流動層造粒機、噴流層型造粒機などのバッチ式流動層造粒機、箱型連続式流動層造粒機や円筒型連続式流動層造粒機などの連続式流動層造粒機を用いることができる。造粒装置における噴霧液のスプレーノズルの位置は、例えば、底部スプレー方式、トップスプレー方式、接線スプレー方式のいずれであってもよい。造粒条件はエリスリトールの仕込み量やエリスリトール顆粒における所望の物性などに応じて適宜設定することができるが、例えば、熱風入口温度を60~100℃、風量を0.4~0.8m/分、噴霧液の噴霧圧力を0.1~0.3MPaとすることができる。
 本発明に係る錠剤の製造方法は、本発明に係るエリスリトール顆粒と薬効成分または食品材料との混合物を直打法により打錠する打錠工程を有する。当該打錠工程において、エリスリトール顆粒と薬効成分との混合物を打錠すれば、錠剤の剤型を有する医薬品や医薬部外品を製造することができ、エリスリトール顆粒と食品材料との混合物を打錠すれば、錠剤の剤型を有する菓子(錠菓)やサプリメントなどの飲食品を製造することができる。
 なお、上記打錠工程における混合物は、本発明の特徴を損なわない限りにおいて、エリスリトール顆粒および薬効成分または食品材料以外の物質を含んでいてもよい。そのような物質としては、例えば、加工特性を改良するための滑沢剤や結合剤、錠剤の風味や嗜好性、保存性などを改良するための食品添加物や医薬品添加物を挙げることができる。滑沢剤としては、例えば、ステアリン酸マグネシウム、グリセリン脂肪酸エステル、ソルビタン酸脂肪酸エステル、ショ糖脂肪酸エステルなどを挙げることができる。
 以下、本発明について、各実施例に基づいて説明する。なお、本発明の技術的範囲は、これらの実施例によって示される特徴に限定されない。
<試験方法>
 本実施例は、別段に記載のない限り下記(1)~(4)の方法で行った。また、本実施例においては、別段に記載のない限り「%」は「質量%」を意味する。また、エリスリトールは「ERT」と表記する場合がある。
(1)エリスリトールおよび結合剤
 粉末状のエリスリトールは「エリスリトール 100M(白色粉末、医薬品添加物規格)(物産フードサイエンス社)」を用いた。また、結合剤は表1に示すものを用いた。
Figure JPOXMLDOC01-appb-T000001
(2)造粒方法
 粉末状のエリスリトールから顆粒の形状のエリスリトール(エリスリトール顆粒;ERT顆粒)の製造は、流動層造粒法により行った。すなわち、造粒装置「マルチプレックス FD-MP-01ND(パウレック社)」に、粉末状のエリスリトールを仕込み、熱風入口温度が80℃、風量が0.6m/分、噴霧圧力が0.2MPaにて、噴霧液を噴霧しながら造粒を行った。噴霧液には、水に結合剤および/またはエリスリトールを溶解した溶液を用いた。
(3)打錠方法
 ERT顆粒を用いて、直打法により錠剤を製造した。すなわち、ERT顆粒100重量部に対して、滑沢剤としてステアリン酸マグネシウム1重量部を添加した後、卓上型単発式打錠機「MINIPRESS MII(RIVA S.A.社)」に仕込み、5.0~6.0kNの打錠圧で、錠剤の形状に圧縮成型した。錠剤のサイズは、直径が8mm、1錠当たりの重量は200mgとした。すなわち、錠剤の面積(π×0.4cm×0.4cm≒0.5cm)に対して5.0~6.0kNの打錠圧をかけることにより錠剤を製造した。
(4)評価項目および評価方法
 製造したERT顆粒および錠剤について、下記[4-1]~[4-5]の項目を評価した。評価項目および評価基準の一覧を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[4-1]ノズル開口部における噴霧液の付着
 ERT顆粒の製造時に、造粒装置において、噴霧液を噴霧するためのノズル開口部に噴霧液が付着するか否かを目視にて確認した。図1に示すように、ノズル開口部に噴霧液が付着した跡が視認されなかった場合は「無し(略記:○)」、少量の噴霧液が付着した跡が視認された場合は「やや有り(略記:△)」、大量の噴霧液が付着した跡が視認された場合は「有り(略記:×)」と評価した。
[4-2]ERT顆粒の流動性
 ERT顆粒の流動性の程度は、Carrの粉体物性評価基準に基づいて、流動性指数を算出して評価した。すなわち、まず、粉体特性評価装置「パウダテスタPT-X(ホソカワミクロン社)」を用いて「見かけ比重」、「圧縮度」、「安息角」、「スパチュラ角」および「凝集度」を測定した。測定値に基づきそれぞれの指数を算出した後、当該指数を足し合わせて流動性指数を求めた。流動性の程度は、流動性指数が70以上100以下であれば、「良い(略記:◎)」、60以上70未満であれば「普通(略記:○)」、40以上60未満であれば「やや悪い(略記:△)」、0以上40未満であれば「悪い(略記:×)」と評価した。
[4-3]ERT顆粒の粒子径
 ミクロ形電磁振動ふるい器 M-2形(筒井理化学器械)を用いて、ERT顆粒の粒子径分布を測定した。測定値に基づいて、メジアン径(d50)を算出した。d50が、50μm以上250μm未満であれば「打錠用顆粒として好適(略記:○)」、50μm未満または250μm以上であれば「打錠用顆粒として不適(略記:×)」と評価した。
[4-4]錠剤の成型性
 ERT顆粒を用いて製造した錠剤について、「錠剤の上下が剥がれる現象(キャッピング)」、「杵に錠剤の一部が付着し、錠剤の一部が剥がれる現象(スティッキング)」および「錠剤の中間部が層状にはく離する現象(ラミネーション)」の有無を目視により確認した。いずれかの現象も視認されなかった場合は「錠剤の成型性が有る(○)」、いずれか1以上の現象が視認された場合は「錠剤の成型性が無い(×)」と評価した。
[4-5]錠剤硬度
 ERT顆粒を用いて製造した錠剤の錠剤硬度を、モンサント硬度計(ミナトメディカル社)を用いて測定した。錠剤硬度が4.5キログラム重(kgf)以上であれば、製品の硬度として「好適(○)」、3.5kgf以上4.5kgf未満であれば「適する(△)」、3.5kgf未満であれば、「不適(×)」と評価した。
<実施例1>結合剤の検討
 ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(HPMC)、ポリビニルピロリドン(PVP)およびポリビニルアルコール(PVA)を最終濃度が5%となるよう、水に溶解した。CMCは5%の濃度とすると粘度が高すぎて噴霧できなかったため、1%の濃度となるよう、水に溶解した。これらを噴霧液として用いてERT顆粒を製造し、ERT顆粒No.1~5を得た後、錠剤を製造して評価した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、No.3、4および5(CMC、PVPおよびPVAを用いた場合)はいずれも、ノズル開口部における噴霧液の付着がやや有り、錠剤硬度は低くて製品の硬度としては不適であった。また、No.3(CMCを用いた場合)はERT顆粒の粒子径も大きすぎて、打錠用顆粒として不適であり、錠剤の成形性も無かった。これに対して、No.1および2(HPCおよびHPMCを用いた場合)はいずれも、ノズル開口部における噴霧液の付着は無く、ERT顆粒の粒子径も打錠用顆粒として好適であり、錠剤の成型性も有り、錠剤硬度も製品の硬度として好適または適する値であった。この結果から、HPCまたはHPMCを含有させることにより、直打法による錠剤製造が可能なエリスリトール顆粒が得られることが明らかになった。
<実施例2>噴霧液におけるエリスリトール配合の効果
 粉末状のエリスリトールを最終濃度が33%となるよう水に溶解し、これを噴霧液No.6とした。また、HPC、HPMC、PVPおよびPVAを最終濃度が5%となるよう、CMCを最終濃度が1%となるよう、それぞれ水に溶解した後、粉末状のエリスリトールを最終濃度が33%となるよう添加して、これらを噴霧液No.7~11とした。これらの噴霧液を用いてERT顆粒を製造し、ERT顆粒No.6~11を得た後、錠剤を製造して評価した。その結果を表4に示す。なお、表4には、比較のため、実施例1のNo.1~5の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、No.7およびNo.8はいずれも、ノズル開口部における噴霧液の付着は無く、ERT顆粒の流動性は普通であり、ERT顆粒の粒子径も打錠用顆粒として好適であり、錠剤の成型性も有り、錠剤硬度も製品の硬度として好適であった。そして、No.7とNo.1とを比較すると、No.7の方が錠剤硬度が高かった。同様に、No.8とNo.2とを比較すると、No.8の方が錠剤硬度が高かった。すなわち、HPCまたはHPMCを含有する噴霧液にエリスリトールを添加することにより、硬度がより高い錠剤の製造が可能なエリスリトール顆粒が製造できることが明らかになった。この結果から、HPCまたはHPMCに加えてエリスリトールを含有する噴霧液を噴霧しながら造粒することにより、直打法による錠剤製造に好適なエリスリトール顆粒が得られることが明らかになった。
 これに対して、No.6は錠剤の成型性が無く、打錠が不可能であった。すなわち、HPCまたはHPMCを含有せずエリスリトールのみを含有する噴霧液を噴霧しながら造粒した場合は、直打法による錠剤製造に適するエリスリトール顆粒は得られないことが明らかになった。
 また、No.9は、ERT顆粒の粒子径が不適であり、錠剤の成型性が無く、錠剤硬度が不適であった。No.10は、ノズル開口部に噴霧液の付着が有り、ERT顆粒の粒子径が不適であった。No.11は、錠剤硬度が不適であった。すなわち、CMCやPVP、PVAといった結合剤を含有する噴霧液にエリスリトールを添加しても、直打法による錠剤製造に適するエリスリトール顆粒は得られないことが明らかになった。
<実施例3>電子顕微鏡観察
 造粒していない粉末状のエリスリトール(未造粒ERT)、実施例1のNo.2並びに実施例2のNo.6およびNo.8のERT顆粒について、走査型電子顕微鏡により1000倍または2000倍および5000倍にて観察した。その観察画像を図2に示す。また参照として、各試料の配合およびERT顆粒の評価結果を再度、表5に示す。
Figure JPOXMLDOC01-appb-T000005
 図2に示すように、No.2およびNo.8のERT顆粒は、未造粒ERTおよびNo.6のERT顆粒と比較して、細孔が多い(ポーラスな)構造であった。この結果から、本発明のエリスリトール顆粒は、結合剤を含有しないエリスリトール顆粒や造粒していない粉末状エリスリトールと比較して、ポーラスな構造を有することが明らかになった。そして、本発明のエリスリトール顆粒では、係るポーラス構造により、錠剤製造時の高い成型性、結着性、製造された錠剤における高い硬度等の高い打錠適性を達成しているものと考えられた。
<実施例4>ERT顆粒の平均降伏圧
 一般に、打錠時は、粉体層に圧力(圧縮圧)を加え圧縮していくにつれ、粉体層の体積が低下していく。圧縮初期では粉体中の空隙が減少し、その後粉体粒子の塑性変形が起こるが、この過程は下記の3段階に分けることができる。
  第1ステージ:圧縮初期。2次粒子の再配列と破壊が起こり、1次粒子となる。
  第2ステージ:1次粒子の塑性変形が起こる。
  第3ステージ:1次粒子の塑性変形に加えて、1次粒子の破壊および再並列も生じる。
 粉体層が塑性変形を示す段階(第2ステージ、第3ステージ)では、圧縮圧(P)と空隙率(ε)の逆数の自然体数のプロット(ヘッケルプロット)は直線となり、その直線の式はヘッケル式と呼ばれ、In(1/ε)=KP+A(K、Aは定数。)と表現される(Heckel, R. W., Density-pressure Relationships in Powder Compaction, Trans. Met. Soc. AIME, 221, 671 (1961); Heckel, R. W., An Anaylsis of Powder Compaction Phenomena, Trans. Met. Soc. AIME, 221, 1001 (1961))。ここで、Kは、ヘッケルプロットの直線部分の傾きで、Kの逆数は平均降伏圧(Py)を示す。平均降伏圧は、粉体層の塑性変形のしやすさを示す指標となり、その値が低いほど、塑性変形しやすい、すなわち錠剤製造が容易であると判断することができる。
 造粒していない粉末状のエリスリトール(未造粒ERT)、実施例1のNo.2および実施例2のNo.8のERT顆粒について、平均降伏圧を求めた。具体的には、160mgの未造粒ERTまたはNo.2もしくはNo.8のERT顆粒に1.6mgのステアリン酸マグネシウムを添加してなる試料を精密万能試験機(AUTOGRAPH、島津製作所)の臼(直径8mm)に充填し、10mm/分の圧縮速度、0~100MPaの圧力にて圧縮した。各圧縮圧における杵の位置から粉体層の体積を算出し、それをもとに粉体層の空隙率(ε)(%)を算出した。次に、横軸に圧縮圧(P)、縦軸に粉体層の空隙率の逆数の自然対数(In(1/ε))をプロットして、ヘッケルプロットを作成した。作成したヘッケルプロット(図3)の形状に基づいて第1~3ステージに相当する圧縮圧の範囲を認定し、式1{In(1/ε)=KP+A(K、Aは定数)}および式2{Py=1/K}を用いて、各ステージにおける平均降伏圧(Py)を算出した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、粉体粒子の塑性変形が起こる段階である第2ステージの平均降伏圧は、未造粒ERTの486MPaに対して、No.2およびNo.3ではそれぞれ332MPaおよび324MPaと、顕著に小さかった。同様に、粉体粒子の塑性変形に加えて、破壊および再配列が生じる段階である第3ステージの平均降伏圧も、未造粒ERTの2941MPaに対して、No.2およびNo.3ではいずれも1441MPaと、顕著に小さかった。この結果から、ポーラス構造を有する本発明のエリスリトール顆粒は、造粒していない粉末状のエリスリトールと比較して、粉体層が塑性変形を示す段階に係る平均降伏圧が小さいこと、すなわち、塑性変形しやすく、錠剤製造が容易な顆粒であることが明らかになった。また、この結果から、本発明のエリスリトール顆粒の平均降伏圧は、本実施例4の圧縮条件で30~100MPaの範囲において、1400MPa前後、あるいは、1200MPa以上1600MPa以下、1000MPa以上1800MPa以下、800MPa以上2000MPa以下、600MPa以上2200MPa以下、400MPa以上2400MPa以下、200MPa以上2600MPa以下、2800MPa以下、または2941MPa以下となることが明らかになった。
<実施例5>結合剤の配合量
(1)HPCの配合量
 HPCを最終濃度が1~30%となるよう水に溶解し、粉末状のエリスリトールを最終濃度が33%となるよう添加した。これらを噴霧液として用いてERT顆粒を製造した後、錠剤を製造して評価した。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、噴霧液中のHPC濃度が5%、10%および20%(ERT顆粒中のHPC濃度が2.91%、5.66%および10.71%)では、ノズル開口部における噴霧液の付着は無いかやや有る程度で、ERT顆粒の流動性は普通かやや悪い程度であり、ERT顆粒の粒子径は打錠用顆粒として好適で、錠剤の成型性も有り、錠剤硬度も製品の硬度として好適であった。一方、噴霧液中のHPC濃度が1および2.5%(ERT顆粒中のHPC濃度が0.60%および1.48%)では、錠剤硬度が低く、製品の硬度として不適であった。また、噴霧液中のHPC濃度が30%(ERT顆粒中のHPC濃度が15.25%)では、噴霧液の粘度が高すぎて噴霧できず、造粒不可であった。この結果から、HPCを含有するERT顆粒において、HPC濃度を1.48%超15.25%未満、または、噴霧液中のHPC濃度を30%未満かつエリスリトールが33重量部に対してHPCが2.5重量部超30重量部未満とすると、直打法による錠剤製造に好適なエリスリトール顆粒が得られることが明らかになった。
(2)HPMCの配合量
 HPMCを最終濃度が1~20%となるよう水に溶解し、粉末状のエリスリトールを最終濃度が33%となるよう添加した。これらを噴霧液として用いてERT顆粒を製造した後、錠剤を製造して評価した。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、噴霧液中のHPMC濃度が5%および10%(ERT顆粒中のHPMC濃度が2.91%および5.66%)では、ノズル開口部における噴霧液の付着は無いかやや有る程度で、ERT顆粒の流動性は普通であり、ERT顆粒の粒子径は打錠用顆粒として好適で、錠剤の成型性も有り、錠剤硬度も製品の硬度として好適であった。一方、噴霧液中のHPMC濃度が1および2.5%(ERT顆粒中のHPMC濃度が0.60%および1.48%)では、錠剤硬度が低く、製品の硬度として不適であった。また、噴霧液中のHPMC濃度が20%(ERT顆粒中のHPMC濃度が10.71%)では、噴霧液の粘度が高すぎて噴霧できず、造粒不可であった。この結果から、HPMCを含有するERT顆粒において、HPMC濃度を1.48%超10.71%未満、または、噴霧液中のHPMC濃度を20%未満かつエリスリトール33重量部に対してHPMCが2.5重量部超20重量部未満とすると、直打法による錠剤製造に好適なエリスリトール顆粒が得られることが明らかになった。
<実施例6>噴霧液におけるエリスリトールの配合量
(1)HPCを含有する噴霧液
 HPCを最終濃度が5%となるよう水に溶解し、粉末状のエリスリトールを最終濃度が3.3~35%となるよう添加した。これらを噴霧液として用いてERT顆粒を製造した後、錠剤を製造して評価した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、噴霧液中のERT濃度が6.7%、16.7%および33.3%では、ノズル開口部における噴霧液の付着は無く、ERT顆粒の流動性も普通かやや悪い程度で、ERT顆粒の粒子径も打錠用顆粒として好適であり、錠剤の成型性も有り、錠剤硬度も製品の硬度として好適であった。一方、噴霧液中のERT濃度が3.3%では、錠剤成型性がなかった。また、噴霧液中のERT濃度が35%では、エリスリトールが溶けきらないため濃度が均一とならず、造粒不可であった。この結果から、HPCを含有するERT顆粒において、噴霧液中のエリスリトールの濃度を、35%未満かつHPCが5重量部に対してエリスリトールが3.3重量部超35重量部未満とすると、直打法による錠剤製造に好適なエリスリトール顆粒が得られることが明らかになった。
(2)HPMCを含有する噴霧液
 HPMCを最終濃度が5%となるよう水に溶解し、粉末状のエリスリトールを最終濃度が3.3~35%となるよう添加した。これらを噴霧液として用いてERT顆粒を製造した後、錠剤を製造して評価した。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、噴霧液中のERT濃度が3.3%、6.7%、16.7%および33.3%では、ノズル開口部における噴霧液の付着は無く、ERT顆粒の流動性も普通かやや悪い程度で、ERT顆粒の粒子径も打錠用顆粒として好適であり、錠剤の成型性も有り、錠剤硬度も製品の硬度として好適であった。一方、噴霧液中のERT濃度が35%では、エリスリトールが溶けきらないため濃度が均一とならず、造粒不可であった。この結果から、HPMCを含有するERT顆粒において、噴霧液中のエリスリトールの濃度を、35%未満かつHPMCが5重量部に対してエリスリトールが0重量部超35重量部未満とすると、直打法による錠剤製造に好適なエリスリトール顆粒が得られることが明らかになった。
<実施例7>サプリメントの製造
 HPMCを最終濃度が5%となるよう水に溶解し、粉末状のエリスリトールを最終濃度が33.3%となるよう添加した。これを噴霧液として用いてERT顆粒を製造した。続いて、ERT顆粒が49%、N-アセチルグルコサミンが50%およびステアリン酸マグネシウム(滑沢剤)が1%の割合で混合し、試験方法(3)に記載の方法により打錠してサプリメントを製造し、錠剤の成型性および錠剤硬度を評価した。比較例として、ERT顆粒に代えて粉末状のエリスリトールを用いて同様に打錠してサプリメントを製造し、評価した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、本実施例7のサプリメントは、錠剤の成型性が有り、錠剤硬度も製品の硬度として好適なものであった。また、喫食したところ、エリスリトールの爽やかで質の良い甘味が感じられるとともに、N-アセチルグルコサミンに由来する苦味や渋味も抑制されていて美味しかった。一方、比較例のサプリメントは錠剤の成型性が無く、錠剤硬度も製品の硬度として不適であった。この結果から、本発明に係るエリスリトール顆粒を用いて、直打法により十分な硬度を有する錠剤を製造できることが明らかになった。

Claims (11)

  1.  ヒドロキシプロピルセルロースまたはヒドロキシプロピルメチルセルロースを含有するエリスリトール顆粒であって、160mgの前記エリスリトール顆粒に1.6mgのステアリン酸マグネシウムを添加してなる試料を直径8mmの臼に充填し、10mm/分の圧縮速度、0~100MPaの圧力にて圧縮した場合に、30~100MPaの範囲における平均降伏圧が2941MPa未満となる物性を有するエリスリトール顆粒。
  2.  1.48質量%超15.25質量%未満のヒドロキシプロピルセルロース、または、1.48質量%超10.71質量%未満のヒドロキシプロピルメチルセルロースを含有するエリスリトール顆粒。
  3.  乾式直接打錠法による錠剤製造用である、請求項1または請求項2に記載のエリスリトール顆粒。
  4.  前記エリスリトール顆粒は、前記エリスリトール顆粒100重量部に対してステアリン酸マグネシウムを1重量部の割合で添加した後、乾式直接打錠法により5.0~6.0kNの打錠圧で打錠して、直径が8mmで1錠当たり200mgの錠剤に成型した場合に、当該錠剤の硬度が3.5kgf以上となる物性を有する、請求項1~3のいずれかに記載のエリスリトール顆粒。
  5.  エリスリトールの粉末を流動または攪拌しながら、当該エリスリトールの粉末にヒドロキシプロピルセルロースおよび/またはヒドロキシプロピルメチルセルロースを含有する噴霧液を噴霧した後乾燥させる造粒工程を有する、エリスリトール顆粒の製造方法。
  6.  前記造粒工程が流動層造粒法により行われる、請求項5に記載の製造方法。
  7.  前記噴霧液において、ヒドロキシプロピルセルロースの濃度が2.5質量%超30質量%未満、または、ヒドロキシプロピルメチルセルロースの濃度が2.5質量%超20質量%未満である、請求項5または請求項6に記載の製造方法。
  8.  前記噴霧液がさらにエリスリトールを含有する、請求項5~7のいずれかに記載の製造方法。
  9.  前記噴霧液において、エリスリトールの濃度が35%未満であり、かつ、エリスリトールとヒドロキシプロピルセルロースとの重量比が下記(a)もしくは(b)のいずれか、または、エリスリトールとヒドロキシプロピルメチルセルロースとの重量比が下記(c)もしくは(d)のいずれかである、請求項8に記載の製造方法;
     (a)エリスリトールが33重量部に対して、ヒドロキシプロピルセルロースが2.5重量部超30重量部未満、
     (b)ヒドロキシプロピルセルロースが5重量部に対して、エリスリトールが3.3重量部超35重量部未満、
     (c)エリスリトールが33重量部に対して、ヒドロキシプロピルメチルセルロースが2.5重量部超20重量部未満、
     (d)ヒドロキシプロピルメチルセルロースが5重量部に対して、エリスリトールが0重量部超35重量部未満。
  10.  請求項1~4のいずれかに記載のエリスリトール顆粒と薬効成分または食品材料との混合物を乾式直接打錠法により打錠する打錠工程を有する、錠剤の製造方法。
  11.  請求項1~4のいずれかに記載のエリスリトール顆粒と薬効成分または食品材料とを含むことを特徴とする、錠剤。
PCT/JP2018/007497 2017-02-28 2018-02-28 エリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤 WO2018159673A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/489,027 US20200000729A1 (en) 2017-02-28 2018-02-28 Erythritol granules and method for producing same, method for producing tablets using same, and tablets
JP2019503059A JP7085527B2 (ja) 2017-02-28 2018-02-28 エリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037138 2017-02-28
JP2017-037138 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159673A1 true WO2018159673A1 (ja) 2018-09-07

Family

ID=63370883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007497 WO2018159673A1 (ja) 2017-02-28 2018-02-28 エリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤

Country Status (3)

Country Link
US (1) US20200000729A1 (ja)
JP (1) JP7085527B2 (ja)
WO (1) WO2018159673A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131411A1 (ja) * 2017-12-27 2019-07-04 物産フードサイエンス株式会社 口腔内崩壊錠用エリスリトール顆粒およびその製造方法ならびにそれを用いた口腔内崩壊錠
CN114766676A (zh) * 2022-04-24 2022-07-22 安徽东荣堂生物科技有限公司 控制体重的片剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178183A (ja) * 1998-12-17 2000-06-27 Lion Corp 固形製剤及びその製造方法
JP2010163428A (ja) * 2008-12-17 2010-07-29 Sato Pharmaceutical Co Ltd 崩壊錠
JP2013035798A (ja) * 2011-08-10 2013-02-21 Kyowa Yakuhin Kogyo Kk ピタバスタチンを含有する安定化された薬物組成物
JP2016204260A (ja) * 2013-10-04 2016-12-08 日本曹達株式会社 錠剤の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI429373B (zh) * 2011-11-24 2014-03-01 Wistron Corp 夾持結構及具有夾持結構之可攜式電子裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178183A (ja) * 1998-12-17 2000-06-27 Lion Corp 固形製剤及びその製造方法
JP2010163428A (ja) * 2008-12-17 2010-07-29 Sato Pharmaceutical Co Ltd 崩壊錠
JP2013035798A (ja) * 2011-08-10 2013-02-21 Kyowa Yakuhin Kogyo Kk ピタバスタチンを含有する安定化された薬物組成物
JP2016204260A (ja) * 2013-10-04 2016-12-08 日本曹達株式会社 錠剤の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131411A1 (ja) * 2017-12-27 2019-07-04 物産フードサイエンス株式会社 口腔内崩壊錠用エリスリトール顆粒およびその製造方法ならびにそれを用いた口腔内崩壊錠
JPWO2019131411A1 (ja) * 2017-12-27 2020-12-10 物産フードサイエンス株式会社 口腔内崩壊錠用エリスリトール顆粒およびその製造方法ならびにそれを用いた口腔内崩壊錠
CN114766676A (zh) * 2022-04-24 2022-07-22 安徽东荣堂生物科技有限公司 控制体重的片剂及其制备方法

Also Published As

Publication number Publication date
JPWO2018159673A1 (ja) 2020-01-09
JP7085527B2 (ja) 2022-06-16
US20200000729A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
EP1712583B1 (en) Porous cellulose aggregate and formed product composition comprising the same
JP5240822B2 (ja) 多孔質セルロース凝集体及びその成型体組成物
JP5439366B2 (ja) 偏析防止効果に優れるセルロース粉末及びその組成物
CN101180046B (zh) 含有屈昔多巴的稳定片剂
KR101565621B1 (ko) 저치환도 히드록시프로필셀룰로오스 수분산액을 이용한 습식 조립 타정법
EP3862318A1 (en) Porous silica particle composition
CN101816639B (zh) 一种枸橼酸莫沙必利的片剂及其制备方法
JP5201819B2 (ja) 固形組成物
CN107595789A (zh) 口腔崩解片
CN106255512A (zh) 含有微小纤维状纤维素的崩解性颗粒组合物
CN105456270A (zh) 一种二肽基肽酶ⅳ抑制剂药物组合物、其用途及其制备方法
WO2018159673A1 (ja) エリスリトール顆粒およびその製造方法、ならびにそれを用いた錠剤の製造方法および錠剤
RU2489153C2 (ru) Фармацевтические композиции, включающие пролекарство ингибитора полимеразы hcv
CN107708649A (zh) 易服用性固体制剂(有芯片剂)的制造方法和易服用性固体制剂
JP2006176496A (ja) 固形剤およびその製造方法
CN103690502A (zh) 一种替卡格雷缓释制剂
CN1636553A (zh) 防挥发型固体制剂及其制造方法
JPWO2019131411A1 (ja) 口腔内崩壊錠用エリスリトール顆粒およびその製造方法ならびにそれを用いた口腔内崩壊錠
EP2671569B1 (en) Stable pharmaceutical compositions with fast onset
CN105555316A (zh) 通过二阶段的湿式制粒工序制备的崩解性颗粒组合物及含有该组合物的口腔内崩解片剂
JP2005255619A (ja) 昇華性活性成分および多孔質セルロース粒子含有固形製剤組成物
CN105555262A (zh) 含有崩解性颗粒组合物的口腔内崩解片剂
JP2019129776A (ja) 打錠物及び造粒物
JP2021104973A (ja) 口腔内崩壊錠用顆粒、その製造方法および口腔内崩壊錠
JP2023119660A (ja) 錠剤用基材、錠剤の崩壊促進用組成物、口腔用錠剤の食感および/または食味改良用組成物ならびに錠剤の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761905

Country of ref document: EP

Kind code of ref document: A1