WO2018155005A1 - 電気特性の検査冶具 - Google Patents

電気特性の検査冶具 Download PDF

Info

Publication number
WO2018155005A1
WO2018155005A1 PCT/JP2018/001030 JP2018001030W WO2018155005A1 WO 2018155005 A1 WO2018155005 A1 WO 2018155005A1 JP 2018001030 W JP2018001030 W JP 2018001030W WO 2018155005 A1 WO2018155005 A1 WO 2018155005A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
inspection
flexible sheet
conductive elastomer
sheet
Prior art date
Application number
PCT/JP2018/001030
Other languages
English (en)
French (fr)
Inventor
朋之 石松
博之 熊倉
青木 正治
貴子 久保田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US16/478,846 priority Critical patent/US11402408B2/en
Priority to CN201880011291.0A priority patent/CN110546517B/zh
Priority to KR1020197020594A priority patent/KR102184019B1/ko
Publication of WO2018155005A1 publication Critical patent/WO2018155005A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0491Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets for testing integrated circuits on wafers, e.g. wafer-level test cartridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/20Connectors or connections adapted for particular applications for testing or measuring purposes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0314Elastomeric connector or conductor, e.g. rubber with metallic filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates

Definitions

  • This technology relates to an inspection tool for electrical characteristics of electronic parts such as wafers, chips and packages.
  • This application claims priority on the basis of Japanese Patent Application No. 2017-034459 filed on Feb. 27, 2017 in Japan. This application is incorporated herein by reference. Incorporated.
  • This method makes it possible to inspect before packaging and before 3D mounting.
  • the inspection probe sheet described in Patent Document 2 is difficult to cope with fine pitch because the conductive particles are connected in the in-plane direction when the conductive particles are magnetically oriented in the rubber elastic elastomer resin. .
  • the frame is attached to surround the periphery for the purpose of improving durability, the elastomer resin inside the frame is a substance that easily expands and contracts due to thermal expansion. This may cause inspection failures due to misalignment. In particular, misalignment in a heat cycle test or the like is fatal, and it becomes difficult to cope with further fine pitches in the future.
  • a rubber connector in which a conductive material is arranged in an elastomer resin is difficult to manufacture a connector having a fine pitch.
  • a test connector having a level of 200 ⁇ m P or less is difficult to manufacture. For this reason, the actual situation is that inspection is performed on the assembled package, and as a result, the yield is extremely deteriorated, and the price cannot be reduced.
  • the present technology solves the above-described problems, and provides an electrical property inspection tool capable of inspecting electrical properties even when an oxide film is formed on pads and bumps formed at a fine pitch. .
  • the inventors of the present technology have formed an oxide film on pads and bumps formed at a fine pitch by disposing conductive elastomer in the recesses of the through electrodes formed on the flexible sheet. It was found that the electrical characteristics can be inspected even if it is.
  • the electrical property inspection jig includes a flexible sheet, a through electrode having a recessed portion on one surface of the flexible sheet, and a conductive elastomer disposed in the recessed portion of the through electrode. .
  • the electrical property inspection method includes a flexible sheet on an electrode surface of an inspection object, a through electrode having a recessed portion on one surface of the flexible sheet, and a recessed portion of the through electrode.
  • a test probe sheet provided with the conductive elastomer, a pasting process for contacting the conductive elastomer and the electrode of the test object, and pressing the probe to the through electrode from the other surface of the flexible sheet, And an inspection process for inspecting electrical characteristics.
  • a pad or bump is brought into contact with a conductive elastomer, and a probe is brought into contact with a through electrode, thereby inspecting electrical characteristics even when an oxide film is formed on the pad or bump of an inspection object.
  • This is considered to be an effect that the conductive particles in the conductive elastomer break through the oxide film, or electricity flows through the thin oxide film due to the tunnel effect.
  • FIG. 1 is a cross-sectional view showing an example of an inspection probe sheet according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating an example of a flexible sheet on which a through electrode is formed.
  • FIG. 3 is a cross-sectional view showing an example of an inspection probe sheet according to the second embodiment.
  • FIG. 4 is a cross-sectional view schematically showing an inspection process for inspecting electrical characteristics using the inspection probe sheet according to the first embodiment.
  • FIG. 5 is a cross-sectional view schematically showing an inspection process for inspecting electrical characteristics using the inspection probe sheet according to the second embodiment.
  • An electrical property inspection jig according to the present technology is a so-called inspection probe sheet including a flexible sheet, a through electrode having a recess on one surface of the flexible sheet, and a conductive elastomer disposed in the recess of the through electrode. . Even if an oxide film is formed on the pad or bump of the object to be inspected by bringing the pad or bump into contact with the conductive elastomer and the probe in contact with the through electrode, the conductive particles in the conductive elastomer are oxidized. The electric characteristics can be inspected because electricity flows over the thin oxide film due to the tunnel effect.
  • the conductive elastomer can be formed according to the shape of the pad or bump of the inspection object, and may protrude from one surface of the flexible sheet or may be depressed.
  • FIG. 1 is a cross-sectional view illustrating an example of an inspection probe sheet according to the first embodiment
  • FIG. 2 is a cross-sectional view illustrating an example of a flexible sheet on which a through electrode is formed.
  • the inspection probe sheet 10 according to the first embodiment includes a flexible sheet 11, a through electrode 12 having a recess 12 a on one surface 11 a of the flexible sheet 11, and a conductive elastomer disposed in the recess 12 a of the through electrode 12. 13, and the conductive elastomer 13 protrudes from one surface 11 a of the flexible sheet 11.
  • the flexible sheet 11 is preferably a material having flexibility and insulation, a low thermal expansion coefficient, and high heat resistance.
  • the material for the flexible sheet 11 include polyimide, polyamide, polyethylene naphthalate, biaxially oriented polyethylene terephthalate, and liquid crystal polymer. These materials are preferable because they have better dimensional stability than elastic elastomers, and are particularly difficult to cause poor conduction due to misalignment in a thermal cycle test, and are excellent in durability. Among these, it is preferable to use polyimide having excellent heat resistance.
  • the thickness of the flexible sheet 11 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more because durability is inferior if the thickness is too thin. If the thickness of the flexible sheet 11 is too thick, it becomes difficult to form a through electrode. Therefore, the thickness is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • Each of the through electrodes 12 exists independently, is insulated from the adjacent through electrode, and may be formed in advance according to the position of the pad or bump of the inspection object, and is formed at a predetermined interval. May be.
  • the through electrode 12 is formed in the thickness direction of the flexible sheet 11 and has a recess 12 a that is recessed in one surface of the flexible sheet 11.
  • the depth of the recess 12a is preferably 20 to 80%, more preferably 40 to 80%, and still more preferably 60 to 80% of the thickness of the flexible sheet 11.
  • the surface of the recess 12a of the through electrode 12 is preferably plated with Ni / Au plating, Ni / Pd plating, Ni / Pd / Au plating, etc., and covered with a metal plating film.
  • the through electrode 12 preferably has a protruding portion 12 b protruding on the other surface of the flexible sheet 11. Thereby, the diameter of the wire probe tip can be made larger than the diameter of the through electrode 12.
  • the through electrode 12 is made of a conductive metal or alloy, and is preferably made of a metal or alloy such as copper or nickel.
  • the through electrode 12 preferably has a so-called “tapered shape” in which the diameter increases from one surface 11 a of the flexible sheet 11 toward the other surface 11 b. This makes it possible to make the diameter of the tip of the wire probe larger than the size of the pad or bump of the inspection object.
  • the conductive elastomer 13 protrudes from one surface 11 a of the flexible sheet 11. If the protruding height of the conductive elastomer 13 is too low, the amount of movement when the inspection probe sheet 10 is pushed down becomes small, and it becomes difficult to follow the variation in the height of the pads and bumps. For this reason, the protrusion height of the conductive elastomer 13 is preferably 50% or more of the average particle diameter of the conductive particles, more preferably 100% or more, and further preferably 150% or more.
  • the protrusion part will bend if the protrusion height of the conductive elastomer 13 is too high, it is preferably 400% or less, more preferably 300% or more, and further preferably 250% or less of the average particle diameter of the conductive particles. It is.
  • the conductive elastomer 13 has conductivity by dispersing conductive particles in an elastic resin.
  • the elastic resin only needs to have rubber elasticity and preferably has heat resistance.
  • a preferable example of the elastic resin is a silicone resin because it is preferable that the pad or bump does not have a residue as much as possible after the inspection. As a result, it becomes possible to follow variations in the height of pads and bumps in the semiconductor wafer or chip surface.
  • the conductive particles are chained from the through electrode 12, and the endmost part is exposed from the outermost surface of the elastic resin, and the endmost part and the through electrode 12 on the other surface of the flexible sheet 11 are electrically connected. It is connected to the.
  • the conductive particles only need to have conductivity, and it is preferable to use magnetic metal particles such as nickel, cobalt, iron, etc., or particles obtained by plating a magnetic metal on resin cores or inorganic core particles.
  • the conductive particles may be plated with Ni / Au plating, Ni / Pd plating, Ni / Pd / Au plating, etc., and covered with a metal plating film.
  • a magnetic field is applied when the conductive elastomer 13 is filled in the recesses of the through electrodes 12 so that the conductive particles are easily chained to form the elastic resin surface layer from the through electrodes 12. It is possible to connect to the conductive particles in the conductive layer and establish electrical conduction.
  • the shape of the conductive particles may be spherical, polygonal, or spiked.
  • the shape of the conductive particles is a polygon or a spike, it is possible to more easily break through the oxide film of the pad or bump of the inspection object.
  • FIG. 3 is a cross-sectional view showing an example of an inspection probe sheet according to the second embodiment.
  • the inspection probe sheet 20 according to the second embodiment includes a flexible sheet 21, a through electrode 22 having a recess on one surface 21a of the flexible sheet 21, and a conductive elastomer 23 disposed in the recess of the through electrode.
  • the conductive elastomer 23 is recessed from the one surface 21 a of the flexible sheet 21. If the recessed depth of the conductive elastomer 23 is too shallow, it will be difficult to align the bump, and if it is too deep, it will not reach the bump. Therefore, it is preferably 10% to 90% of the bump height, more preferably It is 15% or more and 70% or less, more preferably 20% or more and 50% or less.
  • the materials of the flexible sheet 21, the through electrode 22, and the conductive elastomer 23 are the flexible sheet 11 and the through electrode of the inspection probe sheet 10 according to the second embodiment. 12 and the conductive elastomer 13, the description thereof is omitted here.
  • a through hole is formed in a flexible sheet by laser processing, and a through electrode is half-formed in the through hole by electrolytic plating to form a recess. Further, it is preferable that the through electrode and the side surface of the concave portion are plated with Ni / Au plating, Ni / Pd plating, Ni / Pd / Au plating or the like and covered with a metal plating film.
  • the conductive particles contain a magnetic metal
  • the conductive elastomer when the conductive elastomer is filled in the recesses of the through electrodes, the conductive particles are easily linked to each other from the through electrodes to the conductive particles on the elastic resin surface layer. It can be connected and conductive.
  • inspection with which the electroconductive elastomer was filled in the recessed part of the penetration electrode can be obtained.
  • the electrical property inspection method to which the present technology is applied includes a flexible sheet on the electrode surface of the inspection object, a through electrode having a recessed portion on one surface of the flexible sheet, and a conductive material disposed in the recessed portion of the through electrode. Attaching a test probe sheet comprising a conductive elastomer, bringing the conductive elastomer into contact with the electrode of the test object (A), pressing the probe against the through electrode from the other surface of the flexible sheet, And an inspection step (B) for inspecting. Thereby, even when the oxide film is formed on the pad or bump of the inspection object, the conductive particles in the conductive elastomer break through the oxide film, so that the electrical characteristics can be inspected.
  • An example of the inspection object is a semiconductor device.
  • the semiconductor device may be any of a wafer level formed on a wafer, an individual chip level, and a package level after packaging.
  • a sticking step (A), an inspection step (B), and a peeling step (C) for peeling the inspection probe sheet from the semiconductor device after the inspection step will be described.
  • the inspection probe sheet is the same as the above-described inspection probe sheet, the description thereof is omitted here.
  • an inspection probe sheet is attached to the electrode surface of the inspection object, and the conductive elastomer is brought into contact with the electrode of the inspection object.
  • FIG. 4 is a cross-sectional view schematically showing an inspection process for inspecting electrical characteristics using the inspection probe sheet according to the first embodiment
  • FIG. 5 is an inspection probe according to the second embodiment. It is sectional drawing which shows typically the test process which test
  • the wire probe 50 in the inspection step (B), is pressed against the through electrodes 12 and 22 from the other surfaces 10b and 20b of the flexible sheets 10 and 20, and the electrical characteristics are inspected. Even when the wire probe 50 is pressed, it is considered that the conductive particles in the conductive elastomer break through the oxide film of the pad or bump.
  • the probe 50 is a probe for inspecting electrical characteristics, and is preferably set perpendicular to the electrode surface of the through electrode as shown in FIGS.
  • the probe 50 may be arranged with a plurality of pins.
  • the tip shape of the probe 50 is not particularly limited, and may be a spherical surface, a flat surface, a concave surface, a sawtooth surface, or the like.
  • the tip diameter of the probe 50 is preferably smaller than the width of the electrode when the electrode of the through electrode does not protrude. However, when the electrode of the through electrode protrudes, the tip diameter of the probe 50 is larger than the width of the electrode without causing a short circuit with the adjacent electrode It doesn't matter.
  • the inspection of electrical characteristics is performed by measuring characteristics of, for example, a transistor, a resistor (electric resistance), and a capacitor.
  • the inspection probe sheet is peeled from the inspection object. Further, the inspection object may be washed after the inspection probe sheet is peeled off.
  • the peeled inspection probe sheet can be used a plurality of times. ⁇ 3. Example>
  • a sheet of copper laminated on both sides of a polyimide sheet (trade name: Esperflex, copper thickness 8 ⁇ m, polyimide thickness 25 ⁇ m, manufactured by Sumitomo Metal Mining Co., Ltd.) laser-processed through holes with a diameter of 30 ⁇ m at a grid interval of 60 ⁇ mP. Then, a through electrode by copper plating was formed in the through hole by electrolytic plating. The through electrode was half-formed in which a concave portion of a 15 ⁇ m groove was formed in the thickness direction from the sheet surface. Next, after plating with nickel and gold, a flexible sheet was created by removing the copper layers on the front and back surfaces by etching. The nickel gold plating was also formed on the polyimide surface on the side of the recess.
  • Conductive particles were produced by applying a gold plating layer to the surface of nickel particles (Type 123, manufactured by Vale) having an average particle diameter of 5 ⁇ m by electroless displacement plating.
  • nickel particles Type 123, manufactured by Vale
  • a two-part liquid silicone KE-1204A / B, manufactured by Shin-Etsu Silicone Co.
  • conductive particles are mixed into this to prepare a conductive elastomer dispersion. Obtained.
  • Table 1 shows the presence or absence of scratches on the aluminum pad after the continuity test and the continuity resistance value.
  • the scratches on the aluminum pad could not be confirmed visually, and a continuity test could be performed. This is considered to be because the conductive particles in the conductive elastomer broke through the oxide film of the aluminum pad.
  • Example 1 In the continuity test of Example 1, the continuity test was performed by contacting the wire probe directly to the aluminum pad of the bare chip for evaluation with a load of 5 g / pin without using the test probe sheet.
  • Table 1 shows the presence or absence of scratches on the aluminum pad after the continuity test and the continuity resistance value. The scratches on the aluminum pad could not be confirmed visually, and the continuity test could not be performed. This is presumably because the wire probe could not break through the oxide film on the aluminum pad.
  • Table 1 shows the presence or absence of scratches on the aluminum pad after the continuity test and the continuity resistance value.
  • the scratches on the aluminum pad could be confirmed by visual inspection, and a continuity test could be performed. This is presumably because the oxide film was removed by scratching the aluminum pad with wire pins in advance.
  • Conductive particles were produced by applying a gold plating layer to the surface of Ni / Au plated resin core particles (manufactured by Sekisui Chemical Co., Ltd.) having an average particle diameter of 2.5 ⁇ m by electroless displacement plating.
  • a two-part liquid silicone KE-1204A / B, manufactured by Shin-Etsu Silicone Co.
  • conductive particles are mixed into this to prepare a conductive elastomer dispersion. Obtained.
  • solder bumps copper pillar bumps with solder caps (hereinafter referred to as solder bumps) having a height of 20 ⁇ m and 30 ⁇ m ⁇ are arranged at 60 ⁇ mP as an evaluation bare chip
  • solder bumps copper pillar bumps with solder caps
  • a 30 ⁇ m ⁇ wire probe manufactured by Tespro Corporation
  • Tespro Corporation solder caps
  • Table 2 shows the presence or absence of scratches on the solder bumps after the continuity test and the continuity resistance value.
  • the scratches on the solder bumps could not be confirmed visually, and a continuity test could be performed. This is considered to be because the conductive particles in the conductive elastomer broke through the oxide film of the solder bump.
  • Table 2 shows the presence or absence of scratches on the solder bumps after the continuity test and the continuity resistance value. The scratches on the solder bumps could not be confirmed visually, and the continuity test could not be performed. This is probably because the wire bump could not break through the oxide film of the solder bump.
  • Table 2 shows the presence or absence of scratches on the solder bumps after the continuity test and the continuity resistance value.
  • the scratches on the solder bumps could be confirmed by visual observation, and a continuity test could be performed. This is presumably because the solder bump was scratched with a wire pin in advance to remove the oxide film.
  • inspection probe sheet 11 flexible sheet, 11a one surface, 11b other surface, 12 through electrode, 12a recess, 12b protrusion, 13 conductive elastomer, 20 inspection probe sheet, 21 flexible sheet, 21a one surface, 21b The other side, 22 through electrode, 22a recess, 22b protrusion, 23 conductive elastomer, 30 semiconductor device, 40 semiconductor device, 50 wire probe

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Connecting Device With Holders (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

ファインピッチに形成されたパッドやバンプに酸化膜が形成されている場合でも、電気特性を検査することができる電気特性の検査冶具を提供する。電気特性の検査冶具は、フレキシブルシート(11)と、フレキシブルシート(11)の一方の面(11a)に凹部(12a)を有する貫通電極(12)と、貫通電極(12)の凹部(12a)に配置された導電性エラストマー(13)とを備える。導電性エラストマーにパッドやバンプを接触させ、貫通電極(12)にプローブを接触させることにより、検査対象物のパッドやバンプに酸化膜が形成されている場合でも導電性エラストマー(13)中の導電性粒子が酸化膜を突き破るため、電気特性を検査することができる。

Description

電気特性の検査冶具
 本技術は、ウェハ、チップ、パッケージ等の電子部品の電気特性の検査冶具に関する。本出願は、日本国において2017年2月27日に出願された日本特許出願番号特願2017-034459を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 現在、ウェハレベルでの半導体装置の電気特性評価は、プローブカードを用いて、ウェハの表面や裏面に形成された導電パッドやバンプに、直接プローブを接触させて実施している(例えば、特許文献1参照。)。
 この方法によれば、パッケージ前や三次元実装前の検査が可能となる。
 しかしながら、ウェハのパッド表面の酸化膜を除去するために、表面に傷を付けてプローブ検査を実施するため、検査合格品を実装した後になって、検査に起因する損傷により不合格品を発生させる場合がある。またパッドサイズが小さくなるにつれて、バンプ形成や実装時の不具合の原因となる検査時の傷の影響が大きくなる。特に近年では、半導体チップのファインピッチ化がますます進行していることから、検査時の傷はますます大きな問題となる。
 ベアチップやパッケージについては、ラバーコネクターを用いたハンドラーテストが行われている。検査プローブシートとなるラバーコネクターとしては、例えば、磁場配向させた導電性粒子を、エラストマーシートの厚み方向に貫通するよう配置した異方導電性シートが提案されている(例えば、特許文献2参照。)。
 特許文献2に記載された検査プローブシートは、ゴム弾性エラストマー樹脂中に導電性粒子を磁場配向させる際に面内方向に導電性粒子が連結してしまうため、ファインピッチへの対応が困難である。また、耐久性を向上させる目的で周囲を取り囲むようにフレームが付いているものの、フレーム内側のエラストマー樹脂は熱膨張により伸縮しやすい物質であるため、耐久性の低下の問題や、接点ズレに(位置ズレ)よる検査不具合の原因となる。特に、ヒートサイクル試験などにおける位置ズレは致命的であり、今後のさらなるファインピッチ化においては、対応が困難となる。
 また、一般にエラストマー樹脂中に導電性物質を配置するラバーコネクターは、ファインピッチとなるコネクターの製造は困難であり、例えば、200μmP以下レベルの検査用コネクターは製造困難な状況にある。このため、組立て後のパッケージに対して検査を実施しているのが実情であり、結果として歩留まりが極端に悪化し、価格を低減できない要因ともなっている。
特開2009-042008号公報 特開2006-024580号公報
 本技術は、前述した課題を解決するものであり、ファインピッチに形成されたパッドやバンプに酸化膜が形成されている場合でも、電気特性を検査することができる電気特性の検査冶具を提供する。
 本技術の発明者らは、鋭意検討を行った結果、フレキシブルシートに形成された貫通電極の凹部に導電性エラストマーを配置することにより、ファインピッチに形成されたパッドやバンプに酸化膜が形成されている場合でも、電気特性を検査可能であることを見出した。
 すなわち、本技術に係る電気特性の検査冶具は、フレキシブルシートと、前記フレキシブルシートの一方の面に、陥没した凹部を有する貫通電極と、前記貫通電極の凹部に配置された導電性エラストマーとを備える。
 また、本技術に係る電気特性の検査方法は、検査対象物の電極面に、フレキシブルシートと、前記フレキシブルシートの一方の面に、陥没した凹部を有する貫通電極と、前記貫通電極の凹部に配置された導電性エラストマーとを備える検査プローブシートを貼り付け、前記導電性エラストマーと前記検査対象物の電極とを接触させる貼付工程と、前記フレキシブルシートの他方の面から貫通電極にプローブを押し当て、電気特性を検査する検査工程とを有する。
 本技術によれば、導電性エラストマーにパッドやバンプを接触させ、貫通電極にプローブを接触させることにより、検査対象物のパッドやバンプに酸化膜が形成されている場合でも、電気特性を検査することができる。これは、導電性エラストマー中の導電性粒子が酸化膜を突き破ったり、トンネル効果により薄い酸化膜を越えて電気が流れたりする効果であると考えられる。
図1は、第1の実施の形態に係る検査プローブシートの一例を示す断面図である。 図2は、貫通電極を形成したフレキシブルシートの一例を示す断面図である。 図3は、第2の実施の形態に係る検査プローブシートの一例を示す断面図である。 図4は、第1の実施の形態に係る検査プローブシートを用いて、電気特性を検査する検査工程を模式的に示す断面図である。 図5は、第2の実施の形態に係る検査プローブシートを用いて、電気特性を検査する検査工程を模式的に示す断面図である。
 以下、本技術の実施の形態について、下記順序にて詳細に説明する。
 1.電気特性の検査冶具
 2.電気特性の検査方法
 3.半導体装置の製造方法
 <1.電気特性の検査冶具>
 本技術に係る電気特性の検査冶具は、フレキシブルシートと、フレキシブルシートの一方の面に凹部を有する貫通電極と、貫通電極の凹部に配置された導電性エラストマーとを備える、いわゆる検査プローブシートである。導電性エラストマーにパッドやバンプを接触させ、貫通電極にプローブを接触させることにより、検査対象物のパッドやバンプに酸化膜が形成されている場合でも、導電性エラストマー中の導電性粒子が酸化膜を突き破ったり、トンネル効果により薄い酸化膜を越えて電気が流れたりするため、電気特性を検査することができる。
 導電性エラストマーは、検査対象物のパッドやバンプの形状に合わせて成形することができ、フレキシブルシートの一方の面から突出しても、陥没していてもよい。
 [第1の実施の形態]
 図1は、第1の実施の形態に係る検査プローブシートの一例を示す断面図であり、図2は、貫通電極を形成したフレキシブルシートの一例を示す断面図である。第1の実施の形態に係る検査プローブシート10は、フレキシブルシート11と、フレキシブルシート11の一方の面11aに凹部12aを有する貫通電極12と、貫通電極12の凹部12aに配置された導電性エラストマー13とを備え、導電性エラストマー13が、フレキシブルシート11の一方の面11aから突出している。
 フレキシブルシート11は、可撓性及び絶縁性を有し、熱膨張係数が低く、耐熱性が高い材料であることが好ましい。フレキシブルシート11の材料としては、例えば、ポリイミド、ポリアミド、ポリエチレンナフタレート、二軸配向型ポリエチレンテレフタレート、液晶ポリマーなどが挙げられる。これらの材料は、弾性エラストマー比べ、寸法安定性が良く、特に熱サイクル試験において位置ズレによる導通不良が起き難く、耐久性にも優れるため好ましい。中でも、優れた耐熱性を有するポリイミドを用いることが好ましい。
 フレキシブルシート11の厚みは、薄過ぎると耐久性が劣るため、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上である。フレキシブルシート11の厚みは、厚過ぎると貫通電極の形成が困難となるため、好ましくは500μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下である。
 貫通電極12は、個々が独立して存在しており、隣の貫通電極と絶縁されており、予め検査対象物のパッドやバンプの位置に合わせて形成されていてもよく、所定の間隔で形成されていてもよい。
 貫通電極12は、フレキシブルシート11の厚み方向に形成され、フレキシブルシー卜11の一方の面に陥没した凹部12aを有する。凹部12aの深さは、好ましくはフレキシブルシート11の厚みの20~80%、より好ましくは40~80%、さらに好ましくは60~80%である。これにより、導電性エラストマー13の厚みを増大させることができるため、検査プローブシート10を押し下げたときの移動量を増大させることができ、パッドやバンプの高さのばらつきに対して追従させることができる。
 また、貫通電極12の凹部12aの表面は、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキなどでメッキ処理され、金属メッキ膜で被覆されていることが好ましい。これにより、凹部12aによるアンカー効果などにより導電性エラストマー13との密着性を向上させ、耐久性を向上させることができるとともに、導電性エラストマー13との導電性を向上させることができる。
 貫通電極12は、フレキシブルシー卜11の他方の面に突出した凸部12bを有することが好ましい。これにより、ワイヤープローブ先端の直径を貫通電極12の直径より大きくすることが可能となる。
 貫通電極12は、導電性を有する金属又は合金で構成され、中でも、銅、ニッケルなどの金属又は合金で構成されることが好ましい。また、貫通電極12は、フレキシブルシート11の一方の面11aから他方の面11bに向かって直径が増加する、いわゆる「テーパ形状」を有することが好ましい。これにより、ワイヤープローブ先端の直径を検査対象物のパッドやバンプのサイズより大きくすることが可能となる。
 導電性エラストマー13は、フレキシブルシート11の一方の面11aから突出している。導電性エラストマー13の突出高さは、低すぎると検査プローブシート10を押し下げたときの移動量が小さくなり、パッドやバンプの高さのばらつきに対して追従させることが困難となる。このため、導電性エラストマー13の突出高さは、好ましくは導電性粒子の平均粒子径の50%以上、より好ましくは100%以上、さらに好ましくは150%以上である。また、導電性エラストマー13の突出高さは、高すぎると突出部が折れてしまうため、好ましくは導電性粒子の平均粒子径の400%以下、より好ましくは300%以上、さらに好ましくは250%以下である。
 導電性エラストマー13は、弾性樹脂に導電性粒子が分散され、導電性を有する。弾性樹脂は、ゴム弾性を有すればよく、耐熱性を有することが好ましい。弾性樹脂の好ましい例としては、検査後にパッドやバンプに極力残渣が付かないものが好ましいことから、シリコーン樹脂が挙げられる。これにより、半導体ウェハやチップ面内のパッドやバンプの高さのばらつきに対して追従させることが可能となる。
 導電性粒子は、貫通電極12から連鎖し、最端部が弾性樹脂の最表面から露出した状態となっており、最端部とフレキシブルシー卜11の他方の面の貫通電極12とが電気的に接続されている。
 導電性粒子は、導電性を有すればよく、ニッケル、コバルト、鉄などの磁性金属粒子、樹脂コアや無機コア粒子に磁性金属がメッキされた粒子を用いることが好ましい。また、導電性粒子は、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキなどでメッキ処理され、金属メッキ膜で被覆されていてもよい。導電性粒子が磁性金属を含有する場合、導電性エラストマー13を貫通電極12の凹部に充填する際に磁場を印加することにより、容易に導電性粒子同士が連鎖して貫通電極12から弾性樹脂表層にある導電性粒子まで連結し、導通をとることができる。
 導電性粒子の平均粒子径は、小さいほど微小なパッドやバンプに対応することができるため、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。
 導電性粒子の形状は、球形であってもよく、多角形、スパイク状であってもよい。導電性粒子の形状が、多角形やスパイク状である場合、より容易に検査対象物のパッドやバンプの酸化膜を突き破ることが可能となる。
 [第2の実施の形態]
 図3は、第2の実施の形態に係る検査プローブシートの一例を示す断面図である。第2の実施の形態に係る検査プローブシート20は、フレキシブルシート21と、フレキシブルシート21の一方の面21aに凹部を有する貫通電極22と、貫通電極の凹部に配置される導電性エラストマー23とを備え、導電性エラストマー23が、フレキシブルシート21の一方の面21aから陥没している。導電性エラストマー23の陥没深さは、浅すぎるとバンプに位置合わせすることが困難となり、深すぎるとバンプに届かなくなってしまうため、好ましくはバンプ高さの10%以上90%以下、より好ましくは15%以上70%以下、さらに好ましくは20%以上50%以下である。
 第2の実施の形態に係る検査プローブシート20において、フレキシブルシート21、貫通電極22、及び導電性エラストマー23の材料は、第2の実施の形態に係る検査プローブシート10のフレキシブルシート11、貫通電極12、及び導電性エラストマー13と同様であるため、ここでは説明を省略する。
 [検査プローブシートの製造方法]
 次に、検査プローブシートの製造方法について、説明する。先ず、フレキシブルシートに、レーザー加工にて貫通穴を形成し、電解メッキにて貫通穴に貫通電極をハーフ形成し、凹部を形成する。また、貫通電極及び凹部側面をNi/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキなどでメッキ処理し、金属メッキ膜で被覆することが好ましい。
 次に、微量ディスペンサーを用いて、フレキシブルシートの一方の面の貫通電極の凹部側に、導電性エラストマー分散液を均等に塗布し、フレキシブルシートの一方の面の貫通電極の下側から磁場を印加する。これにより、導電性粒子が磁性金属を含有する場合、導電性エラストマーを貫通電極の凹部に充填する際に、容易に導電性粒子同士が連鎖して貫通電極から弾性樹脂表層にある導電性粒子まで連結し、導通をとることができる。
 次に、磁場を印加して導電性粒子を固定した状態で温度100~200℃のオーブン中で0.5~3時間硬化させ、さらに温度150~250℃で1~4時間硬化させる。これにより、導電性エラストマーが貫通電極の凹部に充填された検査用プローブシートを得ることができる。
 <2.電気特性の検査方法>
 本技術を適用した電気特性の検査方法は、検査対象物の電極面に、フレキシブルシートと、フレキシブルシートの一方の面に、陥没した凹部を有する貫通電極と、貫通電極の凹部に配置された導電性エラストマーとを備える検査プローブシートを貼り付け、導電性エラストマーと検査対象物の電極とを接触させる貼付工程(A)と、フレキシブルシートの他方の面から貫通電極にプローブを押し当て、電気特性を検査する検査工程(B)とを有する。これにより、検査対象物のパッドやバンプに酸化膜が形成されている場合でも、導電性エラストマー中の導電性粒子が酸化膜を突き破るため、電気特性を検査することができる。
 検査対象物の一例としては、半導体装置が挙げられる。半導体装置は、ウェハ上に形成されたウェハレベル、個片化されたチップレベル、パッケージ後のパッケージレベルのいずれのものでもよい。以下では、半導体装置のチップレベルでの電気特性の検査方法について、貼付工程(A)、検査工程(B)及び、検査工程後に半導体装置から検査プローブシートを剥離する剥離工程(C)を説明する。なお、検査プローブシートは、前述した検査プローブシートと同様であるため、ここでは説明を省略する。
 [貼付工程(A)]
 貼付工程(A)では、検査対象物の電極面に、検査プローブシートを貼り付け、導電性エラストマーと検査対象物の電極と接触させる。また、貼付工程(A)では、検査プローブシートを押圧することが好ましい。これにより、検査対象物のパッドやバンプに酸化膜が形成されている場合でも導電性エラストマー中の導電性粒子が酸化膜を突き破るため、電気特性を検査することができる。
 [検査工程(B)]
 図4は、第1の実施の形態に係る検査プローブシートを用いて、電気特性を検査する検査工程を模式的に示す断面図であり、図5は、第2の実施の形態に係る検査プローブシートを用いて、電気特性を検査する検査工程を模式的に示す断面図である。
 図4、5に示すように、検査工程(B)では、フレキシブルシート10、20の他方の面10b、20bから貫通電極12、22にワイヤープローブ50を押し当て、電気特性を検査する。ワイヤープローブ50を押し当てた際も導電性エラストマー中の導電性粒子がパッドやバンプの酸化膜を突き破るものと考えられる。
 プローブ50は、電気特性を検査するための探針であり、図4、5に示すように貫通電極の電極面に対し垂直に立てることが好ましい。プローブ50は、複数のピンが配列されていてもよい。プローブ50の先端形状は、特に限定されず、球面、平面、凹面、鋸歯面などであってもよい。プローブ50の先端径は、貫通電極の電極が突出していない場合、電極の幅より小さいことが好ましいが、貫通電極の電極が突出している場合は、隣接電極にショートしない範囲で電極の幅より大きくても構わない。
 電気特性の検査は、例えばトランジスタ、抵抗(電気抵抗)、コンデンサなどの特性を測定することにより行われる。
 [剥離工程(C)]
 剥離工程(C)では、検査対象物から検査プローブシートを剥離する。また、検査プローブシートの剥離後に検査対象物を洗浄してもよい。また、剥離した検査プローブシートは、複数回使用することが可能である。
 <3.実施例>
 以下、本発明の実施例について説明する。本実施例では、電気特性の検査冶具を作製し、これを用いてベアチップの導通検査を行った。そして、導通検査後のパッド傷の有無を評価した。なお、本発明は、これらの実施例に限定されるものではない。
 <実施例1>
 [貫通電極を有するフレキシブルシートの作製]
 ポリイミドシートの両面に銅が積層されたシート(商品名:エスパーフレックス、銅厚8μm、ポリイミド厚25μm、住友金属鉱山社製)に、レーザー加工にて直径30μmの貫通穴を60μmPの格子状間隔で形成し、電解メッキにて貫通穴に銅メッキによる貫通電極を形成した。貫通電極は、シート表面から厚み方向に15μmの溝の凹部が形成されるハーフ形成とした。次に、ニッケルと金によるメッキ加工を行った後に、表裏の銅層をエッチングで除去することで、フレキシブルシートを作成した。なお、ニッケル金メッキは、凹部側面のポリイミド表面にも形成した。
 [導電性エラストマー分散液の調製]
 平均粒子径5μmのニッケル粒子(Type123、Vale社製)の表面に、無電解による置換メッキによって金メッキ層を施すことにより、導電性粒子を作製した。エラストマーとして、2液型液状シリコーン(KE-1204A/B、信越シリコーン社製)のA剤とB剤を1:1で配合し、これに導電性粒子を混合して、導電性エラストマー分散液を得た。
 [検査プローブシートの作製]
 微量ディスペンサー(武蔵エンジニアリング社製)を用いて、フレキシブルシートの貫通電極の凹部側に、導電性エラストマーがシート表面から10μm突き出るように導電性エラストマー分散液を均等に塗布した。永久磁石上に塗布面を上にしてフレキシブルシートを置き、固定した状態で温度160℃のオーブン中で1時間硬化させ、さらに温度200℃で2時間硬化させた。これにより、導電性エラストマーがフレキシブルシートの表面から10μm突出した検査用プローブシートを作製した。
 [導通検査]
 評価用ベアチップとして、直径30μmのアルミパッドが60μmPで配列された6mm角のベアチップ(デクセリアルズ評価基材)を用いて、30μmφのワイヤープローブ(テスプロ社製)を用いて、導通抵抗検査を行った。より具体的には、図2に示すように、評価用ペアチップの回路面と、検査プローブシートの導電性エラストマー面を位置合わせした状態で押圧し、検査プローブシートの電極面にワーヤープローブを荷重5g/pinで接触させ、導通検査を行った。
 表1に、導通検査後のアルミパッドの傷の有無、及び導通抵抗値を示す。アルミパッドの傷は、目視により確認できず、導通検査を行うことができた。これは、導電性エラストマー中の導電性粒子がアルミパッドの酸化膜を突き破ったためであると考えられる。
 <比較例1>
 実施例1の導通検査において、検査プローブシートを用いずに、評価用ベアチップのアルミパッドに直接ワイヤープローブを荷重5g/pinで接触させ、導通検査を行った。
 表1に、導通検査後のアルミパッドの傷の有無、及び導通抵抗値を示す。アルミパッドの傷は、目視により確認できず、導通検査を行うことができなかった。これは、ワイヤープローブではアルミパッドの酸化膜を突き破ることができなかったためであると考えられる。
 <比較例2>
 実施例1の導通検査において、検査プローブシートを用いずに、評価用ベアチップのアルミパッドをワイヤーピンで傷付けた後、アルミパッドに直接ワイヤープローブを荷重5g/pinで接触させ、導通検査を行った。
 表1に、導通検査後のアルミパッドの傷の有無、及び導通抵抗値を示す。アルミパッドの傷は、目視により確認でき、導通検査を行うことができた。これは、予めワイヤーピンでアルミパッドを傷付けて酸化膜を除去したためであると考えられる。
Figure JPOXMLDOC01-appb-T000001

 
 <実施例2>
 [貫通電極を有するフレキシブルシートの作製]
 実施例1と同様にして、貫通電極を有するフレキシブルシートを作製した。
 [導電性エラストマー分散液の調製]
 平均粒子径2.5μmのNi/Auメッキ樹脂コア粒子(積水化学工業社製)の表面に、無電解による置換メッキによって金メッキ層を施すことにより、導電性粒子を作製した。エラストマーとして、2液型液状シリコーン(KE-1204A/B、信越シリコーン社製)のA剤とB剤を1:1で配合し、これに導電性粒子を混合して、導電性エラストマー分散液を得た。
 [検査プローブシートの作製]
 微量ディスペンサー(武蔵エンジニアリング社製)を用いて、フレキシブルシートの貫通電極の凹部側に、導電性エラストマーがシート表面から5μm陥没するように導電性エラストマー分散液を均等に塗布した。電磁石上に塗布面を上にしてフレキシブルシートを置き、固定した状態で温度160℃のオーブン中で1時間硬化させ、さらに温度200℃で2時間硬化させた。これにより、導電性エラストマーがフレキシブルシートの表面から5μm陥没した検査用プローブシートを作製した。
 [導通検査]
 評価用ベアチップとして、高さ20μm、30μmφの半田キャップ付銅ピラーバンプ(以下、半田バンプ)が60μmPで配列された6mm角のベアチップ(デクセリアルズ評価基材)を用いて、30μmφのワイヤープローブ(テスプロ社製)を用いて、導通抵抗検査を行った。より具体的には、図3に示すように、評価用ペアチップの回路面と、検査プローブシートの導電性エラストマー面を位置合わせした状態で押圧し、検査プローブシートの電極面にワイヤープローブを荷重5g/pinで接触させ、導通検査を行った。
 表2に、導通検査後の半田バンプの傷の有無、及び導通抵抗値を示す。半田バンプの傷は、目視により確認できず、導通検査を行うことができた。これは、導電性エラストマー中の導電性粒子が半田バンプの酸化膜を突き破ったためであると考えられる。
 <比較例3>
 実施例2の導通検査において、検査プローブシートを用いずに、評価用ベアチップの半田バンプに直接ワイヤープローブを荷重5g/pinで接触させ、導通検査を行った。
 表2に、導通検査後の半田バンプの傷の有無、及び導通抵抗値を示す。半田バンプの傷は、目視により確認できず、導通検査を行うことができなかった。これは、ワイヤーブプーブでは半田バンプの酸化膜を突き破ることができなかったためであると考えられる。
 <比較例4>
 実施例2の導通検査において、検査プローブシートを用いずに、評価用ベアチップの半田バンプをワイヤーピンで傷付けた後、半田バンプに直接ワイヤープローブを荷重5g/pinで接触させ、導通検査を行った。
 表2に、導通検査後の半田バンプの傷の有無、及び導通抵抗値を示す。半田バンプの傷は、目視により確認でき、導通検査を行うことができた。これは、予めワイヤーピンで半田バンプを傷付けて酸化膜を除去したためであると考えられる。
Figure JPOXMLDOC01-appb-T000002
 10 検査プローブシート、11 フレキシブルシート、11a 一方の面、11b 他方の面、12 貫通電極、12a 凹部、12b 凸部、13 導電性エラストマー、20 検査プローブシート、21 フレキシブルシート、21a 一方の面、21b 他方の面、22 貫通電極、22a 凹部、22b 凸部、23 導電性エラストマー、30 半導体装置、40 半導体装置、50 ワイヤープローブ

Claims (8)

  1.  フレキシブルシートと、
     前記フレキシブルシートの一方の面に、陥没した凹部を有する貫通電極と、
     前記貫通電極の凹部に配置された導電性エラストマーと
     を備える電気特性の検査冶具。
  2.  前記導電性エラストマーが、前記フレキシブルシートの一方の面から突出している請求項1記載の電気特性の検査冶具。
  3.  前記導電性エラストマーが、前記フレキシブルシートの一方の面から陥没している請求項1記載の電気特性の検査冶具。
  4.  前記貫通電極が、前記フレキシブルシートの他方の面に突出した凸部を有する請求項1記載の電気特性の検査冶具。
  5.  前記貫通電極の凹部表面が、金属メッキ膜で被覆されている請求項1記載の電気特性の検査冶具。
  6.  検査対象物の電極面に、フレキシブルシートと、前記フレキシブルシートの一方の面に、陥没した凹部を有する貫通電極と、前記貫通電極の凹部に配置された導電性エラストマーとを備える検査プローブシートを貼り付け、前記導電性エラストマーと前記検査対象物の電極とを接触させる貼付工程と、
     前記フレキシブルシートの他方の面から貫通電極にプローブを押し当て、電気特性を検査する検査工程と
     を有する電気特性の検査方法。
  7.  前記検査工程後に、前記検査対象物から前記検査プローブシートを剥離する剥離工程をさらに有する請求項6記載の電気特性の検査方法。
  8.  前記検査対象物が、半導体装置である請求項6又は7記載の電気特性の検査方法。
PCT/JP2018/001030 2017-02-27 2018-01-16 電気特性の検査冶具 WO2018155005A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/478,846 US11402408B2 (en) 2017-02-27 2018-01-16 Electrical characteristics inspection tool
CN201880011291.0A CN110546517B (zh) 2017-02-27 2018-01-16 电特性的检查夹具
KR1020197020594A KR102184019B1 (ko) 2017-02-27 2018-01-16 전기 특성의 검사 지그

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034459A JP6918518B2 (ja) 2017-02-27 2017-02-27 電気特性の検査冶具
JP2017-034459 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155005A1 true WO2018155005A1 (ja) 2018-08-30

Family

ID=63252611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001030 WO2018155005A1 (ja) 2017-02-27 2018-01-16 電気特性の検査冶具

Country Status (6)

Country Link
US (1) US11402408B2 (ja)
JP (1) JP6918518B2 (ja)
KR (1) KR102184019B1 (ja)
CN (1) CN110546517B (ja)
TW (1) TWI783971B (ja)
WO (1) WO2018155005A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106754A1 (ja) * 2019-11-26 2021-06-03 デクセリアルズ株式会社 プローブシート及びプロープシートの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700100522A1 (it) * 2017-09-07 2019-03-07 Technoprobe Spa Elemento di interfaccia per un’apparecchiatura di test di dispositivi elettronici e relativo metodo di fabbricazione
US20210251086A1 (en) * 2018-11-05 2021-08-12 Nok Corporation Manufacturing method of conductive member
WO2020105206A1 (ja) * 2018-11-22 2020-05-28 株式会社村田製作所 伸縮性配線基板及び伸縮性配線基板の製造方法
JP7287849B2 (ja) * 2019-07-03 2023-06-06 デクセリアルズ株式会社 電気特性の検査冶具
JP2021012041A (ja) * 2019-07-03 2021-02-04 デクセリアルズ株式会社 電気特性の検査冶具
CN111308301A (zh) * 2019-12-05 2020-06-19 王东 一种基于物联网的半导体性能测试方法
DE102022124300A1 (de) * 2022-09-21 2024-03-21 Ams-Osram International Gmbh Verfahren und vorrichtung zum elektrischen kontaktieren von elektronischen bauelementen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066341A (ja) * 1999-08-30 2001-03-16 Ibiden Co Ltd 導通検査方法及び導通検査装置
US6246245B1 (en) * 1998-02-23 2001-06-12 Micron Technology, Inc. Probe card, test method and test system for semiconductor wafers
JP2004294144A (ja) * 2003-03-26 2004-10-21 Fujitsu Ltd 試験用モジュール及び半導体装置の試験方法
JP2006090772A (ja) * 2004-09-22 2006-04-06 Matsushita Electric Ind Co Ltd 半導体装置の検査用冶具
JP2007064673A (ja) * 2005-08-29 2007-03-15 Jsr Corp 異方導電性コネクターおよびその製造方法、アダプター装置並びに回路装置の電気的検査装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038859B2 (ja) * 1989-09-29 2000-05-08 ジェイエスアール株式会社 異方導電性シート
US5949029A (en) * 1994-08-23 1999-09-07 Thomas & Betts International, Inc. Conductive elastomers and methods for fabricating the same
JPH10512462A (ja) * 1994-10-24 1998-12-02 トランススキャン・リサーチ・アンド・ディベロプメント・カンパニー・リミテッド インピーダンス・イメージング・デバイス及びマルチ−エレメント・プローブ
JP2000003741A (ja) * 1998-06-12 2000-01-07 Jsr Corp コネクターおよびそれを用いた回路基板検査装置
JP2001068179A (ja) * 1999-08-30 2001-03-16 Jsr Corp 異方導電性接続部材
JP2001084841A (ja) * 1999-09-14 2001-03-30 Jsr Corp 異方導電性シートおよびその製造方法
JP4288783B2 (ja) 1999-09-24 2009-07-01 Jsr株式会社 異方導電性シートおよび回路装置の電気的検査装置
JP3427086B2 (ja) * 2000-02-23 2003-07-14 Necエレクトロニクス株式会社 Icソケット
JP2001239526A (ja) 2000-03-02 2001-09-04 Jsr Corp 金型およびその製造方法並びに異方導電性シートの製造方法
JP2007134048A (ja) * 2001-08-07 2007-05-31 Shinozaki Seisakusho:Kk バンプ付き薄膜シートの製造方法及びバンプ付き薄膜シート
CN100359659C (zh) * 2003-02-18 2008-01-02 Jsr株式会社 各向异性导电连接器、探测部件和晶片检测设备以及晶片检测方法
EP1607751A1 (en) * 2003-03-26 2005-12-21 JSR Corporation Connector for measurement of electric resistance, connector device for measurement of electric resistance and production process thereof, and measuring apparatus and measuring method of electric resistance for circuit board
JP3753145B2 (ja) * 2003-04-21 2006-03-08 Jsr株式会社 異方導電性シートおよびその製造方法、アダプター装置およびその製造方法並びに回路装置の電気的検査装置
JP3795039B2 (ja) * 2003-10-16 2006-07-12 松下電器産業株式会社 ウエハ一括型バンプ付きメンブレンの製造方法
JPWO2007029766A1 (ja) * 2005-09-08 2009-03-19 Jsr株式会社 ウエハ検査用プローブカード並びにウエハ検査装置およびウエハ検査方法
JP2007085833A (ja) 2005-09-21 2007-04-05 Jsr Corp ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカード並びにウエハ検査装置
JP4259506B2 (ja) 2005-09-21 2009-04-30 Jsr株式会社 異方導電性シートの製造方法
EP1936387A4 (en) * 2005-10-11 2011-10-05 Jsr Corp ANISOTROPIC CONDUCTOR CONNECTOR AND CIRCUIT DEVICE INSPECTION EQUIPMENT
JP5049694B2 (ja) 2007-08-07 2012-10-17 ルネサスエレクトロニクス株式会社 プローブカード、半導体検査装置および半導体装置の製造方法
KR200445395Y1 (ko) * 2007-08-13 2009-07-27 주식회사 아이에스시테크놀러지 도전성 콘택터
JP2009098065A (ja) * 2007-10-18 2009-05-07 Jsr Corp プローブ部材およびその製造方法ならびにその応用
KR100926777B1 (ko) * 2008-06-13 2009-11-16 주식회사 아이에스시테크놀러지 돌출도전부가 도전패드에 마련된 테스트 소켓
KR101204941B1 (ko) 2012-04-27 2012-11-27 주식회사 아이에스시 전극지지부를 가지는 테스트용 소켓 및 그 테스트용 소켓의 제조방법
KR101348204B1 (ko) * 2012-12-28 2014-01-10 주식회사 아이에스시 테스트 소켓 및 소켓본체
US20150377923A1 (en) 2013-02-19 2015-12-31 Isc Co., Ltd. Test socket with high density conduction section
TWI601959B (zh) * 2013-06-06 2017-10-11 Elfinote Tech Corporation Proximity patch for probe card, method for manufacturing patch for probe card and probe card
KR101393601B1 (ko) * 2013-07-24 2014-05-13 주식회사 아이에스시 도전성 커넥터 및 그 제조방법
WO2015030357A1 (en) 2013-08-27 2015-03-05 Leeno Industrial Inc. Anisotropic conductive connector, manufacturing method and device thereof
KR101572139B1 (ko) * 2014-05-29 2015-11-26 주식회사 아이에스시 접속용 커넥터 및 접속용 커넥터의 제조방법
CN105527472B (zh) * 2014-10-17 2018-10-02 株式会社Isc 测试座

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246245B1 (en) * 1998-02-23 2001-06-12 Micron Technology, Inc. Probe card, test method and test system for semiconductor wafers
JP2001066341A (ja) * 1999-08-30 2001-03-16 Ibiden Co Ltd 導通検査方法及び導通検査装置
JP2004294144A (ja) * 2003-03-26 2004-10-21 Fujitsu Ltd 試験用モジュール及び半導体装置の試験方法
JP2006090772A (ja) * 2004-09-22 2006-04-06 Matsushita Electric Ind Co Ltd 半導体装置の検査用冶具
JP2007064673A (ja) * 2005-08-29 2007-03-15 Jsr Corp 異方導電性コネクターおよびその製造方法、アダプター装置並びに回路装置の電気的検査装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106754A1 (ja) * 2019-11-26 2021-06-03 デクセリアルズ株式会社 プローブシート及びプロープシートの製造方法

Also Published As

Publication number Publication date
US11402408B2 (en) 2022-08-02
US20200141978A1 (en) 2020-05-07
JP6918518B2 (ja) 2021-08-11
JP2018141652A (ja) 2018-09-13
KR20190095395A (ko) 2019-08-14
CN110546517A (zh) 2019-12-06
CN110546517B (zh) 2022-08-23
TW201837475A (zh) 2018-10-16
KR102184019B1 (ko) 2020-11-27
TWI783971B (zh) 2022-11-21

Similar Documents

Publication Publication Date Title
WO2018155005A1 (ja) 電気特性の検査冶具
TWI596346B (zh) 垂直式探針卡之探針裝置
TWI292602B (ja)
TWI590533B (zh) 電子接觸子及用於電子零部件之插座
KR20160148097A (ko) Pcr 디바이스 및 그 제조 방법
KR101708487B1 (ko) 도전 실리콘 고무 안에 더블 도전 와이어를 포함하는 테스트 소켓, 및 그 제조 방법
EP1696241A1 (en) Anisotropic conductive connector and circuit device inspection method
WO2021106754A1 (ja) プローブシート及びプロープシートの製造方法
KR102124550B1 (ko) 전기 특성의 검사 방법
JP7042037B2 (ja) 検査冶具の製造方法
JP7287849B2 (ja) 電気特性の検査冶具
WO2018079655A1 (ja) 異方導電性シート及びその製造方法
WO2021106753A1 (ja) プローブシート及びプローブシートの製造方法
JP2018185170A (ja) 検査冶具の製造方法
JP2021012041A (ja) 電気特性の検査冶具
WO2024018535A1 (ja) 異方導電性コネクタ、フレーム付き異方導電性コネクタ及び検査装置
JP2021004887A (ja) 電気特性の検査方法
JP2021182520A (ja) 異方性導電シート
TW202406240A (zh) 異方導電性連接器、附框之異方導電性連接器及檢查裝置
JP2020091982A (ja) 異方性導電シート
JP2007155711A (ja) シート状プローブおよびその製造方法
JP2009236510A (ja) プローブカード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758299

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20197020594

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758299

Country of ref document: EP

Kind code of ref document: A1