WO2018154993A1 - 基板処理システム - Google Patents

基板処理システム Download PDF

Info

Publication number
WO2018154993A1
WO2018154993A1 PCT/JP2018/000655 JP2018000655W WO2018154993A1 WO 2018154993 A1 WO2018154993 A1 WO 2018154993A1 JP 2018000655 W JP2018000655 W JP 2018000655W WO 2018154993 A1 WO2018154993 A1 WO 2018154993A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sound wave
wafer
transfer
region
Prior art date
Application number
PCT/JP2018/000655
Other languages
English (en)
French (fr)
Inventor
仁志 羽島
松岡 伸明
中島 常長
孝洋 安武
船越 秀朗
中村 泰之
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201880012674.XA priority Critical patent/CN110313060B/zh
Priority to JP2019501109A priority patent/JP6902601B2/ja
Priority to KR1020197027405A priority patent/KR102534203B1/ko
Publication of WO2018154993A1 publication Critical patent/WO2018154993A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices

Definitions

  • the present invention relates to a substrate processing system provided with a processing apparatus for processing a substrate and provided with a substrate transfer area for transferring the substrate to the processing apparatus.
  • the predetermined resist pattern is formed on the wafer by sequentially performing an exposure process for exposing the film to a predetermined pattern, a developing process for developing the exposed resist film, a heat treatment for heating the wafer, and the like. Then, an etching process is performed using the resist pattern as a mask, and then a resist film removing process is performed to form a predetermined pattern on the wafer.
  • a coating and developing system that is a substrate processing system equipped with various processing apparatuses for processing wafers, a transport mechanism for transporting wafers, and the like.
  • the transport area provided with the transport mechanism is sealed, and a clean air descending airflow is supplied to the ceiling surface of the transport area.
  • An ULPA (Ultra Low Low Penetration Air) filter is provided (Patent Document 1). By providing the ULPA filter, the suspended particles in the transport area can flow down the system and be discharged by the exhaust mechanism.
  • the present invention has been made in view of the above points, and in a substrate processing system provided with a processing apparatus for processing a substrate and provided with a substrate transfer region for transferring the substrate to the processing apparatus, floating particles are transferred to the substrate.
  • the purpose is to more reliably prevent adhesion.
  • one embodiment of the present invention includes a processing apparatus that processes a substrate, and a sound wave that radiates sound waves in a substrate processing system provided with a substrate transport region for transporting the substrate to the processing apparatus.
  • a radiation device is provided in the substrate transfer region.
  • the floating particles can be moved in the direction of the exhaust mechanism, so that the floating particles can be more reliably prevented from adhering to the substrate. be able to.
  • a substrate processing system that includes a processing apparatus that processes a substrate and is provided with a substrate transport area for transporting the substrate to the processing apparatus, it is possible to more reliably prevent floating particles from adhering to the substrate. be able to.
  • FIG. 1 is an explanatory diagram showing an outline of the configuration of the substrate processing system according to the first embodiment of the present invention.
  • 2 and 3 are a front view and a rear view, respectively, schematically showing an outline of the internal configuration of the substrate processing system.
  • 4 and 5 are a longitudinal side view and a longitudinal front view, respectively, schematically showing the outline of the internal configuration of the substrate processing system.
  • elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
  • the substrate processing system 1 includes a cassette station 10 in which a cassette C containing a plurality of wafers W is loaded and unloaded, and a processing station 11 having a plurality of various processing apparatuses for performing predetermined processing on the wafers W. And an interface station 13 that transfers the wafer W to and from the exposure apparatus 12 adjacent to the processing station 11 is integrally connected.
  • the cassette station 10 is provided with a cassette mounting table 20.
  • the cassette mounting table 20 is provided with a plurality of cassette mounting plates 21 on which the cassette C is mounted when the cassette C is carried into and out of the substrate processing system 1.
  • a wafer transfer area L is provided between the cassette mounting table 20 and the processing station 11.
  • a wafer transfer device 23 that is movable on a transfer path 22 extending in the X direction is provided.
  • the wafer transfer device 23 is also movable in the vertical direction and the vertical axis direction ( ⁇ direction), and includes a cassette C on each cassette mounting plate 21 and a delivery device for a third block G3 of the processing station 11 described later.
  • the wafer W can be transferred between the two.
  • the processing station 11 is provided with a plurality of, for example, first to fourth blocks G1, G2, G3, and G4 having various devices.
  • the first block G1 is provided on the front side of the processing station 11 (X direction negative direction side in FIG. 1), and the second block is provided on the back side of the processing station 11 (X direction positive direction side in FIG. 1).
  • Block G2 is provided.
  • a third block G3 is provided on the cassette station 10 side (Y direction negative direction side in FIG. 1) of the processing station 11, and the interface station 13 side (Y direction positive direction side in FIG. 1) of the processing station 11 is provided. Is provided with a fourth block G4.
  • a plurality of liquid processing apparatuses for example, a development processing apparatus 30 that develops the wafer W, an antireflection film (hereinafter referred to as “lower antireflection”) under the resist film of the wafer W.
  • a lower antireflection film forming device 31 for forming a film a resist coating device 32 for applying a resist solution to the wafer W to form a resist film, and an antireflection film (hereinafter referred to as “upper reflection” on the resist film of the wafer W).
  • An upper antireflection film forming device 33 for forming an “antireflection film” is arranged in this order from the bottom.
  • four development processing apparatuses 30, a lower antireflection film forming apparatus 31, a resist coating apparatus 32, and an upper antireflection film forming apparatus 33 are arranged side by side in the horizontal direction.
  • the number and arrangement of the development processing device 30, the lower antireflection film forming device 31, the resist coating device 32, and the upper antireflection film forming device 33 can be arbitrarily selected.
  • the lower antireflection film forming device 31 for example, spin coating for applying a predetermined coating solution onto the wafer W is performed.
  • spin coating for example, a coating liquid is discharged onto the wafer W from a coating nozzle, and the wafer W is rotated to diffuse the coating liquid to the surface of the wafer W.
  • a heat treatment apparatus 40 for performing heat treatment such as heating and cooling of the wafer W, an adhesion apparatus 41 for improving the fixability between the resist solution and the wafer W, and the wafer W Peripheral exposure devices 42 that expose the outer peripheral portion are arranged in the vertical direction.
  • the number and arrangement of the heat treatment apparatus 40, the adhesion apparatus 41, and the peripheral exposure apparatus 42 can be arbitrarily selected.
  • a shelf unit in which a plurality of delivery devices and the like are stacked is provided in the third block G3.
  • the fourth block G4 is also provided with a shelf unit in which a plurality of delivery devices and the like are stacked.
  • a wafer transfer region R is formed in a region surrounded by the first block G1 to the fourth block G4.
  • a wafer transfer apparatus 100 is provided next to the third block G3 on the positive side in the X direction.
  • the wafer transfer apparatus 100 includes a transfer arm 100a that is movable in the X direction, the ⁇ direction, and the vertical direction, for example.
  • the wafer transfer apparatus 100 can move up and down while supporting the wafer W by the transfer arm 100a, and can transfer the wafer W to each delivery apparatus in the third block G3.
  • the interface station 13 is provided with a wafer transfer device 110 and a delivery device 111.
  • the wafer transfer device 110 includes a transfer arm 110a that is movable in the Y direction, the ⁇ direction, and the vertical direction, for example.
  • the wafer transfer device 110 can support the wafer W on the transfer arm 110a and transfer the wafer W between each transfer device, the transfer device 111, and the exposure device 12 in the fourth block G4.
  • the wafer transfer region R is configured by stacking four transfer regions R1 to R4 in order from the bottom, and each of the transfer regions R1 to R4 is arranged from the third block G3 side to the fourth block G4. It is formed so as to extend in the direction toward the side (positive direction in the Y direction in FIG. 4).
  • a liquid processing apparatus such as a resist coating apparatus 32 is disposed on one side in the width direction of the transport regions R1 to R4, and a heat treatment apparatus 40, for example, is disposed on the other side.
  • an adhesion apparatus 41 and a peripheral exposure apparatus 42 may be arranged.
  • a guide 301 extending along the length direction (Y direction in FIG. 5) of the transfer regions R1 to R4 and a transfer device for transferring the wafer W along the guides 301 to the transfer regions R1 to R4, respectively.
  • the transfer arms A1 to A4 are provided.
  • the transfer arms A1 to A4 are for transferring the wafer W between all the modules adjacent to the areas R1 to R4 for each of the transfer areas R1 to R4.
  • the transport arms A1 to A4 (hereinafter sometimes collectively referred to as the transport arm A) include a frame 302 that moves along the guide 301, a lift body 303 that moves up and down along the frame 302, and the lift body 303.
  • a rotating body 304 that rotates upward and a wafer support portion 305 that moves forward and backward on the rotating body 304 are provided.
  • the liquid processing apparatus such as the resist coating apparatus 32 includes a spin chuck 201 that holds and rotates the wafer W and a coating liquid supply nozzle (not shown) that supplies the coating liquid in order to form a coating film by spin coating.
  • the liquid processing apparatus includes a cup 202 that surrounds the wafer W and collects the coating liquid scattered from the wafer W, and a filter 203 that is provided above the cup 202 and supplies clean air into the cup 202.
  • the heat treatment apparatus 40 includes a hot plate 401 for heating the wafer W, a plate 402 for transferring the wafer W between the hot plate 401 and the transfer arms A1 to A4 and cooling the wafer W, and a hot plate 401. It has a rectifying plate 403 provided and exhaust parts 404 and 405 for exhausting the inside of the transfer regions R1 to R4 and the heat treatment apparatus 40. Below the second, fourth, sixth, and eighth heat treatment devices 40 from the top, a fan device 406 that exhausts the transfer regions R1 to R4 is provided below the second, fourth, sixth, and eighth heat treatment devices 40 from the top.
  • the processing station 11 includes a casing 51 in which each of the above-described devices is stored.
  • the casing 51 is divided into transport areas R1 to R4.
  • a fan filter unit (FFU) 52 is provided on the casing 51, and a vertical duct 53 is connected to the FFU 52 so as to extend vertically and to extend over the transport regions R1 to R4.
  • the vertical duct 53 is connected to a horizontal duct 54 extending along the length direction of each of the transport regions R1 to R4.
  • the horizontal duct 54 is provided above the edge on the liquid processing apparatus side such as the resist coating apparatus 32 in each of the transport regions R1 to R4. Further, the horizontal duct 54 has a ULPA filter (not shown) inside. The air blown from the fan filter unit 52 described above flows into the horizontal duct 54 directly or through the vertical duct 53, is cleaned by the ULPA filter, and is supplied downward from the horizontal duct 54.
  • a partition plate 55 is provided below the horizontal duct 54.
  • the partition plate 55 forms a ceiling surface of each of the transfer regions R1 to R4, and has a gas diffusion chamber (not shown) for diffusing air supplied from the horizontal duct 54 inside.
  • a large number of discharge ports for discharging the air diffused in the gas diffusion chamber to the transport regions R1 to R4 are formed on the entire surface.
  • the air that has passed through the ULPA filter of the horizontal duct 54 and has been cleaned by removing particles flows into the gas diffusion chamber of the partition plate 55 and is discharged downward through the discharge port. In this way, a descending airflow is formed by the cleaned air in each of the transport regions R1 to R4.
  • a sound wave emitting device is provided in each of the transfer areas R1 to R4.
  • a sound wave radiating device 60 is provided in a region adjacent to the carry-in / out port K1 of the wafer W of the liquid processing apparatus such as the resist coating device 32 in the transport regions R1 to R4, and the heat treatment device 40 is disposed in the transport regions R1 to R4.
  • a sound wave emitting device 70 is provided in a region adjacent to the carry-in / out port K2 of the wafer W.
  • the sound wave emitting devices 60 and 70 are installed so as to emit sound waves, for example, from above the carry-in / out ports K1 and K2 toward the bottoms of the transport regions R1 to R4 where the exhaust fan device 406 is provided.
  • the suspended particles existing in the vicinity of the above-described carry-in / out entrance and the like can be moved downward by the sound waves radiated from the sound wave emitting devices 60 and 70 toward the bottom, and can be discharged to the outside via the fan device 406.
  • the liquid processing device and the heat treatment device can be used when the wafer W is transferred between the liquid processing device and the heat treatment device 40 and the transfer arms A1 to A4.
  • the sound wave emitting devices 60 and 70 even when maintenance is performed, even if the cleanliness deteriorates due to particle intrusion or dust generation due to human action due to the opening of the transport areas R1 to R4, the original cleanliness Can be quickly returned to.
  • the loading / unloading ports K1 and K2 are configured to be openable and closable based on the control of the control unit 500 described later.
  • one acoustic radiation device 70 is provided for the two carry-in / out ports K2 of the heat treatment apparatus 40, but one acoustic radiation device 70 may be provided for each of the two carry-in / out ports K2. Good.
  • the sound wave emitting device 70 does not emit sound waves toward the bottom side of the transfer regions R1 to R4, but emits sound waves toward the outside of the heat treatment apparatus 40 provided with the exhaust portions 404 and 405. It may be installed. Thereby, the particles near the carry-in / out entrance of the heat treatment apparatus 40 can be moved outward and discharged to the outside via the exhaust portions 404 and 405.
  • FIG. 6 is a plan view showing an example of the sound wave emitting device 60.
  • the sound wave emitting device 60 is a parametric speaker that emits sound waves having directivity by using ultrasonic waves, and a plurality of transducers 61 that emit ultrasonic waves are arranged on a flat base 62 to form a parametric array.
  • the sound wave emitting device 60 is installed by fixing the base 62 near the ceiling of the transport areas R1 to R4 so that the transducer 61 faces downward.
  • the sound wave emitted by the sound wave emitting device 60 may be an audible frequency, or an ultrasonic wave having a frequency of 20 kHz or more, for example.
  • the suspended particles can be moved in a desired direction, so that the suspended particles can be reliably excluded and removed.
  • a total of 32 transducers 61 of 4 vertical ⁇ 8 horizontal are arranged, but the number and arrangement of the transducers 61 are not limited to this example.
  • the structure of the sound wave emission apparatus 70 is the same as that of the sound wave emission apparatus 60, the description is abbreviate
  • a control unit 500 is provided in the substrate processing system 1 composed of the above apparatuses.
  • the control unit 500 is a computer, for example, and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the processing of the wafer W in the substrate processing system 1.
  • the program storage unit also stores a program for controlling the operation of drive systems such as the above-described various processing apparatuses and transfer apparatuses to realize a coating process described later in the substrate processing system 1.
  • the program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), or a memory card. May have been installed in the control unit 500 from the storage medium.
  • HD computer-readable hard disk
  • FD flexible disk
  • CD compact disk
  • MO magnetic optical desk
  • a cassette C storing a plurality of wafers W is carried into the cassette station 10 of the substrate processing system 1, and each wafer W in the cassette C is sequentially transferred to the third block G 3 of the processing station 11 by the wafer transfer device 23. It is transported to the device.
  • the wafer W is transferred toward the heat treatment apparatus 40 by the transfer arm A2 in the transfer region R2 of the processing station 11.
  • the carry-in / out opening K2 of the heat treatment apparatus 40 of the second block G2 adjacent to the conveyance area R2 is opened, and in accordance with this opening operation, sound waves are emitted from the sound wave emitting device 70 toward the bottom of the conveyance area R2. Is done. It is preferable that the sound wave emission is started before the opening operation of the carry-in / out port K2 is started.
  • the wafer support portion 305 of the transfer arm A 2 is inserted into the heat treatment apparatus 40, and the wafer W is delivered to the plate 402 of the heat treatment apparatus 40.
  • the wafer support portion 305 of the transfer arm A2 is pulled out from the heat treatment apparatus 40, the carry-in / out entrance K2 is closed, and the sound wave emission from the sound wave emission apparatus 70 is stopped.
  • the wafer W is subjected to temperature adjustment processing by the heat treatment apparatus 40.
  • the carry-in / out port K2 of the heat treatment apparatus 40 is opened, and sound waves are emitted from the sound wave emitting apparatus 70 in accordance with the opening operation.
  • the wafer support portion 305 of the transfer arm A 2 is inserted into the heat treatment device 40, and the wafer W is delivered from the plate 402 of the heat treatment device 40 to the wafer support portion 305.
  • the wafer support portion 305 of the transfer arm A2 is pulled out from the heat treatment apparatus 40, the carry-in / out entrance K2 is closed, and the sound wave emission from the sound wave emission apparatus 70 is stopped.
  • the sound wave emission from the sound wave emission apparatus 70 is started / stopped in synchronization with the opening / closing of the carry-in / out port K2 as described above. Therefore, in the following, description of sound wave radiation performed during the heat treatment by the heat treatment apparatus 40 is omitted.
  • the wafer W is transferred toward the lower antireflection film forming apparatus 31 by the transfer arm A2.
  • the carry-in / out opening K1 of the lower antireflection film forming apparatus 31 is opened, and in accordance with this opening operation, sound waves are emitted from the sound wave emitting device 60 toward the bottom of the conveyance region R2. It is preferable that the sound wave emission is started before the opening operation of the carry-in / out port K1 is started.
  • the wafer support portion 305 of the transfer arm A2 is inserted into the lower antireflection film forming device 31, and the wafer anti-reflection film forming device 31 has a pin for transferring the wafer (not used).
  • the wafer is delivered to the figure. After the delivery, the wafer support portion 305 of the transfer arm A2 is pulled out from the lower antireflection film forming apparatus 31, the carry-in / out entrance K1 is closed, and the sound wave emission from the sound wave emission apparatus 60 is stopped. Then, the lower antireflection film forming apparatus 31 forms a lower antireflection film on the wafer W.
  • the carry-in / out port K1 of the lower antireflection film forming apparatus 31 is opened, and sound waves are emitted from the sound wave emitting device 60 in accordance with the opening operation.
  • the wafer support portion 305 of the transfer arm A 2 is inserted into the lower antireflection film forming device 31, and the wafer is fed from the wafer delivery pins of the lower antireflection film forming device 31.
  • the wafer W is delivered to the support unit 305.
  • the wafer support portion 305 of the transfer arm A2 is pulled out from the lower antireflection film forming apparatus 31, the carry-in / out entrance K1 is closed, and the sound wave emission from the sound wave emission apparatus 60 is stopped.
  • the sound wave emission from the sound wave emitting apparatus 60 is started / stopped in synchronization with the opening / closing of the carry-in / out port K1 as described above. The Therefore, in the following, description of the sound wave radiation performed during the heat treatment by the liquid processing apparatus is omitted.
  • the wafer W is transferred into the heat treatment apparatus 40 adjacent to the transfer region R2 by the transfer arm A2, heated, and temperature-adjusted.
  • the wafer W is transferred to the adhesion device 41 adjacent to the transfer region R2 by the transfer arm A2, and subjected to an adhesion process.
  • the adhesion apparatus 41 is also provided with a carry-in / out opening for the wafer W, and a sound wave emitting device is provided in a region adjacent to the carry-in / out port in the transfer region R2.
  • the sound wave emission from the sound wave emission apparatus is started / stopped in synchronization with the opening / closing of the carry-in / out port as in the case of the heat treatment by the heat treatment apparatus 40.
  • the wafer W is transferred to the transfer device of the fourth block G4 adjacent to the transfer region R2 by the transfer arm A2.
  • the wafer W is transferred by the wafer transfer device 110 to another delivery device in the fourth block G4 adjacent to the transfer region R3.
  • the wafer W is transferred to the resist coating device 32 by the transfer arm A3 in the transfer region R3, and a resist film is formed on the wafer W.
  • the wafer W is transferred to the heat treatment apparatus 40 adjacent to the transfer region R3 by the transfer arm A3, and is pre-baked.
  • the same process as the heat treatment after the formation of the lower antireflection film is performed, and the same process is performed in the heat process after the formation of the antireflection film described later, the post-exposure bake process, and the post-bake process.
  • the heat treatment apparatuses 40 used for each heat treatment are different from each other.
  • the wafer W is transferred to the transfer device of the fourth block G4 adjacent to the transfer region R3 by the transfer arm A3.
  • the wafer W is transferred by the wafer transfer device 110 to another delivery device in the fourth block G4 adjacent to the transfer region R4.
  • the wafer W is transferred to the upper antireflection film forming apparatus 33 by the transfer arm A4 in the transfer region R4, and an upper antireflection film is formed on the wafer W.
  • the wafer W is transferred to the heat treatment apparatus 40 adjacent to the transfer region R4 by the transfer arm A4, heated, and the temperature is adjusted.
  • the wafer W is transferred by the transfer arm A4 to the peripheral exposure device 42 adjacent to the transfer region R4 and subjected to peripheral exposure processing.
  • the peripheral exposure device 42 is also provided with a carry-in / out port for the wafer W, and a sound wave emitting device is provided in a region adjacent to the carry-in / out port in the transfer region R4.
  • the sound wave emission from the sound wave emission apparatus is started / stopped in synchronization with the opening / closing of the carry-in / out port, similarly to the heat treatment by the heat treatment apparatus 40.
  • the wafer W is transferred to the transfer device of the fourth block adjacent to the transfer area R4 by the transfer arm A4. Then, the wafer W is transferred to the exposure device 12 by the wafer transfer device 110 and subjected to exposure processing with a predetermined pattern.
  • the wafer W is transferred by the wafer transfer device 110 to the transfer device of the fourth block G4 adjacent to the transfer region R1.
  • the wafer W is transferred to the heat treatment apparatus 40 adjacent to the transfer region R1 by the transfer arm A1 in the transfer region R1 and subjected to post-exposure baking.
  • the wafer W is transferred to the development processing apparatus 30 by the transfer arm A1, and is developed.
  • the wafer W is transferred by the transfer arm A1 to the heat treatment apparatus 40 adjacent to the transfer region R1 and subjected to post-bake processing.
  • the wafer W is transferred by the transfer arm A1 to the transfer device of the third block G3 adjacent to the transfer region R1.
  • the wafer W is transferred to the cassette C of the cassette mounting plate 21 by the wafer transfer device 23, and a series of photolithography steps is completed.
  • sound waves are emitted from the sound wave emitting device 70 in synchronization with opening and closing, but the timing of sound wave emission is not limited to this example.
  • the wafer W may be radiated at all times.
  • the wafer W is loaded into the third block of the processing station 11, the sound wave is emitted.
  • the emission of sound waves may be stopped when the wafer W is unloaded from the fourth block.
  • FIG. 7 is a side view showing another example of the sound wave emitting device.
  • the sound wave radiating device 60 'shown in the figure is a parametric speaker that emits sound waves having directivity, and the sound wave radiating device 60' is swingably supported so that the sound wave emitting direction can be adjusted.
  • a base 62 ′ having a plurality of transducers 61 is supported by a shaft support portion 63 so as to be swingable.
  • the shaft support 63 itself is supported by the casing 51 of the processing station 11, for example.
  • the sound wave emitting device 60 ′ is controlled by the control unit 500 so as to swing periodically, for example.
  • FIG. 8 is an explanatory view showing the outline of another example of the substrate processing system according to the first embodiment of the present invention, and is a front view showing only the cassette station.
  • the sound wave emitting devices 60 and 70 are provided in the transfer regions R1 to R4 of the processing station 11.
  • the sound wave radiation device 80 is provided in the wafer transfer region L of the cassette station 10 ′.
  • the cassette station 10 has a housing 56, and the housing 56 has a carry-in / out opening K3 for the cassette C placed on the cassette mounting table 20, the carry-in / out entrance in the wafer transfer region L is described above.
  • a sound wave emitting device 80 is provided in a region adjacent to K3.
  • the sound wave emitting device 80 By providing the sound wave emitting device 80 in the wafer transfer area L of the cassette station 10 in this manner, the wafer C is transferred from the cassette C to the wafer transfer area L when the wafer W is unloaded from the cassette C or loaded into the cassette C. It is possible to prevent particles from entering or particles from entering the cassette C from the wafer transfer region L.
  • the sound wave emitting device 80 may be provided in the vicinity of the carry-in / out entrance K3 as shown in FIG. 8, or may be provided in the vicinity of the ceiling surface above the carry-in / out entrance K3.
  • an FFU unit is also provided for the cassette station 10, and an exhaust mechanism for exhausting the atmosphere in the wafer transfer region L is provided at the bottom of the cassette station 10.
  • the sound wave emitting device 80 is installed so as to emit sound waves, for example, from above the carry-in / out port K3 toward the bottom of the wafer transfer region L provided with the exhaust mechanism.
  • the sound wave emitting device is provided only in the region adjacent to the wafer carry-in / out port in the transfer region, but the region in which the sound wave emitting device is provided is not limited to the above example.
  • a sound wave radiating device may be provided so as to cover the entire ceiling surface within a range that does not interfere with the downdraft from the ceiling surface of the conveyance area.
  • a plurality of sound wave emitting devices may be provided along the length direction in the center in the width direction of the transfer regions R1 to R4 of the processing station 11.
  • a plurality of sound wave emitting devices may be provided along the width direction of the transport region.
  • a sound wave emitting device may be provided in a region adjacent to the delivery device of the third block G3 or the fourth block G4 in the transport region.
  • FIG. 9 is an explanatory diagram of still another example of the substrate processing system according to the first embodiment of the present invention
  • FIG. 9A shows the state of the periphery of the substrate transfer apparatus of this example
  • FIG. 10B is a view showing a part of the sound wave emitting device attached to the substrate transfer device of FIG.
  • the sound wave emitting device is attached to the casing 51 of the processing station 11.
  • the sound wave emitting device 600 is attached to the outer side of the substrate transfer arm A.
  • the sound wave emission device 600 attached to the substrate transfer arm A includes a first sound wave emission unit 610 and a second sound wave emission unit 620.
  • Each of the first sound wave radiation unit 610 and the second sound wave radiation unit 620 is a parametric speaker that emits sound waves having directivity by using ultrasonic waves, and includes a plurality of transducers 611 and 621 that emit ultrasonic waves.
  • the base member 612 includes a support surface 612a for supporting the plurality of transducers 611 and a fixing surface 612b for the lifting and lowering body 303 of the transfer arm A.
  • the configuration of the second sound wave emission unit 620 is the same as that of the first sound wave emission unit 610, and thus the description thereof is omitted.
  • Both the sound wave from the first sound wave emission unit 610 and the sound wave from the second sound wave emission unit 620 are emitted to the entire surface of the wafer placed on the transfer arm A.
  • the support surface 612a for supporting the transducer 611 of the first sound wave emission unit 610 and the support surface for supporting the transducer 621 of the second sound wave emission unit 620 are not parallel to each other. Accordingly, the sound wave vector V1 from the first sound wave radiation unit 610 and the sound wave vector V2 from the second sound wave radiation unit 620 are non-parallel, and the sum of both vectors V1 and V2 is from the root of the transport arm A. It becomes a vector toward the tip direction (X direction negative direction in the figure). Therefore, by emitting sound waves from the sound wave emitting device 600 during wafer conveyance, particles near the wafer surface can be separated from the wafer and discharged to the outside, and thus particles can be prevented from adhering to the wafer.
  • the first sound wave radiating unit 610 is fixed to the transfer arm A so that the wafer W is positioned at the center of a transducer group including a plurality of transducers 611. More specifically, the first acoustic wave radiating unit 610 is transported so that the longitudinal direction of the transducer group is parallel to the surface of the wafer W and the center of the transverse direction of the transducer group is located on the surface of the wafer W. Fixed to arm A. The same applies to the second sound wave radiation unit 620.
  • the sound wave emitting device 600 is attached to the outside of the transfer arm A.
  • the sound wave emitting device may be attached above the transfer arm A. More specifically, the sound wave emitting device may be attached above the wafer support portion 305 of the transfer arm A.
  • FIG. 10 is a diagram for explaining the outline of the substrate processing system according to the second embodiment of the present invention, and FIGS. 10A and 10B respectively show the substrate processing system according to the present embodiment. It is the upper side figure and side view of a partition plate.
  • the substrate processing system according to the second embodiment includes the acoustic emission device in the transfer regions R1 to R4 and / or the wafer transfer region L, as in the substrate processing system according to the first embodiment.
  • R1 to R4 and / or the wafer transfer area L have suction areas.
  • a cooled cooling plate 700 is attached on the partition plate 55 that forms the bottom surfaces of the transport regions R2 to R4.
  • the floating particles in the high temperature region are adsorbed on the cooling plate 700 by thermophoresis by the cooling plate 700.
  • an adsorption region is formed by the cooling plate 700 on the partition plate 55.
  • the cooling plate 700 is cooled by circulating cooling water inside, for example.
  • the cooling method of the cooling plate 700 is not limited to this, and may be cooled by cold air, for example.
  • Providing suction areas on the bottom surfaces of the transport areas R1 to R4 not only collects floating particles, but also prevents particles deposited on the bottom surfaces from rolling up. Further, by providing the suction area as described above in addition to the sound wave emitting device, even if the cleanliness deteriorates during maintenance, it can be returned to the original cleanliness more quickly.
  • cooling water is circulated in the partition plate 55 or the bottom wall, for example, so that the cooling plate 700 or the bottom wall has a cooling region. That is, a floating particle adsorption region may be formed.
  • FIG. 11 is a diagram illustrating another example of the cooling plate.
  • the cooling plate 700 of FIG. 10 is provided on the partition plate 55 so as to cover substantially the entire surface of the partition plate 55.
  • the cooling plate 800 of FIG. 11 covers a part of the partition plate 55, specifically, covers only both sides without covering the center in the width direction of the transport regions R2 to R4 of the partition plate 55. , Provided on the partition plate 55.
  • the cooling plate 800 can also adsorb floating particles.
  • the cooling plate is attached to a portion that forms the bottom wall of the conveyance region such as the partition plate 55.
  • the cooling plate may be attached to a portion that forms the side wall that forms the conveyance region.
  • a cooling plate may be attached to the transfer arm A.
  • the transfer arm A When a cooling plate is attached to the transfer arm A, for example, the cooling plate is attached to the lifting body 303.
  • An exhaust mechanism is provided for the transfer arm A, and exhaust is performed from the X axis / ⁇ axis through the Z axis and from the Y axis.
  • the particle adsorption region is formed by thermophoresis using a cooling plate.
  • the adsorption method is not limited to the above example, and floating particles may be adsorbed by electrostatic adsorption. In such a case, instead of the cooling plate, a charged charging plate is provided in the transport region.
  • the suction area is cleaned at a predetermined timing, and the collected particles are removed.
  • the suction area is cleaned, for example, during regular maintenance. Further, the degree of contamination of the suction area may be monitored, the user may be notified when cleaning is necessary, and the suction area may be cleaned according to the notification result.
  • the removal of the particles from the adsorption region may be performed by manually sucking the particles from the suction region, for example, or may be performed by providing an exhaust mechanism around the suction region and automatically discharging the exhaust mechanism.
  • FIGS. 12 and 13 are diagrams for explaining the outline of the shelf unit provided in the third block of the substrate processing system according to the present embodiment
  • FIG. 12 is a side view of the shelf unit
  • FIG. 13 is the shelf. It is an upper side figure inside the below-mentioned storage block provided in the unit.
  • an apparatus adjacent to the transfer regions R1 to R4 and / or the wafer transfer region L emits sound waves toward the transfer regions R1 to R4 and / or the wafer transfer region L. It has another acoustic emission device.
  • a shelf unit 900 as a storage device provided in the third block G3 adjacent to the transport areas R1 to R4 emits sound waves toward the transport areas R1 to R4. It has another acoustic radiation device 910 that radiates.
  • the shelf unit 900 includes storage blocks B1 to B4 that are partitioned into a plurality of areas corresponding to the transport areas R1 to R4. Although illustration is omitted, each of the storage blocks B1 to B4 of the shelf unit 900 is provided with a mounting shelf and a cooling plate as storage units for storing the wafers W. The cooling plate is for adjusting the wafer W to a predetermined temperature. Further, the shelf unit 900 transfers the wafer W between the shuttle arms (not shown) that linearly transfer the wafer W between the third block G3 and the fourth block G4 and the transfer arms A1 to A4. Delivery units TR1 and TR2 having delivery stages for performing
  • the sound wave emitting device 910 can employ the same configuration as that of the sound wave emitting device 60 of FIG. Further, one acoustic wave emitting device 910 is provided for each of the storage blocks B1 to B4. Further, in this example, in the storage block B1, the sound wave emitting device 910 receives the wafer W in the storage block B1 so that sound waves are emitted toward the transfer region R1, as shown in FIG. It is provided at a position facing the transfer region R1 with the wafer W interposed therebetween. The arrangement positions of the sound wave emitting devices 910 in the storage blocks B2 to B4 are the same.
  • the shelf unit 900 by providing the shelf unit 900 with another sound wave emitting device 910 that emits sound waves toward the transport regions R1 to R4, floating particles existing in the transport regions R1 to R4 enter the shelf unit 900. Can be prevented. Therefore, it is possible to prevent the floating particles in the transfer regions R1 to R4 from adhering to the wafer W accommodated in the shelf unit 900.
  • the sound wave emitting device 910 emits sound waves in accordance with the operation of the corresponding transfer arms A1 to A4, for example. Specifically, the sound wave radiating device 910 supports the wafer from when the wafer support portion 305 of the corresponding transfer arm A1 starts to move with respect to the storage block B1, that is, from when the wafer support portion 305 starts to move from the home position. Sound waves are emitted until the unit 305 returns to the home position. Instead, the sound wave radiating device 910 stops the movement of the transport arm A1 toward the shelf unit 900 (the negative direction in the Y direction in FIG. 1) when the corresponding transport arm A1 accesses the shelf unit 900. Until the wafer support 305 returns to the home position. Further, the sound wave emitting device 910 may always emit sound waves.
  • the sound wave emission timing of the sound wave emitting device 910 may be common to the storage blocks B1 to B4 or may be different for each of the storage blocks B1 to B4.
  • the sound wave emitting device 910 is provided so that sound waves are emitted toward the transport regions R1 to R4.
  • the sound wave emitting device 910 may be provided so that the sound wave is emitted toward the wafer transfer region L and the transfer region where the wafer transfer device 100 exists.
  • it is preferable that the sound wave is emitted toward the transport regions R1 to R4. This is because, among the transfer arms, the transfer arms A1 to A4 operate most frequently, and there is a high possibility that floating particles are present in the transfer regions R1 to R4 where the transfer arms A1 to A4 are provided.
  • the sound wave emitting device 910 is provided only in the storage blocks B1 to B4 of the shelf unit 900, but the sound wave emitting device 910 may be provided in the delivery units TR1 and TR2 similarly.
  • the sound wave emitting device 910 is provided in the shelf unit 900 in the third block G3 adjacent to the transport regions R1 to R4.
  • the sound wave emitting device 910 may be provided in a shelf unit in the fourth block G4 adjacent to the transport regions R1 to R4.
  • the present invention is useful for a substrate processing system provided with a substrate transfer region for transferring a substrate.

Abstract

基板を処理する処理装置として熱処理装置等を備え、該処理装置にウェハWを搬送するための搬送領域が設けられた基板処理システムにおいて、音波を放射し搬送領域内の浮遊パーティクルが基板に付着することを防止する音波放射装置を備える。音波放射装置は、例えば搬送領域における熱処理装置のウェハの搬出入口に隣接する領域や、基板搬送領域における、カセット載置部に対する基板搬出入口に隣接する領域に設けられる。また、音波反射装置は、基板搬送装置に取り付けられていてもよい。

Description

基板処理システム
(関連出願の相互参照)
 本願は、2017年2月24日に日本国に出願された特願2017-32961号、及び2017年12月27日に日本国に出願された特願2017-251489号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、基板を処理する処理装置を備え、該処理装置に基板を搬送するための基板搬送領域が設けられた基板処理システムに関する。
 例えば半導体デバイスの製造プロセスにおけるフォトリソグラフィー工程では、例えば基板としての半導体ウェハ(以下、「ウェハ」という。)表面上に塗布液を供給して反射防止膜やレジスト膜を形成する塗布処理、レジスト膜を所定のパターンに露光する露光処理、露光されたレジスト膜を現像する現像処理、ウェハを加熱する熱処理、などが順次行われ、ウェハ上に所定のレジストパターンが形成される。そして、レジストパターンをマスクとしてエッチング処理が行われ、その後レジスト膜の除去処理などが行われて、ウェハ上に所定のパターンが形成される。これらの一連の処理は、ウェハを処理する各種処理装置やウェハを搬送する搬送機構などを搭載した基板処理システムである塗布現像処理システムで行われている。
 また、塗布現像処理システムでは、例えば、搬送領域内の雰囲気を清浄に保つため、搬送機構が設けられた搬送領域を密閉すると共に、搬送領域の天井面に、清浄なエアの下降気流を供給するULPA(Ultra Low Penetration Air)フィルタを設けている(特許文献1)。ULPAフィルタを設けることにより、搬送領域内の浮遊パーティクルを、システムの下方に流下させ、排気機構によって排出することができる。
日本国2012-154688号公報
 ところで、装置内のパーティクルの制御について、半導体デバイスの製造プロセスの微細化に伴い、管理されるパーティクルも今後ますます厳しくなると考えられる。したがって、浮遊パーティクルが基板に付着することを防止する対策として、特許文献1のように搬送領域に対しULPAフィルタを設けるのみでは、装置内のパーティクルの制御として十分でなくなることが考えられる。例えば、ULPAフィルタを設けたとしても、ウェハ搬送装置の動作などで気流の流れが遮断、変更され、ウェハ搬送装置が動作していない静止状態と異なる内部気流が発生することで、一旦下方に向かった浮遊パーティクルが再度上方に流されてしまう場合もある。この場合、搬送領域から長時間排出されないパーティクルも存在する可能性があり、製造プロセスによっては、このようなパーティクルの管理も必要となることが予想される。
 本発明は、かかる点に鑑みてなされたものであり、基板を処理する処理装置を備え、該処理装置に基板を搬送するための基板搬送領域が設けられた基板処理システムにおいて、浮遊パーティクルが基板に付着するのをより確実に防ぐことを目的としている。
 前記目的を達成するため、本発明の一態様は、基板を処理する処理装置を備え、該処理装置に基板を搬送するための基板搬送領域が設けられた基板処理システムにおいて、音波を放射する音波放射装置を前記基板搬送領域に備えることを特徴としている。
 本発明によれば、音波を放射する音波放射装置を前記基板搬送領域に備えるため、浮遊パーティクルを排気機構の方向に移動させることができるので、浮遊パーティクルが基板に付着するのをより確実に防ぐことができる。
 本発明によれば、基板を処理する処理装置を備え、該処理装置に基板を搬送するための基板搬送領域が設けられた基板処理システムにおいて、浮遊パーティクルが基板に付着するのをより確実に防ぐことができる。
第1の実施形態にかかる基板処理システムの構成の概略を示す平面図である。 第1の実施形態にかかる基板処理システムの構成の概略を示す正面図である。 第1の実施形態にかかる基板処理システムの構成の概略を示す背面図である。 第1の実施形態にかかる基板処理システムの構成の概略を示す縦断側面図である。 第1の実施形態にかかる基板処理システムの構成の概略を示す縦断正面図である。 音波放射装置の一例を示す平面図である。 音波放射装置の他の例を示す側面図である。 本発明の第1の実施形態に係る基板処理システムの他の例の概略を示す説明図である。 本発明の第1の実施形態にかかる基板処理システムの更に別の例の説明図である。 本発明の第2の実施形態にかかる基板処理システムの概略を説明するための図である。 冷却板の他の例を示す図である。 本発明の第3の実施形態にかかる基板処理システムの概略を説明するための図である。 棚ユニットに設けられた収納ブロックの内部の上面図である。
(第1の実施形態)
 以下、本発明の実施の形態について説明する。図1は、本発明の第1の実施形態にかかる基板処理システムの構成の概略を示す説明図である。図2及び図3は、各々基板処理システムの内部構成の概略を模式的に示す、正面図と背面図である。図4及び図5は、各々基板処理システムの内部構成の概略を模式的に示す、縦断側面図と縦断正面図である。なお、本明細書および図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。
 基板処理システム1は、図1に示すように複数枚のウェハWを収容したカセットCが搬入出されるカセットステーション10と、ウェハWに所定の処理を施す複数の各種処理装置を備えた処理ステーション11と、処理ステーション11に隣接する露光装置12との間でウェハWの受け渡しを行うインターフェイスステーション13とを一体に接続した構成を有している。
 カセットステーション10には、カセット載置台20が設けられている。カセット載置台20には、基板処理システム1の外部に対してカセットCを搬入出する際に、カセットCを載置するカセット載置板21が複数設けられている。
 カセットステーション10には、カセット載置台20と処理ステーション11との間にウェハ搬送領域Lが設けられている。ウェハ搬送領域Lには、図1に示すようにX方向に延びる搬送路22上を移動自在なウェハ搬送装置23が設けられている。ウェハ搬送装置23は、上下方向及び鉛直軸周り(θ方向)にも移動自在であり、各カセット載置板21上のカセットCと、後述する処理ステーション11の第3のブロックG3の受け渡し装置との間でウェハWを搬送できる。
 処理ステーション11には、各種装置を備えた複数、例えば第1~第4の4つのブロックG1、G2、G3、G4が設けられている。例えば処理ステーション11の正面側(図1のX方向負方向側)には、第1のブロックG1が設けられ、処理ステーション11の背面側(図1のX方向正方向側)には、第2のブロックG2が設けられている。また、処理ステーション11のカセットステーション10側(図1のY方向負方向側)には、第3のブロックG3が設けられ、処理ステーション11のインターフェイスステーション13側(図1のY方向正方向側)には、第4のブロックG4が設けられている。
 例えば第1のブロックG1には、図2に示すように複数の液処理装置、例えばウェハWを現像処理する現像処理装置30、ウェハWのレジスト膜の下層に反射防止膜(以下「下部反射防止膜」という)を形成する下部反射防止膜形成装置31、ウェハWにレジスト液を塗布してレジスト膜を形成するレジスト塗布装置32、ウェハWのレジスト膜の上層に反射防止膜(以下「上部反射防止膜」という)を形成する上部反射防止膜形成装置33が下からこの順に配置されている。
 例えば現像処理装置30、下部反射防止膜形成装置31、レジスト塗布装置32、上部反射防止膜形成装置33は、それぞれ水平方向に4つ並べて配置されている。なお、これら現像処理装置30、下部反射防止膜形成装置31、レジスト塗布装置32、上部反射防止膜形成装置33の数や配置は、任意に選択できる。
 これら現像処理装置30、下部反射防止膜形成装置31、レジスト塗布装置32、上部反射防止膜形成装置33では、例えばウェハW上に所定の塗布液を塗布するスピンコーティングが行われる。スピンコーティングでは、例えば塗布ノズルからウェハW上に塗布液を吐出すると共に、ウェハWを回転させて、塗布液をウェハWの表面に拡散させる。
 例えば第2のブロックG2には、図3に示すようにウェハWの加熱や冷却といった熱処理を行う熱処理装置40や、レジスト液とウェハWとの定着性を高めるためのアドヒージョン装置41、ウェハWの外周部を露光する周辺露光装置42が上下方向等に並べて設けられている。これら熱処理装置40、アドヒージョン装置41、周辺露光装置42の数や配置についても、任意に選択できる。
 例えば第3のブロックG3には、複数の受け渡し装置等が積層された棚ユニットが設けられている。また、第4のブロックG4にも、複数の受け渡し装置等が積層された棚ユニットが設けられている。
 図1に示すように第1のブロックG1~第4のブロックG4に囲まれた領域には、ウェハ搬送領域Rが形成されている。
 また、図1に示すように第3のブロックG3のX方向正方向側の隣には、ウェハ搬送装置100が設けられている。ウェハ搬送装置100は、例えばX方向、θ方向及び上下方向に移動自在な搬送アーム100aを有している。ウェハ搬送装置100は、搬送アーム100aによってウェハWを支持した状態で上下に移動して、第3のブロックG3内の各受け渡し装置にウェハWを搬送できる。
 インターフェイスステーション13には、ウェハ搬送装置110と受け渡し装置111が設けられている。ウェハ搬送装置110は、例えばY方向、θ方向及び上下方向に移動自在な搬送アーム110aを有している。ウェハ搬送装置110は、例えば搬送アーム110aにウェハWを支持して、第4のブロックG4内の各受け渡し装置、受け渡し装置111及び露光装置12との間でウェハWを搬送できる。
 ウェハ搬送領域Rについてさらに説明する。ウェハ搬送領域Rは、図4に示すように、4つの搬送領域R1~R4が下から順に積層されて構成され、搬送領域R1~R4はそれぞれ、第3のブロックG3側から第4のブロックG4側へ向かう方向(図4のY方向正方向)に延びるように形成されている。図5に示すように、搬送領域R1~R4の幅方向の一方には、レジスト塗布装置32等の液処理装置が配置され、他方には例えば熱処理装置40が配置される。熱処理装置40の代わりに、アドヒージョン装置41や周辺露光装置42が配置される場合もある。
 また、搬送領域R1~R4にはそれぞれ、該搬送領域R1~R4の長さ方向(図5のY方向)に沿って延伸するガイド301と、該ガイド301に沿ってウェハWを搬送する搬送装置である搬送アームA1~A4とが設けられている。搬送アームA1~A4は、搬送領域R1~R4毎に当該領域R1~R4に隣接する全てのモジュール間でウェハWの受け渡しを行うためのものである。この搬送アームA1~A4(以下、まとめて搬送アームAと称することがある)は、ガイド301に沿って移動するフレーム302と、該フレーム302に沿って昇降する昇降体303と、該昇降体303上を回動する回動体304と、該回動体304上を進退するウェハ支持部305とを有する。
 レジスト塗布装置32等の液処理装置は、スピンコーティングにより塗布膜を形成するために、ウェハWを保持して回転させるスピンチャック201と、塗布液を供給する不図示の塗布液供給ノズルとを有する。また、上記液処理装置は、ウェハWを囲みウェハWから飛散した塗布液を回収するカップ202と、該カップ202の上方に設けられカップ202内へ清浄なエアを供給するフィルタ203と、を有する。
 熱処理装置40は、ウェハWを加熱する熱板401と、該熱板401と搬送アームA1~A4との間でウェハWを受け渡すと共にウェハWを冷却するプレート402と、熱板401の上方に設けられた整流板403と、搬送領域R1~R4及び熱処理装置40内を排気する排気部404、405とを有する。上から2つ目、4つ目、6つ目、8つ目の熱処理装置40の下方には、搬送領域R1~R4を排気するファン装置406が設けられている。
 処理ステーション11についてさらに説明する。処理ステーション11は、筐体51を備え、該筐体51内に上述の各装置が収納されており、筐体51内は搬送領域R1~R4ごとに仕切られている。筐体51上にはファンフィルタユニット(FFU)52が設けられており、該FFU52には上下に延伸し、搬送領域R1~R4に跨るように形成された垂直ダクト53が接続されている。この垂直ダクト53は、各搬送領域R1~R4の長さ方向に沿って延伸する水平ダクト54に接続されている。
 水平ダクト54は、各搬送領域R1~R4における、レジスト塗布装置32等の液処理装置側の縁部の上方に設けられている。また、水平ダクト54は、不図示のULPAフィルタを内部に有する。上述のファンフィルタユニット52から送風されたエアは、直接または垂直ダクト53を介して、水平ダクト54に流入し、ULPAフィルタにより清浄化され、水平ダクト54から下方に供給される。
 また、水平ダクト54の下方には、仕切り板55が設けられている。この仕切り板55は、各搬送領域R1~R4の天井面を形成するものであり、水平ダクト54から供給されるエアを拡散する気体拡散室(不図示)を内部に有する。さらに、仕切り板55の下面には、気体拡散室で拡散されたエアを搬送領域R1~R4に吐出するための多数の吐出口が全面に形成されている。
 水平ダクト54のULPAフィルタを通過しパーティクルが除去されて清浄化されたエアは、仕切り板55の気体拡散室に流れ込み、吐出口を介して、下方に吐出される。このようにして、各搬送領域R1~R4において、清浄化されたエアによる下降気流が形成されている。
 処理ステーション11は、上述の清浄化されたエアによる下降気流で、浮遊パーティクルを下方に流下させ、ファン装置406を介して外部に排出している。この処理ステーション11では、各搬送領域R1~R4内の雰囲気を更に清浄化するため、搬送領域R1~R4内にそれぞれ音波放射装置が設けられている。具体的には、搬送領域R1~R4においてレジスト塗布装置32等の液処理装置のウェハWの搬出入口K1に隣接する領域に音波放射装置60が設けられ、搬送領域R1~R4において熱処理装置40のウェハWの搬出入口K2に隣接する領域に音波放射装置70が設けられている。
音波放射装置60、70は、例えば、上記搬出入口K1、K2の上方から、排気用のファン装置406が設けられた搬送領域R1~R4の底部に向けて、音波を放出するよう設置される。
 音波放射装置60、70から底部方向へ放射した音波により、上述の搬出入口近傍等に存在する浮遊パーティクルを下方に移動させ、ファン装置406を介して外部に排出することができる。
 また、上記音波放射装置60、70を上述のように設けることで、液処理装置及び熱処理装置40と搬送アームA1~A4との間でのウェハWの受け渡しの際に、液処理装置及び熱処理装置40から搬送領域R1~R4にパーティクルが侵入したり、搬送領域R1~R4から液処理装置及び熱処理装置40にパーティクルが侵入したりするのを防ぐことができる。
 さらに、音波放射装置60、70を設けることで、メンテナンス時に、搬送領域R1~R4の開放等によりパーティクルの侵入や人的動作による発塵などにより、清浄度が悪化しても、元の清浄度に迅速に戻すことができる。
 なお、搬出入口K1、K2は後述の制御部500の制御に基づいて開閉自在に構成されている。
 図の例では、熱処理装置40の二つの搬出入口K2に対して一つの音波放射装置70を設けているが、二つの搬出入口K2それぞれに対して1つの音波放射装置70を設けるようにしてもよい。
 なお、音波放射装置70は、搬送領域R1~R4の底部側に向けて音波を放出するのではなく、排気部404、405が設けられた熱処理装置40の外側方に向けて音波を放出するよう設置されてもよい。これにより、熱処理装置40の搬出入口近傍のパーティクルを外側方に移動させ、排気部404、405を介して外部に排出することができる。
 図6は、音波放射装置60の一例を示す平面図である。
 音波放射装置60は、超音波を使用することにより指向性を有する音波を放出するパラメトリックスピーカであり、超音波を放出する複数のトランスデューサ61を平板状のベース62に並べ、パラメトリックアレイが構成されたものである。例えば、トランスデューサ61が下を向くようにベース62を搬送領域R1~R4の天井付近に固定することで音波放射装置60は設置される。
 音波放射装置60が放出する音波は、可聴域の周波数のものであってもよいし、例えば20kHz以上の周波数を有する超音波であってもよい。
 音波放射装置60をパラメトリックスピーカで構成することにより、浮遊パーティクルを所望の方向に移動させることができるため、該浮遊パーティクルを確実に外部に排除して除去することができる。
 なお、図の例では、縦4個×横8個の計32個のトランスデューサ61が並べられていたが、トランスデューサ61の数や配置はこの例に限られない。
 また、音波放射装置70の構成は、音波放射装置60と同様であるのでその説明を省略する。
 以上の各装置からなる基板処理システム1には、図1に示すように制御部500が設けられている。制御部500は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、基板処理システム1におけるウェハWの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、基板処理システム1における後述の塗布処理を実現させるためのプログラムも格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体から制御部500にインストールされたものであってもよい。
 次に、以上のように構成された基板処理システム1を用いて行われるウェハ処理について説明する。まず、複数のウェハWを収納したカセットCが、基板処理システム1のカセットステーション10に搬入され、ウェハ搬送装置23によりカセットC内の各ウェハWが順次処理ステーション11の第3のブロックG3の受け渡し装置に搬送される。
 次に、ウェハWが、処理ステーション11の搬送領域R2の搬送アームA2により熱処理装置40に向けて搬送される。この搬送と共に、搬送領域R2に隣接する第2のブロックG2の熱処理装置40の搬出入口K2が開口され、この開口動作に合わせて、音波放射装置70から搬送領域R2の底部に向けて音波が放射される。搬出入口K2の開口動作開始前から音波放射が開始されることが好ましい。
 音波放射装置70から音波が放射された状態で、搬送アームA2のウェハ支持部305が熱処理装置40内に挿入され、該熱処理装置40のプレート402にウェハWが受け渡される。受け渡し後、搬送アームA2のウェハ支持部305は熱処理装置40内から引き抜かれ、搬出入口K2が閉じられ、音波放射装置70からの音波放射が停止される。そして、ウェハWは、熱処理装置40により温度調節処理される。
 温度調節処理後、熱処理装置40の搬出入口K2が開口され、この開口動作に合わせて、音波放射装置70から音波が放射される。音波放射装置70から音波が放射された状態で、搬送アームA2のウェハ支持部305が熱処理装置40内に挿入され、該熱処理装置40のプレート402からウェハ支持部305にウェハWが受け渡される。受け渡し後、搬送アームA2のウェハ支持部305は熱処理装置40内から引き抜かれ、搬出入口K2が閉じられ、音波放射装置70からの音波放射が停止される。なお、以下の熱処理装置40での加熱処理の際も、上述と同様に搬出入口K2の開閉に同期して、音波放射装置70からの音波放射が開始/停止される。したがって、以下では、熱処理装置40による加熱処理の際に行われる音波放射について説明を省略する。
 その後、ウェハWは、搬送アームA2により下部反射防止膜形成装置31に向けて搬送される。この搬送と共に、下部反射防止膜形成装置31の搬出入口K1が開口され、この開口動作に合わせて、音波放射装置60から搬送領域R2の底部に向けて音波が放射される。搬出入口K1の開口動作開始前から音波放射が開始されることが好ましい。
 音波放射装置60から音波が放射された状態で、搬送アームA2のウェハ支持部305が下部反射防止膜形成装置31内に挿入され、該下部反射防止膜形成装置31のウェハ受渡用のピン(不図示)にウェハが受け渡される。受け渡し後、搬送アームA2のウェハ支持部305は下部反射防止膜形成装置31内から引き抜かれ、搬出入口K1が閉じられ、音波放射装置60からの音波放射が停止される。そして、下部反射防止膜形成装置31によってウェハW上に下部反射防止膜が形成される。
 下部反射防止膜形成後、下部反射防止膜形成装置31の搬出入口K1が開口され、この開口動作に合わせて、音波放射装置60から音波が放射される。音波放射装置60から音波が放射された状態で、搬送アームA2のウェハ支持部305が下部反射防止膜形成装置31内に挿入され、該下部反射防止膜形成装置31のウェハ受渡用のピンからウェハ支持部305にウェハWが受け渡される。受け渡し後、搬送アームA2のウェハ支持部305は下部反射防止膜形成装置31内から引き抜かれ、搬出入口K1が閉じられ、音波放射装置60からの音波放射が停止される。なお、以下の下部反射防止膜形成装置31以外の液処理装置での処理の際も、上述と同様に搬出入口K1の開閉に同期して、音波放射装置60からの音波放射が開始/停止される。したがって、以下では、液処理装置による加熱処理の際に行われる音波放射について説明を省略する。
 その後、ウェハWは、搬送アームA2により搬送領域R2に隣接する熱処理装置40内に搬送され、加熱処理され、温度調節される。
 次にウェハWは、搬送アームA2により搬送領域R2に隣接するアドヒージョン装置41に搬送され、アドヒージョン処理される。なお、図示は省略するが、アドヒージョン装置41にもウェハWの搬出入口が設けられており、搬送領域R2における上記搬出入口に隣接する領域に音波放射装置が設けられる。そして、アドヒージョン装置41によるアドヒージョン処理の際も、熱処理装置40による加熱処理の際と同様に、搬出入口の開閉に同期して、音波放射装置からの音波放射が開始/停止される。
 その後ウェハWは、搬送アームA2により搬送領域R2に隣接する第4のブロックG4の受け渡し装置に搬送される。次いで、ウェハWは、ウェハ搬送装置110によって、搬送領域R3に隣接する第4のブロックG4の別の受け渡し装置に搬送される。そして、ウェハWは、搬送領域R3内の搬送アームA3によりレジスト塗布装置32に搬送され、ウェハW上にレジスト膜が形成される。その後ウェハWは、搬送アームA3により搬送領域R3に隣接する熱処理装置40に搬送され、プリベーク処理される。なお、プリベーク処理においても下部反射防止膜形成後の熱処理と同様な処理が行われ、また、後述の反射防止膜形成後の熱処理、露光後ベーク処理、ポストベーク処理においても同様な処理が行われる。ただし、各熱処理に供される熱処理装置40は互いに異なる。
 次にウェハWは、搬送アームA3により搬送領域R3に隣接する第4のブロックG4の受け渡し装置に搬送される。次いで、ウェハWは、ウェハ搬送装置110によって、搬送領域R4に隣接する第4のブロックG4の別の受け渡し装置に搬送される。そして、ウェハWは、搬送領域R4内の搬送アームA4により上部反射防止膜形成装置33に搬送され、ウェハW上に上部反射防止膜が形成される。その後ウェハWは、搬送アームA4により搬送領域R4に隣接する熱処理装置40に搬送されて、加熱され、温度調節される。その後、ウェハWは、搬送アームA4により搬送領域R4に隣接する周辺露光装置42に搬送され、周辺露光処理される。なお、図示は省略するが、周辺露光装置42にもウェハWの搬出入口が設けられており、搬送領域R4における上記搬出入口に隣接する領域に音波放射装置が設けられる。そして、周辺露光装置42による周辺露光処理の際も、熱処理装置40による加熱処理の際と同様に、搬出入口の開閉に同期して、音波放射装置からの音波放射が開始/停止される。
 次にウェハWは、搬送アームA4により搬送領域R4に隣接する第4のブロックの受け渡し装置に搬送される。そして、ウェハWは、ウェハ搬送装置110によって、露光装置12に搬送され、所定のパターンで露光処理される。
 次にウェハWは、ウェハ搬送装置110によって、搬送領域R1に隣接する第4のブロックG4の受け渡し装置に搬送される。次いで、ウェハWは、搬送領域R1内の搬送アームA1により、搬送領域R1に隣接する熱処理装置40に搬送され、露光後ベーク処理される。その後ウェハWは、搬送アームA1により、現像処理装置30に搬送されて現像処理される。現像処理終了後、ウェハWは、搬送アームA1により、搬送領域R1に隣接する熱処理装置40に搬送され、ポストベーク処理される。そして、ウェハWは、搬送アームA1により搬送領域R1に隣接する第3のブロックG3の受け渡し装置に搬送される。その後、ウェハWは、ウェハ搬送装置23によりカセット載置板21のカセットCに搬送され、一連のフォトリソグラフィー工程が完了する。
 以上の例では、開閉に同期して音波放射装置70から音波を放射していたが、音波放射のタイミングはこの例に限られない。例えば、処理ステーション11内にウェハWが存在しているときは常に放射していても良く、具体的には、処理ステーション11の第3のブロックにウェハWが搬入された際に音波の放射を開始させ第4のブロックからウェハWが搬出された際に音波の放射を停止させるようにしてもよい。
 図7は、音波放射装置の他の例を示す側面図である。
 図の音波放射装置60´は、指向性を有する音波を放出するパラメトリックスピーカであり、音波の放出方向を調節可能とするため、音波放射装置60´が揺動可能に支持されている。具体的には、音波放射装置60´は、複数のトランスデューサ61を有するベース62´が、軸支部63により揺動可能に支持されている。なお、軸支部63自体は、例えば処理ステーション11の筐体51に支持される。
 このように音波放射装置60´を揺動可能に支持することにより、音波放射装置60´として小さいものを用いることができ、基板処理システム1の製造コストの大幅な上昇を防ぐことができる。
 音波放射装置60´は、例えば周期的に揺動するよう制御部500により制御される。
(第1の実施形態の他の例)
 図8は、本発明の第1の実施形態に係る基板処理システムの他の例の概略を示す説明図であり、カセットステーションのみを示す正面図である。
 図5等の例では、処理ステーション11の搬送領域R1~R4に音波放射装置60、70を設けていた。それに対し、図8の例では、カセットステーション10´のウェハ搬送領域Lに音波放射装置80を設けている。具体的には、カセットステーション10が筐体56を有し、該筐体56が、カセット載置台20に載置されたカセットCに対する搬出入口K3を有するので、ウェハ搬送領域L内の上記搬出入口K3と隣接する領域に音波放射装置80を設けている。
 このように音波放射装置80をカセットステーション10のウェハ搬送領域Lに設けることで、カセットCからのウェハWの搬出またはカセットCへのウェハWの搬入の際に、カセットCからウェハ搬送領域Lにパーティクルが侵入したり、ウェハ搬送領域LからカセットCにパーティクルが侵入したりするのを防ぐことができる。
 なお、音波放射装置80の構成には例えば図6の音波放射装置60と同様な構成を採用することができる。また、音波放射装置80を図8のように搬出入口K3の近傍に設けてもよいし、搬出入口K3の上方であって天井面の近傍に設けてもよい。
 図示は省略するが、カセットステーション10に対してもFFUユニットは設けられており、ウェハ搬送領域L内の雰囲気を排気する排気機構がカセットステーション10の底部に設けられている。音波放射装置80は、例えば、搬出入口K3の上方から、排気機構が設けられたウェハ搬送領域Lの底部に向けて、音波を放出するよう設置される。
(第1の実施形態の別の例)
 以上の例では、音波放射装置は、搬送領域におけるウェハの搬出入口に隣接する領域にのみ設けられているが、音波放射装置が設けられる領域は上述の例に限られない。例えば、搬送領域の天井面からの下降気流を妨げない範囲で、該天井面の全体を覆うように音波放射装置を設けてもよい。また、処理ステーション11の搬送領域R1~R4の幅方向中央に、長さ方向に沿って複数の音波放射装置を設けてもよい。さらに、搬送領域の幅方向に沿って複数の音波放射装置を設けるようにしてもよい。
 また、搬送領域における第3のブロックG3や第4のブロックG4の受け渡し装置と隣接する領域に音波放射装置を設けてもよい。
(第1の実施形態の更に別の例)
 図9は、本発明の第1の実施形態にかかる基板処理システムの更に別の例の説明図であり、図9(A)は本例の基板搬送装置の周辺の様子を示し、図9(B)は図9(A)の基板搬送装置に取付けられる音波放射装置の一部を示す図である。
 図5等の例では、音波放射装置は処理ステーション11の筐体51に取付けられている。それに対し、本例では、図9(A)に示すように、音波放射装置600が基板搬送アームAの外側方に取付けられている。
 基板搬送アームAに取付けられている音波放射装置600は、第1の音波放射ユニット610と第2の音波放射ユニット620を有する。
 第1の音波放射ユニット610及び第2の音波放射ユニット620はそれぞれ、超音波を使用することにより指向性を有する音波を放出するパラメトリックスピーカであり、超音波を放出する複数のトランスデューサ611、621と、該トランスデューサ611、621を基板搬送アームAに対して固定するためのベース部材612、622とを有する。
 ベース部材612は、図9(B)に示すように、複数のトランスデューサ611を支持する支持面612aと、搬送アームAの昇降体303に対する固定面612bとを、含む。
 また、第2の音波放射ユニット620の構成は、第1の音波放射ユニット610と同様であるのでその説明を省略する。
 第1の音波放射ユニット610からの音波と第2の音波放射ユニット620からの音波は共に、搬送アームAに載置されているウェハの表面全体に放射される。ただし、第1の音波放射ユニット610のトランスデューサ611を支持する支持面612aと、第2の音波放射ユニット620のトランスデューサ621を支持する支持面とは互いに非平行である。したがって、第1の音波放射ユニット610からの音波のベクトルV1と第2の音波放射ユニット620からの音波のベクトルV2とは非平行であり、両ベクトルV1、V2の和は搬送アームAの根元から先端方向(図のX方向負方向)に向かうベクトルとなる。したがって、ウェハ搬送中に音波放射装置600から音波を放射することにより、ウェハ表面近傍のパーティクルをウェハから離間させ外部に排出することができるため、ウェハにパーティクルが付着するのを防ぐことができる。
 なお、図9(B)に示すように、複数のトランスデューサ611から成るトランスデューサ群の中心にウェハWが位置するように第1の音波放射ユニット610は搬送アームAに固定される。より具体的には、上記トランスデューサ群の長手方向がウェハWの表面と平行となり、上記トランスデューサ群の短手方向の中心がウェハWの表面に位置するように、第1の音波放射ユニット610は搬送アームAに固定される。第2の音波放射ユニット620についても同様である。
 以上の例では、音波放射装置600が搬送アームAの外側方に取付けられていた。しかし、音波放射装置は、搬送アームAの上方に取付けられていてもよい。より具体的には、搬送アームAのウェハ支持部305の上方に音波放射装置は取り付けられていてもよい。
(第2の実施形態)
 図10は、本発明の第2の実施形態にかかる基板処理システムの概略を説明するための図であり、図10(A)及び図10(B)はそれぞれ、本実施形態に係る基板処理システムの仕切り板の上面図及び側面図である。
 第2の実施形態に係る基板処理システムは、第1の実施形態にかかる基板処理システムのように、搬送領域R1~R4及び/またはウェハ搬送領域Lに音波放射装置を備えることに加え、搬送領域R1~R4及び/またはウェハ搬送領域Lが吸着領域を有する。
 具体的には、例えば、図10(A)及び図10(B)に示すように、搬送領域R2~R4の底面を形成する仕切り板55の上に、冷却された冷却板700が取り付けられており、冷却板700による熱泳動により、温度の高い領域の浮遊パーティクルが冷却板700に吸着される。言い換えると、仕切り板55上の冷却板700により吸着領域が形成される。
 冷却板700は、例えば内部に冷却水を循環させることにより冷却される。ただし、冷却板700の冷却方法はこれに限られず、例えば、冷風により冷却するようにしてもよい。
 なお、搬送領域R1の底面を形成する底壁の上にも冷却板700を取り付けることが好ましい。
 搬送領域R1~R4の底面に吸着領域を設けると、浮遊パーティクルを捕集できるだけでなく、該底面に堆積したパーティクルが巻き上がるのを防止することができる。さらに、音波放射装置に加えて上述のように吸着領域を設けることで、メンテナンス時に清浄度が悪化しても、元の清浄度にさらに迅速に戻すことができる。
 なお、冷却板700を仕切り板55や底壁の上に設けることに代えて、仕切り板55の内部や底壁の内部に冷却水を循環させるなどして、仕切り板55や底壁に冷却領域すなわち浮遊パーティクルの吸着領域を形成するようにしてもよい。
 図11は、冷却板の他の例を示す図である。
 図10の冷却板700は、仕切り板55の略全面を覆うように該仕切り板55の上に設けられていた。それに対し、図11の冷却板800は、仕切り板55の一部を覆うように、具体的には、仕切り板55の搬送領域R2~R4の幅方向中央は覆わずに両側のみを覆うように、仕切り板55の上に設けられている。
 この冷却板800によっても、浮遊パーティクルを吸着することができる。
(第2の実施形態の他の例)
 以上の例では、冷却板は、仕切り板55等の搬送領域の底壁を形成する部分に取付けられていた。しかし、冷却板は、搬送領域を形成する側壁を形成する部分に取付けるようにしてもよい。
 また、搬送アームAに冷却板を取り付けるようにしてもよい。搬送アームAに冷却板を取り付ける場合、例えば、昇降体303に冷却板は取り付けられる。なお、搬送アームAに対して排気機構が設けられており、排気はX軸/θ軸からZ軸を経由しY軸から排気している。上述のように、昇降体303等、搬送アームAの下部に冷却板を取り付けることで、搬送アームAの排気系路からパーティクルが漏れている場合でも、より具体的には、θ‐z軸管でパーティクル漏れが発生している場合でも、冷却板でパーティクルを吸着することができる。
(第2の実施形態の別の例)
 以上の例では、冷却板を用いた熱泳動によりパーティクルの吸着領域を形成していた。しかし、吸着方法は上述の例に限られず、静電吸着により浮遊パーティクルを吸着するようにしてもよい。かかる場合、冷却板に代えて、帯電された帯電板が搬送領域内に設けられる。
 本実施形態のように吸着領域を設ける場合、吸着領域は所定のタイミングで清掃され、捕集されたパーティクルは除去される。
 吸着領域の清掃は、例えば定期メンテナンス時に行われる。また、吸着領域の汚れ具合を監視し、清掃が必要となった場合にユーザに報知し、報知結果に応じて吸着領域の清掃が行われるようにしてもよい。
 吸着領域からのパーティクルの除去は、例えば吸引ノズルにより手動で吸い取ることで行ってもよいし、吸着領域の周囲に排気機構を設け、該排気機構により自動的に排出することで行ってもよい。
(第3の実施形態)
 本発明の第3の実施形態にかかる基板処理システムを、図12及び図13を用いて説明する。図12及び図13は、本実施形態に係る基板処理システムの第3のブロックに設けられた棚ユニットの概略を説明するための図であり、図12は棚ユニットの側面図、図13は棚ユニットに設けられた後述の収納ブロックの内部の上面図である。
 第3の実施形態に係る基板処理システムは、搬送領域R1~R4及び/またはウェハ搬送領域Lに隣接する装置が、当該搬送領域R1~R4及び/またはウェハ搬送領域Lに向けて音波を放射する別の音波放射装置を有する。
 具体的には、例えば、図12に示すように、搬送領域R1~R4に隣接する第3のブロックG3に設けられた収容装置としての棚ユニット900が、搬送領域R1~R4に向けて音波を放射する別の音波放射装置910を有する。
 棚ユニット900は、搬送領域R1~R4に対応すべく複数に区画された収納ブロックB1~B4を有する。図示は省略するが、棚ユニット900の収納ブロックB1~B4にはそれぞれ、ウェハWを収容する収容部として、載置棚や冷却プレートが設けられている。冷却プレートはウェハWを所定温度に調整するためのものである。
 また、棚ユニット900は、第3のブロックG3と第4のブロックG4との間で直線的にウェハWを搬送する不図示のシャトル搬送装置と搬送アームA1~A4との間でウェハWの受け渡しを行うための受け渡しステージを有する受渡部TR1、TR2を有する。
 音波放射装置910は、例えば図6の音波放射装置60と同様な構成を採用することができる。
 また、音波放射装置910は、収納ブロックB1~B4毎に1つ設けられている。さらに、本例では、収納ブロックB1において、音波放射装置910は、図13に示すように、搬送領域R1に向けて音波が放射されるように、収納ブロックB1にウェハWを収容したときに当該ウェハWを間に挟んで搬送領域R1と対向する位置に設けられている。収納ブロックB2~B4における音波放射装置910の配設位置も同様である。
 本実施形態のように搬送領域R1~R4に向けて音波を放射する別の音波放射装置910を棚ユニット900に設けることで、搬送領域R1~R4に存在する浮遊パーティクルが棚ユニット900内に侵入するのを防ぐことができる。そのため、搬送領域R1~R4内の浮遊パーティクルが、棚ユニット900に収容されたウェハWに付着するのを防ぐことができる。
 音波放射装置910は、例えば、対応する搬送アームA1~A4の動作に合わせて音波を放射する。具体的には、音波放射装置910は、対応する搬送アームA1のウェハ支持部305が収納ブロックB1に対して動き始める時から、すなわち、ウェハ支持部305がホーム位置から動き始める時から、ウェハ支持部305がホーム位置に戻るまでの間、音波を放射する。これに代えて、音波放射装置910は、対応する搬送アームA1が棚ユニット900にアクセスするときに搬送アームA1が棚ユニット900に向かう方向(図1のY方向負方向)の移動を停止してから、ウェハ支持部305がホーム位置に戻るまでの間、音波を放射してもよい。また、音波放射装置910は常時音波を出してもよい。
 音波放射装置910の音波の放射タイミングは、収納ブロックB1~B4で共通であってもよいし、収納ブロックB1~B4毎に異なってもよい。
 なお、上述の例では、搬送領域R1~R4に向けて音波が放射されるように音波放射装置910が設けられていた。しかし、これに加えて、または、これに代えて、ウェハ搬送領域Lやウェハ搬送装置100が存在する搬送領域に向けて音波が放射させるように音波放射装置910を設けてもよい。ただし、音波放射装置910を1つのみ設ける場合は、搬送領域R1~R4に向けて音波が放射されるように設けることが好ましい。搬送アームのうち、最も頻繁に動作するのが搬送アームA1~A4であり、当該搬送アームA1~A4が設けられた搬送領域R1~R4に浮遊パーティクルが存在する可能性が高いからである。
 また、上述の例では、棚ユニット900の収納ブロックB1~B4にのみ音波放射装置910が設けられていたが、受渡部TR1、TR2に同様に音波放射装置910を設けてもよい。
 さらに、上述の例では、音波放射装置910は、搬送領域R1~R4に隣接する第3のブロックG3内の棚ユニット900に設けられていた。しかし、これに加えて、または、これに代えて、音波放射装置910は搬送領域R1~R4に隣接する第4のブロックG4内の棚ユニットに設けられていてもよい。
 なお、第3の実施形態においても、第1の実施形態にかかる基板処理システムのように、搬送領域に音波放射装置を備えることが好ましい。
 本発明は、基板を搬送するための基板搬送領域が設けられた基板処理システムに有用である。
1…基板処理システム
K1、K2、K3…搬出入口
A1、A2、A3、A4…搬送アーム
R1、R2、R3、R4…搬送領域
20…カセット載置台
23…ウェハ搬送装置
60、70、80、600、910…音波放射装置
700、800…冷却板
900…棚ユニット

Claims (10)

  1. 基板を処理する処理装置を備え、該処理装置に基板を搬送するための基板搬送領域が設けられた基板処理システムにおいて、
     音波を放射し前記基板搬送領域内の浮遊パーティクルが基板に付着することを防止する音波放射装置を備える。
  2.  請求項1に記載の基板処理システムにおいて、
     前記音波放射装置は、前記基板搬送領域における前記処理装置の基板搬出入口に隣接する領域に設けられている。
  3.  請求項1に記載の基板処理システムにおいて、
     基板を収容するカセットを載置するカセット載置部を備え、
     前記音波放射装置は、前記基板搬送領域における、前記カセット載置部に対する基板搬出入口に隣接する領域に設けられている。
  4.  請求項1に記載の基板処理システムにおいて、
     前記基板搬送領域内を移動し基板を搬送する基板搬送装置を備え、
     前記音波放射装置は、前記基板搬送装置に取付けられている。
  5.  請求項1に記載の基板処理システムにおいて、
     前記音波放射装置は、揺動可能に支持されている。
  6.  請求項1に記載の基板処理システムにおいて、
     前記基板搬送領域は、塵埃を吸着する吸着領域を有する。
  7.  請求項1に記載の基板処理システムにおいて、
     前記音波放射装置が放射する音波は、指向性を有する。
  8.  請求項1に記載の基板処理システムにおいて、
     前記基板搬送領域に隣接する装置を備え、
     前記音波放射装置は、前記基板搬送領域に向けて音波を放射するように前記隣接する装置に設けられている。
  9.  請求項8に記載の基板処理システムにおいて、
     前記隣接する装置は、基板の受け渡しのために基板を収容する収容装置であり、
     前記音波放射装置は、前記収容装置に基板を収容したときに当該基板を間に挟んで前記基板搬送領域と対向する位置に設けられている。
  10.  請求項8に記載の基板処理システムにおいて、
     前記音波放射装置は、前記基板搬送領域内を移動し基板を搬送する基板搬送装置の動作に合わせて音波を放射する。
     
PCT/JP2018/000655 2017-02-24 2018-01-12 基板処理システム WO2018154993A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880012674.XA CN110313060B (zh) 2017-02-24 2018-01-12 基板处理系统
JP2019501109A JP6902601B2 (ja) 2017-02-24 2018-01-12 基板処理システム
KR1020197027405A KR102534203B1 (ko) 2017-02-24 2018-01-12 기판 처리 시스템

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-032961 2017-02-24
JP2017032961 2017-02-24
JP2017-251489 2017-12-27
JP2017251489 2017-12-27

Publications (1)

Publication Number Publication Date
WO2018154993A1 true WO2018154993A1 (ja) 2018-08-30

Family

ID=63253175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000655 WO2018154993A1 (ja) 2017-02-24 2018-01-12 基板処理システム

Country Status (5)

Country Link
JP (1) JP6902601B2 (ja)
KR (1) KR102534203B1 (ja)
CN (1) CN110313060B (ja)
TW (1) TWI770118B (ja)
WO (1) WO2018154993A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072301B1 (ja) * 2021-09-01 2022-05-20 伸和コントロールズ株式会社 製造プラント及び製造プラントにおける機器の設置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166970A (ja) * 2003-12-03 2005-06-23 Canon Inc 処理システム、当該処理システムを有する露光装置
JP2005354025A (ja) * 2004-05-13 2005-12-22 Tokyo Electron Ltd 基板搬送機構、該基板搬送機構を備える基板搬送装置、基板搬送機構のパーティクル除去方法、基板搬送装置のパーティクル除去方法、該方法を実行するためのプログラム、及び記憶媒体
JP2008186864A (ja) * 2007-01-26 2008-08-14 Tokyo Electron Ltd ゲートバルブの洗浄方法及び基板処理システム
JP2015126203A (ja) * 2013-12-27 2015-07-06 東京エレクトロン株式会社 基板受け渡し装置及び基板受け渡し方法
JP2016178256A (ja) * 2015-03-23 2016-10-06 株式会社日立ハイテクマニファクチャ&サービス ウェーハ搬送装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041375A1 (fr) * 2000-11-15 2002-05-23 Nikon Corporation Procedes et dispositfs de transfert et d'exposition et procede servant a fabriquer un composant
JP4279008B2 (ja) * 2003-02-27 2009-06-17 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
CN100584714C (zh) * 2004-05-13 2010-01-27 东京毅力科创株式会社 基板输送机构及输送装置、颗粒除去法及程序和存储介质
CN100592468C (zh) * 2006-02-02 2010-02-24 株式会社迅动 基板处理装置
JP5395405B2 (ja) * 2008-10-27 2014-01-22 東京エレクトロン株式会社 基板洗浄方法及び装置
JP5123820B2 (ja) * 2008-10-27 2013-01-23 東京エレクトロン株式会社 基板処理装置の真空排気方法及び基板処理装置
JP5557161B2 (ja) 2011-01-24 2014-07-23 住友電気工業株式会社 構造解析方法
TWI523134B (zh) * 2011-09-22 2016-02-21 東京威力科創股份有限公司 基板處理系統、基板搬運方法、及電腦記憶媒體
JP5956324B2 (ja) * 2012-12-13 2016-07-27 東京エレクトロン株式会社 搬送基台及び搬送システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166970A (ja) * 2003-12-03 2005-06-23 Canon Inc 処理システム、当該処理システムを有する露光装置
JP2005354025A (ja) * 2004-05-13 2005-12-22 Tokyo Electron Ltd 基板搬送機構、該基板搬送機構を備える基板搬送装置、基板搬送機構のパーティクル除去方法、基板搬送装置のパーティクル除去方法、該方法を実行するためのプログラム、及び記憶媒体
JP2008186864A (ja) * 2007-01-26 2008-08-14 Tokyo Electron Ltd ゲートバルブの洗浄方法及び基板処理システム
JP2015126203A (ja) * 2013-12-27 2015-07-06 東京エレクトロン株式会社 基板受け渡し装置及び基板受け渡し方法
JP2016178256A (ja) * 2015-03-23 2016-10-06 株式会社日立ハイテクマニファクチャ&サービス ウェーハ搬送装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072301B1 (ja) * 2021-09-01 2022-05-20 伸和コントロールズ株式会社 製造プラント及び製造プラントにおける機器の設置方法
WO2023033028A1 (ja) * 2021-09-01 2023-03-09 伸和コントロールズ株式会社 製造プラント及び製造プラントにおける機器の設置方法

Also Published As

Publication number Publication date
KR102534203B1 (ko) 2023-05-19
TWI770118B (zh) 2022-07-11
KR20190117685A (ko) 2019-10-16
TW201843439A (zh) 2018-12-16
CN110313060A (zh) 2019-10-08
JP6902601B2 (ja) 2021-07-14
JPWO2018154993A1 (ja) 2019-11-21
CN110313060B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
JP3910821B2 (ja) 基板の処理装置
JP4410121B2 (ja) 塗布、現像装置及び塗布、現像方法
JP3587776B2 (ja) 塗布装置及び塗布方法
JP2004207573A (ja) 塗布処理装置
JP5002471B2 (ja) 基板洗浄装置、基板洗浄方法、プログラム及びコンピュータ記憶媒体
JP2002280296A (ja) 液処理装置
JP2009010287A (ja) 基板の処理システム
JP2009194242A (ja) 塗布、現像装置、塗布、現像方法及び記憶媒体
JP4606348B2 (ja) 基板処理装置及び基板搬送方法並びに記憶媒体
JPH09205047A (ja) 処理装置
JPH10150089A (ja) 処理システム
JP4294837B2 (ja) 処理システム
WO2018154993A1 (ja) 基板処理システム
JP3983481B2 (ja) 基板処理装置及び基板処理装置における基板搬送方法
JP2010182919A (ja) 基板処理システム
JP4880004B2 (ja) 基板処理システム
TW202306003A (zh) 液處理裝置
JP3521388B2 (ja) 基板搬送装置及び処理システム
JP3254583B2 (ja) 処理システム
JP5216713B2 (ja) 塗布処理装置、塗布処理方法、プログラム及びコンピュータ記憶媒体
JP2010161407A (ja) 基板処理システム
JP2000138276A (ja) 基板処理装置
JP3962490B2 (ja) 現像処理装置及び現像処理方法
JP4996749B2 (ja) 基板の処理装置
JP4748263B2 (ja) 塗布、現像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027405

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18757529

Country of ref document: EP

Kind code of ref document: A1