WO2018154867A1 - サイジング剤塗布炭素繊維束、熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体の製造方法 - Google Patents

サイジング剤塗布炭素繊維束、熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体の製造方法 Download PDF

Info

Publication number
WO2018154867A1
WO2018154867A1 PCT/JP2017/040548 JP2017040548W WO2018154867A1 WO 2018154867 A1 WO2018154867 A1 WO 2018154867A1 JP 2017040548 W JP2017040548 W JP 2017040548W WO 2018154867 A1 WO2018154867 A1 WO 2018154867A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
sizing agent
fiber bundle
coated carbon
compound
Prior art date
Application number
PCT/JP2017/040548
Other languages
English (en)
French (fr)
Inventor
四方孝幸
吉弘一貴
野口知久
市川智子
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/466,562 priority Critical patent/US10738171B2/en
Priority to RU2019129529A priority patent/RU2019129529A/ru
Priority to JP2017559469A priority patent/JP6338029B1/ja
Priority to KR1020197014201A priority patent/KR102090924B1/ko
Priority to EP17897235.2A priority patent/EP3546642B1/en
Priority to MX2019008543A priority patent/MX2019008543A/es
Priority to CN201780082850.2A priority patent/CN110168161B/zh
Publication of WO2018154867A1 publication Critical patent/WO2018154867A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • the present invention relates to a sizing agent-coated carbon fiber bundle that is coated with a sizing agent that exhibits high adhesiveness to a thermoplastic resin and exhibits good opening properties in the opening process of the sizing agent-coated carbon fiber, and the sizing agent-coated carbon fiber.
  • a thermoplastic resin composition using a bundle, a molded body, a method for producing a sizing agent-coated carbon fiber bundle, and a method for producing a molded body referred to as “thermoplastic resin molded body” or simply “molded body” in the present invention). It is about.
  • Carbon fiber is lightweight and excellent in strength and elastic modulus, so as a composite material combined with various matrix resins, many of aircraft members, spacecraft members, automobile members, ship members, civil engineering building materials, sports equipment, etc. Used in the field.
  • a molded product obtained by press-molding a preform obtained by laminating prepregs (a molding method in which defoaming and shaping are performed under pressure) can be given.
  • the prepreg is generally manufactured by impregnating a carbon fiber base material in which continuous carbon fibers are arranged in one direction with a resin.
  • Patent Document 1 proposes a method for improving the interlaminar shear strength, which is an index of interfacial adhesion, by subjecting a carbon fiber bundle to electrolytic treatment.
  • Patent Document 2 proposes a method for improving adhesion to a thermoplastic resin having few functional groups by applying polyethyleneimine as a sizing agent to a carbon fiber bundle.
  • Patent Document 3 employs a method in which polyethyleneimine is applied as a sizing agent after high-order processing of a carbon fiber bundle into a web or the like.
  • Patent Document 4 a high-viscosity polyethyleneimine having a high molecular weight is used as a sizing agent in a carbon fiber bundle to produce a carbon fiber chopped that is difficult to disperse in an injection molding machine.
  • Patent Documents 5 and 6 propose a technique for suppressing fluff in a fiber manufacturing process by using an amine compound and a surfactant as a lubricant.
  • the present invention has been made in view of the above, and even in the case of showing a high level of adhesion to a thermoplastic resin, it has good fiber opening in the fiber opening process of the sizing agent-coated carbon fiber bundle.
  • An object is to provide a sizing agent coated carbon fiber bundle as shown.
  • the openability of the sizing agent-coated carbon fiber bundle is likely to be lowered. It has been found that there is a problem that uneven impregnation and voids are likely to occur during prepreg production.
  • the interaction between carbon fibers can be controlled to a high degree, and both high openability and high adhesion can be achieved. I found out.
  • the compound (B) which is a smooth component, improves the spreadability by reducing the friction coefficient of the surface layer of the single yarn in the carbon fiber bundle, thereby improving the slippage between the single yarns that are in contact with the fiber opening process. be able to.
  • the interfacial adhesion between the carbon fiber and the matrix resin can be enhanced, and the physical properties of the obtained carbon fiber reinforced composite material can be enhanced.
  • the sizing agent-coated carbon fiber bundle of the present invention is a sizing agent coating in which a sizing agent containing a compound (A) containing an amino group or an amide group is applied to carbon fibers.
  • the carbon fiber bundle is characterized by satisfying the following (i) or (ii).
  • (I) A sizing agent-coated carbon fiber bundle having a length of 10 cm or more, comprising 50 parts by mass or more of the compound (A) containing an amino group or an amide group with respect to 100 parts by mass of the total sizing agent,
  • the weight average molecular weight Mw is 2500 or less
  • the viscosity of the compound (A) at 25 ° C. is 200 to 10,000 mPa ⁇ s
  • the sizing agent adhesion amount X represented by the following formula (a) is 0.03% by mass or more and 0.0. It is less than 1% by mass.
  • the total amount of B) is 50 parts by mass or more with respect to 100 parts by mass of the total amount of the sizing agent, and the sizing agent satisfies the formula (III) in which the mass WA of (A) and the mass WB of (B) satisfy the formula (III).
  • thermoplastic resin composition of the present invention is characterized by comprising the above-described sizing agent-coated carbon fiber bundle and a thermoplastic resin (C).
  • the molded article of the present invention is a prepreg or UD (unidirectional) tape using the thermoplastic resin composition.
  • the method for producing a sizing agent-coated carbon fiber bundle of the present invention is characterized by having a step of applying the sizing agent to the carbon fiber with an aqueous solvent.
  • the manufacturing method of the molded object of this invention is, after obtaining a thermoplastic resin composition using the said sizing agent application
  • coating carbon fiber bundle which shows favorable opening property in the opening process of a sizing agent application
  • the fiber content in the thermoplastic resin molded body can be made uniform, and the mechanical properties of the thermoplastic resin molded body including the sizing agent-coated carbon fiber bundle are also improved.
  • the sizing agent constituting the present invention needs to contain a compound (A) containing at least one of an amino group and an amide group.
  • a carbon fiber bundle coated with a sizing agent containing a compound (A) containing an amino group or an amide group exhibits excellent adhesiveness with a thermoplastic resin.
  • the mechanical properties of the thermoplastic resin molded article using the carbon fiber bundle coated with the sizing agent are improved.
  • the mechanism is not clear, but amino groups and amide groups are highly polar, and have strong interactions such as hydrogen bonds with highly polar oxygen-containing structures such as the carbon fiber bundle surface and carboxyl groups and hydroxyl groups in the resin. It is thought that excellent adhesiveness is expressed.
  • Examples of the compound (A) constituting the present invention include aliphatic amine compounds, aromatic amine compounds, aliphatic amide compounds, and aromatic amide compounds.
  • an aliphatic amine compound is preferable from the viewpoint of exhibiting high adhesiveness.
  • the aliphatic amine compound has high adhesiveness, it can be considered that its polarity is very high as compared with compounds having other amino groups and amide groups.
  • aliphatic amine compound examples include diethylenetriamine, triethylenetetramine, dicyandiamide, tetraethylenepentamine, dipropylenediamine, piperidine, N, N-dimethylpiperazine, triethylenediamine, polyamidoamine, octylamine, laurylamine, Aliphatic monoamines such as myristylamine, stearylamine, cocoalkylamine, beef tallow alkylamine, oleylamine, cured beef tallow alkylamine, N, N-dimethyllaurylamine, N, N-dimethylmyristylamine; polyethyleneimine, polypropyleimine, poly Butyleneimine, 1,1-dimethyl-2-methylethyleneimine, 1,1-dimethyl-2-propylethyleneimine, N-acetylpolyethyleneimine, N-propioni Polyethyleneimine, N- butyryl polyethyleneimine, N- Palais Lil polyethyleneimine
  • aliphatic amine compounds compounds having a functional group amount of 2 or more in one molecule are preferably used because of their high adhesiveness.
  • polyalkylenimine is preferably used because it easily increases the amount of functional groups contained in one molecule and easily improves adhesiveness.
  • the adhesiveness of a compound having a functional group amount of 2 or more contained in one molecule is likely to be high, it is considered that the polarity of the molecule is likely to be increased by increasing the functional group amount.
  • aromatic amine compound examples include 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, benzidine, triaminophenol, triglycidylaminocresol, 2,4,6- Triaminophenol, 1,2,3-triaminopropane, 1,2,3-triaminobenzene, 1,2,4-triaminobenzene, 1,3,5-triaminobenzene and its derivatives, and their A mixture etc. are mentioned.
  • aliphatic amide compound examples include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, erucic acid amide, ricinoleic acid amide, N-stearyl stearic acid amide, N-oleyl.
  • Monoamides such as oleic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, N-oleyl palmitic acid amide, methylol stearic acid amide, methylol behenic acid amide; Amides, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bisisostearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, hexa Tylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene bishydroxystearic acid amide, N, N'-distearyl adipic acid amide, N, N'-distearyl sebacic acid amide, ethylene bisoleic acid amide, hexa Bisamides such as methylene bisoleic acid
  • a resin in which a hydrophilic group such as a polyalkylene oxide chain or a tertiary amine component is introduced into the molecule.
  • aliphatic amides may be used alone or in combination of two or more.
  • aromatic amide compounds include aromatic amide amines such as aminobenzamide, aminobenzanilide, and aminobenzenesulfonamide; aromatic / fats such as polyhexamethylene terephthalamide (nylon 6T) and nylon 6 / 6T copolymer. Group polyamides and derivatives thereof. These aromatic amides may be used alone or in combination of two or more.
  • the compound (A) needs to be contained in an amount of 50 parts by mass or more with respect to 100 parts by mass of the sizing agent excluding the solvent. It is. Adhesion improves by including 50 mass parts or more, and the physical property of a thermoplastic resin molding using the same also improves. 60 parts by mass or more is preferable, and 80 parts by mass or more is more preferable.
  • a nonionic surfactant or the like may be appropriately added as long as the effect of the present invention is not affected.
  • the weight average molecular weight Mw of the compound (A) needs to be 2500 or less.
  • the weight average molecular weight Mw is measured by a gel permeation chromatograph (hereinafter abbreviated as GPC) method, and is obtained using pullulan as a standard substance. Since the viscosity of the sizing agent increases as Mw increases, a large force is required to separate the carbon fibers adhered through the sizing agent. By setting Mw to 2500 or less, the viscosity, which is an index of the mobility of the sizing agent, is reduced, and the ability to restrain the carbon fibers is weakened, thereby improving the openability of the carbon fiber bundle.
  • Mw is preferably 1500 or less, and more preferably 1000 or less.
  • the lower limit of Mw is preferably 500 or more, and more preferably 650 or more.
  • the viscosity of the compound (A) at 25 ° C. needs to be 200 to 10,000 mPa ⁇ s.
  • the viscosity is 10000 mPa ⁇ s or less, the opening property is improved by weakening the force of restraining the carbon fibers through the sizing agent.
  • the viscosity is preferably 8000 mPa ⁇ s or less, and more preferably 3000 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but by controlling the viscosity to 200 mPa ⁇ s or more, the control of the adhesion amount can be stabilized in the sizing agent application process to the carbon fiber bundle.
  • the viscosity of the sizing agent at a temperature of 25 ° C. is a value measured at a frequency of 3.14 rad / s using a viscoelasticity measuring device.
  • the sizing agent needs to be attached at a ratio of 0.03 mass% or more and less than 0.1 mass% with respect to the carbon fiber bundle.
  • the amount of sizing agent adhering is preferably 0.04% by mass or more, and more preferably 0.05% by mass or more.
  • the amount of sizing agent deposited is less than 0.1% by mass, the amount of sizing agent present between carbon fibers can be reduced and the restraint between fibers can be weakened. Fiber becomes easy and the fiber bundle can be uniformly widened.
  • the adhesion amount is preferably less than 0.09% by mass, and more preferably less than 0.08% by mass.
  • the length of each single yarn needs to be 10 cm or more.
  • the carbon fibers having a length of 10 cm or more can be regarded as being substantially continuous, and the effect of improving the spreadability, which is a feature of the present invention, appears more remarkably. 30 cm or more is preferable, and 100 cm or more is more preferable.
  • the sizing agent constituting the sizing agent-coated carbon fiber bundle satisfying (ii) in the present invention needs to contain the compound (B) represented by the following formula (I) and / or (II).
  • R 3 —COO— (CH 2 CH 2 O) n —H Formula (II) (Wherein R 1 , R 2 and R 3 represent a hydrocarbon group having 1 or more carbon atoms).
  • Carbon fiber bundles coated with a sizing agent containing compound (B) have a slanted structure with (A) to maintain adhesion while reducing friction between single yarns and smoothing between single yarns in the opening process Make good. As a result, the spreadability is improved.
  • the carbon fiber bundle to which the sizing agent is applied can easily spread the fiber by an external force and can uniformly widen the fiber bundle.
  • the sizing agent in the present invention preferably contains a compound of formula (I) and / or formula (II). Since the compound of formula (I) has a hydrocarbon group at both terminal groups, it is highly hydrophobic and easily concentrated on the surface layer of the sizing agent-coated carbon fiber bundle. For this reason, since the opening property improves, it is preferable. Since the compound of formula (II) has a hydrophilic group as a terminal group, it is easily compatible with the polar component (A) and forms a uniform gradient structure without phase separation in the sizing agent layer. For this reason, since the opening property improves, it is preferable.
  • the compound (B) needs to have a hydrocarbon group having 1 or more carbon atoms at the position of R 1 , R 2 in formula (I), and R 3 in (II). Hydrophobic groups having high hydrophobicity are concentrated on the surface of the sizing agent on the carbon fiber, thereby reducing the surface friction coefficient.
  • the number of carbon atoms is preferably 10 or more, and more preferably 15 or more. Moreover, it is preferable that carbon number is 22 or less. When it is 22 or less, the water solubility of the compound (B) increases, which is preferable.
  • the total amount of the compound (A) and the compound (B) is 50 masses per 100 mass parts of the sizing agent total amount excluding the solvent. It is necessary to include more than one part. By including 50 parts by mass or more, the effect of improving the adhesiveness by the compound (A) and the effect of improving the openability by the compound (B) are manifested. The physical properties of the thermoplastic resin composition using the same are also improved.
  • the total amount of compound (A) and compound (B) is preferably 60 parts by mass or more, and more preferably 80 parts by mass or more.
  • the mass WA of the compound (A) and the mass WB of the compound (B) satisfy the formula (III). is there.
  • the ratio is 0.1 or more, the ratio of the compound (B) is increased, friction between fibers is reduced, and the openability is improved. 0.2 or more is more preferable. If it is less than 0.6, the ratio of the compound (A) is increased, and the adhesiveness is improved. 0.5 or less is more preferable, and 0.3 or less is more preferable. 0.1 ⁇ WB / (WA + WB) ⁇ 0.6 Formula (III).
  • the mass WA of the compound (A) and the mass WB of the compound (B) satisfy the formula (III), and the compound (B) in the present invention uses a solvent. It is preferable to include 10 parts by mass or more with respect to 100 parts by mass of the total sizing agent removed, and a range in which compound (A) includes 40 parts by mass or more with respect to 100 parts by mass of the total sizing agent excluding the solvent. Moreover, since the compound (B) in this invention contains 25 mass parts or more with respect to 100 mass parts of sizing agents whole quantity except a solvent, since a fiber opening property improves further, 25 mass parts or more are more preferable.
  • the difference in SP value between the compound (A) and the compound (B) needs to be 0.5 to 4.0 (J / cm 3 ) 0.5 .
  • the SP value is a generally known solubility parameter, and is an indicator of solubility and polarity.
  • the SP value defined in the present invention is Polym. Eng. Sci. , 14 (2), 147-154 (1974), and calculated from the molecular structure based on the Fedors method.
  • 1.0 (J / cm 3 ) is preferably 0.5 or more, and more preferably 2.0 (J / cm 3 ) 0.5 or more.
  • (J / cm 3) is 0.5 or less, the compatibility of the compounds (A) and (B) is increased, the domain of each component in the sizing agent is suppressed, the compound (A ) And the compound (B) are formed in a uniform inclined structure, and the adhesiveness and fiber opening property are improved.
  • 3.5 (J / cm 3 ) is preferably 0.5 or less, and more preferably 3.0 (J / cm 3 ) 0.5 or less.
  • the carbon fiber satisfying (i) according to the present invention preferably has an average tearable distance of 700 mm or more.
  • a long average tearable distance means that there is little entanglement between carbon fibers, and a short average tearable distance means that there is much entanglement between carbon fibers.
  • the average tearable distance is more preferably 900 mm or more.
  • any means can be adopted as a means for setting the average tearable distance within the above range, but for the carbon fiber bundle or for producing the carbon fiber bundle. This can be achieved by reducing the entanglement points between the carbon fiber single yarns by suppressing the entanglement treatment by the fluid in any step of the process.
  • the compound (B) constituting the sizing agent-coated carbon fiber bundle satisfying (ii) in the present invention preferably has a hydrophilic / lipophilic balance (HLB) of 10 or more.
  • HLB hydrophilic / lipophilic balance
  • the HLB defined in the present invention is a value calculated from the molecular structure based on the Griffin method described in “Introduction to New Surfactants”, page 128, (1992).
  • the sizing agent is applied to the carbon fiber using a solution, and water is generally used as a solvent from the viewpoint of safety in the use environment.
  • the HLB of the compound (B) is 10 or more, the compound (B) is uniformly dissolved in the aqueous solution, so that it can be uniformly applied on the carbon fiber, and the uneven adhesion of the sizing agent on the carbon fiber is reduced. This is preferable because the spreadability is improved. 12 or more is more preferable, and 14 or more is more preferable.
  • n represented by the formula (I) or (II) is preferably 12 or more.
  • n is more preferably 20 or more, and further preferably 30 or more.
  • it is preferable for it to be 100 or less because insolubilization in water can be suppressed by increasing the molecular weight and adhesion unevenness can be reduced.
  • the compound (B) constituting the sizing agent-coated carbon fiber bundle satisfying (ii) in the present invention preferably has a melting point of 20 ° C. or higher.
  • the melting point is 20 ° C. or higher
  • the compound (B) is used at room temperature (25 ° C.)
  • the compound (B) partially precipitated on the surface layer exhibits a solid shape, reduces inter-fiber friction, and opens. This is preferable because it improves the fineness.
  • 40 degreeC or more is more preferable, and 45 degreeC or more is further more preferable.
  • the effect of improving the spreadability may be almost saturated at 50 ° C. or higher.
  • Specific examples of the compound (B) constituting the sizing agent-coated carbon fiber bundle satisfying (ii) in the present invention include, for example, PEG monocaprylate, PEG monoheptylate, PEG monopelargonate, PEG mono Caprate, PEG monolaurate, PEG monomyristate, PEG monopentadecyl ester, PEG monopalmitate, PEG monolinoleate, PEG dilaurate, PEG monooleate, PEG dioleate, PEG dicaprylate, PEG diheptylate, PEG dipelargonate, PEG dicaprate, PEG dilaurate, PEG dimyristate, PEG dipentadeci Esters, PEG dipalmitate esters, may be mentioned polyethylene glycol fatty acid esters such as PEG dilinoleate ester. These compounds (B) can be used singly or in combination of two or more. “PEG” is an abbreviation for “polyethylene glycol”.
  • the compound (A) preferably has a surface free energy of 45 mJ / m 2 or more.
  • the surface free energy is 45 mJ / m 2 or more, the compound (A) tends to be unevenly distributed on the surface of the carbon fiber, the inclined structure in the sizing agent described above can be expressed, and high adhesiveness can be expressed. This is preferable because it is possible. More preferably 50 mJ / m 2 or more, further preferably 60 mJ / m 2 or more.
  • the surface free energy is the extra energy that molecules on the surface of the solid or liquid have compared to the molecules inside the substance.
  • the surface free energy of the sizing agent of compound (A) refers to the surface free energy at 25 ° C.
  • surface free energy can be calculated
  • the surface free energy of the thermoplastic resin flat plate is obtained.
  • a liquid with a known polar component and dispersion component of surface free energy is dropped on a flat plate of thermoplastic resin, and the approximation of the above-mentioned ounce based on the contact angle measured from the shape of the prepared droplet.
  • the surface free energy ( ⁇ ) of the thermoplastic resin flat plate is the sum of ⁇ p s and ⁇ d s .
  • Approximate expression Owens, the surface free energy gamma L of the liquid, the surface free polar component energy gamma p L, the surface dispersive component of the free energy gamma d L, and the contact angle ⁇ of the formula (IV) ⁇ formula obtained by measurement ( Substituting into VI) and plotting into X and Y. It can be determined from the slope and intercept of an approximate expression that is linearly approximated by the least square method of a plot created using a liquid having a known polar component and dispersion component of two or more types of surface free energy.
  • the surface free energy of the compound (A) is obtained by adding the sizing agent on the thermoplastic resin plate whose surface free energy is calculated by the above method, based on the contact angle measured from the shape of the produced droplet, and the above formula. It can be calculated from ⁇ p L and ⁇ d L in (IV) to (VI).
  • the sizing agent constituting the sizing agent-coated carbon fiber bundle satisfying (ii) in the present invention, it is preferable that the sizing agent does not substantially contain a compound having an epoxy group.
  • substantially free of a compound means that such a compound is not present at all, or even if it is present in the form of an additive, it is 1 part by mass or less based on the total amount of the sizing agent. Means that.
  • the highly reactive epoxy group reacts with the amino group at the terminal of the amine compound or amide compound to form a strong cross-linked structure. For this reason, the sizing agent does not substantially contain a compound having an epoxy group, thereby suppressing the formation of a crosslinked structure between the carbon fiber single yarns and improving the fiber opening property.
  • the sizing agent-coated carbon fiber bundle satisfying (ii) according to the present invention preferably has an inter-fiber friction coefficient of 0.30 or less. When it is 0.30 or less, the frictional force between the single yarns in the carbon fiber bundle is reduced, so that the opening property is improved. 0.25 or less is more preferable.
  • the inter-fiber friction coefficient can be controlled by the roughness of the carbon fiber surface, the type and amount of the smooth component contained in the sizing agent, and the amount of carbon fiber bundles applied to the sizing agent.
  • the inter-fiber friction coefficient can be obtained by the following procedure.
  • the same carbon fiber bundle as that of the wound product does not overlap the circumference so as to have a contact angle of 3 ⁇ (rad) on the surface of the carbon fiber bundle wound so as to have a uniform thickness on the bobbin fixed so as not to rotate. Wrap like so.
  • a weight is attached to one end of the wound carbon fiber bundle, the opposite end is pulled at a constant speed, and the tension when the wound carbon fiber bundle starts moving can be obtained.
  • the sizing agent is adhered at a ratio of 0.01 parts by mass or more and 1.0 part by mass or less with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle.
  • the amount of sizing agent is 0.01 parts by mass or more, the sizing agent that uniformly adheres to the surface improves the abrasion resistance of the carbon fiber bundle, suppresses the generation of fuzz during production and processing, and opens It is possible to improve the quality such as smoothness of the carbon fiber sheet having good fineness.
  • the amount of adhesion is preferably 0.3 parts by mass or more.
  • the amount of sizing agent adhering is preferably less than 0.7 parts by mass, and more preferably 0.5 parts by mass or less.
  • the carbon fiber bundle used in the present invention is not particularly limited, but polyacrylonitrile-based carbon fibers are preferably used from the viewpoint of mechanical properties.
  • the polyacrylonitrile-based carbon fiber bundle used in the present invention is obtained by subjecting a carbon fiber precursor fiber made of a polyacrylonitrile-based polymer to flame resistance treatment in an oxidizing atmosphere at a maximum temperature of 200 to 300 ° C., and then in an inert atmosphere. The carbonization is carried out at a maximum temperature of 500 to 1200 ° C., followed by carbonization at a maximum temperature of 1200 to 2000 ° C. in an inert atmosphere.
  • an oxygen-containing functional group on the surface by subjecting the carbon fiber bundle to an oxidation treatment.
  • oxidation treatment method vapor phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used. From the viewpoint of high productivity and uniform treatment, liquid phase electrolytic oxidation is preferably used.
  • examples of the electrolytic solution used in the liquid phase electrolytic oxidation include an acidic electrolytic solution and an alkaline electrolytic solution.
  • examples of the acidic electrolyte include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid, or ammonium sulfate and ammonium hydrogen sulfate. And the like. Of these, sulfuric acid and nitric acid exhibiting strong acidity are preferably used.
  • alkaline electrolyte examples include aqueous solutions of hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate, aqueous solutions of bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, barium bicarbonate and ammonium bicarbonate, ammonia, tetraalkylammonium hydroxide And an aqueous solution of hydrazine.
  • hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide
  • Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate
  • bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, bar
  • the amount of the oxygen-containing functional group introduced into the carbon fiber bundle is the surface oxygen concentration which is the ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy.
  • O / C is preferably within the range of 0.14 to 0.30.
  • O / C is 0.14 or more, the carboxyl group and hydroxyl group on the surface of the carbon fiber increase, the interaction with the sizing agent becomes stronger, and the adhesiveness is improved.
  • O / C is preferably 0.16 or more, and more preferably 0.18 or more.
  • the smaller O / C is better, and the O / C is preferably 0.30 or less. Preferably it is 0.25 or less, More preferably, it is 0.20 or less.
  • the O / C of the carbon fiber bundle can be determined according to the following procedure by X-ray photoelectron spectroscopy. First, a carbon fiber bundle from which dirt or the like adhering to the surface of the carbon fiber bundle is removed with a solvent is cut to 20 mm, and is spread and arranged on a copper sample support base, and then AlK ⁇ 1,2 is used as an X-ray source. Keep the sample chamber at 1 ⁇ 10 ⁇ 8 Torr. As a correction value for the peak accompanying charging during measurement, the binding energy value of the main peak (peak top) of C1s is adjusted to 284.6 eV. The C 1s peak area is obtained by drawing a straight base line in the range of 282 to 296 eV.
  • O 1s peak area is obtained by drawing a linear base line in a range of 528 ⁇ 540eV.
  • the surface oxygen concentration can be calculated as an atomic ratio with the device-specific sensitivity correction value from the ratio of O1s peak area and the C 1s peak area above.
  • the sizing agent is preferably diluted with a solvent and used as a uniform solution.
  • a solvent include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, dimethylformamide, and dimethylacetamide. Among them, handling is easy and advantageous from the viewpoint of safety. Therefore, water is preferably used.
  • the application means for example, a method of immersing the carbon fiber bundle in a sizing agent solution via a roller, a method of contacting the carbon fiber bundle with a roller to which the sizing agent solution is attached, a sizing agent solution being atomized into a carbon fiber bundle
  • a method of immersing the carbon fiber bundle in a sizing agent solution via a roller is preferably used.
  • the sizing agent applying means may be either a batch type or a continuous type, but a continuous type capable of improving productivity and reducing variation is preferably used.
  • the carbon fiber bundle is vibrated with ultrasonic waves when the sizing agent is applied.
  • the concentration of the sizing agent solution used in the method of immersing the carbon fiber bundle in the sizing agent solution via a roller is preferably 1% by mass or less.
  • the adhering solid content is about 0.5 parts by mass or less with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle, and a sizing agent-coated carbon fiber bundle having excellent openability is obtained. Therefore, it is preferable.
  • the concentration of the sizing agent solution is more preferably 0.4% by mass or less.
  • the adhering solid content is about 0.1 parts by mass or less with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle, and the sizing agent-coated carbon fiber bundle having better openability Is preferable.
  • the sizing agent-coated carbon fiber bundle by contacting the carbon fiber bundle with, for example, a heated roller by contact-type drying means.
  • the carbon fiber bundle introduced into the heated roller is pressed against the heated roller by tension and dried quickly, so that the flat form of the carbon fiber bundle widened by the heated roller is easily fixed by the sizing agent.
  • the flat carbon fiber bundle has a small contact area between the single fibers, and therefore the openability tends to be high.
  • a heat treatment may be further applied as a second drying step.
  • a contact method or a non-contact method may be employed.
  • the diluting solvent remaining in the sizing agent can be further removed and the viscosity of the sizing agent can be stabilized, so that the opening property can be stably improved.
  • a heat treatment condition a temperature range of 20 to 250 ° C. is preferable. In the case of 20 ° C. or higher, it is easy to efficiently remove the remaining diluted solvent, and it is easy to improve the spreadability.
  • the upper limit of the heat treatment temperature is set to 250 ° C.
  • thermal degradation of the sizing agent component and cross-linking / thickening due to self-polymerization can be suppressed, and the openability can be easily improved. It is preferably 165 ° C. or lower, and more preferably 135 ° C. or lower.
  • a nonionic surfactant particularly the compound (B)
  • a smoothing component within a range not affecting the effect of the present invention, crosslinking / thickening due to self-polymerization of the sizing agent is performed.
  • the temperature range of the heat treatment condition is preferably 230 ° C. or lower, and more preferably 215 ° C. or lower because it can be suppressed and the opening property is easily improved.
  • the heat treatment can be performed by microwave irradiation and / or infrared irradiation.
  • the sizing agent-coated carbon fiber bundle is preferably combined with the thermoplastic resin (C) to form a thermoplastic resin composition.
  • thermoplastic resin (C) in the present invention examples include polyketone resin, polyetherketone resin, polyethernitrile resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, and polyarylene sulfide resin.
  • At least one thermoplastic selected from the group consisting of a polyether ether Kenton resin, a polyphenylene ether resin, a polyoxymethylene resin, a polyamide resin, a polyester resin, a polycarbonate resin, a fluorine resin, a styrene resin and a polyolefin resin Resins are preferred.
  • the thermoplastic resin (C) is preferable when the glass transition temperature is less than 200 ° C., because the molding temperature can be lowered and the load on the equipment is reduced. Further, when the glass transition temperature is 200 ° C. or higher, the thermoplastic resin (C) is excellent in heat resistance and mechanical properties, and a molded body using the thermoplastic resin composition is preferable because the same properties are high. .
  • the thermoplastic resin having a temperature of 200 ° C. or higher has a higher viscosity at the same temperature than other thermoplastic resins, so that the impregnation property at the time of molding is low, and impregnation unevenness and voids are likely to occur.
  • thermoplastic resin which contains multiple types of these resin may be used in the range which does not impair the objective of this invention.
  • thermoplastic resin composition of the present invention can be preferably used in the form of a molding material such as prepreg or UD tape.
  • the method for producing a molded article of the present invention preferably includes a step of heating to 300 ° C. or higher when obtaining the thermoplastic resin composition using a sizing agent-coated carbon fiber bundle and a thermoplastic resin (C).
  • a step of heating to 300 ° C. or higher in the molding step the thermoplastic resin sufficiently penetrates into the fiber bundle and the impregnation property is improved, so that the physical properties of the thermoplastic resin composition are also improved.
  • the heating temperature in the molding process is increased, a decomposition product of the sizing agent may be generated, which may adversely affect the molded body.
  • the sizing agent adhesion amount Therefore, such adverse effects can be reduced.
  • thermoplastic resin composition of the present invention in addition to a molded product as a final product, a molding material used for producing the molded product (for example, the following is exemplified) Pellets, stampable sheets, UD tapes and prepregs).
  • molded body of the present invention include, for example, molding materials such as pellets, stampable sheets, UD tapes, and prepregs, as well as personal computers, displays, OA equipment, mobile phones, portable information terminals, facsimiles, compact discs, portables. Electrical and electronic equipment such as MD, portable radio cassette, PDA (personal information terminal such as electronic notebook), video camera, digital still camera, optical equipment, audio, air conditioner, lighting equipment, entertainment equipment, toy goods, and other home appliances Such as housings, internal parts such as trays and chassis, building materials such as cases, mechanism parts, panels, motor parts, alternator terminals, alternator connectors, IC regulators, light dial potentiometer bases, suspension parts, exhaust gas valves, etc.
  • molding materials such as pellets, stampable sheets, UD tapes, and prepregs
  • personal computers displays, OA equipment, mobile phones, portable information terminals, facsimiles, compact discs, portables.
  • Electrical and electronic equipment such as MD, portable radio cassette, PDA (personal information terminal such as
  • the weight average molecular weight of the sizing agent can be measured by a known method using pullulan as a standard substance using GPC.
  • GPC measurement conditions the following conditions are adopted as GPC measurement conditions.
  • Measuring device Shimadzu Corporation column used: Showa Denko Shodex Asahipac GF-710HQ + GF-510HQ + GF-310HQ Eluent: 0.2 mol% -monoethanolamine aqueous solution (adjusted to pH 5.1 by adding acetic acid)
  • Reference material Pullulan (Sigma-Aldrich)
  • Detector Suggested refractometer (manufactured by Shimadzu Corporation).
  • the viscosity of the sizing agent was measured using a viscoelasticity measuring device. As measurement conditions, a parallel plate having a diameter of 40 mm was used, the span was 1 mm, and measurement was performed at 25 ° C. at a frequency of 3.14 rad / s.
  • ⁇ Measurement method of sizing adhesion amount An electric furnace (capacity 120 cm) set to a temperature of 450 ° C. in a nitrogen stream of 50 ml / min after weighing 2.0 W (0.5 gram) of a sizing-coated carbon fiber bundle (W1) (reading to the fourth decimal place) 3 ) Leave for 15 minutes to completely pyrolyze the sizing agent. Then, the carbon fiber bundle after being transferred to a container in a dry nitrogen stream at 20 liters / minute and cooled for 15 minutes is weighed (W2) (reading to the fourth decimal place), and the sizing adhesion amount is obtained by W1-W2. .
  • one end of the fiber bundle that is not fixed is divided into two with a finger, and one of the ends of the fiber bundle is tensioned and fixed on the table so as not to move with an adhesive tape (this point is referred to as a fixing point B).
  • the other of the two parts is moved along the table so that the fixed point A becomes a fulcrum and does not come loose.
  • the linear distance from the fixed point B is stationary at a position of 500 mm, so that it does not move with the adhesive tape on the table. (This point is called a fixed point C).
  • the area surrounded by the fixed points A, B, and C is visually observed, the entanglement point farthest from the fixed point A is found, and the distance projected on the straight line connecting the fixed point A and the fixed point B is 1 mm at the minimum scale. Read with the ruler of, and make the tearable distance. The arithmetic average value of 30 measurements of the above operation is the average tearable distance.
  • a method of measuring the tearable distance is shown in FIG. In this measurement method, the entanglement point farthest from the fixed point A is the point where the linear distance from the fixed point A is the longest and three or more single fibers having no slack are entangled.
  • the average tear distance was evaluated in three stages according to the following criteria, and A and B were determined to be acceptable.
  • C The average tear distance is less than 700 mm.
  • IFSS interfacial shear strength
  • IFSS IFSS-co-styrene-maleic anhydride copolymer
  • polyetherimide 40 MPa or more polyetherimide 40 MPa or more
  • polyphenylene sulfide 24 MPa or more polypropylene 15 MPa or more.
  • ⁇ Measuring method of spreadability (opening retention rate)> Three sizing agent-coated carbon fiber bundles cut to a length of 380 mm are prepared, and three are evenly arranged on a cardboard (width 300 mm, length 430 mm) placed on a horizontal work table. Next, the upper third of both ends of the yarn bundle protruding in the width direction is fixed with tape. Then, the lower one third of both ends of the yarn bundle protruding in the width direction is pinched with both hands, pulled in parallel by 80 mm toward the lower portion over 3 seconds, and the hands are released. A yarn bundle having a good spreadability has a yarn width of 80 mm, but a yarn bundle having a poor spreadability has a short yarn width.
  • the fiber opening retention rate was evaluated in three stages according to the following criteria, and A and B were regarded as acceptable. A: Opening retention rate is 0.95 or more B: Opening retention rate is 0.90 or more and less than 0.95 C: Opening retention rate is less than 0.90.
  • ⁇ Measuring method of openability (unopened part)> A bobbin around which a sizing agent-coated carbon fiber bundle is wound is applied to the creel so as to be horizontal with the ground, and the sizing agent-coated carbon fiber bundle is pulled out 300 mm from the bobbin. Next, the end of the drawn yarn is fixed with tape. Then, with the yarn bundle loosened by 10 to 20 mm, wind with a wind speed of 5 to 10 m / s is blown onto the carbon fiber bundle coated with the sizing agent to open the fiber bundle. The number of locations where the single yarn adhered to the adjacent single yarn by the sizing agent and became a bundle (unopened portion) was evaluated.
  • A, B, and C was accepted.
  • D Number of unopened portions: 3 or more, or the spread retention is less than 0.90.
  • ⁇ Measuring method of spreadability (opening width)> In the state where the sizing agent-coated carbon fiber bundle 16 cm in length D1 in the yarn bundle width direction is slackened by 1 cm and the sizing agent-coated carbon fiber bundle fixed to the two cylindrical rods is held horizontally, the wind speed A wind of 5 to 30 m / s was blown on the sizing agent-coated carbon fiber bundle for 30 seconds to open the fiber, the yarn width D2 was measured, and the opening width (D2 / D1) was calculated. The same test was performed three times, and the average value was defined as the spread width. In the present invention, the preferable range of the spread width is set to 3.2 or more.
  • thermoplastic resin ⁇ Measurement of glass transition temperature of thermoplastic resin> The glass transition temperature of the thermoplastic resin was measured using differential thermal scanning calorimetry (DSC). It measured with the temperature increase rate of 40 degreeC / min using the aluminum sample pan.
  • DSC differential thermal scanning calorimetry
  • C-1 Polyetherimide (glass transition temperature 217 ° C.) (Mitsubishi Resin "Superio (registered trademark)” E type)
  • C-2 Polyphenylene sulfide (glass transition temperature 89 ° C) ("Durafide (registered trademark)" PPS W-540, manufactured by Polyplastics Co., Ltd.)
  • C-3 Polypropylene (glass transition temperature -2 ° C) (Prime Polymer Co., Ltd. polypropylene J106G).
  • Example 1 The present embodiment includes the following first to fourth steps.
  • Second step A step of attaching a sizing agent to a carbon fiber bundle Using (A-1) as compound (A), mixing (A-1) and water, and (A-1) is uniformly dissolved An approximately 0.2% by weight aqueous solution was obtained. Using this aqueous solution as a sizing agent aqueous solution, the sizing agent was applied to the surface-treated carbon fiber bundle by a dipping method, followed by heat treatment at a temperature of 120 ° C. with a hot roller for 15 seconds as a preliminary drying step. As a drying process, heat treatment was performed in heated air at a temperature of 210 ° C. for 90 seconds to obtain a sizing agent-coated carbon fiber bundle. The adhesion amount of the sizing agent was adjusted to 0.09 parts by mass with respect to 100 parts by mass of the total amount of the sizing agent-coated carbon fiber bundle subjected to the surface treatment.
  • the average tearable distance of the carbon fiber bundle at this time was 1000 mm.
  • -Fourth step Preparation and evaluation of test specimen for IFSS measurement Based on the measurement method of interfacial shear strength using the carbon fiber bundle obtained in the previous step and (C-1) as the thermoplastic resin (C). A test piece for IFSS measurement was prepared.
  • the hot press conditions of the hot press were 320 ° C. and 2.0 MPa.
  • Example 2 The sizing agent-coated carbon in the same manner as in Example 1 except that the sizing agent adhesion amount in the second step was adjusted to 0.07 parts by mass with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle. A fiber bundle was obtained and subjected to various evaluations. The results are summarized in Table 1, and a carbon fiber bundle with very high adhesiveness and spreadability was obtained.
  • Example 3 (A-2) was used as the compound (A) in the second step, and the sizing agent adhesion amount was adjusted to 0.08 parts by mass with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle. Obtained the sizing agent application
  • Example 4 Except for using (C-2) as the thermoplastic resin (C) in the fourth step, a sizing agent-coated carbon fiber bundle and a test piece for IFSS measurement were obtained in the same manner as in Example 1, and various evaluations were performed. . The results are summarized in Table 1, and the carbon fiber bundle was obtained with very high adhesion and sufficiently high fiber opening.
  • Example 5 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 2 except that entanglement was added when the carbon fiber bundle was obtained in the first step, and various evaluations were performed. The results are summarized in Table 1, and a carbon fiber bundle having sufficiently high adhesiveness and spreadability was obtained.
  • Example 6 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the drying temperature in the second drying step was changed to 120 ° C. in the second step, and various evaluations were performed. The results are summarized in Table 2, and a carbon fiber bundle having very high adhesiveness and spreadability was obtained.
  • Example 7 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 2 except that the drying temperature in the second drying step was changed to 25 ° C. in the second step, and various evaluations were performed. The results are summarized in Table 2, and a carbon fiber bundle having very high adhesiveness and spreadability was obtained.
  • Example 8 Using (A-1) and (B-1) in the second step, the ratio of the compound (B-1) is 15 parts by mass with respect to 100 parts by mass of the total sizing agent excluding the solvent (A -1) and (B-1) were mixed with water to obtain a uniformly dissolved aqueous solution of about 0.1% by mass.
  • a sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that this aqueous solution was used as a sizing agent aqueous solution and the second drying temperature was changed to 80 ° C., and various evaluations were performed. The results are summarized in Table 2, and a carbon fiber bundle having very high adhesiveness and spreadability was obtained.
  • Example 9 Except for changing the second drying temperature to 210 ° C. in the second step and adjusting the sizing agent adhesion amount to 0.06 parts by mass with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle, Except for the above, a sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 8, and various evaluations were performed. The results are summarized in Table 2, and a carbon fiber bundle having very high adhesiveness and spreadability was obtained.
  • Example 10 Except for changing the second drying temperature to 210 ° C. in the second step and adjusting the sizing agent adhesion amount to 0.09 parts by mass with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle, Except for the above, a sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 8, and various evaluations were performed. The results are summarized in Table 2, and a carbon fiber bundle having very high adhesiveness and spreadability was obtained.
  • Example 11 Except for changing the second drying temperature to 260 ° C in the second step and adjusting the sizing agent adhesion amount to 0.09 parts by mass with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle, Except for the above, a sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 8, and various evaluations were performed. The results are summarized in Table 2. The carbon fiber bundle was obtained with very high adhesiveness and sufficiently high fiber opening.
  • Example 12 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the drying temperature in the second drying step was changed to 260 ° C. in the second step, and various evaluations were performed. The results are summarized in Table 2. The carbon fiber bundle was obtained with very high adhesiveness and sufficiently high fiber opening.
  • Example 1 Sizing agent-coated carbon in the same manner as in Example 1 except that the sizing agent adhesion amount in the second step was adjusted to 0.12 parts by mass with respect to 100 parts by mass of the total amount of sizing agent-coated carbon fiber bundles. A fiber bundle was obtained and subjected to various evaluations. The results are summarized in Table 1, and a carbon fiber bundle with low openability was obtained although the adhesion was very high.
  • Example 3 The sizing agent-coated carbon in the same manner as in Example 1 except that the sizing agent adhesion amount in the second step was adjusted to 0.02 parts by mass with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle. A fiber bundle was obtained and subjected to various evaluations. The results are summarized in Table 1, and a carbon fiber bundle with low adhesion and very high fiber opening property was obtained.
  • Example 4 The sizing agent-coated carbon in the same manner as in Example 5 except that the sizing agent adhesion amount in the second step was adjusted to 0.12 parts by mass with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle. A fiber bundle was obtained and subjected to various evaluations. The results are summarized in Table 1, and a carbon fiber bundle with low openability was obtained although the adhesion was very high.
  • Example 5 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the sizing agent was not attached in the second step, and various evaluations were performed. The results are summarized in Table 1, and a carbon fiber bundle having a very high fiber opening property was obtained. However, only a low interfacial shear strength was exhibited in the molded product using (B-1) as the component (B). There wasn't.
  • thermoplastic resin molded body was produced by the following procedure.
  • the sizing agent-coated carbon fiber bundles obtained in Example 2 are arranged to produce a carbon fiber sheet.
  • the four carbon fiber sheets are placed between five thermoplastic resin (C-1) films having a thickness of 30 ⁇ m.
  • the laminated film is placed in a hydraulic vacuum forming machine heated to 370 ° C. and preheated for 4 minutes under vacuum conditions. After pressurizing at 10 MPa for 4 minutes, the product was cooled at 30 ° C. for 2 minutes and released to obtain the desired thermoplastic resin molded article.
  • thermoplastic resin composition had very high impregnation properties without any voids inside.
  • Table 3 The above results are summarized in Table 3.
  • thermoplastic resin composition was prepared in the same manner as in Example 9 except that the sizing agent-coated carbon fiber bundle obtained in Comparative Example 1 was used.
  • the results are as summarized in Table 3, and it was confirmed that the above thermoplastic resin molded article had voids inside and low impregnation properties.
  • Example 14 The present embodiment includes the following first to fourth steps.
  • Second step A step of attaching a sizing agent to a carbon fiber bundle (A-1) as compound (A) and (B-1) as compound (B) are mixed in the composition shown in Table 4, and water is added. , (A-1) and (B-1) were uniformly dissolved to obtain an aqueous solution of about 0.8% by mass. Using this aqueous solution as a sizing agent aqueous solution, the sizing agent was applied to the surface-treated carbon fiber bundle by an immersion method, and then dried in a hot roller and heated air to obtain a sizing agent-coated carbon fiber bundle. The adhesion amount of the sizing agent was adjusted to 0.3 parts by mass with respect to 100 parts by mass of the total surface-treated sizing agent-coated carbon fiber bundle.
  • -Fourth step Preparation and evaluation of test specimen for IFSS measurement Based on the measurement method of interfacial shear strength using the carbon fiber bundle obtained in the previous step and (C-1) as the thermoplastic resin (C). A test piece for IFSS measurement was prepared. The heating condition of the hot press was 320 ° C.
  • Example 15 to 20 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 14 except that the composition of the sizing agent in the second step was changed as shown in Table 4, and various evaluations were performed. The results are summarized in Table 4, and a carbon fiber bundle having sufficiently high adhesiveness and spreadability was obtained.
  • Example 8 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 14 except that the composition of the sizing agent in the second step was changed as shown in Table 4, and various evaluations were performed. The results are as summarized in Table 4, and the opening property was insufficient.
  • Example 21 to 24 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 14 except that the composition of the sizing agent in the second step was changed as shown in Table 5, and various evaluations were performed. The results are summarized in Table 5, and a carbon fiber bundle with sufficiently high adhesiveness and spreadability was obtained.
  • Example 10 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 14 except that the composition of the sizing agent in the second step was changed to Table 5, and various evaluations were performed. The results are as summarized in Table 5, and the adhesion was insufficient.
  • Example 12 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 14 except that the composition of the sizing agent in the second step was changed as shown in Table 5, and various evaluations were performed. The results are as summarized in Table 5, and the opening property was insufficient.
  • Examples 25 to 27 The sizing agent-coated carbon fiber bundle was changed in the same manner as in Example 14 except that the sizing agent adhesion amount in the second step was changed as shown in Table 5 with respect to 100 parts by mass of the sizing agent-coated carbon fiber bundle. Various evaluations were made. The results are summarized in Table 5, and a carbon fiber bundle with sufficiently high adhesiveness and spreadability was obtained.
  • Example 28 to 29 Example except that the composition of the sizing agent in the second step was changed as shown in Table 5 and the adhesion amount was changed as shown in Table 5 with respect to 100 parts by mass of the total amount of the sizing agent-coated carbon fiber bundle.
  • Example 14 a sizing agent-coated carbon fiber bundle was obtained, and various evaluations were performed. The results are summarized in Table 5, and a carbon fiber bundle with sufficiently high adhesiveness and spreadability was obtained.
  • Example 30 Except that (C-2) was used as the thermoplastic resin (C) in the fourth step, a sizing agent-coated carbon fiber bundle and a test piece for IFSS measurement were obtained in the same manner as in Example 14, and various evaluations were performed. It was. The results are as summarized in Table 6, and a carbon fiber bundle having sufficiently high adhesiveness and sufficiently high opening property was obtained.
  • Example 15 A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 23 except that the components of the sizing agent in the second step were changed as shown in Table 6, and various evaluations were performed. The results are summarized in Table 6, and the adhesion or spreadability was insufficient.
  • Example 31 Sizing agent-coated carbon fiber bundle and IFSS measurement in the same manner as in Example 14 except that (C-3) was used as the thermoplastic resin (C) in the fourth step, and the heating conditions of the hot press were changed to 220 ° C. Test specimens were obtained and subjected to various evaluations. The results are as summarized in Table 6, and a carbon fiber bundle having sufficiently high adhesiveness and sufficiently high opening property was obtained.
  • Example 32 In this example, a molded body was produced according to the following procedure.
  • the sizing agent-coated carbon fiber bundles obtained in Example 14 are arranged to produce a carbon fiber sheet. Subsequently, the four carbon fiber sheets are placed between five thermoplastic resin (C-1) films having a thickness of 30 ⁇ m. The laminated film is placed in a hydraulic vacuum forming machine heated to 370 ° C. and preheated for 4 minutes under vacuum conditions. After pressurizing at 10 MPa for 4 minutes, the product was cooled at 30 ° C. for 2 minutes and released to obtain the desired molded article.
  • C-1 thermoplastic resin
  • Comparative Example 19 A molded body was produced in the same manner as in Example 32 except that the sizing agent-coated carbon fiber bundle obtained in Comparative Example 13 was used. The results are as summarized in Table 7. In the molded product, voids were observed inside and it was confirmed that the impregnation property was low.
  • thermoplastic resin composition of the present invention and its molded product are lightweight and excellent in strength, and thus are suitable for many fields such as aircraft members, spacecraft members, automobile members, ship members, civil engineering and building materials, and sports equipment. Can be used.

Abstract

熱可塑性樹脂に対し高いレベルでの接着性を示す場合であっても、サイジング剤塗布炭素繊維の開繊工程において良好な開繊性を示すサイジング剤塗布炭素繊維束を提供する。少なくとも、アミノ基またはアミド基を含む化合物(A)をサイジング剤成分として含むサイジング剤塗布炭素繊維束である。

Description

サイジング剤塗布炭素繊維束、熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体の製造方法
 本発明は、熱可塑性樹脂に対し高接着性を示し、サイジング剤塗布炭素繊維の開繊工程において良好な開繊性を示すサイジング剤を塗布したサイジング剤塗布炭素繊維束、そのサイジング剤塗布炭素繊維束を用いた熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体(本発明において「熱可塑性樹脂成形体」や単に「成形体」と称する。)の製造方法に関するものである。
 炭素繊維は、軽量でありながら、強度および弾性率に優れるため、種々のマトリックス樹脂と組み合わせた複合材料として、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に用いられている。炭素繊維を用いた複合材料の代表的な形態として、プリプレグを積層して得られるプリフォームをプレス成形(加圧力の下で脱泡し、賦形する成形方法)した成形品が挙げられる。このプリプレグは、連続した炭素繊維を一方向に配列させた炭素繊維基材に樹脂を含浸して製造する方法が一般的である。複雑な形状への形状追従性に優れ、短時間成形可能な不連続な炭素繊維(チョップド、ウェブ等)を用いた複合材料も提案されているが、比強度、比剛性などの力学特性や特性の安定性において、構造材としての実用性能はプリプレグが優れている。
 近年、炭素繊維複合材料では、成形性、取扱い性、得られる成形品の力学特性に優れた成形材料が要求されるようになり、工業的にもより高い経済性、生産性が必要になってきている。その要求に対する答えの一つとして、マトリックス樹脂に熱可塑性樹脂を用いたプリプレグの開発が進められている。
 炭素繊維の優れた特性を活かすには、炭素繊維とマトリックス樹脂との接着性を高めることが重要である。炭素繊維束とマトリックス樹脂との界面接着性を向上させるため、通常、炭素繊維束に気相酸化や液相酸化等の酸化処理を施し、炭素繊維表面に酸素含有官能基を導入する方法が行われている。例えば、特許文献1では炭素繊維束に電解処理を施すことにより、界面接着性の指標である層間せん断強度を向上させる方法が提案されている。
 炭素繊維の表面改質のみでは十分な界面接着性が得られない場合、サイジング処理を追加する試みがなされる。例えば、特許文献2では炭素繊維束にサイジング剤としてポリエチレンイミンを塗布することにより、官能基の少ない熱可塑性樹脂との接着性を向上させる方法が提案されている。また、特許文献3では炭素繊維束をウェブ等に高次加工後にポリエチレンイミンをサイジング剤として塗布する方法を採用している。また、特許文献4では炭素繊維束に高分子量で高粘度のポリエチレンイミンを集束剤として使用することで、射出成形機内で分散しにくい炭素繊維チョップドの作製を行っている。
 特許文献5および6には、アミン化合物と界面活性剤を滑剤として用いることで、繊維の製造工程での毛羽を抑制する手法が提案されている。
 以上のように、連続・不連続な炭素繊維を用いた複合材料の分野においては、接着性の向上検討が行われており、また、滑剤を用いた毛羽の抑制、開繊性向上の検討が行われている。一方、上記の技術をマトリックス樹脂に熱可塑性樹脂を用いたプリプレグに用いた場合において、サイジング剤を塗布した炭素繊維束の高開繊性とマトリックス樹脂との高接着性を両立させることで、高粘度な熱可塑性樹脂の含浸性を向上させ、含浸ムラやボイドの発生を抑制するという思想はなかった。
特開平04-361619号公報 特開2013-166924号公報 特開2006-089734号公報 特開平03-065311号公報 特表2002-528661号公報 特開2006-161018号公報
 本発明は、上記を鑑みてなされたものであり、熱可塑性樹脂に対し高いレベルでの接着性を示す場合であっても、サイジング剤塗布炭素繊維束の開繊工程において良好な開繊性を示すサイジング剤塗布炭素繊維束を提供することを目的とする。
 
 本発明者らの検討により、化合物(A)のようにマトリックス樹脂との相互作用が強く、接着性が高い化合物をサイジング剤に用いると、サイジング剤塗布炭素繊維束の開繊性が低下しやすく、プリプレグ作製時の含浸ムラやボイド発生が起こりやすい、という課題があることが分かった。本課題に対して、化合物(A)の分子量と粘度およびサイジング剤の付着量を厳密に制御することで炭素繊維間の相互作用を高度に制御でき、高い開繊性と高い接着性を両立可能であることを見いだした。
 また、一般的な開繊性向上手段として平滑成分をサイジング剤に配合すると、開繊性は向上するが、高接着成分である化合物(A)の比率の低下に伴い、接着性が低下し、単純な組み合わせでは接着性と開繊性を両立することは難しいことが分かった。本課題に対して、特定の化学構造を有する平滑剤を化合物(A)に対する比率を制御して配合することで、炭素繊維上で化合物(A)と化合物(B)が傾斜構造を形成し、サイジング剤塗布炭素繊維束の高開繊性と高接着性が両立することを見いだした。
 アミノ基またはアミド基を含む化合物(A)と特定の化学構造を有する平滑成分である化合物(B)を混合したサイジング剤を使用した場合、より極性の高い化合物(A)が炭素繊維側に多く偏在し、炭素繊維と逆側のサイジング層の最外層に極性の低い化合物(B)が偏在しやすいという現象が見られることが確認された。このサイジング層の傾斜構造の結果として、化合物(A)は炭素繊維近傍で炭素繊維と強い相互作用を及ぼし、接着性が向上する。さらに、平滑成分である化合物(B)は炭素繊維束内の単糸表層の摩擦係数を下げることで、開繊加工時に接触する単糸間の滑りを良好にするため、開繊性を向上させることができる。その結果、炭素繊維とマトリックス樹脂の界面接着性を高めることができ、得られる炭素繊維強化複合材料の物性を高くすることができる。
 上述した課題を解決し、目標を達成するために、本発明のサイジング剤塗布炭素繊維束は、アミノ基またはアミド基を含む化合物(A)を含むサイジング剤が炭素繊維に塗布されたサイジング剤塗布炭素繊維束であって、下記(i)または(ii)を満たすことを特徴とする。
(i)アミノ基またはアミド基を含む化合物(A)をサイジング剤全量100質量部に対して50質量部以上含む、長さ10cm以上のサイジング剤塗布炭素繊維束であって、化合物(A)の重量平均分子量Mwが2500以下、化合物(A)の25℃における粘度が200~10000mPa・sであり、かつ、下記式(a)で示されるサイジング剤付着量Xが0.03質量%以上0.1質量%未満である。
 X=(W0-W1)/W0 ×100 (%)・・・(a)
  W0=炭素繊維及びサイジング剤の総質量
  W1=炭素繊維のみの質量
(ii)アミノ基またはアミド基を含む化合物(A)、および下記式(I)および/または(II)で表される化合物(B)の総量が、サイジング剤全量100質量部に対して50質量部以上であり、かつ、(A)の質量WAと(B)の質量WBが式(III)を満たす前記サイジング剤が炭素繊維に塗布されたサイジング剤塗布炭素繊維束であって、化合物(A)と化合物(B)のSP値の差が0.5~4.0(J/cm0.5である。
-COO-(CHCHO)-CO-R・・・式(I)
-COO-(CHCHO)-H・・・式(II)
(式中、R、R、Rは炭素数1以上の炭化水素基を表す。)
 0.1≦WB/(WA+WB)<0.6 ・・・式(III)
 また、本発明の熱可塑性樹脂組成物は上記サイジング剤塗布炭素繊維束および熱可塑性樹脂(C)を含有してなることを特徴とする。
 また、本発明の成形体は、上記熱可塑性樹脂組成物を用いたプリプレグまたはUD(一方向)テープであることを特徴とする。
 また、本発明のサイジング剤塗布炭素繊維束の製造方法は、上記サイジング剤を水系溶媒で前記炭素繊維に塗布する工程を有することを特徴とする。
 また、本発明の成形体の製造方法は、上記サイジング剤塗布炭素繊維束、および熱可塑性樹脂(C)を用いて、熱可塑性樹脂組成物を得た後に、前記熱可塑性樹脂組成物を300℃以上に加熱する工程を有することを特徴とする。
 
 本発明によれば、熱可塑性樹脂に対し高いレベルでの接着性を持ちながら、サイジング剤塗布炭素繊維束の開繊工程において良好な開繊性を示すサイジング剤塗布炭素繊維束を得ることができる。その結果、熱可塑性樹脂成形体中の繊維含有率を均一にさせることが可能となり、このサイジング剤塗布炭素繊維束を含む熱可塑性樹脂成形体の力学特性も良好になる。
平均引裂可能距離の測定方法を示す図である。
 以下において、本発明を実施するための形態について説明する。
 本発明を構成するサイジング剤は、アミノ基およびアミド基の少なくともいずれかを含む化合物(A)を含むことが必要である。
 アミノ基またはアミド基を含む化合物(A)を含むサイジング剤を塗布した炭素繊維束は熱可塑性樹脂との優れた接着性を発現する。その結果、そのサイジング剤が塗布された炭素繊維束を用いた熱可塑性樹脂成形体の力学特性が向上する。そのメカニズムは明確ではないが、アミノ基やアミド基は極性が高く、炭素繊維束表面や樹脂中のカルボキシル基、水酸基等の極性の高い酸素含有構造と水素結合等の強い相互作用をすることで、優れた接着性を発現すると考えられる。
 本発明を構成する化合物(A)としては、脂肪族アミン化合物、芳香族アミン化合物、脂肪族アミド化合物、芳香族アミド系化合物が挙げられる。中でも、高接着性を示す観点から脂肪族アミン化合物が好ましい。脂肪族アミン化合物の接着性が高い理由として、他のアミノ基およびアミド基を有する化合物と比較して極性が非常に高いことが考えられる。
 脂肪族アミン化合物の具体的な例としては、ジエチレントリアミン、トリエチレンテトラミン、ジシアンジアミド、テトラエチレンペンタミン、ジプロプレンジアミン、ピペリジン、N,N-ジメチルピペラジン、トリエチレンジアミン、ポリアミドアミン、オクチルアミン、ラウリルアミン、ミリスチルアミン、ステアリルアミン、ココアルキルアミン、牛脂アルキルアミン、オレイルアミン、硬化牛脂アルキルアミン、N,N-ジメチルラウリルアミン、N,N-ジメチルミリスチルアミン等の脂肪族モノアミン類;ポリエチレンイミン、ポリプロピレイミン、ポリブチレンイミン、1,1-ジメチル-2-メチルエチレンイミン、1,1-ジメチル-2-プロピルエチレンイミン、N-アセチルポリエチレンイミン、N-プロピオニルポリエチレンイミン、N-ブチリルポリエチレンイミン、N-パレリルポリエチレンイミン、N-ヘキサノイルポリエチレンイミン、N-ステアロイルポリエチレンイミン等のポリアルキレンアミン類、およびその誘導体、およびそれらの混合物等が挙げられる。 
 脂肪族アミン化合物の中でも1分子内に含まれる官能基量が2以上である化合物は、接着性が高くなりやすいため好ましく用いられる。特に、ポリアルキレンイミンは、1分子内に含まれる官能基量を増加させやすく、接着性を向上させやすいために好ましく用いられる。1分子内に含まれる官能基量が2以上である化合物の接着性が高くなりやすい理由として、官能基量が増えることで分子の極性が高くなりやすいことが考えられる。
 芳香族アミン化合物の具体的な例としては、1,2-フェニレンジアミン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、ベンジジン、トリアミノフェノール、トリグリシジルアミノクレゾール、2,4,6-トリアミノフェノール、1,2,3-トリアミノプロパン、1,2,3-トリアミノベンゼン、1,2,4-トリアミノベンゼン、1,3,5-トリアミノベンゼンおよびその誘導体、およびそれらの混合物等が挙げられる。
 脂肪族アミド化合物の具体的な例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N-ステアリルステアリン酸アミド、N-オレイルオレイン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、N-オレイルパルミチン酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等のモノアミド類;メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスイソステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド等のビスアミド類;ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン46、ナイロン610等の脂肪族ポリアミド類およびその誘導体、およびそれらの混合物等が挙げられる。ポリアミド系樹脂の水性化を容易にするため、分子中にポリアルキレンオキサイド鎖や3級アミン成分等の親水基を導入したものを用いることできる。これら脂肪族アミドは、単独で使用しても2種類以上を混合して使用してもよい。
芳香族アミド化合物の具体的な例としては、アミノベンズアミド、アミノベンズアニリド、アミノベンゼンスルホンアミド等の芳香族アミドアミン;ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ナイロン6/6Tコポリマーなどの芳香族/脂肪族ポリアミド類およびその誘導体等が挙げられる。これら芳香族アミドは、単独で使用しても2種類以上を混合して使用してもよい。
 本発明にかかる(i)を満たすサイジング剤塗布炭素繊維束を構成するサイジング剤においては、溶媒を除いたサイジング剤全量100質量部に対して、化合物(A)を50質量部以上含むことが必要である。50質量部以上含むことで接着性が向上し、それを用いた熱可塑性樹脂成形体の物性も向上する。60質量部以上含むことが好ましく、80質量部以上含むことがさらに好ましい。化合物(A)以外の成分として、本発明の効果に影響しない範囲で、適宜、ノニオン系界面活性剤等を添加してもよい。
 本発明にかかる(i)を満たすサイジング剤塗布炭素繊維束においては、化合物(A)の重量平均分子量Mwが2500以下であることが必要である。なお、上記の重量平均分子量Mwはゲルパーミエーションクロマトグラフ(以下、GPCと略記)法で測定され、プルランを標準物質として得られるものである。Mwが大きいほどサイジング剤の粘度が高くなるため、サイジング剤を介して粘着している炭素繊維同士を引き離すのに大きな力が必要となる。Mwを2500以下とすることで、サイジング剤の動きやすさの指標である粘度を低下させ、炭素繊維同士を拘束する力を弱めることによって、炭素繊維束の開繊性が向上する。Mwは1500以下であることが好ましく、1000以下であることがさらに好ましい。一方、分解の点では、Mwが大きいほど高温でのサイジング剤の揮発や分解を抑制できる。Mw下限は500以上であることが好ましく、650以上であることがさらに好ましい。
 本発明にかかる(i)を満たすサイジング剤塗布炭素繊維束においては、化合物(A)の25℃における粘度が200~10000mPa・sである必要がある。粘度が10000mPa・s以下である場合、サイジング剤を介して炭素繊維同士を拘束する力が弱めることによって開繊性が向上する。粘度は8000mPa・s以下であることが好ましく、3000mPa・s以下であることがさらに好ましい。粘度の下限は特にないが、200mPa・s以上とすることで炭素繊維束へのサイジング剤塗布プロセスにおいて、付着量の制御を安定化させることができる。なお、本発明において25℃の温度におけるサイジング剤の粘度は、粘弾性測定器を用いて周波数3.14rad/sで測定した値を用いる。
 本発明にかかる(i)を満たすサイジング剤塗布炭素繊維束はサイジング剤が炭素繊維束に対して0.03質量%以上0.1質量%未満の割合で付着されている必要がある。サイジング剤の付着量を0.03質量%以上とすることで、表面に均一に付着したサイジング剤は炭素繊維束の耐擦過性を向上させ、製造時や加工時の毛羽発生を抑制し、開繊性が良好な炭素繊維シートの平滑性等の品位を向上させることができる。付着量は0.04質量%以上が好ましく、0.05質量%以上が更に好ましい。一方、サイジング剤の付着量を0.1質量%未満とすることで、炭素繊維間に存在するサイジング剤の存在量を少なくし、繊維間の拘束を弱めることができるため、外力による繊維の開繊が容易となり均一に繊維束を拡幅することができる。付着量は0.09質量%未満が好ましく、0.08質量%未満が更に好ましい。
 本発明にかかる(i)を満たすサイジング剤塗布炭素繊維束は各単糸の長さが10cm以上であることが必要である。長さが10cm以上である炭素繊維は実質的に連続であると見なせ、本発明の特徴である開繊性向上の効果がより顕著にあらわれる。30cm以上が好ましく、100cm以上がさらに好ましい。
 本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成するサイジング剤は、下記式(I)および/または(II)で表される化合物(B)を含むことが必要である。
-COO-(CHCHO)-CO-R・・・式(I)
-COO-(CHCHO)-H・・・式(II)
(式中、R、R、Rは炭素数1以上の炭化水素基を表す。)。
 化合物(B)を含むサイジング剤を塗布した炭素繊維束は(A)と傾斜構造をつくることで接着性を保ちながら、単糸間の摩擦を低減し、開繊工程での単糸間の平滑性を良好にする。その結果、開繊性を向上させる。そのサイジング剤が塗布された炭素繊維束は、外力による繊維の開繊が容易となり均一に繊維束を拡幅することができる。
 本発明におけるサイジング剤は、式(I)および/または、式(II)の化合物を含むことが好ましい。式(I)の化合物は両末端基が炭化水素基を有するため、疎水性が高く、サイジング剤塗布炭素繊維束のサイジング剤層表層に濃縮しやすい。このため、開繊性が向上するため、好ましい。式(II)の化合物は親水基を末端基として有するため、極性成分である化合物(A)と相溶しやすく、サイジング剤層内で相分離のない均一な傾斜構造を形成する。このため、開繊性が向上するため、好ましい。
 化合物(B)は、式(I)のR、R、および(II)のRの位置に炭素数1以上の炭化水素基を有することが必要である。疎水性の高い炭化水素基は、炭素繊維上でサイジング剤表層に濃縮し、表面の摩擦係数を下げる。炭素数は10以上が好ましく、15以上がさらに好ましい。また、炭素数は22以下であることが好ましい。22以下であると化合物(B)の水溶性が高まるため、好ましい。
 本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成するサイジング剤においては、溶媒を除いたサイジング剤全量100質量部に対して、化合物(A)および化合物(B)の総量を50質量部以上含むことが必要である。50質量部以上含むことで化合物(A)による接着性の向上の効果と化合物(B)による開繊性の向上の効果が発現する。それを用いた熱可塑性樹脂組成物の物性も向上する。化合物(A)および化合物(B)の総量を60質量部以上含むことが好ましく、80質量部以上含むことがさらに好ましい。
 また、本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成するサイジング剤においては、化合物(A)の質量WAと化合物(B)の質量WBが式(III)を満たすことが必要である。0.1以上であると、化合物(B)の比率が大きくなり、繊維間の摩擦が低減し、開繊性が向上するため好ましい。0.2以上がより好ましい。0.6未満であると化合物(A)の比率が大きくなり、接着性が向上するため、好ましい。0.5以下がより好ましく、0.3以下がより好ましい。
0.1≦WB/(WA+WB)<0.6・・・式(III)。
 また、接着性と開繊性を両立するためには、化合物(A)の質量WAと化合物(B)の質量WBが式(III)を満たし、かつ、本発明における化合物(B)が溶媒を除いたサイジング剤全量100質量部に対して、10質量部以上含み、化合物(A)が溶媒を除いたサイジング剤全量100質量部に対して、40質量部以上含む範囲とすることが好ましい。また、本発明における化合物(B)は溶媒を除いたサイジング剤全量100質量部に対して、25質量部以上含むことで開繊性がさらに向上するため、25質量部以上がより好ましい。
 また、本発明におけるサイジング剤においては、化合物(A)と化合物(B)のSP値の差が0.5~4.0(J/cm0.5である必要がある。ここで、SP値は、一般に知られている溶解性パラメータのことであり、溶解性および極性の指標となる。本発明で規定されるSP値は、Polym.Eng.Sci.,14(2),147-154(1974)に記載された、Fedorsの方法に基づき、分子構造から算出した値である。SP値の差が0.5以上であると、化合物(A)と化合物(B)の極性差が大きく、傾斜構造を形成する。1.0(J/cm0.5以上であることが好ましく、2.0(J/cm0.5以上であることがさらに好ましい。4.0(J/cm0.5以下であると、化合物(A)と化合物(B)の相溶性が増加するため、サイジング剤中の各成分のドメイン化が抑制され、化合物(A)と化合物(B)の均一な傾斜構造が形成され、接着性、開繊性が向上するため、好ましい。3.5(J/cm0.5以下であることが好ましく、3.0(J/cm0.5以下であることがさらに好ましい。
 また、本発明にかかる(i)を満たす炭素繊維は、炭素繊維の平均引き裂き可能距離が700mm以上であることが好ましい。平均引き裂き可能距離が長いということは、炭素繊維同士の絡み合いが少ないことを意味し、平均引き裂き可能距離が短いということは、炭素繊維同士の絡み合いが多いことを意味する。該距離が700mm以上であると、炭素繊維同士の絡み合いが少ないため、サイジング剤を介して炭素繊維同士が粘着する確率が低下するため、開繊工程において外力により繊維束が均一に拡幅しやすい。平均引き裂き可能距離は、より好ましくは900mm以上である。本発明のサイジング剤塗布炭素繊維束において、平均引き裂き可能距離を上記範囲内とする手段としては、どのような方法も採用することができるが、炭素繊維束に対して、または炭素繊維束の製造プロセスのいずれかの工程において、流体による交絡処理を抑えることによって、炭素繊維単糸間の絡み合い点を減らすことで達成することができる。
 本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成する化合物(B)は親水親油バランス(HLB)が10以上であることが好ましい。本発明で規定されるHLBは、「新・界面活性剤入門」,128頁,(1992)に記載された、グリフィンの方法に基づき、分子構造から算出した値である。通常、サイジング剤は溶液を用いて炭素繊維に塗布され、使用環境の安全性の面から、溶媒として水を使用することが一般的である。化合物(B)のHLBが10以上であると、水溶液中で均一に溶解するため、炭素繊維上に均一に塗布することができ、炭素繊維上のサイジング剤の付着ムラを低減する。これにより開繊性が向上するため、好ましい。12以上がより好ましく、14以上がさらに好ましい。
 本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成する化合物(B)は式(I)または(II)で表されるnが12以上であることが好ましい。nが12以上であると化合物(B)の親水性が高くなり、水溶液を用いてサイジング剤を炭素繊維に塗布した場合に、炭素繊維上のサイジング剤の付着ムラを低減することができる。nは20以上がより好ましく、30以上がさらに好ましい。また、100以下であると、高分子量化により水への不溶化を抑制し、付着ムラを低減することができるため好ましい。
 本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成する化合物(B)は融点が20℃以上であることが好ましい。融点が20℃以上であると、化合物(B)を常温(25℃)で使用する際に、表層に一部析出した化合物(B)が固体の形状を示し、繊維間摩擦を低減させ、開繊性を向上させるため、好ましい。40℃以上がより好ましく、45℃以上がさらに好ましい。上限は特に無いが、50℃以上で開繊性向上の効果はほぼ飽和することがある。
 本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成する化合物(B)の具体的な例としては、例えば、PEGモノカプリル酸エステル、PEGモノヘプチル酸エステル、PEGモノペラルゴン酸エステル、PEGモノカプリン酸エステル、PEGモノラウリン酸エステル、PEGモノミリスチン酸エステル、PEGモノペンタデシル酸エステル、PEGモノパルミチン酸エステル、PEGモノリノール酸エステル、PEGジラウリン酸エステル、PEGモノオレイン酸エステル、PEGジオレイン酸エステル、PEGジカプリル酸エステル、PEGジヘプチル酸エステル、PEGジペラルゴン酸エステル、PEGジカプリン酸エステル、PEGジラウリン酸エステル、PEGジミリスチン酸エステル、PEGジペンタデシル酸エステル、PEGジパルミチン酸エステル、PEGジリノール酸エステル等のポリエチレングリコール脂肪酸エステルをあげることができる。これら化合物(B)は、それぞれ1種を単独で又は2種以上を組合せて使用することができる。なお、「PEG」とは「ポリエチレングリコール」の略である。
 また、本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成するサイジング剤において、化合物(A)は表面自由エネルギーが45mJ/m以上であることが好ましい。表面自由エネルギーが45mJ/m以上であると、炭素繊維表面に化合物(A)が偏在しやすく、上述したサイジング剤中での傾斜構造を発現することができ、高接着性を発現することができるため、好ましい。50mJ/m以上であることがより好ましく、60mJ/m以上であることがさらに好ましい。
 表面自由エネルギーとは、固体または液体表面の分子が物質内部の分子と比べて余分に持つエネルギーのことである。
 本発明において、化合物(A)のサイジング剤の表面自由エネルギーは25℃における表面自由エネルギーを指す。また、表面自由エネルギーは公知の方法により求めることができ、例えば、以下の方法により求めることができる。
 まず、熱可塑性樹脂平板の表面自由エネルギーを求める。算出方法として、熱可塑性樹脂の平板上に表面自由エネルギーの極性成分および分散成分が既知である液体を滴下し、作製した液滴の形状から測定した接触角をもとに、前述のオーエンスの近似式より傾きaの2乗を熱可塑性樹脂平板の表面自由エネルギーの極性成分(γ 切片bの2乗を表面自由エネルギーの極性成分(γ )として求めることができる。熱可塑性樹脂平板の表面自由エネルギー(γ)はγ s、とγ の和となる。
 オーエンスの近似式は、液体の表面自由エネルギーγ、表面自由エネルギーの極性成分γ 、表面自由エネルギーの分散成分γ L、および測定により得られる接触角θを式(IV)~式(VI)に代入し、X、Yにプロットする。2種類以上の表面自由エネルギーの極性成分および分散成分が既知である液体を用いて作成したプロットの最小自乗法により直線近似した近似式の傾きと切片から求めることができる。
 Y=a・X+b ・・・(IV)
 X=(γ 0.5/(γ 0.5 ・・・(V)
 Y=(1+cosθ)・(γ)/2(γ 0.5 ・・・(VI)。
 化合物(A)の表面自由エネルギーは、前記方法により表面自由エネルギーを算出した熱可塑性樹脂平板上にサイジング剤を滴下し、作製した液滴の形状から測定した接触角をもとに、前述の式(IV)~式(VI)のγ L、γ から算出することができる。
 また、本発明における(ii)を満たすサイジング剤塗布炭素繊維束を構成するサイジング剤においては、サイジング剤がエポキシ基を有する化合物を実質的に含まないことが好ましい。ここで、化合物を実質的に含まないとは、そのような化合物が全く存在しないか、たとえ添加物のような形態で存在していたとしても、サイジング剤全量に対して1質量部以下であることを意味する。反応性の高いエポキシ基は、アミン化合物またはアミド化合物末端のアミノ基と反応し、強固な架橋構造を形成する。このため、サイジング剤がエポキシ基を有する化合物を実質的に含まないことにより炭素繊維単糸間の架橋構造の形成を抑制し、開繊性が向上する。
 本発明にかかる(ii)を満たすサイジング剤塗布炭素繊維束は繊維間摩擦係数が0.30以下であることが好ましい。0.30以下では炭素繊維束内の単糸間の摩擦力が低減するため、開繊性が向上する。0.25以下がより好ましい。
 繊維間摩擦係数は、炭素繊維表面のラフネス、サイジング剤に含まれる平滑成分の種類、量、サイジング剤塗布炭素繊維束の付着量により制御できる。
 繊維間摩擦係数は以下の手順で求めることができる。回転しないように固定されたボビン上に厚みが均一となるように巻き付けた炭素繊維束の表面に、巻状物と同じ炭素繊維束を接触角3π(rad)になるよう円周上に重ならないよう巻きつける。巻き付けた炭素繊維束の一方の端部に錘をつけ、反対端を一定の速度で引っ張り、巻き付けた炭素繊維束が動き出す際の張力をから求めることができる。
 本発明にかかる(ii)を満たすサイジング剤塗布炭素繊維束はサイジング剤がサイジング剤塗布炭素繊維束全量100質量部に対して0.01質量部以上1.0質量部以下の割合で付着されていることが好ましい。サイジング剤の付着量を0.01質量部以上とすることで、表面に均一に付着したサイジング剤は炭素繊維束の耐擦過性を向上させ、製造時や加工時の毛羽発生を抑制し、開繊性が良好な炭素繊維シートの平滑性等の品位を向上させることができる。付着量は0.3質量部以上が好ましい。一方、サイジング剤の付着量を1.0質量部以下とすることで、炭素繊維間に存在するサイジング剤の存在量を少なくし、繊維間の拘束を弱めることができるため、外力による繊維の開繊が容易となり均一に繊維束を拡幅することができる。付着量は0.7質量部以下未満が好ましく、0.5質量部以下がさらに好ましい。
 本発明で用いられる炭素繊維束としては特に制限は無いが、力学特性の観点からは、ポリアクリロニトリル系炭素繊維が好ましく用いられる。本発明で用いられるポリアクリロニトリル系炭素繊維束は、ポリアクリロニトリル系重合体からなる炭素繊維前駆体繊維を酸化性雰囲気中で最高温度200~300℃で耐炎化処理した後、不活性下雰囲気下中、最高温度500~1200℃で予備炭化処理を行い、次いで不活性雰囲気中、最高温度1200~2000℃で炭化処理することで得られる。
 本発明において、炭素繊維束と熱可塑性樹脂との接着性を向上させるため、炭素繊維束に酸化処理を施すことで酸素含有官能基を表面に導入することが好ましい。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。
 本発明において、液相電解酸化で用いられる電解液としては、酸性電解液およびアルカリ性電解液が挙げられる。酸性電解液としては、例えば、硫酸、硝酸、塩酸、燐酸、ホウ酸、および炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、およびマレイン酸等の有機酸、または硫酸アンモニウムや硫酸水素アンモニウム等の塩が挙げられる。なかでも、強酸性を示す硫酸と硝酸が好ましく用いられる。アルカリ性電解液としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液、アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。
 本発明において、炭素繊維束に導入する酸素含有官能基量としては、X線光電子分光法により測定されるその繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度(O/C)が、0.14~0.30の範囲内であるものが好ましい。O/Cが0.14以上であることにより、炭素繊維表面のカルボキシル基および水酸基が増加し、サイジング剤との相互作用が強くなり接着性が向上する。O/Cは、好ましくは0.16以上であり、さらに好ましくは0.18以上である。一方、酸化による炭素繊維自体の強度の低下の点では、O/Cは小さい方が良く、O/Cが0.30以下であることが良い。好ましくは0.25以下であり、さらに好ましくは0.20以下である。
 炭素繊維束のO/Cは、X線光電子分光法により、次の手順に従って求めることができる。まず、溶剤で炭素繊維束表面に付着している汚れ等を除去した炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1、2を用い、試料チャンバー中を1×10-8Torrに保つ。測定時の帯電に伴うピークの補正値としてC1sの主ピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせる。C1sピーク面積は282~296eVの範囲で直線のベースラインを引くことにより求められる。O1sピーク面積は528~540eVの範囲で直線のベースラインを引くことにより求められる。ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出できる。
 次に、本発明のサイジング剤塗布炭素繊維束の製造方法について述べる。
まず、本発明におけるサイジング剤の炭素繊維束への塗布(付与)手段について述べる。
 本発明において、サイジング剤は溶媒で希釈し、均一な溶液として用いることが好ましい。このような溶媒としては、例えば、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、ジメチルホルムアミド、およびジメチルアセトアミド等が挙げられるが、なかでも、取扱いが容易であり、安全性の観点から有利であることから、水が好ましく用いられる。
 塗布手段としては、例えば、ローラーを介してサイジング剤溶液に炭素繊維束を浸漬する方法、サイジング剤溶液の付着したローラーに炭素繊維束を接する方法、サイジング剤溶液を霧状にして炭素繊維束に吹き付ける方法等があるが、本発明のサイジング剤塗布炭素繊維束を製造する上では、ローラーを介してサイジング剤溶液に炭素繊維束を浸漬する方法が好ましく用いられる。また、サイジング剤の付与手段は、バッチ式と連続式いずれでもよいが、生産性がよくバラツキが小さくできる連続式が好ましく用いられる。また、サイジング剤付与時に、炭素繊維束を超音波で加振させることも好ましい態様である。
 ローラーを介してサイジング剤溶液に炭素繊維束を浸漬する方法に用いるサイジング剤溶液の濃度は1質量%以下であることが、好ましい。1質量%以下であると、付着する固形分がサイジング剤塗布炭素繊維束100質量部に対して、およそ0.5質量部以下になり、開繊性に優れるサイジング剤塗布炭素繊維束が得られるため、好ましい。また、サイジング剤溶液の濃度は0.4質量%以下であることが、さらに好ましい。
0.4質量%以下であると、付着する固形分がサイジング剤塗布炭素繊維束100質量部に対して、およそ0.1質量部以下になり、より開繊性に優れるサイジング剤塗布炭素繊維束が得られるため、好ましい。
 本発明において、サイジング剤溶液を塗布した後、接触式乾燥手段によって、例えば、加熱したローラーに炭素繊維束を接触させることによりサイジング剤塗布炭素繊維束を得ることが好ましい。 加熱したローラーに導入された炭素繊維束は、張力によって加熱したローラーに押し付けられ、急速に乾燥されるため加熱したローラーで拡幅された炭素繊維束の扁平な形態がサイジング剤によって固定されやすい。扁平な形態となった炭素繊維束は、単繊維間の接触面積が小さくなるため、開繊性が高くなりやすい。
 また、本発明において、予備乾燥工程として加熱したローラーを通過させた後、第2乾燥工程としてさらに熱処理を加えても良い。該第2乾燥工程としての熱処理には、接触方式、非接触方式のいずれの加熱方式を採用してもよい。該熱処理を行うことでサイジング剤に残存している希釈溶媒を更に除去し、サイジング剤の粘度を安定化することができるため、安定して開繊性を高めることができる。熱処理条件としては、20~250℃の温度範囲が好ましい。20℃以上の場合、残存した希釈溶媒を効率的に除去し易く、開繊性を高めやすい。一方、熱処理温度の上限を250℃以下とすることで、サイジング剤成分の熱劣化や自己重合による架橋・増粘を抑制することができ開繊性を高めやすい。165℃以下が好ましく、135℃以下がさらに好ましい。
 また、化合物(A)以外の成分として、本発明の効果に影響しない範囲で平滑成分としてノニオン系界面活性剤、特に化合物(B)を添加した場合、サイジング剤の自己重合による架橋・増粘を抑制することができ開繊性を高めやすいため、熱処理条件の温度範囲は、230℃以下が好ましく、215℃以下がさらに好ましい。
 また、前記熱処理は、マイクロ波照射および/または赤外線照射で行うことも可能である。
 本発明において、サイジング剤塗布炭素繊維束は熱可塑性樹脂(C)と複合化させることで、熱可塑性樹脂組成物とすることが好ましい。
 本発明における熱可塑性樹脂(C)としては、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルニトリル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリアリーレンスルフィド樹脂、ポリエーテルエーテルケントン樹脂、ポリフェニレンエーテル樹脂、ポリオキシメチレン樹脂、ポリアミド樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、フッ素系樹脂、スチレン系樹脂およびポリオレフィン系樹脂からなる群から選択される少なくとも1種の熱可塑性樹脂が好ましい。
 本発明において、熱可塑性樹脂(C)は、ガラス転移温度200℃未満である場合、成形温度を低くすることができ、設備上の負荷が小さくなり、好ましい。また、熱可塑性樹脂(C)は、ガラス転移温度が200℃以上である場合、耐熱性と力学特性に優れており、熱可塑性樹脂組成物を用いた成形体も同特性が高くなるため、好ましい。該温度が200℃以上である熱可塑性樹脂は、他の熱可塑性樹脂と比較して同温度での粘度が高いため、成形時の含浸性が低くなり、含浸ムラやボイドを発生しやすいという問題があるが、開繊性の高い本発明のサイジング剤塗布炭素繊維束と組み合わせることで、そのような課題を解決することができる。上述の樹脂であれば、曲げ強度、引張り強度等の樹脂の力学特性が高く、熱可塑性樹脂組成物を用いた成形体の強度が高くなるため好ましい。なお、熱可塑性樹脂としては、本発明の目的を損なわない範囲で、これらの樹脂を複数種含む熱可塑性樹脂が用いられても良い。
 本発明の熱可塑性樹脂組成物は、プリプレグまたはUDテープなどの成形材料の形態で好ましく使用することができる。
 次に、本発明の熱可塑性樹脂組成物を用いた成形体の製造方法について述べる。本発明の成形体の製造方法は、サイジング剤塗布炭素繊維束と熱可塑性樹脂(C)を用いて前記熱可塑性樹脂組成物を得るに際し、300℃以上に加熱する工程を有することが好ましい。成形工程で300℃以上に加熱して成形することにより、熱可塑性樹脂が繊維束内に十分浸透して含浸性が向上することで、熱可塑性樹脂組成物の物性も向上する。一般的に、成形工程での加熱温度を上げると、サイジング剤の分解物が発生し、成形体に悪影響を与えることがあり得るが、本発明のサイジング剤塗布炭素繊維束ではサイジング剤の付着量が少ないため、そのような悪影響を低減することができる。
 なお、本発明の熱可塑性樹脂組成物を成形してなる成形体の具体例としては、最終製品としての成形体に加え、成形体を製造するために用いられる成形材料(例えば、以下の例示されるペレット、スタンパブルシート、UDテープおよびプリプレグ等)を含む。
 本発明の成形体の具体例としては、例えば、ペレット、スタンパブルシート、UDテープおよびプリプレグ等の成形材料の他、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳等の携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品等の電気、電子機器の筐体およびトレイやシャーシ等の内部部材やそのケース、機構部品、パネル等の建材用途、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブ等の各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュール等の自動車、二輪車関連部品、部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブ等の航空機関連部品、部材および外板、風車の羽根等の成形部品が挙げられる。特に、航空機部材、風車の羽根、自動車外板および電子機器の筐体およびトレイやシャーシ等に好ましく用いられる。
 次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。
 <重量平均分子量Mwの測定方法>
 サイジング剤の重量平均分子量はGPCを用いてプルランを標準物質とした公知の方法で測定できる。GPCの測定条件として、本発明では、以下の条件を採用するものとする。
測定装置:島津製作所製
使用カラム:昭和電工製 Shodex Asahipac
GF-710HQ+GF-510HQ+GF-310HQ
溶離液:0.2モル%-モノエタノールアミン水溶液
(酢酸を添加してpH5.1に調整)
標準物質:プルラン(シグマアルドリッチ社製)
検出器:示唆屈折計(島津製作所製)。
 <サイジング剤の粘度の測定方法>
 サイジング剤の粘度は、粘弾性測定器を 用いて測定した。測定条件としては、直径40mmのパラレルプレートを用い、スパンを1mmとして周波数3.14rad/sにおいて25℃で測定を行った。
 <サイジング付着量の測定方法>
 2.0±0.5gのサイジング塗布炭素繊維束を秤量(W1)(小数点第4位まで読み取り)した後、50ミリリットル/分の窒素気流中、450℃の温度に設定した電気炉(容量120cm)に15分間放置し、サイジング剤を完全に熱分解させる。そして、20リットル/分の乾燥窒素気流中の容器に移し、15分間冷却した後の炭素繊維束を秤量(W2)(小数点第4位まで読み取り)して、W1-W2によりサイジング付着量を求める。このサイジング付着量を炭素繊維束100質量部に対する質量部に換算した値(小数点第3位を四捨五入)を、付着したサイジング剤の付着量(質量部)とした。測定は2回おこない、その平均値をサイジング剤の付着量とした。
<サイジング剤塗布炭素繊維束の平均引き裂き可能距離の測定方法>
 炭素繊維束を1160mmの長さにカットし、その一端を水平な台上に粘着テープで動かないように固定する(この点を固定点Aと呼ぶ)。次に、該繊維束の固定していない方の一端を指で2分割し、その一方を緊張させた状態で台上に粘着テープで動かないように固定する(この点を固定点Bと呼ぶ)。そして、2分割した他方を、固定点Aが支点となり弛みが出ないよう台上に沿って動かし、固定点Bからの直線距離が500mmの位置で静止させ、台上に粘着テープで動かないように固定する(この点を固定点Cと呼ぶ)。固定点A、B、Cで囲まれた領域を目視で観察し、固定点Aから最も遠い交絡点を見つけ、固定点Aと固定点Bで結ばれる直線上に投影した距離を最低目盛りが1mmの定規で読み取り、引き裂き可能距離とする。前記操作の繰り返し30回の測定の算術平均値が平均引き裂き可能距離である。引き裂き可能距離の測定方法を図1に示す。本測定方法において、固定点Aから最も遠い交絡点とは、固定点Aからの直線距離が最も遠く、かつ弛みのない3本以上の単繊維が交絡している点のことである。
下記の基準で平均引き裂き距離を3段階で評価し、AとBを合格とした。
A:平均引き裂き距離が900mm以上
B:平均引き裂き距離が700mm以上かつ900mm未満
C:平均引き裂き距離が700mm未満。
 <繊維間摩擦係数の測定方法>
 回転しないように固定されたボビン上に厚みが均一となるよう5~10mm厚、巻密度0.9 ~1.4g/cmの範囲で巻き付けたサイジング剤塗布炭素繊維束の表面に、巻状物と同じ炭素繊維束を接触角3π(rad)になるよう円周上に重ならないよう巻きつける。巻き付けた炭素繊維束の一方の端部に錘(T1)をつけ、反対端をばねばかりで1m /minの速度で引っ張り、巻き付けた炭素繊維束が動き出す際の張力をT2として、次式から繊維間摩擦係数を求めた。
繊維間摩擦係数=ln(T2/T1)/θ
T2:炭素繊維が動き出す際の張力( = ばねばかりの指示値)
T1:錘重量(=0.19g/tex)
θ: 巻状物と巻きつけた糸との合計接触角(=3πrad)
 測定は2回おこない、その平均値を繊維間摩擦係数とした。なお、測定ボビンは測定2時間以上前に測定雰囲気温湿度条件(測定条件:23±3℃/60±5%)に置いたものを使用した。
<界面せん断強度(IFSS)の測定方法>
 サイジング剤塗布炭素繊維束から単糸を抜き出し、積層した樹脂フィルムで上下方向から挟み、熱プレス装置にて、炭素繊維単糸を埋め込んだ成形板を得た。この成形板からダンベル形状のIFSS測定用試験片を打ち抜いた。
 ダンベル形状の試料の両端部を挟み、繊維軸方向(長手方向)に引張力を与え、2.0mm/分の速度で歪みを12%生じさせた。その後、加熱により透明化させた試料内部の断片化された繊維長を顕微鏡で観察した。さらに平均破断繊維長laから臨界繊維長lcを、lc(μm)=(4/3)×la(μm)の式により計算した。ストランド引張強度σと炭素繊維単糸の直径dを測定し、炭素繊維と樹脂界面の接着強度の指標である界面せん断強度(IFSS)を、次式で算出した。実施例では、測定数n=5の平均を試験結果とした。
IFSS(MPa)=σ(MPa)×d(μm)/(2×lc)(μm)。
 本発明において、IFSSの好ましい範囲は以下の通りとした。
熱可塑性樹脂
・ポリエーテルイミド 40MPa以上
・ポリフェニレンスルフィド 24MPa以上
・ポリプロピレン 15MPa以上。
 <開繊性(開繊保持率)の測定方法>
 380mmの長さにカットしたサイジング剤塗布炭素繊維束を3本用意し、水平な作業台の上に置いた厚紙(幅300mm、長さ430mm)上に均等に3本並べる。次に、幅方向にはみ出した糸束の両端の上部の1/3をテープで固定する。そして、幅方向にはみ出した糸束の両端の下部の1/3を両手でつまみ、3秒間かけて平行に下部に向かって80mm引っ張り、手を離す。開繊性の良い糸束は糸幅が80mmのままであるが、開繊性の悪い糸束は糸幅が短くなる。これを3本繰り返した後、各糸束の糸幅を測定し、その平均値を求めた。最後に、糸幅の平均値を80mmで割ることで、開繊保持率を計算した。
下記の基準で開繊保持率を3段階で評価し、AとBを合格とした。
A: 開繊保持率が0.95以上
B: 開繊保持率が0.90以上かつ0.95未満
C: 開繊保持率が0.90未満。
 <開繊性(未開繊部)の測定方法>
 地面と水平になるようにクリールにサイジング剤塗布炭素繊維束が巻かれたボビンをかけ、サイジング剤塗布炭素繊維束をボビンから300mm引き出す。次に、引き出した糸の端をテープで固定する。そして、糸束を10~20mm弛ませた状態で、風速5~10m/sの風をサイジング剤塗布炭素繊維束に吹き付け、開繊させる。サイジング剤により単糸が隣接した単糸と付着し、束(未開繊部)となった箇所の数を評価した。このとき、0.5mm幅以上のものを評価対象とし、以下の基準で未開繊部量を上記開繊性(開繊保持率)の結果を踏まえつつ4段階で評価し、A、B、およびCを合格とした。
A:   未開繊部の数:0個かつ、開繊保持率が0.95以上
B:   未開繊部の数:1~2個かつ、開繊保持率が0.95以上
C:   未開繊部の数:1~2個かつ、開繊保持率が0.90以上かつ0.95未満
D:   未開繊部の数:3個以上、または開繊保持率が0.90未満。
 <開繊性(開繊幅)の測定方法>
 糸束幅方向の長さD1のサイジング剤塗布炭素繊維束16cmを1cm弛ませて、2本の円柱状の棒に固定したサイジング剤塗布炭素繊維束が水平になるように保持した状態で、風速5~30m/sの風をサイジング剤塗布炭素繊維束に30秒吹きつけ、開繊させ、糸幅D2を測定し、開繊幅(D2/D1)を算出した。同試験を3回行い、平均値を開繊幅とした。本発明において、開繊幅の好ましい範囲は3.2以上とした。
 <熱可塑性樹脂のガラス転移温度の測定>
 熱可塑性樹脂のガラス転移温度は、示差熱走査熱量測定(DSC)を用いて測定した。アルミニウムサンプルパンを用いて、40℃/minの昇温速度で測定した。
 各実施例および各比較例で用いた材料と成分は下記の通りである。
 (A)成分
A-1:ポリエチレンイミン
(Mw=1300、粘度:6800mPa・s、γ=61mJ/m
(BASFジャパン(株)製 “Lupasol(登録商標)”G20Waterfree)
A-2:ポリエチレンイミン
(Mw=800、粘度:1600mPa・s、γ=62mJ/m
(BASFジャパン(株)製 “Lupasol(登録商標)”FG)
A-3:ポリエチレンイミン
(Mw=2000、粘度:12030mPa・s)
(BASFジャパン(株)製 “Lupasol(登録商標)”PR8515)
A-4:脂肪酸アマイド
(Mw=283.5、γ=48mJ/m
(日本化成(株)製“アマイド(登録商標)”AP-1)。
 (B)成分
B-1:PEGジステアリン酸エステル
(式(I)、n=90、R、R=17、HLB=17.0)
(三洋化成工業(株)製“イオネット(登録商標)”DS4000)
B-2:PEGモノステアリン酸エステル
(式(II)、n=22、R=17、HLB=15.7)
(三洋化成工業(株)製“イオネット(登録商標)”MS1000)
B-3:PEGモノオレイン酸エステル
(式(II)、n=13、R=17、HLB=13.7)
(三洋化成工業(株)製“イオネット(登録商標)”MO600)
B-4:PEGジオレイン酸エステル
(式(I)、n=13、R、R=17、HLB=10.4)
(三洋化成工業(株)製“イオネット(登録商標)”DO600)
B-5:PEGジステアリン酸エステル
(式(I)、n=9、R、R=17、HLB=8.5)
(三洋化成工業(株)製“イオネット(登録商標)”DS400)
B-6:PEGジオレイン酸エステル
(式(I)、n=9、R、R=17、HLB=8.4)
(三洋化成工業(株)製“イオネット(登録商標)”DO400)。
 (C)成分:熱可塑性樹脂
C-1:ポリエーテルイミド
(ガラス転移温度217℃)
(三菱樹脂(株)製“スペリオ(登録商標)”Eタイプ)
C-2:ポリフェニレンスルフィド
(ガラス転移温度89℃)
(ポリプラスチックス(株)製 “ジュラファイド(登録商標)”PPS W-540)
C-3:ポリプロピレン
(ガラス転移温度-2℃)
(プライムポリマー(株)製 ポリプロピレン J106G)。
 その他の成分
ポリグリセロールポリグリシジルエーテル
(ナガセケムテックス(株)製 “デナコール(登録商標)”Ex-314)
PEG
(三洋化成工業(株)製 PEG600)
実施例、比較例において、PEGは化合物(B)成分として計算する。
 (実施例1)
 本実施例は、次の第1~4の工程からなる。
 ・第1の工程:原料となる炭素繊維束を製造する工程
 アクリロニトリル共重合体を紡糸し、焼成し、総フィラメント数12,000本、総繊度800テックス、ストランド引張強度5.1GPa、ストランド引張弾性率240GPaの炭素繊維束を得た。次いで、その炭素繊維束を、炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維束1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維束を続いて水洗し、加熱空気中で乾燥し、原料となる炭素繊維束を得た。
 ・第2の工程:サイジング剤を炭素繊維束に付着させる工程
 化合物(A)として(A-1)を用い、(A-1)と水を混合して、(A-1)が均一に溶解した約0.2質量%の水溶液を得た。この水溶液をサイジング剤水溶液として用い、浸漬法によりサイジング剤を表面処理された炭素繊維束に塗布した後、予備乾燥工程としてホットローラーで120℃の温度で15秒間熱処理をし、続いて、第2乾燥工程として210℃の温度の加熱空気中で90秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理されたサイジング剤塗布炭素繊維束全量100質量部に対して、0.09質量部となるように調整した。
 このときの炭素繊維束の平均引き裂き可能距離は1000mmであった。
 ・第3の工程:開繊性試験用サンプルの作製および評価
 前記第2工程で得られた炭素繊維束を用いて、開繊性の評価方法に基づいて開繊保持率と未開繊部の数を求めた。その結果、未開繊部を評価したところ、1個存在し、開繊保持率は0.94であり、開繊性が非常に高いことが分かった。
 ・第4の工程:IFSS測定用試験片の作製および評価
 前工程で得られた炭素繊維束と、熱可塑性樹脂(C)として(C-1)を用いて、界面せん断強度の測定方法に基づき、IFSS測定用試験片を作製した。熱プレスの加熱加圧条件は320℃、2.0MPaであった。
 続いて、得られたIFSS測定用試験片を用いて、IFSSを測定した。その結果、IFSSが43MPaであり、接着性が十分に高いことがわかった。以上の結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 第2の工程におけるサイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.07質量部となるように調整した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表1にまとめた通りであり、接着性と開繊性が非常に高い炭素繊維束が得られた。
 (実施例3)
 第2の工程における化合物(A)として(A-2)を用い、サイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.08質量部となるように調整した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表1にまとめた通りであり、接着性と開繊性が非常に高い炭素繊維束が得られた。
 (実施例4)
 第4の工程における熱可塑性樹脂(C)として(C-2)を用いた以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束およびIFSS測定用試験片を得、各種評価を行った。結果は表1にまとめた通りであり、接着性が非常に高く、開繊性が十分に高いに炭素繊維束が得られた。
 (実施例5)
 第1の工程において炭素繊維束を得る際に交絡を加えること以外は、実施例2と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表1にまとめた通りであり、接着性と開繊性が十分に高い炭素繊維束が得られた。
 (実施例6)
 第2の工程において第2乾燥工程の乾燥温度を120℃と変更したこと以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表2にまとめた通りであり、接着性と開繊性が非常に高い炭素繊維束が得られた。
Figure JPOXMLDOC01-appb-T000002
 (実施例7)
 第2の工程において第2乾燥工程の乾燥温度を25℃と変更したこと以外は、実施例2と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表2にまとめた通りであり、接着性と開繊性が非常に高い炭素繊維束が得られた。
 (実施例8)
 第2の工程において(A-1)と(B-1)を用い、溶媒を除いたサイジング剤全量100質量部に対して、化合物(B-1)の割合が15質量部になるよう(A-1)と(B-1)とを水と混合して、均一に溶解した約0.1質量%の水溶液を得た。この水溶液をサイジング剤水溶液として用い第2乾燥温度を80℃と変更した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表2にまとめた通りであり、接着性と開繊性が非常に高い炭素繊維束が得られた。
 (実施例9)
 第2の工程において第2乾燥温度を210℃と変更し、サイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.06質量部となるように調整した以外は、以外は、実施例8と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表2にまとめた通りであり、接着性と開繊性が非常に高い炭素繊維束が得られた。
 (実施例10)
 第2の工程において第2乾燥温度を210℃と変更し、サイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.09質量部となるように調整した以外は、以外は、実施例8と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表2にまとめた通りであり、接着性と開繊性が非常に高い炭素繊維束が得られた。
 (実施例11)
 第2の工程において第2乾燥温度を260℃と変更し、サイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.09質量部となるように調整した以外は、以外は、実施例8と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表2にまとめた通りであり、接着性が非常に高く、開繊性が十分に高いに炭素繊維束が得られた。
 (実施例12)
 第2の工程において第2乾燥工程の乾燥温度を260℃と変更したこと以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表2にまとめた通りであり、接着性が非常に高く、開繊性が十分に高いに炭素繊維束が得られた。
 (比較例1)
 第2の工程におけるサイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.12質量部となるように調整した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表1にまとめた通りであり、接着性は非常に高いものの、開繊性が低い炭素繊維束が得られた。
 (比較例2)
 第2の工程における化合物(A)として(A-3)を用い、サイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.08質量部となるように調整した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表1にまとめた通りであり、接着性は非常に高いものの、開繊性が低い炭素繊維束が得られた。
 (比較例3)
 第2の工程におけるサイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.02質量部となるように調整した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表1にまとめた通りであり、接着性が低く、開繊性が非常に高い炭素繊維束が得られた。
 (比較例4)
 第2の工程におけるサイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、0.12質量部となるように調整した以外は、実施例5と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表1にまとめた通りであり、接着性は非常に高いものの、開繊性が低い炭素繊維束が得られた。
 (比較例5)
 第2の工程においてサイジング剤を付着しないこと以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表1にまとめた通りであり、開繊性が非常に高い炭素繊維束が得られたが、(B)成分として(B-1)を用いた成形体において低い界面せん断強度しか発現しなかった。
Figure JPOXMLDOC01-appb-T000003
 (実施例13)
 本実施例では、以下の手順で熱可塑性樹脂成形体を作製した。
 まず、実施例2で得られたサイジング剤塗布炭素繊維束を並べ、炭素繊維シートを作製する。続いて、厚み30μmの熱可塑性樹脂(C-1)のフィルム5枚の間に、上記の炭素繊維シート4枚を入れる。370℃に加熱した油圧式真空成形機の中に上記の積層フィルムを入れて、真空条件で4分間予熱する。10MPaで4分間加圧した後、30℃で2分間冷却し、離型することによって、目的の熱可塑性樹脂成形体を得た。
 上記の熱可塑性樹脂組成物は、内部にボイドが見られず、含浸性が非常に高いことが確認できた。以上の結果を表3にまとめた。
 (比較例7)
 比較例1で得られたサイジング剤塗布炭素繊維束を使用したこと以外は、実施例9と同様にして熱可塑性樹脂組成物を作製した。結果は表3にまとめた通りであり、上記の熱可塑性樹脂成形体は、内部にボイドが見られ、含浸性が低いことが確認できた。
 (実施例14)
 本実施例は、次の第1~4の工程からなる。
 ・第1の工程:原料となる炭素繊維束を製造する工程
 アクリロニトリル共重合体を紡糸し、焼成し、総フィラメント数12,000本、総繊度800テックス、ストランド引張強度5.1GPa、ストランド引張弾性率240GPaの炭素繊維束を得た。次いで、その炭素繊維束を、炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維束1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維束を続いて水洗し、加熱空気中で乾燥し、原料となる炭素繊維束を得た。
 ・第2の工程:サイジング剤を炭素繊維束に付着させる工程
 化合物(A)として(A-1)、化合物(B)として(B-1)を表4の組成で混合し、水を加えて、(A-1)、(B-1)が均一に溶解した約0.8質量%の水溶液を得た。この水溶液をサイジング剤水溶液として用い、浸漬法によりサイジング剤を表面処理された炭素繊維束に塗布した後、ホットローラー、および加熱空気中で乾燥させ、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理されたサイジング剤塗布炭素繊維束全量100質量部に対して、0.3質量部となるように調整した。
 ・第3の工程:開繊性試験用サンプルの作製および評価
 前記第2工程で得られた炭素繊維束を用いて、開繊性の評価方法に基づいて開繊幅を求めた。その結果、開繊幅は5.1であり、開繊性が非常に高いことが分かった。
 ・第4の工程:IFSS測定用試験片の作製および評価
 前工程で得られた炭素繊維束と、熱可塑性樹脂(C)として(C-1)を用いて、界面せん断強度の測定方法に基づき、IFSS測定用試験片を作製した。熱プレスの加熱条件は320℃とした。
 続いて、得られたIFSS測定用試験片を用いて、IFSSを測定した。その結果、IFSSが43MPaであり、接着性が十分に高いことがわかった。以上の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
 (実施例15~20)
 第2の工程におけるサイジング剤の組成を表4に示す通りに変更した以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表4にまとめた通りであり、接着性と開繊性が十分に高い炭素繊維束が得られた。
 (比較例8、9)
 第2の工程におけるサイジング剤の組成を表4に示す通りに変更した以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表4にまとめた通りであり、開繊性が不十分であった。
 (実施例21~24)
 第2の工程におけるサイジング剤の組成を表5に示す通りに変更した以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表5にまとめた通りであり、接着性と開繊性が十分に高い炭素繊維束が得られた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 (比較例10、11)
 第2の工程におけるサイジング剤の組成を表5に変更した以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表5にまとめた通りであり、接着性が不十分であった。
 (比較例12~14)
 第2の工程におけるサイジング剤の組成を表5に示す通りに変更した以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表5にまとめた通りであり、開繊性が不十分であった。
 (実施例25~27)
 第2の工程におけるサイジング剤付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、表5に示すように変更した以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表5にまとめた通りであり、接着性と開繊性が十分に高い炭素繊維束が得られた。
 (実施例28~29)
 第2の工程におけるサイジング剤の組成を表5に示す通りに変更し、付着量を、サイジング剤塗布炭素繊維束全量100質量部に対して、表5に示すように変更した以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束を得、各種評価を行った。結果は表5にまとめた通りであり、接着性と開繊性が十分に高い炭素繊維束が得られた。
 (実施例30)
 第4の工程における熱可塑性樹脂(C)として(C-2)を用いた以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束およびIFSS測定用試験片を得て、各種評価を行った。結果は表6にまとめた通りであり、接着性が十分に高く、開繊性が十分に高い炭素繊維束が得られた。
Figure JPOXMLDOC01-appb-T000007
 (比較例15、16)
 第2の工程におけるサイジング剤の成分を表6に示す通りに変更した以外は、実施例23と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表6にまとめた通りであり、接着性または開繊性が不十分であった。
 (実施例31)
 第4の工程における熱可塑性樹脂(C)として(C-3)を用い、熱プレスの加熱条件を220℃に変更した以外は、実施例14と同様にしてサイジング剤塗布炭素繊維束およびIFSS測定用試験片を得て、各種評価を行った。結果は表6にまとめた通りであり、接着性が十分に高く、開繊性が十分に高い炭素繊維束が得られた。
 (比較例17、18)
 第2の工程におけるサイジング剤の成分を表6に示す通りに変更した以外は、実施例31と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表6にまとめた通りであり、接着性または開繊性が不十分であった。
 (実施例32)
 本実施例では、以下の手順で成形体を作製した。
 まず、実施例14で得られたサイジング剤塗布炭素繊維束を並べ、炭素繊維シートを作製する。続いて、厚み30μmの熱可塑性樹脂(C-1)のフィルム5枚の間に、上記の炭素繊維シート4枚を入れる。370℃に加熱した油圧式真空成形機の中に上記の積層フィルムを入れて、真空条件で4分間予熱する。10MPaで4分間加圧した後、30℃で2分間冷却し、離型することによって、目的の成形体を得た。
 上記の成形体は、内部にボイドが見られず、含浸性が十分に高いことが確認できた。以上の結果を表7にまとめた。
Figure JPOXMLDOC01-appb-T000008
 (比較例19)
 比較例13で得られたサイジング剤塗布炭素繊維束を使用したこと以外は、実施例32と同様にして成形体を作製した。結果は表7にまとめた通りであり、上記の成形体は、内部にボイドが見られ、含浸性が低いことが確認できた。
 1:繊維束
 2:固定点A
 3:固定点B
 4:固定点C
 5:交絡点
 6:引き裂き可能距離
 本発明によれば、熱可塑性樹脂に対し高いレベルでの接着性を示す場合であっても、サイジング剤塗布炭素繊維の開繊工程において良好な開繊性を示すサイジング剤塗布炭素繊維束を提供することができる。本発明の熱可塑性樹脂組成物およびその成形品は、軽量でありながら強度に優れることから、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に好適に用いることができる。

Claims (19)

  1. アミノ基またはアミド基を含む化合物(A)を含むサイジング剤が炭素繊維に塗布されたサイジング剤塗布炭素繊維束であって、下記(i)または(ii)を満たすことを特徴とするサイジング剤塗布炭素繊維束。
    (i)アミノ基またはアミド基を含む化合物(A)をサイジング剤全量100質量部に対して50質量部以上含む、長さ10cm以上のサイジング剤塗布炭素繊維束であって、化合物(A)の重量平均分子量Mwが2500以下、化合物(A)の25℃における粘度が200~10000mPa・sであり、かつ、下記式(a)で示されるサイジング剤付着量Xが0.03質量%以上0.1質量%未満である。
     X=(W0-W1)/W0 ×100 (%)・・・(a)
      W0=炭素繊維及びサイジング剤の総質量
      W1=炭素繊維のみの質量
    (ii)アミノ基またはアミド基を含む化合物(A)、および下記式(I)および/または(II)で表される化合物(B)の総量が、サイジング剤全量100質量部に対して50質量部以上であり、かつ、(A)の質量WAと(B)の質量WBが式(III)を満たすサイジング剤が炭素繊維に塗布されたサイジング剤塗布炭素繊維束であって、化合物(A)と化合物(B)のSP値の差が0.5~4.0(J/cm)0.5である。
    -COO-(CHCHO)-CO-R・・・式(I)
    -COO-(CHCHO)-H・・・式(II)
    (式中、R、R、Rは炭素数1以上の炭化水素基を表す。)
     0.1≦WB/(WA+WB)<0.6 ・・・式(III)
  2. 化合物(A)が脂肪族アミンである、請求項1に記載のサイジング剤塗布炭素繊維束。
  3. 化合物(A)が1分子内に含まれる官能基量が2以上の化合物である、請求項1または2に記載のサイジング剤塗布炭素繊維束。
  4. 化合物(A)がポリアルキレンイミンである、請求項1~3のいずれかに記載のサイジング剤塗布炭素繊維束。
  5. 上記(i)を満たす場合であって、サイジング付着量Xが、0.05質量%以上0.08質量%未満である、請求項1~4のいずれかに記載のサイジング剤塗布炭素繊維束。
  6. 上記(i)を満たす場合であって、平均引き裂き可能距離が700mm以上である、請求項1~5のいずれかに記載のサイジング剤塗布炭素繊維。
  7. 上記(ii)を満たす場合であって、化合物(B)のHLBが10以上である、請求項1~4のいずれかに記載のサイジング剤塗布炭素繊維束。
  8. 上記(ii)を満たす場合であって、化合物(B)のnが12以上である、請求項1~4、7のいずれかに記載のサイジング剤塗布炭素繊維束。
  9. 上記(ii)を満たす場合であって、化合物(B)の融点が20℃以上である、請求項1~4、7、8のいずれかに記載のサイジング剤塗布炭素繊維束。
  10. 上記(ii)を満たす場合であって、化合物(A)の表面自由エネルギーが45mJ/m以上である、請求項1~4、7~9のいずれかに記載のサイジング剤塗布炭素繊維束。
  11. 上記(ii)を満たす場合であって、サイジング剤がエポキシ基を有する化合物を実質的に含まない、請求項1~4、7~10のいずれかに記載のサイジング剤塗布炭素繊維束。
  12. 上記(ii)を満たす場合であって、繊維間摩擦係数が0.30以下である、請求項1~4、7~11のいずれかに記載のサイジング剤塗布炭素繊維束。
  13. 上記(ii)を満たす場合であって、サイジング剤の付着量が、サイジング剤塗布炭素繊維100質量部に対して、0.01質量部以上1.0質量部である、請求項1~4、7~12のいずれかに記載のサイジング剤塗布炭素繊維束。
  14. 請求項1~13のいずれかに記載のサイジング剤塗布炭素繊維束、および、熱可塑性樹脂(C)を含有してなる熱可塑性樹脂組成物。
  15. 熱可塑性樹脂(C)のガラス転移温度が200℃以上である、請求項14に記載の熱可塑性樹脂組成物。
  16. 請求項14または15に記載の熱可塑性樹脂組成物を用いた成形体であって、該成形体がプリプレグまたはUDテープの形態の成形材料として用いられるものである、成形体。
  17. 請求項1~6のいずれかに記載のサイジング剤塗布炭素繊維束の製造方法であって、前記サイジング剤を水系溶媒で前記炭素繊維に塗布する工程を有する、サイジング剤塗布炭素繊維束の製造方法。
  18. 前記サイジング剤を水系溶媒で前記炭素繊維に塗布する工程を経た後に、接触式乾燥手段によってサイジング剤を塗布した炭素繊維束を乾燥させる予備乾燥工程、および、接触式または非接触式乾燥手段によってサイジング剤を塗布した炭素繊維束を乾燥させる第2乾燥工程を有し、第2乾燥工程の乾燥温度が20~250℃である、請求項17に記載のサイジング剤塗布炭素繊維束の製造方法。
  19. 請求項17または18に記載のサイジング剤塗布炭素繊維束の製造方法で得られるサイジング剤塗布炭素繊維束、および、熱可塑性樹脂(B)を用いて、熱可塑性樹脂組成物を得た後に得る成形体の製造方法であって、前記熱可塑性樹脂組成物を300℃以上に加熱する工程を有する、成形体の製造方法。
PCT/JP2017/040548 2017-02-24 2017-11-10 サイジング剤塗布炭素繊維束、熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体の製造方法 WO2018154867A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/466,562 US10738171B2 (en) 2017-02-24 2017-11-10 Sizing-coated carbon fiber bundle, thermoplastic resin composition, molded body, method for manufacturing sizing-coated carbon fiber bundle, and method for manufacturing molded body
RU2019129529A RU2019129529A (ru) 2017-02-24 2017-11-10 Покрытый проклеивающим средством пучок углеродного волокна, композиция термопластической смолы, формованное тело, способ для производства покрытого проклеивающим средством пучка углеродного волокна и способ для производства формованного тела
JP2017559469A JP6338029B1 (ja) 2017-02-24 2017-11-10 サイジング剤塗布炭素繊維束、熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体の製造方法
KR1020197014201A KR102090924B1 (ko) 2017-02-24 2017-11-10 사이징제 도포 탄소섬유다발, 열가소성 수지 조성물, 성형체, 사이징제 도포 탄소섬유다발의 제조 방법, 및 성형체의 제조 방법
EP17897235.2A EP3546642B1 (en) 2017-02-24 2017-11-10 Sizing-coated carbon fiber bundle, thermoplastic resin composition, molded body, method for manufacturing sizing-coated carbon fiber bundle, and method for manufacturing molded body
MX2019008543A MX2019008543A (es) 2017-02-24 2017-11-10 Haz de fibras de carbono recubiertas con encolado, composicion de resina termoplastica, cuerpo moldeado, metodo para la fabricacion del haz de fibras de carbono recubiertas con encolado y metodo para la fabricacion del cuerpo moldeado.
CN201780082850.2A CN110168161B (zh) 2017-02-24 2017-11-10 涂布有上浆剂的碳纤维束、热塑性树脂组合物、成型体、涂布有上浆剂的碳纤维束的制造方法、及成型体的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-032899 2017-02-24
JP2017032899 2017-02-24
JP2017073453 2017-04-03
JP2017-073453 2017-04-03
JP2017-148923 2017-08-01
JP2017148923 2017-08-01

Publications (1)

Publication Number Publication Date
WO2018154867A1 true WO2018154867A1 (ja) 2018-08-30

Family

ID=63253227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040548 WO2018154867A1 (ja) 2017-02-24 2017-11-10 サイジング剤塗布炭素繊維束、熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体の製造方法

Country Status (8)

Country Link
US (1) US10738171B2 (ja)
EP (1) EP3546642B1 (ja)
KR (1) KR102090924B1 (ja)
CN (1) CN110168161B (ja)
MX (1) MX2019008543A (ja)
RU (1) RU2019129529A (ja)
TW (1) TW201835241A (ja)
WO (1) WO2018154867A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117833A (ja) * 2019-01-24 2020-08-06 竹本油脂株式会社 含浸性向上剤、繊維強化熱可塑性樹脂複合材料、及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750558B (zh) * 2018-12-25 2021-12-21 日商三菱化學股份有限公司 上漿劑、附著有上漿劑的碳纖維及其製造方法、上漿劑的水分散液、預浸體及其製造方法以及碳纖維強化複合材料的製造方法
KR102212026B1 (ko) * 2019-09-03 2021-02-05 효성첨단소재 주식회사 탄소섬유의 제조방법 및 이를 이용하여 제조된 탄소섬유
WO2021149656A1 (ja) * 2020-01-22 2021-07-29 東レ株式会社 サイジング剤塗布炭素繊維束およびその製造方法
RU2770098C1 (ru) * 2021-04-01 2022-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ) Полимерные композиты из полифениленсульфида, аппретированного углеволокна и способ их получения
TWI767811B (zh) * 2021-07-30 2022-06-11 臺灣塑膠工業股份有限公司 碳纖維束的處理方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365311A (ja) 1989-08-03 1991-03-20 Asahi Chem Ind Co Ltd 炭素繊維チョップ
JPH04228677A (ja) * 1990-05-08 1992-08-18 Hoechst Celanese Corp 炭素繊維複合体における炭素繊維と熱可塑性マトリクス材料との間の接着方法
JPH04361619A (ja) 1991-06-04 1992-12-15 Toray Ind Inc 炭素繊維及びその製造方法
JP2002528661A (ja) 1998-10-30 2002-09-03 オウェンス コーニング 非イオン性及び陽イオン性滑剤低含有のグラスファイバー用サイジング
JP2006089734A (ja) 2004-08-25 2006-04-06 Toray Ind Inc 熱可塑性樹脂組成物
JP2006161018A (ja) 2004-11-15 2006-06-22 Sanyo Chem Ind Ltd 樹脂粒子水分散体
JP2011214209A (ja) * 2010-03-18 2011-10-27 Toray Ind Inc サイジング剤塗布炭素繊維束およびその製造方法
JP2013166924A (ja) 2012-01-20 2013-08-29 Toray Ind Inc プリプレグ
US20140066576A1 (en) * 2012-08-30 2014-03-06 Empire Technology Development Llc Switchable ionic adhesive coating for recyclable carbon fiber
JP2014205926A (ja) * 2013-04-11 2014-10-30 東レ株式会社 炭素繊維束
JP2016180053A (ja) * 2015-03-24 2016-10-13 三菱重工業株式会社 炭素繊維強化熱可塑性プラスチックの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264383A (ja) * 2004-03-19 2005-09-29 Toray Ind Inc 炭素繊維束およびその開繊方法
JP2006336150A (ja) * 2005-06-02 2006-12-14 Toray Ind Inc プルトルージョン用炭素繊維束
CN102212965B (zh) * 2010-04-02 2013-03-13 刘剑洪 一种液态聚丙烯腈低聚物上浆剂及其在碳纤维上的应用
EP2749690B1 (en) * 2011-08-22 2019-11-06 Mitsubishi Chemical Corporation Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle having adsorbed sizing agent, sheet-shaped article, and carbon fiber reinforced composite material
EP2805995B1 (en) * 2012-01-20 2018-06-27 Toray Industries, Inc. Fiber reinforced polypropylene resin composition, molding material and prepreg
KR20150008868A (ko) * 2012-05-15 2015-01-23 데이진 가부시키가이샤 보강용 탄소섬유 다발, 그 제조 방법 및 그것을 사용한 복합체의 제조 방법
EP2862893B1 (en) * 2012-07-25 2018-02-28 Toray Industries, Inc. Prepreg and carbon-fiber-reinforced composite material
CN103103774B (zh) * 2013-02-01 2014-11-19 金发科技股份有限公司 一种乳液型碳纤维用上浆剂及其制备方法和用途
CN104252215A (zh) * 2013-06-27 2014-12-31 鸿富锦精密工业(深圳)有限公司 点亮屏幕控制系统、电子装置及方法
JP2017226711A (ja) * 2014-11-07 2017-12-28 株式会社ダイセル エポキシ−アミン付加物、樹脂組成物、サイジング剤、サイジング剤塗布炭素繊維、及び繊維強化複合材料
CN104963200A (zh) * 2015-07-30 2015-10-07 北京化工大学常州先进材料研究院 一种水溶性碳纤维上浆剂的制备方法和用途
CN105694790B (zh) * 2016-02-29 2018-06-29 中国工程物理研究院材料研究所 一种可快速拆解的环氧胶粘剂及其制备和拆解方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365311A (ja) 1989-08-03 1991-03-20 Asahi Chem Ind Co Ltd 炭素繊維チョップ
JPH04228677A (ja) * 1990-05-08 1992-08-18 Hoechst Celanese Corp 炭素繊維複合体における炭素繊維と熱可塑性マトリクス材料との間の接着方法
JPH04361619A (ja) 1991-06-04 1992-12-15 Toray Ind Inc 炭素繊維及びその製造方法
JP2002528661A (ja) 1998-10-30 2002-09-03 オウェンス コーニング 非イオン性及び陽イオン性滑剤低含有のグラスファイバー用サイジング
JP2006089734A (ja) 2004-08-25 2006-04-06 Toray Ind Inc 熱可塑性樹脂組成物
JP2006161018A (ja) 2004-11-15 2006-06-22 Sanyo Chem Ind Ltd 樹脂粒子水分散体
JP2011214209A (ja) * 2010-03-18 2011-10-27 Toray Ind Inc サイジング剤塗布炭素繊維束およびその製造方法
JP2013166924A (ja) 2012-01-20 2013-08-29 Toray Ind Inc プリプレグ
US20140066576A1 (en) * 2012-08-30 2014-03-06 Empire Technology Development Llc Switchable ionic adhesive coating for recyclable carbon fiber
JP2014205926A (ja) * 2013-04-11 2014-10-30 東レ株式会社 炭素繊維束
JP2016180053A (ja) * 2015-03-24 2016-10-13 三菱重工業株式会社 炭素繊維強化熱可塑性プラスチックの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Shin Kaimen Kasseizai Nyumon (An introduction to Surface Active Agent", 1992, pages: 128
POLYM. ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154
See also references of EP3546642A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117833A (ja) * 2019-01-24 2020-08-06 竹本油脂株式会社 含浸性向上剤、繊維強化熱可塑性樹脂複合材料、及びその製造方法

Also Published As

Publication number Publication date
TW201835241A (zh) 2018-10-01
CN110168161A (zh) 2019-08-23
EP3546642A1 (en) 2019-10-02
KR102090924B1 (ko) 2020-04-24
US10738171B2 (en) 2020-08-11
KR20190058676A (ko) 2019-05-29
EP3546642B1 (en) 2022-08-10
US20190390022A1 (en) 2019-12-26
EP3546642A4 (en) 2020-04-29
CN110168161B (zh) 2020-06-23
RU2019129529A (ru) 2021-03-24
MX2019008543A (es) 2019-09-11

Similar Documents

Publication Publication Date Title
WO2018154867A1 (ja) サイジング剤塗布炭素繊維束、熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体の製造方法
TWI591233B (zh) Method for producing carbon fiber coating sizing agent, carbon fiber coating sizing agent, method for producing carbon fiber reinforced composite material and carbon fiber reinforced composite material
EP3118370B1 (en) Sizing agent-coated reinforcing fibers, method for producing sizing agent-coated reinforcing fibers, prepreg, and fiber-reinforced composite material
TWI598380B (zh) 塗布上漿劑之碳纖維束及其製造方法、預浸漬物及碳纖維強化複合材料
JP5477312B2 (ja) サイジング剤塗布炭素繊維束およびその製造方法
JP5516771B1 (ja) プリプレグ、プリプレグの製造方法および炭素繊維強化複合材料
JP6056517B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、およびプリプレグならびに炭素繊維強化熱可塑性樹脂組成物
JP6338029B1 (ja) サイジング剤塗布炭素繊維束、熱可塑性樹脂組成物、成形体、サイジング剤塗布炭素繊維束の製造方法、および成形体の製造方法
JP2017048481A (ja) サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料
JP7363091B2 (ja) サイジング剤塗布炭素繊維束およびその製造方法、熱可塑性樹脂組成物、成形体
JP6822208B2 (ja) サイジング剤塗布炭素繊維束を含有してなる熱可塑性樹脂組成物
JP6394085B2 (ja) サイジング剤塗布炭素繊維およびその製造方法、プリプレグおよび炭素繊維強化複合材料
JP5454668B1 (ja) 炭素繊維強化熱可塑性樹脂組成物および成形品
JP5516769B1 (ja) 成形材料、成形材料の製造方法および炭素繊維強化複合材料
JP2008169344A (ja) 熱可塑性樹脂組成物
JP5516770B1 (ja) 成形材料、成形材料の製造方法および炭素繊維強化複合材料
JP2021161558A (ja) サイジング剤塗布炭素繊維束とその製造方法
JP4924768B2 (ja) サイジング剤塗布炭素繊維の製造方法
JP2022117562A (ja) サイジング剤塗布炭素繊維束およびその製造方法
JP5967333B1 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、炭素繊維強化複合材料および炭素繊維強化複合材料の製造方法
JP2008120879A (ja) 熱可塑性樹脂組成物
JP2013104145A (ja) サイジング剤塗布炭素繊維

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559469

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014201

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017897235

Country of ref document: EP

Effective date: 20190624

NENP Non-entry into the national phase

Ref country code: DE