WO2018154748A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2018154748A1
WO2018154748A1 PCT/JP2017/007332 JP2017007332W WO2018154748A1 WO 2018154748 A1 WO2018154748 A1 WO 2018154748A1 JP 2017007332 W JP2017007332 W JP 2017007332W WO 2018154748 A1 WO2018154748 A1 WO 2018154748A1
Authority
WO
WIPO (PCT)
Prior art keywords
correlation matrix
reception
transmission
target
antennas
Prior art date
Application number
PCT/JP2017/007332
Other languages
English (en)
French (fr)
Inventor
吉田 直人
龍平 高橋
信弘 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019500978A priority Critical patent/JP6556399B2/ja
Priority to DE112017006884.3T priority patent/DE112017006884B4/de
Priority to US16/475,430 priority patent/US11269070B2/en
Priority to CN201780086962.5A priority patent/CN110325873B/zh
Priority to PCT/JP2017/007332 priority patent/WO2018154748A1/ja
Publication of WO2018154748A1 publication Critical patent/WO2018154748A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/006Theoretical aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/18Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/30Systems for measuring distance only using transmission of interrupted, pulse modulated waves using more than one pulse per radar period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers

Abstract

本発明のレーダ装置(100,200)は、互いに直交した信号を複数の送信アンテナから送信する送信アレーアンテナ(3)、目標で反射された信号を複数の受信アンテナで受信する受信アレーアンテナ(4)、複数の受信アンテナで受信された受信信号から目標を検出する信号処理部(6,26)を備え、信号処理部(6,26)は、複数の受信アンテナで受信された受信信号を複数の送信アンテナの送信信号に対応する信号に分離する分離部(10)、分離部で分離された受信信号に基づいて送信アレーアンテナに対応する第1の相関行列および受信アレーアンテナに対応する第2の相関行列を求める相関行列算出部(11,18)、第1および第2の相関行列の固有ベクトルを用いて算出した評価値に基づいて目標を検出する検出部(13)を備える。これにより、角度分解能の劣化やビームサイドローブの上昇を抑えながら、複数目標反射波を分離検出することができる。

Description

レーダ装置
 この発明は、移動体や静止物体などの観測対象を検出するレーダ装置に関する。
 レーダ装置の角度分解能を向上させるには、アンテナ開口を広げる必要がある。しかし、アンテナの大型化は、コストや設置性の面から限界がある。そこで、複数の送信アンテナおよび受信アンテナを分散配置し、等価的に大開口のアレーアンテナを形成することで、アンテナ単体の大型化を防ぎながら、角度分解能の向上を実現することができる。このようなアンテナを分散アレーアンテナとよぶ。
 しかしながら、捜索覆域中の目標検出を目的とする捜索レーダを分散アレーアンテナで構成すると、メインローブのビーム幅が狭くなり、捜索効率が劣化する。そこで、分散アレーアンテナにMIMO(Multi-Input Multi-Output)レーダ技術を適用し、受信信号処理で送信マルチビームを形成することで、ビーム幅減少による捜索効率の劣化を防ぐことができる。また、MIMOレーダ技術を適用することで、測角精度を向上させることもできる(非特許文献1)。
J. Li and P. Stoica、 "MIMO Radar with Colocated Antennas、" IEEE Signal Process. Mag.、 vol. 24、 no. 5、 p.106-114、 2007.
 しかしながら、分散アレー構成とすることで角度分解能が向上するものの、ビームサイドローブが上昇する。ビームサイドローブが上昇すると、複数目標からの反射波が同一レンジの異なる方向から到来した場合、受信強度の大きい目標のビームサイドローブに受信強度の小さい目標からの反射波が埋もれる。その結果、複数の目標を分離して検出することができないという問題がある。
 この発明は、上記課題を鑑みてなされたものであり、角度分解能の劣化やビームサイドローブの上昇を抑えながら、複数目標反射波を分離検出することができるレーダ装置を提供することを目的とするものである。
 この発明に係るレーダ装置は、互いに直交した信号を複数の送信アンテナから送信する送信アレーアンテナと、目標で反射された信号を複数の受信アンテナで受信する受信アレーアンテナと、複数の受信アンテナで受信された受信信号から目標を検出する信号処理部とを備えたレーダ装置であって、信号処理部は、複数の受信アンテナで受信された受信信号を複数の送信アンテナの送信信号に対応する信号に分離する分離部と、分離部で分離された受信信号に基づいて、送信アレーアンテナに対応する第1の相関行列、および受信アレーアンテナに対応する第2の相関行列を求める相関行列算出部と、第1の相関行列および第2の相関行列の固有ベクトルを用いて算出した評価値に基づいて目標を検出する検出部とを備えることを特徴とするレーダ装置である。
 この発明のレーダ装置によれば、上記のように構成したことにより、角度分解能の劣化やビームサイドローブの上昇を抑えながら、複数の目標からの反射波を分離検出することができる。
本発明の実施の形態1におけるレーダ装置のハードウェア構成図である。 本発明の実施の形態1におけるレーダ装置の信号処理部の構成を示す機能構成図である。 本発明の実施の形態1におけるレーダ装置の信号処理部の動作を示すフローチャートである。 本発明の実施の形態1におけるレーダ装置のアンテナ配置の一例を示す図である。 従来のレーダ装置におけるビームフォーマ出力の一例を示す図である。 本発明の実施の形態1におけるレーダ装置の評価値の一例を示す図である。 本発明の実施の形態3におけるレーダ装置の信号処理部の構成を示す機能構成図である。 本発明の実施の形態3におけるレーダ装置の信号処理部の動作を示すフローチャートである。
 以下、図に基づいて、本発明の実施の形態について説明する。各図においては、同一または同様の構成部分については同じ符号を付している。なお、以下の実施の形態は本発明の一例であり、本発明は以下の実施の形態に限定されるものではない。また、以下の説明における目標とは、レーダ装置の観測対象であり、移動体、静止物体などを含む。
実施の形態1.
 図1は、本発明の実施の形態1によるレーダ装置100のハードウェア構成の一例を示す図である。図1において、本発明のレーダ装置100は、送受信制御装置1と、送信機2-1~2-Mと、送信アレーアンテナ3と、受信アレーアンテナ4と、受信機5-1~5-Nと、信号処理部6とで構成される。送信アレーアンテナ3は、送信アンテナ3-1~3-Mから構成される。受信アレーアンテナ4は、受信アンテナ4-1~4-Nから構成される。送信チャンネル数Mおよび受信チャンネル数Nは、いずれも2以上の自然数である。MとNは、同じ数である必要はない。信号処理部6は、入力インターフェース7と、演算器8と、メモリとで構成される。
 送受信制御装置1は、互いに直交した送信信号の生成に必要な送信信号情報および送信タイミング情報を送信機2-1~2-Mに伝送する。また、送受信制御装置1は、受信信号の生成に必要な受信タイミング情報を受信機5-1~5-Nに伝送する。さらに、送受信制御装置1は、送信信号情報、送信タイミング情報および受信タイミング情報を信号処理部6に伝送する。
 送信機2-1~2-Mは、送受信制御装置1から伝送された送信信号情報および送信タイミング情報を用いて送信波の変調、増幅を行い、それぞれ対応する送信アンテナ3-1~3-Mに出力する。
 送信アンテナ3-1~3-Mは、送信機2-1~2-Mから出力された送信波を空間に放射する。
 受信アンテナ4-1~4-Nは、送信アンテナ3-1~3-Mから放射された後、目標で反射されて戻ってきた送信波、つまり、目標からの反射波を受信し、それぞれ対応する受信機5-1~5-Nに出力する。
 受信機5-1~5-Nは、送受信制御装置1から伝送された受信タイミング情報をもとに、受信アンテナ4-1~4-Nで受信された反射波の増幅や周波数変換、A/D(Analog to Digital)変換を行い、受信信号を生成する。受信信号は、信号処理部6へ伝送される。
 信号処理部6は、送受信制御装置1から伝送された送信信号情報やタイミング情報をもとに、受信信号に対する信号処理を行い、目標検出や目標位置推定を行う。
 入力インターフェース7は、受信機5-1~5-NからA/D変換後の受信信号を取得し、送受信制御装置1から送信信号情報、送信タイミング情報および受信タイミング情報を取得する。取得した情報は、演算器8またはメモリ9へ伝送される。
 受信機5-1~5-Nとの入力インターフェース7として、例えば、PCI(Peripheral Component Interconnect)、PCI Express、VME(Versa Module Eurocard)、USB(Universal Serial Bus)などの通信インターフェースを使用することができる。送受信制御装置1との入力インターフェース7として、例えば、イーサネット(登録商標)などの通信インターフェースを使用することができる。
 演算器8は、入力インターフェース7を介して取得した情報を用いて、受信機5-1~5-Nから伝送された受信信号の信号処理演算を行う。演算器8として、例えば、CPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)などを使用することができる。
 メモリ9は、演算器8で行う信号処理の内容を記述したプログラム、演算途中の受信信号、パラメータ、入力インターフェース7を介して取得した情報などを保持する。
 図2は、本発明の実施の形態1における信号処理部6の機能構成図である。図2において、信号処理部6は、分離部10-1~10-Nと、送信アレー相関行列算出部11-1と、受信アレー相関行列算出部11-2と、送信アレー固有値展開部12-1と、受信アレー固有値展開部12-2と、検出部13とから構成される。なお、以下では、分離部10-1~10-Nをまとめて分離部10と言う場合がある。また、送信アレー相関行列算出部11-1と受信アレー相関行列算出部11-2をまとめて相関行列算出部11とも言う。送信アレー固有値展開部12-1と受信アレー固有値展開部12-2をまとめて固有値展開部12とも言う。
 分離部10-1~10-Nは、送受信制御装置1から伝送された情報を用いて、それぞれ対応する受信アンテナ4-1~4-Nで受信された受信信号を、送信信号ごとに分離する。分離後の受信信号は相関行列算出部11へ伝送される。
 具体的には、分離部10-1は、受信アンテナ4-1で受信された受信信号を、送信アンテナ3-1~3-Mから伝送されたそれぞれの送信信号の波形に対応する信号に分離する。同様に、分離部10-Nは、受信アンテナ4-Nで受信された受信信号を、送信アンテナ3-1~3-Mから伝送されたそれぞれの送信信号の波形に対応する信号に分離する。分離後の受信信号は、送信アレー相関行列算出部11-1および受信アレー相関行列算出部11-2へ伝送される。
 相関行列算出部11は、分離部10-1~10-Nで送信信号ごとに分離された後の受信信号から相関行列を求める。求めた相関行列は、固有値展開部12へ伝送される。
 具体的には、送信アレー相関行列算出部11-1は、分離部10-1~10-Nで分離された後の受信信号から、各送信アンテナ3-1~3-Mに対応する受信信号を要素とする受信信号ベクトルを生成する。つまり、分離部10-1~10-Nで分離された後のM×N個の受信信号から、同一の受信アンテナに対応する信号を要素とする受信信号ベクトルがN個生成される。送信アレー相関行列算出部11-1は、この受信信号ベクトルを用いて相関行列を求める。以降、この相関行列を送信アレー相関行列、または第1の相関行列と呼ぶ。送信アレー相関行列は、送信アレー固有値展開部12-1へ伝送される。
 また、受信アレー相関行列算出部11-2は、分離部10-1~10-Nで分離された後の受信信号から、各受信アンテナ4-1~4-Nに対応する受信信号を要素とする受信信号ベクトルを生成する。つまり、分離部10-1~10-Nで分離された後のM×N個の受信信号から、同一の送信アンテナに対応するN個の信号を要素とする受信信号ベクトルがM個生成される。受信アレー相関行列算出部11-2は、この受信信号ベクトルを用いて相関行列を求める。以降、この相関行列を受信アレー相関行列、または第2の相関行列と呼ぶ。受信アレー相関行列は、受信アレー固有値展開部12-2へ伝送される。
 固有値展開部12は、相関行列算出部11で求められた相関行列を固有値展開し、固有値および固有ベクトルを得る。固有値および固有ベクトルは、検出部13へ伝送される。
 具体的には、送信アレー固有値展開部12-1は、送信アレー相関行列算出部11-1で求められた送信アレー相関行列を固有値展開し、固有値および固有ベクトルを得る。固有値および固有ベクトルは、検出部13へ伝送される。
 また、受信アレー固有値展開部12-2は、受信アレー相関行列算出部11-2で求められた受信アレー相関行列を固有値展開し、固有値および固有ベクトルを得る。固有値および固有ベクトルは、検出部13へ伝送される。固有値および固有ベクトルは、検出部13へ伝送される。
 検出部13は、送信アレー固有値展開部12-1および受信アレー固有値展開部12-2で得た固有値および固有ベクトルを用いて評価値を算出し、この評価値に基づいて複数目標の分離検出や到来角推定を行う。
 分離部10-1~10-N、送信アレー相関行列算出部11-1、受信アレー相関行列算出部11-2、送信アレー固有値展開部12-1、受信アレー固有値展開部12-2、検出部13の機能は、メモリ9に格納されたプログラムを演算器8で実行することにより実現される。
 また、分離部10-1~10-Nの機能のうち、受信機5-1~5-Nから受信信号を取得する機能、送受信制御装置1から送信信号情報およびタイミング情報を取得する機能は、入力インターフェース7により実現される。
 次に、本発明の実施の形態1によるレーダ装置100の信号処理部6の動作について、図3を参照して説明する。図3は、本発明の実施の形態1による信号処理部6の動作を示すフローチャートである。
 ステップS1において、分離部10-1~10-Nは、受信アンテナ4-1~4-Nで受信された受信信号をそれぞれ取得する。また、分離部10-1~10-Nは、送受信制御装置1から伝送された送信信号情報およびタイミング情報を取得する。
 ステップS2において、分離部10-1~10-Nは、受信アンテナ4-1~4-Nで受信された受信信号を、送信アンテナ3-1~3-Mの送信信号の波形に対応する信号にそれぞれ分離する。送信信号の分離には、例えば、伝送方式が符号MIMO方式の場合、送信信号レプリカによるマッチングフィルタが用いられる。
 ステップS3において、送信アレー相関行列算出部11-1および受信アレー相関行列算出部11-2は、評価対象である全レンジの中からレンジを1つ選択し、ステップS2において送信信号に対応する信号に分離した後の受信信号から、選択したレンジのサンプルを抽出する。
 ここで、レンジごとにサンプルを抽出する理由について説明する。
 一般に、マッチングフィルタ通過後の目標反射波は、1レンジサンプルまたは少数のレンジサンプルのみに圧縮されるため、目標の分離検出や測角処理は、1レンジサンプルごとに実施する必要がある。簡単のため、互いに完全に直交した送信信号を考えると、あるレンジにおける、マッチングフィルタ通過後の受信信号から生成される受信信号ベクトルは、式(1)のM×N行列Xで表される。言い換えると、各送信アンテナ3-1~3-Mに対応する受信信号を要素とするN個の受信信号ベクトル、または、各受信アンテナ4-1~4-Nに対応する受信信号を要素とするM個の受信信号ベクトルは、式(1)のように1つの行列にまとめて表すことができる。行列Xはレンジごとに得られる。ただし、Kは当該レンジにおける目標数を、uはk番目の目標反射波の到来方向ベクトルを、βは複素係数を、a(u)、a(u)はそれぞれ送信アレー/受信アレーステアリングベクトルを、Zはマッチングフィルタ通過後の雑音成分を示す。上付きのTは転置を表す。なお、行列やベクトルは、数式の中では太字で示すが、本文においては細字のままとする。
Figure JPOXMLDOC01-appb-M000001
 再び、フローチャートの説明に戻る。
 ステップS4において、送信アレー相関行列算出部11-1は、ステップS3で分離した受信信号から生成した受信信号ベクトルを用いて、送信アレー相関行列を求める。具体的には、送信アレー相関行列算出部11-1は、送信信号に対応する信号に分離した後の受信信号から生成した受信信号ベクトルからなる行列Xを用いて、式(2)に示す送信アレー相関行列Rを求める。なお、上付きのHは複素共役転置を表す。
 送信アレー相関行列算出部11-1で求められた送信アレー相関行列Rは、送信アレー固有値展開部12-1へ送信される。
Figure JPOXMLDOC01-appb-M000002
 ステップS5において、送信アレー固有値展開部12-1は、ステップS4で求めた送信アレー相関行列Rを固有値展開する。固有値展開後の固有値と固有ベクトルは、式(3)の関係を満たす。ただし、λは送信アレー相関行列Rの固有値を値の大きい順に並べた場合にk番目となる固有値(kは1以上、M以下の自然数、λ1≧λ2≧…)を、et,kは、固有値λに対応する固有ベクトルを示す。
 送信アレー固有値展開部12-1で得られた固有値と固有ベクトルは、検出部13へ送信される。
Figure JPOXMLDOC01-appb-M000003
 ステップS6において、受信アレー相関行列算出部11-2は、ステップS3で分離した受信信号から生成した受信信号ベクトルを用いて、受信アレー相関行列を求める。具体的には、受信アレー相関行列算出部11-2は、送信信号に対応する信号に分離した後の受信信号から生成した受信信号ベクトルからなる行列Xを用いて、式(4)に示す受信アレー相関行列Rを求める。
 受信アレー相関行列算出部11-2で求められた受信アレー相関行列Rは、受信アレー固有値展開部12-2へ送信される。
Figure JPOXMLDOC01-appb-M000004
 ステップS7において、受信アレー固有値展開部12-2は、ステップS6で求めた受信アレー相関行列Rを固有値展開する。固有値展開後の固有値と固有ベクトルは、式(5)の関係を満たす。ただし、λは受信アレー相関行列Rの固有値を値の大きい順に並べた場合にk番目となる固有値(kは1以上、N以下の自然数、λ1≧λ2≧…)を、er,kは、固有値λに対応する固有ベクトルを示す。
 受信アレー固有値展開部12-2で得られた固有値と固有ベクトルは、検出部13へ送信される。
Figure JPOXMLDOC01-appb-M000005
 ステップS8において、検出部13は、ステップS5およびステップS7で求めた固有値および固有ベクトルから、目標検出や測角に用いる評価値を算出する。一例として、式(6)のような評価値を用いることができる。
Figure JPOXMLDOC01-appb-M000006
 ステップS9において、検出部13は、所定の値以上の固有値に対応する固有ベクトル(以下、目標信号固有ベクトルとも言う)に対して、到来方向ベクトルuを変化させながら算出した評価値P(u)を用いて目標を検出する。例えば、所定の値以上となる固有値λに対応する固有ベクトルet,k,er,kを用いて、到来方向ベクトルuを変化させながら評価値P(u)を求め、評価値P(u)が1に近い値になるときの到来方向ベクトルuに対応する方向から目標反射波が到来していると判定することが可能である。所定の値以上となる固有値が2つ存在する場合には、値が最も大きい固有値λに対応する固有ベクトルet,1,er,1を用いる評価値P(u)と、値が2番目に大きい固有値λに対応する固有ベクトルet,2,er,2を用いる評価値P(u)を求め、それぞれの評価値において、目標からの反射波の有無や到来方向を判定すればよい。
 ステップS10において、送信アレー相関行列算出部11-1および受信アレー相関行列算出部11-2は、選択すべき全てのレンジについて評価したか、つまり、全てのレンジにおいてステップS3からステップS9までの処理を実施したか判定し、完了した場合(yes)は処理を終了する。そうでない場合(no)はステップS3に戻り、次のレンジを対象とした処理を開始する。
 ここで、本実施の形態のレーダ装置100において、異なる方向から到来した複数の目標反射波を分離して検出することが可能な理由について、従来技術と比較しながら説明する。
 まず、従来技術について説明する。分散アレーアンテナは、ビームサイドローブが高く、複数目標からの反射波が同一レンジの異なる方向から到来した場合、受信強度の大きい目標のビームサイドローブに受信強度の小さい目標からの反射波が埋もれるという課題がある。同一レンジ/ドップラの異なる方向から到来した複数の目標反射波は、互いにコヒーレントな関係にあるため、上記課題の解決には、コヒーレント波の分離が必要である。
 コヒーレント波の分離には、空間平均法が広く用いられる(非特許文献2)。しかしながら、空間平均法は、アレーアンテナが複数の同形のサブアレーに分割可能、または共役中心対称性を有するサブアレーに分割可能であることが必要であり、任意形状のアレーアンテナに適用できる手法ではない。一方、レーダで用いられる分散アレーアンテナは、グレーティングローブの発生を防ぐため不等間隔かつ対称性のないアンテナ配置とすることが多く、分散アレーアンテナへの空間平均法の適用は難しい。
S. U. Pillai、 and B. H. Kwon、 "Forward/backward spatial smoothing techniques for coherent signal identification、" IEEE Trans. on Acoustics、 Speech and Signal Processing、 vol. 37、 pp. 8-15、 1989.
 また、MIMOレーダの特徴を生かしたコヒーレント波の分離方法として、GLRT(Generalized Likelihood Ratio Test)と呼ばれる手法(非特許文献3)や、送信平均法(Transmission Diversity Smoothing: TDS)と呼ばれる手法が提案されている(非特許文献4)。これらの手法は、MIMOレーダ方式を適用していれば任意のアレー形状に適用可能であるという利点がある。
L. Z. Xu、 J. Li、 and P. Stoica、 "Target detection and parameter estimation for MIMO radar systems、" IEEE Trans. Aerosp. Electron. Syst.、 vol. 44、 no. 3、 pp. 927-939、 2008.
J. Tabrikian、 and I. Bekkerman、 "Transmission diversity smoothing for multi-target localization、" Proceedings of the 2005 IEEE International Conference on Acoustics、 Speech、 and Signal Processing、 vol. 4、 iv/1041-iv/1044、 2005.
 しかしながら、GLRTはスナップショット数が多く必要であり、演算負荷が高いという問題がある。
 また、送信平均法は、角度分解能が受信アレーアンテナの開口長で決定されてしまう。このため、MIMOレーダの仮想アレーアンテナ(受信アレーアンテナ配置に加えて送信アレーアンテナ配置による受信信号の位相回転も加味し、仮想的に開口を広げたアレーアンテナ)と比較して開口長が狭くなり、その結果、角度分解能が劣化する。さらに、ビームサイドローブも上昇する。
 これに対して、本発明の実施の形態1のレーダ装置100では、式(2)に示すように、各受信アンテナ4-1~4-Nに対応する受信信号をスナップショットとして、送信アレー相関行列Rを求めている。これは、MIMOレーダの仮想アレーアンテナ(M×N個)を、送信アンテナ3-1~3-Mからなる送信アレーアンテナ3と同形状、かつ受信アンテナと同数(N個)のサブアレーに分割した場合の空間平均法に相当する処理である。よって、空間平均法と同様、送信アレー相関行列Rにおいては、コヒーレント波間の相互相関成分が抑圧されており、コヒーレント波分離が可能となる。
 また、レーダ装置100では、式(4)に示すように、各送信アンテナに3-1~3-Mに対応する受信信号をスナップショットとして、受信アレー相関行列Rを求めている。これは、MIMOレーダの仮想アレーアンテナ(M×N個)を、受信アンテナ4-1~4-Nからなる受信アレーアンテナ4と同形状、かつ送信アンテナと同数(M個)のサブアレーに分割した場合の空間平均法に相当する処理である。よって、空間平均法と同様、受信アレー相関行列Rにおいては、コヒーレント波間の相互相関成分が抑圧されており、コヒーレント波分離が可能となる。
 以上のように、本発明の実施の形態1のレーダ装置100は、MIMOレーダの仮想アレーアンテナは送信アレーアンテナ3および受信アレーアンテナ4がどのようなアレー形状であったとしても、受信アレーアンテナ4と同形状のサブアレーへの分割、および送信アレーアンテナ3と同形状のサブアレーへの分割のいずれも可能である、という性質を利用して、空間平均法によるコヒーレント波の分離を実現している。
 さらに、従来手法である送信平均法は、上記の受信アレー相関行列Rのみを利用することに相当する処理である。しかしながら、受信アレー相関行列Rから求まる固有ベクトルer,kのみでは、角度分解能やビームサイドローブが受信アレーアンテナ形状で決定されることから、従来のMIMOレーダの仮想アレーアンテナによる角度分解能やビームサイドローブと比較して劣化してしまう。
 これに対して、本発明のレーダ装置100の信号処理部6は、受信アレー相関行列の固有値および固有ベクトルのみを用いる従来の送信平均法とは異なり、受信アレー相関行列Rと送信アレー相関行列Rの固有ベクトルを用いて評価値を算出することを特徴とする。受信アレー相関行列Rに加えて、送信アレー相関行列Rも利用して評価値を求めることで、従来のMIMOレーダの仮想アレーアンテナと同等の角度分解能やビームサイドローブを得ることができる。
 以上のように、本発明の実施の形態1のレーダ装置100は、互いに直交した信号を送信する複数の送信アンテナ3-1~3-Mと、複数の受信アンテナ4-1~4-Nとを備え、従来手法の送信平均法で用いる、受信アレー相関行列の算出(ステップS6)およびその固有値展開(ステップS7)の処理に加え、送信アレー相関行列の算出(ステップS4)およびその固有値展開(ステップS5)の処理を行い、両者の固有値、固有ベクトルを用いて評価値を算出する(ステップS8)ことを特徴とする。これにより、任意形状アレーにおいて、角度分解能の劣化やビームサイドローブの上昇を抑えながら、コヒーレントな複数目標反射波を分離検出・測角することが可能となる。なお、任意形状アレーとは、アンテナの配置が等間隔でも不等間隔でもよく、また、アンテナの配置が1~3次元のいずれでもよいことを指す。
 次に、本発明の実施の形態1によるレーダ装置100の目標検出の一例について、図4~6を参照して説明する。
 図4は、送信アンテナと受信アンテナの配置の一例を示す図である。図4において、横軸は水平方向の配置位置、縦軸は垂直方向の配置位置を示す。
 図5は、従来のレーダ装置における検出結果の一例を示す図である。図5において、横軸は反射波の到来方向、縦軸はビームフォーマによる出力値を示す。
 図6は、本発明の実施の形態1のレーダ装置100による検出結果の一例を示す図である。図6において、横軸は反射波の到来方向、縦軸は評価値を示す。
 図4に示すように、MIMOレーダは、送信アンテナ6個、受信アンテナ6個(M=N=6)のアレーアンテナで構成されるものとする。送信アンテナおよび受信アンテナはどちらもそれぞれ不等間隔に配置される。また、目標1の反射波は方位角0°方向から、目標2の反射波は方位3°方向からそれぞれ到来する。
 目標1の受信電力が、目標2の受信電力と比較して10dB高い場合、従来の固定荷重によるビーム形成では、図5に示すように、目標2からの反射波が目標1のビームサイドローブに埋もれ、目標2を分離して検出することができない。
 一方、本発明の実施の形態のレーダ装置100のように、式(6)の評価値を用いると、図6に示すように、目標1と目標2を分離して検出することができる。
 なお、式(6)に示す評価値は、目標信号固有ベクトルとステアリングベクトルとの射影長を利用しているが、これに限定するものではなく、例えば、MUSIC(Multiple Signal Classification)法などのような雑音部分空間を用いてもよい。送信アレー相関行列Rの雑音部分空間をENt=[et,K+1,et,K+2,...,et,M]、受信アレー相関行列Rの雑音部分空間をENr=[er,K+1,er,K+2,...,er,N]としたとき、例えば、以下のような評価値を用いることができる。
Figure JPOXMLDOC01-appb-M000007
 以上のように、本実施の形態1のレーダ装置100によると、互いに直交した信号を複数の送信アンテナから送信する送信アレーアンテナと、目標で反射された信号を複数の受信アンテナで受信する受信アレーアンテナと、複数の受信アンテナで受信された受信信号から目標を検出する信号処理部とを備え、信号処理部は、複数の受信アンテナで受信された受信信号を複数の送信アンテナの送信信号に対応する信号に分離する分離部と、分離部で分離された受信信号に基づいて、送信アレーアンテナに対応する第1の相関行列、および受信アレーアンテナに対応する第2の相関行列を求める相関行列算出部と、第1の相関行列および第2の相関行列の固有ベクトルを用いて算出した評価値に基づいて目標を検出する検出部とを備えるように構成した。このように、受信アレーアンテナに対応する第2の相関行列の固有ベクトルに加え、送信アレーアンテナに対応する第1の相関行列の固有ベクトルに基づいて目標を検出するので、角度分解能の劣化やビームサイドローブの上昇を抑えながら、複数目標反射波を分離検出することができる。
 また、本実施の形態1のレーダ装置100によると、相関行列算出部は、分離部で分離された受信信号のうち、各受信アンテナでの受信信号をスナップショットとして第1の相関行列を算出し、各送信アンテナに対応する受信信号をスナップショットとして第2の相関行列を算出する。このように、空間平均法に相当する処理を行うことにより、コヒーレント波間の相互相関成分が抑圧され、コヒーレント波の分離が可能となる。
 また、本実施の形態1のレーダ装置100では、所定の値以上となる固有値に対応する固有ベクトルを組み合わせて評価値を算出するように構成してもよい。このように、必ずしも全ての固有ベクトルを用いる必要はなく、値の大きい固有値に対応する固有ベクトルを用いることで、演算量を削減しつつ、精度よく目標を検出することができる。
実施の形態2.
 実施の形態2は、レーダ装置100がパルスヒット方式の場合の変形例である。
 本実施の形態について、実施の形態1と異なる点を中心に説明する。
 本発明の実施の形態2におけるレーダ装置100の変形例の構成は、図1、2に示した構成と同様であるが、相関行列算出部11の動作が異なる。図3に示したフローチャートを用いて、実施の形態2のレーダ装置100の動作を説明する。
 レーダ装置100がパルスヒット方式の場合、ステップS4において、送信アレー相関行列Rを求める際に、送信アレー相関行列算出部11-1は、ヒット方向をスナップショットとして用いる。このとき、送信アレー相関行列Rは、式(8)で求めることができる。ただし、hはヒット番号、E[・]はアンサンブル平均を表す。
Figure JPOXMLDOC01-appb-M000008
 同様に、ステップS6において、受信アレー相関行列Rを求める際に、受信アレー相関行列算出部11-2は、ヒット方向をスナップショットとして用いる。このとき、受信アレー相関行列Rは、式(9)で求めることができる。
Figure JPOXMLDOC01-appb-M000009
 式(8)、(9)により求めた相関行列R、Rの固有ベクトルを用いて評価値を算出し、この評価値に基づいて目標を検出する処理は、実施の形態1のステップS5およびステップS7以降の処理と同様とすることができる。
 次に、別の変形例について説明する。
 本発明の実施の形態2における別の変形例のレーダ装置100の構成は、図1、2に示した構成と同様であるが、分離部10、相関行列算出部11の動作が異なる。図3に示したフローチャートを用いて、実施の形態2のレーダ装置100の別の変形例の動作を説明する。
 レーダ装置100がパルスヒット方式の場合、ステップS2において、分離部10-1~10-Nは、受信アンテナ4-1~4-Nで受信された受信信号を、送信信号の波形に対応する信号に分離した後、パルスドップラ処理により、ドップラごとに分離する。
 その後、ステップS4において、送信アレー相関行列算出部11-1は、各ドップラに対して送信アレー相関行列Rを求める。このとき、送信アレー相関行列Rは、式(2)で求めることができる。
 同様に、ステップS6において、受信アレー相関行列算出部11-2は、各ドップラに対して受信アレー相関行列Rを求める。このとき、受信アレー相関行列Rは、式(4)で求めることができる。
 このように、パルスドップラ処理により、複数のヒットに存在する目標反射波が、ドップラ方向に圧縮されて1つとなるため、ドップラごとの相関行列を求めることで、ステップS5およびステップS7以降の処理を実施の形態1と同様に行うことができる。
 以上のように、本発明の実施の形態2のレーダ装置100によると、レーダ装置はパルスヒット方式であって、相関行列算出部は、ヒット方向をスナップショットとし、ヒット番号ごとのアンサンブル平均により第1の相関行列および第2の相関行列を求めるように構成した。
 また、本発明の実施の形態2のレーダ装置100によると、レーダ装置はパルスヒット方式であって、相関行列算出部は、分離部で分離された受信信号をパルスドップラ処理によりドップラごとに分離し、ドップラごとに第1の相関行列、および第2の相関行列を求めるように構成した。
 これにより、パルスヒット方式のレーダ装置であっても、角度分解能の劣化やビームサイドローブの上昇を抑えながら、複数目標反射波を分離検出することができる。
実施の形態3.
 実施の形態1、2では、全レンジに対し評価を行っていたが、実施の形態3では、固定荷重によるビーム形成で目標が存在するレンジを検出し、このレンジに対してのみ評価を行う点が異なる。
 本実施の形態について、実施の形態1、2と異なる点を中心に説明する。
 本発明の実施の形態3におけるレーダ装置200のハードウェア構成は、図1に示した構成と同様であるが、信号処理部26の内部処理が異なる。
 図7は、実施の形態3におけるレーダ装置200の信号処理部26の構成の一例を示す構成図である。
 図7において、信号処理部26は、実施の形態1の信号処理部6の構成に加えて、ビーム形成部16と、目標レンジ検出部17とをさらに備える。ビーム形成部16と目標レンジ検出部17の機能は、メモリ9に格納されたプログラムを演算器8で実行することにより実現される。
 ビーム形成部16は、分離部10で送信信号ごとに分離された後の受信信号から、固定荷重によるビーム形成を行う。固定荷重によるビーム形成の出力値は、目標レンジ検出部17へ伝送される。
 目標レンジ検出部17は、ビーム形成部16から取得した固定荷重によるビーム形成の出力値から、目標が存在するレンジを検出する。検出されたレンジは、相関行列算出部18へ伝送される。
 相関行列算出部18は、分離部10で送信信号ごとに分離された後の受信信号、目標レンジ検出部17で検出されたレンジに基づいて、相関行列を求める。相関行列は、固有値展開部12へ伝送される。
 次に、本発明の実施の形態3によるレーダ装置200の信号処理部26の動作について、図8を参照して説明する。図8は、本発明の実施の形態3による信号処理部26の動作を示すフローチャートである。
 ステップS201、S202は、図3に示したフローチャートのステップS1、S2と同じであるため、説明を省略する。
 ステップS203において、ビーム形成部16は、分離部10で送信信号ごとに分離された後の受信信号を用いて、1レンジサンプルごとに、固定荷重によるビーム形成を行う。固定荷重によるビーム形成の出力は、式(10)のとおりである。ビーム形成の出力値は目標レンジ検出部17へ伝送される。
Figure JPOXMLDOC01-appb-M000010
 目標レンジ検出部17は、各レンジにおいて、固定荷重によるビーム形成の出力の最大値を求め、最大値が閾値以上となる場合には、当該レンジに目標が存在すると判定する。目標が存在すると判定されたレンジは、相関行列算出部18へ伝送される。
 ステップS204において、送信アレー相関行列算出部18-1および受信アレー相関行列算出部18-2は、ステップS203で検出したレンジの中からレンジを1つ選択し、ステップS202において送信信号に対応する信号に分離した後の受信信号から、選択したレンジのサンプルを抽出する。
 ステップS205からステップS210は、図3に示したフローチャートのステップS4からステップS9と同じであるため、説明を省略する。
 ステップS211において、送信アレー相関行列算出部18-1および受信アレー相関行列算出部18-2は、ステップS203で検出した全てのレンジについて評価したか、つまり、ステップS203で検出した全てのレンジにおいてステップS204からステップS210までの処理を実施したか判定し、完了した場合(yes)は処理を終了する。そうでない場合(no)はステップS204に戻り、次のレンジを対象とした処理を開始する。
 以上のように、本発明の実施の形態3のレーダ装置200は、分離部で分離された受信信号から固定荷重により形成されたビームに基づいて目標が存在するレンジを検出する目標レンジ検出部をさらに備え、相関行列算出部は、目標レンジ検出部で検出されたレンジのみで第1の相関行列、および第2の相関行列を求めるように構成した。これにより、目標を検出したレンジのみで、演算量が大きい相関行列算出や固有値展開を行うことになるので、処理全体の演算量を削減することができる。
 なお、本発明は、実施の形態の構成に限定されるものではなく、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 1 送受信制御装置、2-1 送信機、2-M 送信機、3 送信アレーアンテナ、3-1 送信アンテナ、3-M 送信アンテナ、4 受信アレーアンテナ、4-1 受信アンテナ、4-N 受信アンテナ、5-1 受信機、5-N 受信機、6 信号処理部、7入力インターフェース、8 演算器、9 メモリ、10 分離部、10-1 分離部、10-N 分離部、11 相関行列算出部、11-1 送信アレー相関行列算出部(第1の相関行列算出部)、11-2 受信アレー相関行列算出部(第2の相関行列算出部)、12 固有値展開部、12-1 送信アレー固有値展開部、12-2 受信アレー固有値展開部、13 検出部、16 ビーム形成部、17 目標レンジ検出部、18 相関行列算出部、18-1 送信アレー相関行列算出部(第1の相関行列算出部)、18-2 受信アレー相関行列算出部(第2の相関行列算出部)、26 信号処理部、100 レーダ装置、200 レーダ装置。

Claims (9)

  1.  互いに直交した信号を複数の送信アンテナから送信する送信アレーアンテナと、
     目標で反射された前記信号を複数の受信アンテナで受信する受信アレーアンテナと、
     前記複数の受信アンテナで受信された受信信号から前記目標を検出する信号処理部とを備えたレーダ装置であって、
     前記信号処理部は、
      前記複数の受信アンテナで受信された前記受信信号を前記複数の送信アンテナの送信信号に対応する信号に分離する分離部と、
      前記分離部で分離された前記受信信号に基づいて、前記送信アレーアンテナに対応する第1の相関行列、および前記受信アレーアンテナに対応する第2の相関行列を求める相関行列算出部と、
      前記第1の相関行列および前記第2の相関行列の固有ベクトルを用いて算出した評価値に基づいて前記目標を検出する検出部とを備えることを特徴とするレーダ装置。
  2.  前記評価値は、所定値以上の固有値に対応する前記固有ベクトルを組み合わせて算出されることを特徴とする請求項1に記載のレーダ装置。
  3.  前記評価値は、前記第1の相関行列および前記第2の相関行列の前記固有ベクトルと、前記送信アレーアンテナおよび前記受信アレーアンテナのステアリングベクトルとの射影長を用いて算出されることを特徴とする請求項1または請求項2に記載のレーダ装置。
  4.  前記評価値は、前記第1の相関行列および前記第2の相関行列の雑音部分空間を用いて算出されることを特徴とする請求項1または請求項2に記載のレーダ装置。
  5.  前記検出部は、前記受信信号の到来方向を変化させながら算出した前記評価値に基づいて前記目標を検出することを特徴とする請求項1から請求項4項のいずれか1項に記載のレーダ装置。
  6.  相関行列算出部は、前記分離部で分離された前記受信信号から所定のレンジに対応するサンプルを選択し、前記レンジにおける前記第1の相関行列および前記第2の相関行列を求めることを特徴とする請求項1から請求項5のいずれか1項に記載のレーダ装置。
  7.  前記レーダ装置は、パルスヒット方式であって、
     前記相関行列算出部は、ヒット方向をスナップショットとし、ヒット番号ごとのアンサンブル平均により前記第1の相関行列および前記第2の相関行列を求めることを特徴とする請求項1から請求項6のいずれか1項に記載のレーダ装置。
  8.  前記レーダ装置は、パルスヒット方式であって、
     前記相関行列算出部は、前記分離部で分離された前記受信信号をパルスドップラ処理によりドップラごとに分離し、前記ドップラごとに前記第1の相関行列、および前記第2の相関行列を求めることを特徴とする請求項1から請求項6のいずれか1項に記載のレーダ装置。
  9.  前記分離部で分離された前記受信信号から固定荷重により形成されたビームに基づいて前記目標が存在するレンジを検出する目標レンジ検出部をさらに備え、
     前記相関行列算出部は、前記目標レンジ検出部で検出されたレンジのみで前記第1の相関行列、および前記第2の相関行列を求めることを特徴とする請求項1から請求項8のいずれか1項に記載のレーダ装置。
PCT/JP2017/007332 2017-02-27 2017-02-27 レーダ装置 WO2018154748A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019500978A JP6556399B2 (ja) 2017-02-27 2017-02-27 レーダ装置
DE112017006884.3T DE112017006884B4 (de) 2017-02-27 2017-02-27 Radarvorrichtung
US16/475,430 US11269070B2 (en) 2017-02-27 2017-02-27 Radar apparatus
CN201780086962.5A CN110325873B (zh) 2017-02-27 2017-02-27 雷达装置
PCT/JP2017/007332 WO2018154748A1 (ja) 2017-02-27 2017-02-27 レーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007332 WO2018154748A1 (ja) 2017-02-27 2017-02-27 レーダ装置

Publications (1)

Publication Number Publication Date
WO2018154748A1 true WO2018154748A1 (ja) 2018-08-30

Family

ID=63252517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007332 WO2018154748A1 (ja) 2017-02-27 2017-02-27 レーダ装置

Country Status (5)

Country Link
US (1) US11269070B2 (ja)
JP (1) JP6556399B2 (ja)
CN (1) CN110325873B (ja)
DE (1) DE112017006884B4 (ja)
WO (1) WO2018154748A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122720A (ja) * 2019-01-31 2020-08-13 古河電気工業株式会社 位置推定装置および位置推定方法
JP2020153872A (ja) * 2019-03-20 2020-09-24 パナソニックIpマネジメント株式会社 レーダ装置
WO2023021586A1 (ja) * 2021-08-18 2023-02-23 三菱電機株式会社 Mimoレーダ信号処理装置及びその受信信号処理装置、並びに着目受信信号ベクトルの伝搬モード判別方法
WO2023021587A1 (ja) * 2021-08-18 2023-02-23 三菱電機株式会社 Mimoレーダ信号処理装置及びその受信信号処理装置、並びに着目受信信号ベクトルの伝搬モード判別方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175245B1 (ko) * 2019-01-08 2020-11-06 (주)스마트레이더시스템 비균일 선형 배치된 수신 안테나 배치를 가진 레이더 장치
US11460569B2 (en) 2019-12-30 2022-10-04 Waymo Llc Methods and systems for signal transmission using orthogonal doppler coding
CN111398976B (zh) * 2020-04-01 2022-08-23 宁波飞芯电子科技有限公司 探测装置及方法
US11852719B2 (en) 2020-11-23 2023-12-26 Qualcomm Incorporated Coordinated interference cleaning with known interferer location and timing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037354A (ja) * 2003-07-01 2005-02-10 Mitsubishi Electric Corp レーダ装置
JP2006033863A (ja) * 2004-07-20 2006-02-02 Mitsubishi Electric Research Laboratories Inc 多入力多出力無線通信システムの、Nt個の送信アンテナを含む送信機の信号を生成する方法
JP2007240313A (ja) * 2006-03-08 2007-09-20 Denso Corp 方位検出装置
JP2009025159A (ja) * 2007-07-19 2009-02-05 Mitsubishi Electric Corp レーダ装置
JP2011158430A (ja) * 2010-02-03 2011-08-18 Mitsubishi Electric Corp 送受信ビーム形成装置
WO2014129150A1 (ja) * 2013-02-22 2014-08-28 パナソニック株式会社 レーダ装置
JP2015072173A (ja) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. 位置推定装置及び位置推定方法
JP2016050778A (ja) * 2014-08-28 2016-04-11 日本無線株式会社 直交分離装置および直交分離方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181109A (ja) * 2011-03-01 2012-09-20 Panasonic Corp レーダ装置
JP5531299B2 (ja) * 2011-04-06 2014-06-25 株式会社東芝 ウェイト算出方法、ウェイト算出装置、アダプティブアレーアンテナ、及びレーダ装置
CN104062649B (zh) * 2014-07-14 2016-08-17 武汉大学 一种数字电视信号移动平台无源雷达系统及信号处理方法
JP6396244B2 (ja) * 2015-03-25 2018-09-26 パナソニック株式会社 レーダ装置
CN104777467B (zh) * 2015-04-03 2017-07-28 中国科学院电子学研究所 基于频率扫描天线的目标检测方法
JP6965561B2 (ja) * 2017-05-11 2021-11-10 沖電気工業株式会社 整相器および整相処理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037354A (ja) * 2003-07-01 2005-02-10 Mitsubishi Electric Corp レーダ装置
JP2006033863A (ja) * 2004-07-20 2006-02-02 Mitsubishi Electric Research Laboratories Inc 多入力多出力無線通信システムの、Nt個の送信アンテナを含む送信機の信号を生成する方法
JP2007240313A (ja) * 2006-03-08 2007-09-20 Denso Corp 方位検出装置
JP2009025159A (ja) * 2007-07-19 2009-02-05 Mitsubishi Electric Corp レーダ装置
JP2011158430A (ja) * 2010-02-03 2011-08-18 Mitsubishi Electric Corp 送受信ビーム形成装置
WO2014129150A1 (ja) * 2013-02-22 2014-08-28 パナソニック株式会社 レーダ装置
JP2015072173A (ja) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. 位置推定装置及び位置推定方法
JP2016050778A (ja) * 2014-08-28 2016-04-11 日本無線株式会社 直交分離装置および直交分離方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122720A (ja) * 2019-01-31 2020-08-13 古河電気工業株式会社 位置推定装置および位置推定方法
JP7251993B2 (ja) 2019-01-31 2023-04-04 古河電気工業株式会社 位置推定装置および位置推定方法
JP2020153872A (ja) * 2019-03-20 2020-09-24 パナソニックIpマネジメント株式会社 レーダ装置
JP7361263B2 (ja) 2019-03-20 2023-10-16 パナソニックIpマネジメント株式会社 レーダ装置
WO2023021586A1 (ja) * 2021-08-18 2023-02-23 三菱電機株式会社 Mimoレーダ信号処理装置及びその受信信号処理装置、並びに着目受信信号ベクトルの伝搬モード判別方法
WO2023021587A1 (ja) * 2021-08-18 2023-02-23 三菱電機株式会社 Mimoレーダ信号処理装置及びその受信信号処理装置、並びに着目受信信号ベクトルの伝搬モード判別方法
JP7330423B2 (ja) 2021-08-18 2023-08-21 三菱電機株式会社 Mimoレーダ信号処理装置及びその受信信号処理装置、並びに着目受信信号ベクトルの伝搬モード判別方法
JP7370502B2 (ja) 2021-08-18 2023-10-27 三菱電機株式会社 Mimoレーダ信号処理装置及びその受信信号処理装置、並びに着目受信信号ベクトルの伝搬モード判別方法

Also Published As

Publication number Publication date
US11269070B2 (en) 2022-03-08
DE112017006884T5 (de) 2019-09-26
DE112017006884B4 (de) 2021-07-29
US20190369223A1 (en) 2019-12-05
CN110325873A (zh) 2019-10-11
CN110325873B (zh) 2023-01-06
JP6556399B2 (ja) 2019-08-07
JPWO2018154748A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6556399B2 (ja) レーダ装置
JP2019090749A (ja) 到来方向推定装置および到来方向推定方法
Mateos-Núñez et al. Sparse array design for automotive MIMO radar
US11754658B2 (en) Radio station for client localization in multipath indoor environment
CN112136057A (zh) 到达波数推定装置及到达波数到达方向推定装置
TWI634342B (zh) 角度估測方法及雷達系統
JP5047002B2 (ja) 波数推定装置
JP2948459B2 (ja) 測角装置
KR102099388B1 (ko) 안테나 어레이 외삽을 이용한 레이더 수신신호의 도착방향 추정 방법 및 장치
JP7056212B2 (ja) 方位推定方法および装置
JP2005189171A (ja) レーダ装置
JP2020027051A (ja) レーダシステム及びそのレーダ信号処理方法
JP6980570B2 (ja) 目標検出装置および信号処理方法
JP2004061468A (ja) 空間特性を用いた多重波の到来方向推定方法及びこれを用いた受信ビーム形成装置
CN114265058A (zh) Mimo雷达目标测角方法、装置、电子设备及存储介质
Gowri et al. Two dimensional direction of arrival estimation algorithm for coherent signals using three parallel uniform linear arrays
JP4119719B2 (ja) 移動局方向推定方法及び装置
JP4660562B2 (ja) 移動局方向推定方法及び装置
RU2018129356A (ru) Способ скрытного мониторинга радиомолчащих объектов
JP2012215444A (ja) 方位測定装置、該方位測定装置に用いられる方位測定方法及び方位測定プログラム
Berry et al. Generalised phase monopulse for multi-target DoA estimation and extended target spatial imaging
CN109752688B (zh) 一种针对传感器阵列系统的临近信源角度差值计算方法
JP2011022079A (ja) 測角装置
JP7006490B2 (ja) レーダ装置
Jin et al. Correlation analysis of target echoes using distributed transmit array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500978

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17898262

Country of ref document: EP

Kind code of ref document: A1