WO2018149032A1 - 散热组件和制冷装置 - Google Patents

散热组件和制冷装置 Download PDF

Info

Publication number
WO2018149032A1
WO2018149032A1 PCT/CN2017/082520 CN2017082520W WO2018149032A1 WO 2018149032 A1 WO2018149032 A1 WO 2018149032A1 CN 2017082520 W CN2017082520 W CN 2017082520W WO 2018149032 A1 WO2018149032 A1 WO 2018149032A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
compressor
heat dissipation
fan
disposed
Prior art date
Application number
PCT/CN2017/082520
Other languages
English (en)
French (fr)
Inventor
汪耀东
谢良柱
张海斌
姚南飞
张辉
张冀喆
明乐乐
彭小康
蓝渊
区初斌
Original Assignee
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司 filed Critical 美的集团股份有限公司
Priority to EP17896728.7A priority Critical patent/EP3462111B1/en
Priority to JP2018568703A priority patent/JP6793760B2/ja
Publication of WO2018149032A1 publication Critical patent/WO2018149032A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers

Definitions

  • the present invention relates to the field of refrigeration technology, and in particular to a heat dissipation assembly and a refrigeration device.
  • the main equipment of the compressor warehouse mainly includes a compressor, a condenser, and a condenser fan.
  • the condenser used is a tube-fin type.
  • the compressor is the energy source of the whole refrigeration system.
  • the low temperature and low pressure refrigerant is compressed into high temperature and high pressure superheated gas under the action of rotating machinery, and a large amount of heat is generated in this process.
  • the high temperature and high pressure refrigerant superheated gas is discharged from the compressor outlet, enters the condenser, and performs forced air convection heat exchange with the surrounding air through the condensing fan.
  • both the compressor and the condensing fan are rotating machinery, which will generate noise during the working process.
  • the compressor mainly generates vibration noise
  • the condensing fan mainly generates pneumatic noise.
  • the noise level of the compressor and condensing fan will directly affect the noise performance of the whole machine.
  • Disadvantage 1 There is a problem with the heat dissipation of the compressor. Due to the influence of the spatial layout and the air flow field, the heat carried by the air is reduced due to the decrease of the flow velocity on the wind surface of the compressor, and the heat cannot be effectively dissipated.
  • Disadvantage 2 There is a problem in the heat dissipation of the condenser. Due to the limitation of the space layout and the structure of the condenser itself, when the air flows through the condenser, the air resistance is large, the flow rate is lowered, and the heat dissipation performance is deteriorated.
  • Disadvantage 3 The compressor generates vibration and noise due to the compression of the refrigerant from the low temperature and low pressure state through the rotating structure, which is the main source of the noise of the refrigerator, which seriously affects the noise performance of the refrigerator.
  • Disadvantage 4 Flow is lost due to a portion of the air flowing through the space below the condenser.
  • the embodiment of the first aspect of the present invention proposes a heat dissipating assembly.
  • the present invention provides a heat dissipating assembly for a refrigerating device, the refrigerating device comprising a condenser and a fan, the heat dissipating component comprising: a substrate, the fan being located at one side of the substrate, The condenser is disposed on the substrate; the fastener is disposed on the upper surface of the substrate toward the condenser side; and the first wind shield is disposed on the lower surface of the substrate.
  • the heat dissipating component provided by the invention enables most of the gas in the airflow formed by the fan to flow through the condenser on the substrate and remove heat, and the first windshield is disposed on the lower surface of the substrate, thereby being able to reduce the lower portion of the substrate
  • the flowing gas reduces the flow rate of the airflow, the loss of the flow velocity, the resistance during the flow, and the noise of the airflow, which improves the utilization efficiency of the fan air volume, increases the heat dissipation area of the condenser, and improves the heat dissipation and exchange of the condenser.
  • the heat capacity increases the degree of subcooling of the refrigerant at the outlet of the condenser, improves the cooling effect, and at the same time, the increase of the heat exchange efficiency of the condenser can also reduce the speed and power consumption of the compressor, thereby reducing the noise generated by the compressor. ,Energy saving.
  • thermoelectric component in the above embodiment provided by the present invention may further have the following additional technical features:
  • the method further includes: a second windshield disposed on the lower surface of the substrate, wherein the second windshield is provided with a ventilation hole; the substrate is sequentially disposed in a flow direction of the gas generated along the fan a second windshield and a first windshield.
  • the airflow can flow through the second windshield through the vent hole and the first windshield and the second windshield Board
  • the convection is fully convected, further removing the heat of the condenser and improving the heat exchange effect on the condenser.
  • the number of the second wind deflectors is plural; along the gas flow direction generated by the fan, the cross-sectional area of the ventilation holes on the second windshield on the rear side is smaller than the front The cross-sectional area of the venting holes on the second windshield on the side.
  • the angle between the line connecting the geometric centers of the vent holes on the adjacent two second windshields and the substrate ranges from 30° to 45°.
  • the angle between the line connecting the geometric centers of the vent holes on the adjacent two second windshields and the substrate ranges from 30° to 45°, that is, adjacent to the second windshield
  • the venting holes are staggered so that the gas can generate a stronger convection effect when flowing through the vent holes of the respective second wind deflectors, so that the gas can more fully contact and exchange heat with the second wind deflector, thereby Take more heat from the condenser to achieve better heat transfer for the condenser and improve cooling efficiency.
  • vent holes are circular or polygonal.
  • the vent holes may be circular or polygonal, and the regular and common vent shape is advantageous for simplifying the fabrication of the second wind deflector and improving production efficiency.
  • the polygonal hole may be a triangular hole or a square hole or the like.
  • the distance between the first windshield and the adjacent second windshield ranges from 1 mm to 50 mm; the range of the distance between the adjacent two second windshields It is from 1mm to 50mm.
  • the distance between the first windshield and the adjacent second windshield and/or the distance between the adjacent two second windshields ranges from 1 mm to 50 mm, and the reasonable setting is adopted.
  • the number, position and distribution of a windshield and a second windshield enable the airflow flowing therethrough to sufficiently mix convection and exchange heat with the condenser to improve the heat exchange efficiency of the condenser.
  • the method further includes: a water receiving tray disposed under the substrate; a distance between the bottom of the first wind deflector and/or the second wind deflector and the water receiving tray is 1 mm Up to 10mm.
  • the water receiving tray disposed under the substrate can collect water droplets generated by the condenser and other components located above it to prevent the accumulated water from flowing to other components or flowing out of the refrigeration device; at the same time, the first wind deflector and/or
  • the distance between the bottom of the second wind deflector and the water receiving tray ranges from 1 mm to 10 mm, and the water accumulated in the water receiving tray can also serve as a heat dissipation function for the first wind deflector and the second wind deflector, indirectly
  • the ground plays a heat exchange effect on the condenser, improves the heat exchange efficiency, and further improves the cooling efficiency.
  • the bottom of the first wind deflector and/or the second wind deflector is provided with a notch.
  • the flow guiding effect on a part of the gas can be enhanced, and the convection effect and heat exchange efficiency between the baffles can be enhanced; At the same time, it helps the flow of water in the water tray and avoids the accumulation of water between the baffles.
  • the upper portion of the water receiving tray is provided with an overflow port.
  • an overflow port is provided by being disposed at an upper portion of the water receiving tray so that when the water level in the water receiving tray is too high, it can be drained outward in time.
  • the fastener is a fastening fin; the condenser tube of the condenser is disposed between the fastening fins.
  • the space between the respective condenser tubes is increased, the heat exchange efficiency of the airflow to the condenser tubes is increased, and the fastening fins can be increased.
  • the contact area with the condenser tube also facilitates the heat exchange of the condenser.
  • the number of the fastening fins is plural, and the plurality of fastening fins are disposed in parallel.
  • a plurality of fastening fins are disposed in parallel with each other, so that a plurality of fastening fins can better fix the condenser tube, improve stability, and facilitate fastening of the fins to the condenser.
  • the shape of the tube changes.
  • the fastening fins are provided with a plurality of U-shaped mounting grooves, and the condenser tubes are disposed in the mounting grooves.
  • a refrigeration apparatus includes the heat dissipation assembly of the first aspect.
  • the refrigeration device provided by the present invention provides the heat dissipating component of the first aspect of the embodiment under the condenser, so that most of the gas in the airflow formed by the fan can flow through the condenser on the substrate and carry away heat while passing through the substrate.
  • the first windshield is disposed on the lower surface, which can reduce the gas flowing through the lower portion of the substrate, reduce the flow rate of the airflow, the loss of the flow velocity, the resistance during the flow, and the noise of the airflow, thereby improving the utilization efficiency of the fan air volume and increasing
  • the heat dissipation area of the condenser improves the heat dissipation and heat exchange capacity of the condenser, increases the subcooling degree of the refrigerant at the outlet of the condenser, improves the cooling effect, and reduces the power consumption of the compressor and saves energy.
  • refrigeration apparatus in the above embodiment provided by the present invention may further have the following additional technical features:
  • the method further includes: a fan disposed on one side of the substrate; a condenser disposed on the fastener; and a compressor, a condenser and a compressor respectively disposed on both sides of the fan.
  • the condenser and the compressor are respectively located on both sides of the fan, and the gas flowing through the condenser continues to heat-cool the compressor, and the arrangement makes the components in the refrigeration device more compact, and one set is provided.
  • the fan can realize simultaneous heat exchange and temperature reduction for both the condenser and the compressor, reducing the power consumption of the refrigeration device and saving energy.
  • the method further includes: a compressor compartment assembly, the compressor compartment assembly includes a compressor compartment base, and the compressor compartment base is provided with a water outlet, a heat dissipation component, a fan, a condenser, and a compression The machine is placed in the compressor compartment assembly.
  • the heat dissipating component, the fan, the condenser and the compressor are disposed in the compressor silo assembly.
  • the compressor silo assembly is disposed at the bottom of the refrigerator, so that the centralized arrangement is favorable for the installation of the device, Management and maintenance.
  • excess condensed water or accumulated water in the condenser or the water tray can be discharged through the water outlet provided on the base of the compressor block.
  • the compressor includes a rotation speed detecting device for detecting the rotation speed of the compressor;
  • the fan includes a rotation speed control device, the rotation speed control device is connected to the rotation speed detecting device, and the rotation speed control device is used for The speed of the fan is controlled according to the speed of the compressor.
  • the rotational speed of the fan can be adjusted according to the rotational speed of the compressor, for example, when the rotational speed of the compressor is increased, indicating that the refrigerator is operating at a high load, requiring a compressor and The condenser can dissipate heat more efficiently.
  • the fan speed can be increased to improve the heat dissipation capacity.
  • the fan speed can be appropriately reduced and the energy consumption can be saved.
  • the refrigeration device is a refrigerator, a freezer or an air conditioner.
  • the refrigerator, the freezer or the air conditioner can reduce the flow rate and the flow velocity loss of the airflow by using the above-mentioned heat dissipating component, improve the heat exchange efficiency of the condenser and the refrigeration efficiency of the refrigeration device, save energy, and simultaneously exchange heat of the condenser.
  • the increase in efficiency also reduces the speed and power consumption of the compressor, thereby reducing the noise generated by the compressor.
  • FIG. 1 is a schematic structural view of a heat dissipating component in an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the gas velocity vector distribution when the structure shown in Figure 2 is operated;
  • Figure 4 is a schematic structural view of an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a heat dissipating component in an embodiment of the present invention.
  • Figure 6 is a side view of the structure shown in Figure 5;
  • Figure 7 is a schematic structural view of an embodiment of the present invention.
  • Figure 8 is a rear elevational view of the refrigerator in one embodiment of the present invention.
  • Figure 9 is a perspective view of a refrigerator in an embodiment of the present invention.
  • FIGS. 1 through 9 A heat dissipating assembly and a refrigerating apparatus according to some embodiments of the present invention are described below with reference to FIGS. 1 through 9.
  • the present invention provides a heat dissipating assembly 1 for a refrigerating device.
  • the refrigerating device includes a condenser 202 and a fan 204.
  • the heat dissipating component 1 includes a substrate 102, and the fan 204 is located at one side of the substrate 102.
  • the condenser 202 is disposed on the substrate 102; the fastener 104 is disposed on the upper surface of the substrate 102 toward the condenser 202 side; and the first wind shield 106 is disposed on the lower surface of the substrate 102.
  • the heat dissipating assembly 1 shown in FIG. 1 provided by the present invention can be used in the structure shown in FIGS. 2 and 4, and allows most of the gas in the airflow formed by the fan 204 to flow through the condenser 202 on the substrate 102.
  • the heat By removing the heat, by providing the first windshield 106 on the lower surface of the substrate 102, the gas flowing through the lower portion of the substrate 102 can be reduced, and the flow rate of the airflow, the loss of the flow velocity, the resistance during the flow, and the noise of the airflow can be reduced.
  • the utilization efficiency of the air volume of the fan 204 is improved, the heat dissipation area of the condenser 202 is increased, the heat dissipation and heat exchange capacity of the condenser 202 are improved, the degree of subcooling of the refrigerant at the outlet of the condenser 202 is increased, and the cooling is improved.
  • the effect can also reduce the rotational speed and power consumption of the compressor 206 due to the increase in heat exchange efficiency of the condenser 202, thereby reducing noise generated by the compressor 206 and saving energy. As shown in FIG.
  • the compressor 206 disposed on the compressor bed base 208 can be placed behind the fan 204, thus The flowing air can also dissipate the compressor 206 to ensure safe use and work efficiency of the compressor 206.
  • the second windshield 108 is disposed on the lower surface of the substrate 102, and the second windshield 108 is provided with ventilation.
  • the hole 1082; the substrate 102 sequentially sets the second wind deflector 108 and the first windshield 106 in the flow direction of the gas generated along the fan 204.
  • a second wind deflector 108 with a venting opening 1082 on the lower surface of the substrate 102, airflow can flow through the second wind deflector 108 through the venting opening 1082 and in the first wind deflector.
  • the convection between the 106 and the second wind deflector 108 is sufficiently convected to further remove the heat of the condenser 202 to enhance the heat exchange effect on the condenser 202.
  • the second wind deflector 108 and the first wind deflector 106 may be sequentially disposed along the direction of the airflow, and the number and position of the two may be adjusted according to actual needs.
  • the number of the second wind deflectors 108 is plural; the flow direction of the gas generated along the fan 204, and the second block located at the rear side
  • the cross-sectional area of the venting opening 1082 on the wind panel 108 is smaller than the cross-sectional area of the venting opening 1082 on the second windshield 108 on the front side.
  • the angle between the line connecting the geometric centers of the vent holes 1082 of the adjacent two second windshields 108 and the substrate 102 ranges from 30° to 45°.
  • the angle between the line connecting the geometric centers of the vent holes 1082 of the adjacent two second windshields 108 and the substrate 102 ranges from 30° to 45°, that is, the adjacent second windshield
  • the venting holes 1082 in the plate 108 are staggered so that the gas can generate a stronger convection effect when flowing through the venting holes 1082 of the respective second wind deflectors 108, enabling the gas to be more fully compliant with the second wind deflector 108.
  • Contact and heat exchange thereby taking away more heat of the condenser 202, achieving better heat exchange effect for the condenser 202 and improving refrigeration efficiency.
  • the vent hole is a circle Shape or polygon.
  • the vent holes may be circular or polygonal, and the regular and common vent shape is advantageous for simplifying the fabrication of the second wind deflector 108 and improving production efficiency.
  • the polygonal hole may be a triangular hole or a square hole or the like.
  • the distance between the first windshield 106 and the adjacent second windshield 108 ranges from 1 mm to 50 mm; adjacent two The distance between the second windshield 108 ranges from 1 mm to 50 mm.
  • the distance between the first wind deflector 106 and the adjacent second wind deflector 108 and/or the distance between the adjacent two second wind deflectors 108 ranges from 1 mm to 50 mm.
  • the number, position and distribution of the first windshield 106 and the second windshield 108 are reasonably arranged such that the airflow flowing therethrough can sufficiently mix the convection and exchange heat with the condenser 202 to improve the heat exchange efficiency of the condenser 202.
  • FIG. 2, FIG. 4 and FIG. 7, further comprising: a water receiving tray 110 disposed under the substrate 102; a first wind shield 106 and/or a second
  • the distance between the bottom of the windshield 108 and the water receiving tray 110 ranges from 1 mm to 10 mm.
  • the water receiving tray 110 disposed under the substrate 102 is capable of collecting water droplets generated by the condenser 202 and other components located above it, preventing the accumulated water from flowing to other components or flowing out of the refrigeration device; and the first wind deflector
  • the distance between the bottom of the 106 and/or the second wind deflector 108 and the water receiving tray 110 ranges from 1 mm to 10 mm, and the accumulated water in the water receiving tray 110 can also function as the first wind deflector 106 and the second.
  • the heat dissipation effect of the wind deflector 108 indirectly acts as a heat exchange function for the condenser 202, improves the heat exchange efficiency, and further improves the cooling efficiency.
  • the bottom of the first windshield 106 and/or the second windshield 108 is provided with a notch 112.
  • the notch 112 at the bottom of the first windshield 106 and/or the second windshield 108, it is possible to conduct a flow guiding effect on a part of the gas, and enhance the convection and exchange of gas between the baffles.
  • the thermal efficiency contributes to the flow of water in the water receiving tray 110, and avoids the accumulation of water between the baffles.
  • the upper portion of the water receiving tray 110 is provided with an overflow port.
  • an overflow port is provided at an upper portion of the water receiving tray 110 so that the connection is made When the water level in the water tray 110 is too high, it can be drained outward in time.
  • the fastener 104 is a fastening fin; the condenser tube of the condenser 202 is disposed on the fastening fin between.
  • the condenser tubes to fix the condenser tubes of the condensers 202, the space between the respective condenser tubes is increased, the heat exchange efficiency of the airflow to the condenser tubes is increased, and the fastening fins can be increased.
  • the contact area between the sheet and the condenser tube also facilitates heat exchange of the condenser 202.
  • the number of fastening fins is plural, and a plurality of fastening fins are disposed in parallel.
  • the plurality of fastening fins are arranged parallel to each other such that the plurality of fastening fins can better secure the condenser tube, improve stability, and facilitate fastening of the fin to the condenser.
  • the shape of the tube changes.
  • the fastening fins are provided with a plurality of U-shaped mounting grooves, and the condenser tubes are disposed in the mounting grooves.
  • the condenser tube is fixed by fastening the U-shaped mounting groove on the fin to ensure stable fixing of the condenser tube and to facilitate installation and arrangement of the condenser tube.
  • the present invention also provides a refrigeration apparatus, as shown in FIGS. 2, 4, and 7, including the heat dissipation assembly 1 of the first aspect.
  • the heat dissipating component 1 of the first aspect of the embodiment below the condenser 202, most of the gas in the airflow formed by the fan 204 can flow through the condenser 202 on the substrate 102 and carry away heat.
  • the gas flowing through the lower portion of the substrate 102 can be reduced, and the flow rate of the airflow, the loss of the flow velocity, the resistance during the flow, and the noise of the airflow can be reduced, thereby improving
  • the utilization efficiency of the air volume of the fan 204 increases the heat dissipation area of the condenser 202, improves the heat dissipation and heat exchange capacity of the condenser 202, increases the degree of subcooling of the refrigerant at the outlet of the condenser 202, and improves the cooling effect.
  • the power consumption of the compressor 206 is reduced, and energy is saved.
  • FIG. 2 and FIG. 4 further comprising: a fan 204 disposed on one side of the substrate 102; a condenser 202 disposed on the fastener 104; The compressor 206, the condenser 202, and the compressor 206 are disposed on both sides of the fan 204, respectively.
  • the condenser 202 and the compressor 206 are located on opposite sides of the fan 204, respectively.
  • the gas flowing through the condenser 202 will continue to heat-cool the compressor 206.
  • a fan 204 can be provided for both the condenser 202 and the compressor 206. The heat exchange reduces the temperature, reduces the power consumption of the refrigeration device, and saves energy.
  • the compressor compartment assembly 30 includes a compressor compartment base 208, and the compressor compartment base 208 is disposed
  • the nozzle, heat sink assembly 1, fan 204, condenser 202, and compressor 206 are disposed within the compressor bed assembly 30.
  • the heat dissipating component 1, the fan 204, the condenser 202, and the compressor 206 are disposed within the compressor compartment assembly 30.
  • the compressor compartment assembly 30 is disposed at the bottom of the refrigerator 8, such that the centralized arrangement The structure is conducive to the installation, management and maintenance of the equipment.
  • excess condensed water or accumulated water in the condenser 202 or the water receiving tray 110 can be discharged through the water outlet provided on the compressor bed base 208.
  • the compressor 206 includes a rotation speed detecting device for detecting the rotation speed of the compressor 206; the fan 204 includes a rotation speed control device, and the rotation speed control device is connected with the rotation speed detecting device, and the rotation speed is The control device is for controlling the rotational speed of the fan 204 in accordance with the rotational speed of the compressor 206.
  • the rotational speed of the fan 204 can be adjusted according to the rotational speed of the compressor 206, such as when the rotational speed of the compressor 206 is increased, indicating that the refrigerator 8 is operating at a high load, requiring more for the compressor 206 and the condenser 202. Efficient heat dissipation, at this time, the rotation speed of the fan 204 can be increased to improve the heat dissipation capability; and when the rotation speed of the compressor 206 is lowered or the compressor 206 is stopped, the rotation speed of the fan 204 can be appropriately reduced at this time to save energy.
  • the refrigeration device is a refrigerator, a freezer or an air conditioner.
  • the refrigerator, the freezer or the air conditioner can reduce the flow rate and flow velocity loss of the airflow by using the heat dissipating component 1 described above, improve the heat exchange efficiency of the condenser 202, and the refrigeration efficiency of the refrigeration device, save energy, and at the same time, the condenser An increase in the heat exchange efficiency of 202 can also reduce the rotational speed and power consumption of the compressor 206, thereby reducing the noise generated by the compressor 206.
  • the refrigeration system of the refrigerator includes a compressor and a condenser (disposed in the compressor compartment assembly 30), an evaporator, and a centrifugal fan assembly. 40 (disposed between the rear cover assembly 50 and the front cover assembly 60), the refrigerating air duct assembly 70, and the refrigerator liner (including the refrigerating compartment), the refrigerant and the air circulating in various parts of the refrigeration system Cool down the ingredients in the refrigerator.
  • the ineffective air volume when the air passes through the condenser 202 is effectively reduced, the working efficiency of the condenser 202 and the fan 204 is improved, and the cooling efficiency and the cooling capacity of the refrigerator 8 are also improved.
  • the refrigerator 8 further includes a control display screen 82, and the working state of the refrigerator 8 can be set by controlling the display screen 82, for example, the refrigerator 8 can be frozen.
  • the cooling temperature of the room and the refrigerating compartment is set, and the cooling of a certain refrigerating compartment can be temporarily stopped.
  • the heat dissipating component and the refrigerating device provided by the invention increase the heat exchange efficiency of the condenser and the working efficiency of the fan by reducing the inefficient ventilation of the condenser without cooling, thereby increasing the subcooling of the condenser outlet refrigerant Degree, the cooling effect is improved, and the heat exchange efficiency of the condenser can also reduce the speed and power consumption of the compressor, reduce the noise generated by the compressor, and save energy.
  • the term “plurality” means two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly.
  • “connecting” may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary.
  • connection may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

一种散热组件(1)和制冷装置,其中,散热组件(1)包括:基板(102),风扇(204)位于基板(102)的一侧,冷凝器(202)设置在基板(102)上;紧固件(104),设置在基板(102)的上表面上,朝向冷凝器(202)一侧;第一挡风板(106),设置在基板(102)的下表面上。散热组件(1)使得风扇形成的气流中大部分的气体能够流经基板(102)上的冷凝器(202)并带走热量,而通过设置在基板(102)下表面上设置第一挡风板(106),能够减少由基板(102)下部流过的气体,减小气流的流量、流速损失和流动过程中的阻力以及气流的噪声,提高了对于风扇风量的利用效率,增大了冷凝器的散热面积,提升了冷凝器的散热、换热能力,增大了冷凝器出口制冷剂的过冷度,提升了制冷效果。

Description

散热组件和制冷装置
本申请要求于2017年2月15日提交中国专利局、申请号为201710080370.4、发明名称为“散热组件和制冷装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及制冷技术领域,具体而言,涉及一种散热组件和制冷装置。
背景技术
如今冰箱的体积越来越大,对能耗的要求越来越高,在有限空间的压缩机仓里不仅有压缩机,而且还有冷凝器等发热设备,通过风扇对压缩机仓进行通风和散热。在如此紧凑的空间,通过合理的流道设计降低流动阻力,增强散热效果是提升冰箱整体性能在关键因素。
而目前,压缩机仓的主要设备主要有压缩机,冷凝器,冷凝器风扇,一般而言,所用的冷凝器为管翅式。压缩机是整个制冷系统的能量来源,将低温低压的制冷剂在旋转机械的作用下压缩成高温高压的过热气体,在这个过程中产生大量热量。高温高压的制冷剂过热气体从压缩机出口排出,进入到冷凝器中,通过冷凝风扇与周围空气进行强制空气对流换热。可见,在有限容积的狭小空间内,压缩机和冷凝器的高效换热将直接影响整个冰箱系统的制冷能力。同时,压缩机和冷凝风扇都是旋转机械,在工作过程将产生噪声,其中压缩机主要产生振动噪声,冷凝风扇主要产生气动噪声。压缩机和冷凝风扇的噪声水平将直接影响整机的噪声性能。
受限于空间布局,现有的冰箱产品都存在着散热能力不足和噪声水平较高的问题:
缺点1:压缩机散热存在问题,由于受到空间布局和空气流场的影响,在压缩机的被风面由于流速降低,被空气携带的热量减少,不能有效散热。
缺点2:冷凝器散热存在问题,由于受到空间布局的限制,以及冷凝器自身结构原因,造成空气流经冷凝器时,受到的空气阻力较大,流速降低,散热性能变差。
缺点3:压缩机由于通过旋转结构将制冷剂从低温低压状态压缩到高温高压,产生振动噪声,是冰箱噪声的主要来源,严重影响冰箱噪声性能。
缺点4:由于一部分空气经由冷凝器下部的空间流过,导致流量损失。
发明内容
为了解决上述技术问题至少之一,本发明的第一方面的实施例提出了一种散热组件。
本发明的第二方面实施例,还提出了一种制冷装置。
有鉴于此,根据本发明的第一方面的实施例,本发明提出了一种散热组件,用于制冷装置,制冷装置包括冷凝器和风扇,散热组件包括:基板,风扇位于基板的一侧,冷凝器设置在基板上;紧固件,设置在基板的上表面上,朝向冷凝器一侧;第一挡风板,设置在基板的下表面上。
本发明提供的散热组件,使得风扇形成的气流中大部分的气体能够流经基板上的冷凝器并带走热量,而通过设置在基板下表面上设置第一挡风板,能够减少由基板下部流过的气体,减小气流的流量、流速损失和流动过程中的阻力以及气流的噪声,提高了对于风扇风量的利用效率,增大了冷凝器的散热面积,提升了冷凝器的散热、换热能力,增大了冷凝器出口制冷剂的过冷度,提升了制冷效果,同时因冷凝器换热效率的提升也能够降低压缩机的转速和功耗,由此减小压缩机产生的噪声、节约能源。
另外,本发明提供的上述实施例中的散热组件还可以具有如下附加技术特征:
在上述技术方案中,优选地,还包括:第二挡风板,设置在基板的下表面上,第二挡风板上设置有通风孔;基板在沿着风扇产生的气体流动方向上依次设置第二挡风板和第一挡风板。
在该技术方案中,通过在基板的下表面上设置带有通风孔的第二挡风板,使得气流能够经通风孔流过第二挡风板并在第一挡风板和第二挡风板 之间充分对流,进一步地带走冷凝器的热量,提升对于冷凝器的换热效果。
在上述任一技术方案中,优选地,第二挡风板的数量为多个;沿着风扇产生的气体流动方向,位于后侧的第二挡风板上的通风孔的截面积小于位于前侧的第二挡风板上的通风孔的截面积。
在该技术方案中,通过设置多个第二挡风板,并且沿着风扇产生的气体流动方向上的各个第二挡风板上的通风孔的截面积逐渐减小,使得气流在流经各个第二挡风板之间时能够充分混合对流,更进一步地提升冷凝器的换热效果。
在上述任一技术方案中,优选地,相邻两个第二挡风板上通风孔的几何中心的连线与基板之间夹角的范围为30°至45°。
在该技术方案中,相邻两个第二挡风板上通风孔的几何中心的连线与基板之间夹角的范围为30°至45°,即将相邻的第二挡风板上的通风孔交错设置,这样使得气体在流经各个第二挡风板上的通风孔时能够产生更强的对流效应,使气体能够与第二挡风板更充分的接触并换热,由此带走更多的冷凝器的热量,实现对于冷凝器更好的换热效果,提升制冷效率。
在上述任一技术方案中,优选地,通气孔为圆形或多边形。
在该技术方案中,通气孔可以为圆形或多边形,规则且常见的通气孔形状有利于简化第二挡风板的制作,提高生产效率。其中,多边形孔可选用三角形孔或正方形孔等。
在上述任一技术方案中,优选地,第一挡风板与相邻的第二挡风板之间距离的范围为1mm至50mm;相邻的两个第二挡风板之间距离的范围为1mm至50mm。
在该技术方案中,第一挡风板与相邻的第二挡风板之间距离和/或相邻的两个第二挡风板之间距离的范围为1mm至50mm,通过合理设置第一挡风板与第二挡风板的数量、位置与分布,使得流经其间的气流能够充分地混合对流并与冷凝器换热,提升冷凝器的换热效率。
在上述任一技术方案中,优选地,还包括:接水盘,设置在基板的下方;第一挡风板和/或第二挡风板的底部与接水盘之间距离的范围为1mm至10mm。
在该技术方案中,设置在基板下方的接水盘,能够收集位于其上方的冷凝器及其他组件产生的水滴,防止积水流向其他部件或流出制冷装置;同时第一挡风板和/或第二挡风板的底部与接水盘之间距离的范围为1mm至10mm,接水盘中当中的积水也能够起到对于第一挡风板与第二挡风板的散热作用,间接地起到对于冷凝器的换热作用,提升换热效率,进而提升制冷效率。
在上述任一技术方案中,优选地,第一挡风板和/或第二挡风板的底部设置有缺口。
在该技术方案中,通过设置在第一挡风板和/或第二挡风板底部的缺口,能够起到对于一部分气体的导流作用,增强挡板间气体的对流作用及换热效率;同时有助于接水盘内积水的流动,避免挡板之间的水的积聚。
在上述任一技术方案中,优选地,接水盘的上部设置有溢流口。
在该技术方案中,通过设置在接水盘的上部设置溢流口,使得当接水盘中的水位过高时能够及时地向外排水。
在上述任一技术方案中,优选地,紧固件为紧固翅片;冷凝器的冷凝器管设置在紧固翅片之间。
在该技术方案中,通过设置紧固翅片固定冷凝器的冷凝器管,增大各个冷凝器管之间的空间,提升气流对于冷凝器管的换热效率,并且能够增大紧固翅片与冷凝器管之间的接触面积,也有利于冷凝器的换热。
在上述任一技术方案中,优选地,紧固翅片的数量为多个,多个紧固翅片之间平行设置。
在该技术方案中,多个紧固翅片之间互相平行的设置,这样使得多个紧固翅片能够更好地固定冷凝器管,提升稳定性,并且有利于紧固翅片适应冷凝器管的形状变化。
在上述任一技术方案中,优选地,紧固翅片上设置有多个U型的安装槽,冷凝器管设置在安装槽内。
在该技术方案中,通过紧固翅片上的U型安装槽固定冷凝器管,保证冷凝器管的稳定固定,并且便于冷凝器管的安装与布置。本发明第二方面的实施例提供的制冷装置,包括:第一方面实施例的散热组件。
本发明提供的制冷装置,通过在冷凝器的下方设置第一方面实施例的散热组件,使得风扇形成的气流中大部分的气体能够流经基板上的冷凝器并带走热量,而通过在基板下表面上设置第一挡风板,能够减少由基板下部流过的气体,减小气流的流量、流速损失和流动过程中的阻力以及气流的噪声,提高了对于风扇风量的利用效率,增大了冷凝器的散热面积,提升了冷凝器的散热、换热能力,增大了冷凝器出口制冷剂的过冷度,提升了制冷效果,同时也降低了压缩机功耗,节约能源。
另外,本发明提供的上述实施例中的制冷装置还可以具有如下附加技术特征:
在上述技术方案中,优选地,还包括:风扇,设置在基板的一侧;冷凝器,冷凝器设置在紧固件上;压缩机,冷凝器和压缩机分别设置于风扇的两侧。
在该技术方案中,冷凝器和压缩机分别位于风扇的两侧,流过冷凝器的气体会继续对压缩机进行换热降温,这样的设置使得制冷装置内的部件结构更为紧凑,设置一个风扇即可实现对于冷凝器和压缩机两者同时换热降温,降低了制冷装置的功耗,节约能源。
在上述任一技术方案中,优选地,还包括:压缩机仓总成,压缩机仓总成包括压缩机仓底座,压缩机仓底座上设置有出水口,散热组件、风扇、冷凝器以及压缩机设置在压缩机仓总成内。
在该技术方案中,散热组件、风扇、冷凝器以及压缩机设置在压缩机仓总成内,一般地,压缩机仓总成设置在冰箱的底部,这样集中的布置结构有利于设备的安装、管理与维护。另外,通过设置在压缩机仓底座上的出水口能够排出冷凝器或接水盘中过多的冷凝水或积水。
在上述任一技术方案中,优选地,压缩机包括转速检测装置,转速检测装置用于检测压缩机的转速;风扇包括转速控制装置,转速控制装置与转速检测装置相连接,转速控制装置用于根据压缩机的转速控制风扇的转速。
在该技术方案中,风扇的转速可以根据压缩机的转速进行调整,比如当压缩机的转速升高时,说明冰箱正处于高负载运行,需要对于压缩机和 冷凝器更高效的散热,此时可以提高风扇的转速提高散热能力;而当压缩机的转速降低或压缩机停止工作时,此时则可以适当地降低风扇的转速,节约能耗。
在上述任一技术方案中,优选地,制冷装置为冰箱、冰柜或空调。
在该技术方案中,冰箱、冰柜或空调可以通过采用上述的散热组件减小气流的流量、流速损失,提升冷凝器的换热效率和制冷装置的制冷效率,节约能源,同时因冷凝器换热效率的提升也能够降低压缩机的转速和功耗,由此减小压缩机产生的噪声。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一种实施例中散热组件的结构示意图;
图2是本发明一种实施例的结构示意图;
图3是图2所示结构工作时的气体速度矢量分布示意图;
图4是本发明一种实施例的结构示意图;
图5是本发明一种实施例中散热组件的结构示意图;
图6是图5所示结构的侧视图;
图7是本发明一种实施例的结构示意图;
图8是本发明一种实施例中冰箱的后视图;
图9是本发明一种实施例中冰箱的立体图。
其中,图1至图9中附图标记与部件名称之间的对应关系为:
1散热组件,102基板,104紧固件,106第一挡风板,108第二挡风板,1082通风孔,110接水盘,112缺口,202冷凝器,204风扇,206压缩机,208压缩机仓底座,210漏风通道,30压缩机仓总成,40离心风机总成,50后盖板总成,60前盖板总成,70冷藏风道总成,8冰箱,82控制显示屏幕。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图9描述根据本发明一些实施例所述的散热组件和制冷装置。
如图1至图4所示,本发明提供了一种散热组件1,用于制冷装置,制冷装置包括冷凝器202和风扇204,散热组件1包括:基板102,风扇204位于基板102的一侧,冷凝器202设置在基板102上;紧固件104,设置在基板102的上表面上,朝向冷凝器202一侧;第一挡风板106,设置在基板102的下表面上。
本发明提供的如图1所示的散热组件1可用于如图2和图4所示的结构中,并使得风扇204形成的气流中大部分的气体能够流经基板102上的冷凝器202并带走热量,而通过设置在基板102下表面上设置第一挡风板106,能够减少由基板102下部流过的气体,减小气流的流量、流速损失和流动过程中的阻力以及气流的噪声,提高了对于风扇204风量的利用效率,增大了冷凝器202的散热面积,提升了冷凝器202的散热、换热能力,增大了冷凝器202出口制冷剂的过冷度,提升了制冷效果,同时因冷凝器202换热效率的提升也能够降低压缩机206的转速和功耗,由此减小压缩机206产生的噪声、节约能源。其中,如图3所示,风扇204所形成的流动气体大部分流经冷凝器202并对其散热,而流经冷凝器202下方的漏风通道210的风量较小,这样就能够保证尽可能多的气体通过冷凝器202并带走其热量,减少流经漏风通道210的无效风量,提升风扇204以及冷凝器202的工作效率。并且如图2和图4所示,采用了该散热组件1的制冷装置中,设置在压缩机仓底座208上的压缩机206可置于风扇204的后方,这样使 得流动的空气也能够对压缩机206进行散热,保证压缩机206的使用安全和工作效率。
在本发明的一个实施例中,优选地,如图5至图7所示,还包括:第二挡风板108,设置在基板102的下表面上,第二挡风板108上设置有通风孔1082;基板102在沿着风扇204产生的气体流动方向上依次设置第二挡风板108和第一挡风板106。
在该实施例中,通过在基板102的下表面上设置带有通风孔1082的第二挡风板108,使得气流能够经通风孔1082流过第二挡风板108并在第一挡风板106和第二挡风板108之间充分对流,进一步地带走冷凝器202的热量,提升对于冷凝器202的换热效果。其中,可以沿着气流的方向依次设置第二挡风板108和第一挡风板106,两者的数量与位置可根据实际需求进行调节。
在本发明的一个实施例中,优选地,如图5和图6所示,第二挡风板108的数量为多个;沿着风扇204产生的气体流动方向,位于后侧的第二挡风板108上的通风孔1082的截面积小于位于前侧的第二挡风板108上的通风孔1082的截面积。
在该实施例中,通过设置多个第二挡风板108,并且沿着风扇204产生的气体流动方向上的各个第二挡风板108上的通风孔1082的截面积逐渐减小,使得气流在流经各个第二挡风板108之间时能够充分混合对流,更进一步地提升冷凝器202的换热效果。
在本发明的一个实施例中,优选地,相邻两个第二挡风板108上通风孔1082的几何中心的连线与基板102之间夹角的范围为30°至45°。
在该实施例中,相邻两个第二挡风板108上通风孔1082的几何中心的连线与基板102之间夹角的范围为30°至45°,即将相邻的第二挡风板108上的通风孔1082交错设置,这样使得气体在流经各个第二挡风板108上的通风孔1082时能够产生更强的对流效应,使气体能够与第二挡风板108更充分的接触并换热,由此带走更多的冷凝器202的热量,实现对于冷凝器202更好的换热效果,提升制冷效率。
在本发明的一个实施例中,优选地,如图5至图7所示,通气孔为圆 形或多边形。
在该实施例中,通气孔可以为圆形,也可以为多边形,规则且常见的通气孔形状有利于简化第二挡风板108的制作,提高生产效率。其中,多边形孔可选用三角形孔或正方形孔等。
在本发明的一个实施例中,优选地,如图5所示,第一挡风板106与相邻的第二挡风板108之间距离的范围为1mm至50mm;相邻的两个第二挡风板108之间距离的范围为1mm至50mm。
在该实施例中,第一挡风板106与相邻的第二挡风板108之间距离和/或相邻的两个第二挡风板108之间距离的范围为1mm至50mm,通过合理设置第一挡风板106与第二挡风板108的数量、位置与分布,使得流经其间的气流能够充分地混合对流并与冷凝器202换热,提升冷凝器202的换热效率。
在本发明的一个实施例中,优选地,如图2、图4及图7所示,还包括:接水盘110,设置在基板102的下方;第一挡风板106和/或第二挡风板108的底部与接水盘110之间距离的范围为1mm至10mm。
在该实施例中,设置在基板102下方的接水盘110,能够收集位于其上方的冷凝器202及其他组件产生的水滴,防止积水流向其他部件或流出制冷装置;同时第一挡风板106和/或第二挡风板108的底部与接水盘110之间距离的范围为1mm至10mm,接水盘110中当中的积水也能够起到对于第一挡风板106与第二挡风板108的散热作用,间接地起到对于冷凝器202的换热作用,提升换热效率,进而提升制冷效率。
在本发明的一个实施例中,优选地,如图1、图5及图6所示,第一挡风板106和/或第二挡风板108的底部设置有缺口112。
在该实施例中,通过设置在第一挡风板106和/或第二挡风板108底部的缺口112,能够起到对于一部分气体的导流作用,增强挡板间气体的对流作用及换热效率;同时有助于接水盘110内积水的流动,避免挡板之间的水的积聚。
在本发明的一个实施例中,优选地,接水盘110的上部设置有溢流口。
在该实施例中,通过设置在接水盘110的上部设置溢流口,使得当接 水盘110中的水位过高时能够及时地向外排水。
在本发明的一个实施例中,优选地,如图1、图2、图4至图6所示,紧固件104为紧固翅片;冷凝器202的冷凝器管设置在紧固翅片之间。
在该实施例中,通过设置紧固翅片固定冷凝器202的冷凝器管,增大各个冷凝器管之间的空间,提升气流对于冷凝器管的换热效率,并且能够增大紧固翅片与冷凝器管之间的接触面积,也有利于冷凝器202的换热。
在本发明的一个实施例中,优选地,如图1、图2、图4至图6所示,紧固翅片的数量为多个,多个紧固翅片之间平行设置。
在该实施例中,多个紧固翅片之间互相平行的设置,这样使得多个紧固翅片能够更好地固定冷凝器管,提升稳定性,并且有利于紧固翅片适应冷凝器管的形状变化。
在本发明的一个实施例中,优选地,如图1、图2、图4至图6所示,紧固翅片上设置有多个U型的安装槽,冷凝器管设置在安装槽内。
在该实施例中,通过紧固翅片上的U型安装槽固定冷凝器管,保证冷凝器管的稳定固定,并且便于冷凝器管的安装与布置。
本发明还提供了一种制冷装置,如图2、图4及图7所示,包括:第一方面实施例的散热组件1。
本发明提供的制冷装置,通过在冷凝器202的下方设置第一方面实施例的散热组件1,使得风扇204形成的气流中大部分的气体能够流经基板102上的冷凝器202并带走热量,而通过在基板102下表面上设置第一挡风板106,能够减少由基板102下部流过的气体,减小气流的流量、流速损失和流动过程中的阻力以及气流的噪声,提高了对于风扇204风量的利用效率,增大了冷凝器202的散热面积,提升了冷凝器202的散热、换热能力,增大了冷凝器202出口制冷剂的过冷度,提升了制冷效果,同时也降低了压缩机206功耗,节约能源。
在本发明的一个实施例中,优选地,如图2和图4所示,还包括:风扇204,设置在基板102的一侧;冷凝器202,冷凝器202设置在紧固件104上;压缩机206,冷凝器202和压缩机206分别设置于风扇204的两侧。
在该实施例中,冷凝器202和压缩机206分别位于风扇204的两侧, 流过冷凝器202的气体会继续对压缩机206进行换热降温,这样的设置使得制冷装置内的部件结构更为紧凑,设置一个风扇204即可实现对于冷凝器202和压缩机206两者同时换热降温,降低了制冷装置的功耗,节约能源。
在本发明的一个实施例中,优选地,如图8所示,还包括:压缩机仓总成30,压缩机仓总成30包括压缩机仓底座208,压缩机仓底座208上设置有出水口,散热组件1、风扇204、冷凝器202以及压缩机206设置在压缩机仓总成30内。
在该实施例中,散热组件1、风扇204、冷凝器202以及压缩机206设置在压缩机仓总成30内,一般地,压缩机仓总成30设置在冰箱8的底部,这样集中的布置结构有利于设备的安装、管理与维护。另外,通过设置在压缩机仓底座208上的出水口能够排出冷凝器202或接水盘110中过多的冷凝水或积水。
在本发明的一个实施例中,优选地,压缩机206包括转速检测装置,转速检测装置用于检测压缩机206的转速;风扇204包括转速控制装置,转速控制装置与转速检测装置相连接,转速控制装置用于根据压缩机206的转速控制风扇204的转速。
在该实施例中,风扇204的转速可以根据压缩机206的转速进行调整,比如当压缩机206的转速升高时,说明冰箱8正处于高负载运行,需要对于压缩机206和冷凝器202更高效的散热,此时可以提高风扇204的转速提高散热能力;而当压缩机206的转速降低或压缩机206停止工作时,此时则可以适当地降低风扇204的转速,节约能耗。
在本发明的一个实施例中,优选地,制冷装置为冰箱、冰柜或空调。
在该实施例中,冰箱、冰柜或空调可以通过采用上述的散热组件1减小气流的流量、流速损失,提升冷凝器202的换热效率和制冷装置的制冷效率,节约能源,同时因冷凝器202换热效率的提升也能够降低压缩机206的转速和功耗,由此减小压缩机206产生的噪声。
在本发明的一个实施例中,优选地,如图8所示,冰箱的制冷系统包括压缩机与冷凝器(设置在压缩机仓总成30内)、蒸发器、离心风机总成 40(设置在后盖板总成50与前盖板总成60之间)、冷藏风道总成70以及冰箱内胆(包括制冷舱室),制冷剂以及空气在该制冷系统中的各部分循环以对冰箱中的食材冷却降温。而通过采用了本发明提供的散热组件,有效地减少了空气经过冷凝器202时的无效风量,提升了冷凝器202以及风扇204的工作效率,并且也提升了冰箱8的制冷效率与制冷能力。
在本发明的一个实施例中,优选地,如图9所示,冰箱8还包括控制显示屏幕82,通过控制显示屏幕82可以对冰箱8的工作状态进行设定,例如可以对冰箱8中冷冻室、冷藏室的制冷温度进行设置,还可以暂时停止对于某一制冷舱室的制冷等等。通过设置控制显示屏幕82并对冰箱8进行控制,提升了冰箱8的智能化程度,使得冰箱8更能够满足用户需求。
本发明提供的散热组件和制冷装置,通过减少未对冷凝器冷却的无效的通气量,从而提升冷凝器的换热效率和风扇的工作效率,由此增大了冷凝器出口制冷剂的过冷度,提升了制冷效果,同时因冷凝器换热效率的提升也能够降低压缩机的转速和功耗,减小压缩机产生的噪声、节约能源。
在本发明中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明 的保护范围之内。

Claims (17)

  1. 一种散热组件,用于制冷装置,所述制冷装置包括冷凝器和风扇,其特征在于,所述散热组件包括:
    基板,所述风扇位于所述基板的一侧,所述冷凝器设置在所述基板上;
    紧固件,设置在所述基板的上表面上,朝向所述冷凝器一侧;
    第一挡风板,设置在所述基板的下表面上。
  2. 根据权利要求1所述的散热组件,其特征在于,还包括:
    第二挡风板,设置在所述基板的下表面上,所述第二挡风板上设置有通风孔;
    所述基板在沿着所述风扇产生的气体流动方向上依次设置第二挡风板和第一挡风板。
  3. 根据权利要求2所述的散热组件,其特征在于,
    所述第二挡风板的数量为多个;
    沿着所述风扇产生的气体流动方向,位于后侧的所述第二挡风板上的通风孔的截面积小于位于前侧的所述第二挡风板上的通风孔的截面积。
  4. 根据权利要求3所述的散热组件,其特征在于,
    相邻两个所述第二挡风板上通风孔的几何中心的连线与基板之间夹角的范围为30°至45°。
  5. 根据权利要求3所述的散热组件,其特征在于,
    所述通气孔为圆形或多边形。
  6. 根据权利要求1至5中任一项所述的散热组件,其特征在于,
    所述第一挡风板与相邻的所述第二挡风板之间距离的范围为1mm至50mm;
    相邻的两个所述第二挡风板之间距离的范围为1mm至50mm。
  7. 根据权利要求1至5中任一项所述的散热组件,其特征在于,还包括:
    接水盘,设置在所述基板的下方;
    所述第一挡风板和/或所述第二挡风板的底部与所述接水盘之间距离的范围为1mm至10mm。
  8. 根据权利要求7所述的散热组件,其特征在于,
    所述第一挡风板和/或所述第二挡风板的底部设置有缺口。
  9. 根据权利要求7所述的散热组件,其特征在于,
    所述接水盘的上部设置有溢流口。
  10. 根据权利要求1至5中任一项所述的散热组件,其特征在于,
    所述紧固件为紧固翅片;
    所述冷凝器的冷凝器管设置在所述紧固翅片之间。
  11. 根据权利要求10所述的散热组件,其特征在于,
    所述紧固翅片的数量为多个,多个所述紧固翅片之间平行设置。
  12. 根据权利要求11所述的散热组件,其特征在于,
    所述紧固翅片上设置有多个U型的安装槽,所述冷凝器管设置在所述安装槽内。
  13. 一种制冷装置,其特征在于,包括:
    如权利要求1至12中任一项所述的散热组件。
  14. 根据权利要求13所述的制冷装置,其特征在于,还包括:
    风扇,设置在所述基板的一侧;
    冷凝器,所述冷凝器设置在所述紧固件上;
    压缩机,所述冷凝器和所述压缩机分别设置于所述风扇的两侧。
  15. 根据权利要求14所述的制冷装置,其特征在于,还包括:
    压缩机仓总成,所述压缩机仓总成包括压缩机仓底座,所述压缩机仓底座上设置有出水口,所述散热组件、所述风扇、所述冷凝器以及所述压缩机设置在所述压缩机仓总成内。
  16. 根据权利要求14所述的制冷装置,其特征在于,
    所述压缩机包括转速检测装置,所述转速检测装置用于检测所述压缩机的转速;
    所述风扇包括转速控制装置,所述转速控制装置与所述转速检测装置相连接,所述转速控制装置用于根据所述压缩机的转速控制所述风扇的转速。
  17. 根据权利要求13至16中任一项所述的制冷装置,其特征在于,
    所述制冷装置为冰箱、冰柜或空调。
PCT/CN2017/082520 2017-02-15 2017-04-28 散热组件和制冷装置 WO2018149032A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17896728.7A EP3462111B1 (en) 2017-02-15 2017-04-28 Heat dissipation assembly and refrigeration device
JP2018568703A JP6793760B2 (ja) 2017-02-15 2017-04-28 放熱アセンブリ及び冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710080370.4A CN106885399B (zh) 2017-02-15 2017-02-15 散热组件和制冷装置
CN201710080370.4 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018149032A1 true WO2018149032A1 (zh) 2018-08-23

Family

ID=59179330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082520 WO2018149032A1 (zh) 2017-02-15 2017-04-28 散热组件和制冷装置

Country Status (4)

Country Link
EP (1) EP3462111B1 (zh)
JP (1) JP6793760B2 (zh)
CN (1) CN106885399B (zh)
WO (1) WO2018149032A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117450713A (zh) * 2023-12-22 2024-01-26 珠海格力电器股份有限公司 制冷设备及其控制方法、冰箱

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209893774U (zh) * 2019-01-04 2020-01-03 青岛海尔股份有限公司 冷藏冷冻装置
CN110285610A (zh) * 2019-06-11 2019-09-27 合肥美的电冰箱有限公司 排气蒸发管组件、接水盘以及制冷设备
CN112629078A (zh) * 2020-11-26 2021-04-09 安徽康佳同创电器有限公司 一种冷凝器散热结构及冰箱
CN113819668B (zh) * 2021-09-09 2022-08-16 珠海格力电器股份有限公司 制冷装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526562A (ja) * 1991-07-19 1993-02-02 Matsushita Refrig Co Ltd コンデンシングユニツト
KR20030056416A (ko) * 2001-12-28 2003-07-04 삼성전자주식회사 냉장고
CN2639814Y (zh) * 2003-07-07 2004-09-08 苏州三星电子有限公司 电冰箱的强制散热结构
CN102401526A (zh) * 2010-09-16 2012-04-04 Lg电子株式会社 冰箱
CN105571236A (zh) * 2015-12-22 2016-05-11 海信容声(广东)冰箱有限公司 一种冰箱

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2702459A (en) * 1952-02-09 1955-02-22 Arthur M Thompson Filter for air cooling systems of refrigerators
FR1396436A (fr) * 1964-03-10 1965-04-23 Rubanox Soc Perfectionnements aux armoires frigorifiques
JPS58112873U (ja) * 1982-01-20 1983-08-02 株式会社日立製作所 積層形熱交換器
JPH048077U (zh) * 1990-05-07 1992-01-24
JPH064572U (ja) * 1992-06-25 1994-01-21 サンデン株式会社 ショーケース
JPH06288670A (ja) * 1993-04-01 1994-10-18 Toshiba Corp 冷蔵庫
JP3081487B2 (ja) * 1995-02-03 2000-08-28 三洋電機株式会社 冷却貯蔵庫
JPH09145214A (ja) * 1995-11-21 1997-06-06 Matsushita Refrig Co Ltd 冷蔵庫の運転制御装置
JP2940817B2 (ja) * 1996-05-20 1999-08-25 昭和アルミニウム株式会社 冷蔵庫用コンデンサ装置
JP3084610B2 (ja) * 1996-05-22 2000-09-04 眞三郎 梅田 流体路装置
JP3679550B2 (ja) * 1997-05-20 2005-08-03 三洋電機株式会社 低温ショーケース
JPH11159943A (ja) * 1997-11-26 1999-06-15 Mitsubishi Electric Corp 冷蔵庫
US6640578B2 (en) * 2001-10-31 2003-11-04 General Electric Company Refrigerator condenser and fan assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526562A (ja) * 1991-07-19 1993-02-02 Matsushita Refrig Co Ltd コンデンシングユニツト
KR20030056416A (ko) * 2001-12-28 2003-07-04 삼성전자주식회사 냉장고
CN2639814Y (zh) * 2003-07-07 2004-09-08 苏州三星电子有限公司 电冰箱的强制散热结构
CN102401526A (zh) * 2010-09-16 2012-04-04 Lg电子株式会社 冰箱
CN105571236A (zh) * 2015-12-22 2016-05-11 海信容声(广东)冰箱有限公司 一种冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3462111A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117450713A (zh) * 2023-12-22 2024-01-26 珠海格力电器股份有限公司 制冷设备及其控制方法、冰箱
CN117450713B (zh) * 2023-12-22 2024-04-09 珠海格力电器股份有限公司 制冷设备及其控制方法、冰箱

Also Published As

Publication number Publication date
JP2019519746A (ja) 2019-07-11
CN106885399A (zh) 2017-06-23
CN106885399B (zh) 2019-05-28
EP3462111A4 (en) 2019-08-28
EP3462111A1 (en) 2019-04-03
JP6793760B2 (ja) 2020-12-02
EP3462111B1 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2018149032A1 (zh) 散热组件和制冷装置
CN107027274A (zh) 一种机柜半导体冷却装置
CN111895519B (zh) 散热器和空调室外机
CN206977887U (zh) 一种机柜半导体冷却装置
CN212081682U (zh) 半导体换热器及半导体空调器
JP2013257115A (ja) 冷凍冷蔵庫
CN111397044A (zh) 半导体空调
CN218379667U (zh) 空调装置
CN212081527U (zh) 半导体空调
CN114206079A (zh) 散热器安装结构及窗式空调器
CN111442444A (zh) 半导体空调器
CN206959204U (zh) 散热器以及空调
CN216626518U (zh) 一种含有热管的多模式热交换机房
CN212081529U (zh) 半导体空调
CN212133022U (zh) 一种散热效果好的冰箱背部散热管件
CN214536938U (zh) 冷凝器组件及冰箱
CN219063802U (zh) 一种螺杆式冷水机
CN212081526U (zh) 半导体空调器
CN216930639U (zh) 散热器安装结构及窗式空调器
CN216431945U (zh) 空调室外机
JP3726756B2 (ja) 冷蔵庫
CN215523580U (zh) 一体式厨房空调
CN215216483U (zh) 空调室外机
CN221711127U (zh) 一种下排风结构的冰淇淋机
CN209605369U (zh) 窗式空调及其底盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568703

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017896728

Country of ref document: EP

Effective date: 20181227

NENP Non-entry into the national phase

Ref country code: DE