WO2018146932A1 - アルミニウム電解コンデンサ用電極およびその製造方法 - Google Patents

アルミニウム電解コンデンサ用電極およびその製造方法 Download PDF

Info

Publication number
WO2018146932A1
WO2018146932A1 PCT/JP2017/044002 JP2017044002W WO2018146932A1 WO 2018146932 A1 WO2018146932 A1 WO 2018146932A1 JP 2017044002 W JP2017044002 W JP 2017044002W WO 2018146932 A1 WO2018146932 A1 WO 2018146932A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical conversion
electrode
aluminum
electrolytic capacitor
film
Prior art date
Application number
PCT/JP2017/044002
Other languages
English (en)
French (fr)
Inventor
裕太 清水
修平 榎
雅彦 片野
敏文 平
藤本 和也
慎也 曾根
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201780085996.2A priority Critical patent/CN110366764B/zh
Priority to US16/483,407 priority patent/US11309137B2/en
Publication of WO2018146932A1 publication Critical patent/WO2018146932A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes

Definitions

  • the present invention relates to an electrode for an aluminum electrolytic capacitor in which a chemical conversion film is formed on an aluminum electrode, and a method for manufacturing the same.
  • an aluminum electrode having a porous layer is immersed in a hydration treatment liquid such as high-temperature pure water to form a hydrated film on the surface of the aluminum electrode (hydration process)
  • a hydration treatment liquid such as high-temperature pure water
  • chemical conversion is performed in a chemical conversion solution containing an organic acid, an inorganic acid, and a salt thereof (chemical conversion step), and a chemical conversion film made of aluminum oxide is formed on the surface.
  • the present inventors have found that when chemical conversion is performed at a voltage of 300 V or less, even when the defect occurs, chemical conversion liquid or water penetrates into the defect in the chemical conversion process. The defect is formed again and repaired.
  • chemical conversion is performed at a voltage of 400 V or more, the heat generated in the chemical conversion film is so great that the chemical conversion liquid or water boils on the surface of the film before the chemical liquid or water penetrates into the defects in the chemical conversion process. As a result, it has been found that the defect is difficult to proceed due to evaporation.
  • an object of the present invention is to provide an electrode for an aluminum electrolytic capacitor capable of improving the water resistance of a chemical conversion film having a withstand voltage of 400 V or more and a method for producing the same.
  • the present invention provides an electrode for an aluminum electrolytic capacitor in which a chemical conversion film having a withstand voltage of 400 V or more is formed on an aluminum electrode, and the void exposed at the cut surface when the chemical conversion film is cut.
  • the number of holes is 150 / ⁇ m 2 or less.
  • the number of holes (defects) exposed at the cut surface when the chemical conversion film is cut is 150 / ⁇ m 2 or less, and there are few defects in the chemical conversion film. For this reason, since it is difficult for water to enter from the surface of the chemical conversion film, the chemical conversion film is hardly hydrated and deteriorated, and the water resistance of the chemical conversion film can be improved.
  • the number of the holes is preferably 100 / ⁇ m 2 or less.
  • a hydration step of forming a hydrated film on the aluminum electrode by bringing the aluminum electrode into contact with a hydration treatment liquid having a temperature of 78 ° C. to 92 ° C., and a temperature Forming a chemical conversion film on the aluminum electrode in a chemical solution at a temperature of 58 ° C. to 78 ° C. at a conversion voltage of 400 V or more, and having a mass of the hydrated film of the aluminum electrode.
  • the coating withstand voltage Vf (V) and the ratio xwt% are expressed by the following conditional expression (0.01 ⁇ Vf) ⁇ x ⁇ (0.017 ⁇ Vf + 28) It is characterized by satisfying.
  • the hydration process is performed at a relatively low temperature of 78 ° C. to 92 ° C. based on the knowledge that water contained in the hydrated film is easily desorbed at 60 ° C. to 90 ° C. Perform at °C. For this reason, the water in the hydrated film is difficult to desorb and a hydrated film with a large amount of water is formed. Therefore, even if defects (holes) are generated due to volume shrinkage when the hydrated film is dehydrated and converted into aluminum oxide in the chemical conversion process, there is sufficient moisture in the chemical conversion film. It is possible to effectively repair defects in In the chemical conversion step, the temperature of the chemical conversion solution is set to 58 ° C.
  • generated at a hydration process is suitable. That is, when the amount of the hydrated film formed in the hydration process is too small, the heat generated during the chemical conversion increases, so that it becomes difficult to repair defects in the chemical conversion process. On the other hand, if the amount of the hydrated film formed in the hydration process is too large, the thick hydrated film prevents the chemical liquid or water from penetrating into the defect, thus preventing the defect from being repaired. It is done. Therefore, according to the present invention, when the chemical conversion film is cut, the number of holes (defects) exposed at the cut surface can be reduced to 150 / ⁇ m 2 or less, so that water enters from the surface of the chemical conversion film.
  • the chemical conversion film is not easily hydrated and deteriorated, and the water resistance of the chemical conversion film can be improved.
  • Defects can be removed to some extent by re-forming after depolarization in the formation process, but cannot be sufficiently removed at a formation voltage of 400 V or higher. This is because, since the chemical conversion film is formed thick, defects inside the film are left behind even when depolarization is performed.
  • the moving speed of the aluminum electrode is represented by a three-dimensional speed vector A, and the chemical conversion in the range from the surface of the aluminum electrode to 10 cm in a direction perpendicular to the surface of the aluminum electrode.
  • the average flow velocity of the liquid is represented by a three-dimensional velocity vector B
  • the relative velocity of the chemical conversion liquid with respect to the aluminum electrode is represented by a three-dimensional velocity vector BA
  • the absolute value of the velocity vector BA is represented by
  • is the following conditional expression: 3 cm / s ⁇
  • is expressed by the following conditional expression: 5 cm / s ⁇
  • the absolute values of the velocity vectors A and B are represented as
  • of the velocity vector are respectively the following conditional expressions: 0 cm / s ⁇
  • the number of holes (defects) exposed at the cut surface when the chemical conversion film is cut is 150 / ⁇ m 2 or less, and there are few defects in the chemical conversion film. For this reason, since it is difficult for water to enter from the surface of the chemical conversion film, the chemical conversion film is hardly hydrated and deteriorated, and the water resistance of the chemical conversion film can be improved. Further, in the method for producing an electrode for an aluminum electrolytic capacitor according to the present invention, the hydration process is started from a relatively low temperature of 78 ° C. based on the knowledge that water contained in the hydrated film is easily desorbed at 60 ° C. to 90 ° C. Perform at 92 ° C.
  • the temperature of the chemical conversion solution is set to 58 ° C. to 78 ° C., so that water is not easily detached from the hydrated film in the hydration step. For this reason, since water
  • Electrode for aluminum electrolytic capacitor when manufacturing an electrode for an aluminum electrolytic capacitor, chemical conversion is performed on the surface of the aluminum electrode to manufacture the electrode for an aluminum electrolytic capacitor.
  • an etched foil obtained by etching an aluminum foil a porous aluminum electrode in which a porous layer formed by sintering aluminum powder is laminated on both surfaces of an aluminum core, and the like can be used.
  • the etched foil includes a porous layer in which tunnel-like pits are formed.
  • a porous layer 30 having a thickness of 150 ⁇ m to 3000 ⁇ m per layer is formed on both surfaces of an aluminum core having a thickness of 10 ⁇ m to 50 ⁇ m.
  • Such a porous layer is a layer formed by sintering aluminum powder, and the aluminum powder is sintered while maintaining a gap between each other.
  • an aluminum electrolytic capacitor using a formed aluminum electrode (aluminum electrolytic capacitor electrode), for example, an anode foil made of a formed aluminum electrode (aluminum electrolytic capacitor electrode) and a cathode foil are combined with a separator.
  • a capacitor element is formed by interposing and winding.
  • the capacitor element is impregnated with an electrolytic solution (paste).
  • the capacitor element containing the electrolytic solution is housed in an outer case, and the case is sealed with a sealing body.
  • the chemical conversion film when the water resistance of the chemical conversion film is low, the chemical conversion film may be deteriorated by moisture in the air while the electrode for the aluminum electrolytic capacitor is stored, and the characteristics of the aluminum electrolytic capacitor may be deteriorated. In addition, if the chemical conversion film deteriorates due to moisture in the electrolytic solution after the aluminum electrolytic capacitor is manufactured, the reliability of the aluminum electrolytic capacitor is lowered. Therefore, high water resistance is required for the electrode for an aluminum electrolytic capacitor.
  • a cathode layer is formed on the surface of the solid electrolyte layer after the solid electrolyte layer is formed on the surface of the anode foil made of a formed aluminum electrode (aluminum electrolytic capacitor electrode). Then, after that, it is packaged with a resin or the like. At that time, an anode terminal electrically connected to the anode and a cathode terminal electrically connected to the cathode layer are provided. In this case, a plurality of anode foils may be laminated.
  • the electrode for the aluminum electrolytic capacitor has high water resistance. Required.
  • FIG. 1 is an explanatory view showing a method for inspecting vacancies (defects) in a chemical conversion film of an electrode for an aluminum electrolytic capacitor.
  • FIG. 2 is an explanatory diagram of vacancies (defects) in the chemical conversion film of the electrode for an aluminum electrolytic capacitor. Note that FIG. 2 shows a photograph of a cross section of the chemical conversion film having many vacancies observed with an FE-SEM so that the existence of vacancies can be easily understood.
  • the number of holes in the chemical conversion film is controlled to a predetermined value or less. More specifically, when the conversion film of the electrode for an aluminum electrolytic capacitor is cut, the number of holes in the conversion film is controlled to a predetermined value or less by controlling the number of holes exposed on the cut surface to a predetermined value or less. To control.
  • FIGS. 1A and 2 show the case where the chemical conversion film is cut along the surface of the electrode for an aluminum electrolytic capacitor in which the chemical conversion film is formed on the etched foil, and the tunnel-like pits are black. Shown as a region. A chemical conversion film exists around the pit. Moreover, as shown in FIG. 2, since the void
  • the number of holes exposed at the cut surface when the chemical conversion film of the aluminum electrolytic capacitor electrode is cut is set to 150 / ⁇ m 2 or less. For this reason, there are few defects in a chemical conversion film. Therefore, since water does not easily enter from the surface of the chemical conversion film, hydration is hardly deteriorated and water resistance is high.
  • the number of holes is more preferably 100 / ⁇ m 2 or less, and according to this aspect, the water resistance of the aluminum electrolytic capacitor electrode can be greatly improved.
  • a hydration step of forming a hydrated film on the aluminum electrode by bringing the aluminum electrode into contact with a hydration treatment solution such as pure water Chemical conversion is performed on the aluminum electrode with a voltage and a chemical conversion film is formed on the aluminum electrode.
  • a hydrated film is formed by immersing the aluminum electrode in pure water (hydration treatment liquid) having a temperature of 78 ° C. to 92 ° C.
  • the chemical conversion step the aluminum electrode is subjected to chemical conversion at a chemical voltage of 400 V or higher in a chemical liquid having a temperature of 58 ° C. to 78 ° C.
  • a chemical conversion film is formed by both the dehydration reaction of the hydrated film and the anodic oxidation reaction of aluminum.
  • voids defects
  • Some of these defects are repaired by an anodic oxidation reaction.
  • the defects cannot be repaired without the presence of chemical conversion liquid or water, the defects that have not been repaired eventually remain in the chemical conversion film, causing leakage current. It causes an increase and a decrease in hydration resistance.
  • the inventors found that the size of defects in the chemical conversion film is several nanometers to several tens of nanometers. It was. It was also found that more defects were generated when the liquid temperature in the hydration process was high and the chemical conversion liquid temperature was high.
  • water contained in the hydrated film was desorbed in three stages of about 60 ° C. to 90 ° C., 95 ° C. to 150 ° C., and 200 ° C. to 450 ° C.
  • water is desorbed, so that the amount of water in the hydrated film is reduced even when the same amount of aluminum is reacted. Therefore, the moisture in the chemical conversion film is insufficient in the subsequent chemical conversion step, and the defect cannot be sufficiently repaired.
  • the hydration process is performed at a relatively low temperature of 78 ° C.
  • the temperature of the chemical conversion liquid is set to 58 ° C. to 78 ° C., so that water is not easily detached from the hydrated film. Therefore, since the moisture in the chemical conversion film is sufficiently present, defects can be effectively repaired.
  • the number of holes exposed at the cut surface when the chemical conversion film is cut can be reduced to 150 / ⁇ m 2 or less, preferably 100 / ⁇ m 2 or less, so that the water resistance of the electrode for an aluminum electrolytic capacitor can be reduced. Can be improved.
  • the defect can be removed to some extent by re-forming after depolarization, but it cannot be sufficiently removed at a conversion voltage of 400 V or higher. This is because, since the chemical conversion film is formed thick, defects inside the film are left behind even when depolarization is performed. However, according to the present embodiment, even if the conversion film has a conversion voltage of 400 V or more, defects can be reduced and the water resistance of the aluminum electrolytic capacitor electrode can be improved.
  • FIG. 3 is a graph showing an appropriate range of the amount of hydrated film generated in the hydration step in the method for manufacturing an electrode for an aluminum electrolytic capacitor to which the present invention is applied.
  • the amount of the hydrated film generated in the hydration step is the lower limit of x indicated by the solid line L11 in FIG. 1 when the mass ratio x increased by the hydration step is expressed by the following formula (Equation 1).
  • Equation 1 To the upper limit of x indicated by a broken line L12 in FIG.
  • the film withstand voltage Vf (V) and the ratio x (mass%) are expressed by the following conditional expression (0.01 ⁇ Vf) ⁇ x ⁇ (0.017 ⁇ Vf + 28)
  • the conditions of the hydration process are set to satisfy
  • the amount of the hydrated film generated in the hydration process is appropriate, defects can be reduced. That is, when the amount of the hydrated film generated in the hydration process is less than the lower limit of the above conditional expression, the heat generated during the chemical conversion increases, so that it becomes difficult to repair defects.
  • the amount of the hydrated film produced in the hydration process is larger than the upper limit of the above conditional expression, the thickened hydrated film prevents the chemical liquid or water from penetrating into the defect. , Flaw repair is prevented. Therefore, if the above conditions are satisfied, the number of holes exposed on the cut surface when the chemical conversion film is cut can be reduced to 150 / ⁇ m 2 or less, preferably 100 / ⁇ m 2 or less.
  • the water resistance of the electrode for electrolytic capacitors can be improved.
  • FIG. 4 is an explanatory view schematically showing a chemical conversion step of an electrode for an aluminum electrolytic capacitor to which the present invention is applied.
  • the chemical conversion step for example, as shown in FIG. 4, “the aluminum electrode 10 is immersed in the chemical conversion liquid 20 stored in the chemical conversion tank (not shown). In the chemical conversion liquid 20, a pair of counter electrodes 30 are arranged. In this state, both surfaces of the aluminum electrode 10 face the counter electrode 30. In this state, the aluminum electrode 10 is used as an anode and the counter electrode 30 is used as a negative electrode, thereby forming the aluminum electrode 10. As a result, the aluminum electrode 10 is formed. Then, aluminum oxide (chemical conversion film) is formed on both surfaces of the aluminum electrode 10. At that time, a part of the hydrated film formed in the hydration process is dehydrated and converted into aluminum oxide, and is contained in a part of the chemical conversion film. It is.
  • an aqueous solution of an organic acid such as adipic acid or a salt thereof is used as the chemical conversion solution 20.
  • an aqueous solution containing an organic acid such as adipic acid or a salt thereof and having a specific resistance measured at 50 ° C. of 5 ⁇ m to 500 ⁇ m (organic acid-based chemical conversion solution 20)
  • the liquid temperature is 40 ° C. to 90 ° C.
  • the aluminum electrode 10 is chemically formed.
  • the voltage is increased until the power supply voltage applied between the aluminum electrode 10 and the counter electrode 30 reaches the final formation voltage Vf, and then the formation voltage Vf is maintained.
  • an aqueous solution containing an inorganic acid such as boric acid or phosphoric acid or a salt thereof may be used as the chemical conversion solution 20.
  • an aqueous solution (inorganic acid-based chemical conversion solution 20) containing an inorganic acid such as boric acid or phosphoric acid or a salt thereof and having a specific resistance measured at 90 ° C. of 10 ⁇ m to 1000 ⁇ m the liquid temperature is 40 ° C. to 95 ° C. Chemical conversion is performed on the aluminum electrode 10 under the conditions.
  • formation is performed with the formation solution 20 using an organic acid such as adipic acid or a salt thereof, and then formation using an inorganic acid such as boric acid or phosphoric acid or a salt thereof.
  • the liquid 20 may be held at the formation voltage Vf (constant voltage formation).
  • thermal depolarization treatment in which the aluminum electrode 10 is heated in the middle of the chemical conversion step, or in-liquid depolarization treatment in which the aluminum electrode 10 is immersed in an aqueous solution containing phosphate ions or the like.
  • Depolarization processing is performed.
  • the treatment temperature is 450 ° C. to 550 ° C.
  • the treatment time is 2 minutes to 10 minutes.
  • the aluminum electrode 10 is immersed in an aqueous solution of 20% by mass to 30% by mass phosphoric acid for 5 minutes to 15 minutes depending on the film withstand voltage at a liquid temperature of 60 ° C. to 70 ° C. To do. Note that no voltage is applied to the aluminum electrode 10 in the liquid depolarization process.
  • a phosphoric acid immersing step of immersing the aluminum electrode 10 in an aqueous solution containing phosphate ions may be performed in the middle of increasing the pressure to the formation voltage.
  • the aluminum electrode 10 is immersed in a phosphoric acid aqueous solution having a liquid temperature of 40 ° C. to 80 ° C. and a specific resistance measured at 60 ° C. of 0.1 ⁇ m to 5 ⁇ m in a time of 3 minutes to 30 minutes. .
  • the aluminum hydroxide precipitated in the chemical conversion step can be efficiently removed, and the subsequent generation of aluminum hydroxide can be suppressed.
  • phosphate ions can be incorporated into the chemical conversion film by the phosphoric acid immersion process, so that the durability against immersion in boiling water or acidic solution can be improved. Can be improved.
  • the aluminum electrode 10 and the chemical conversion liquid 20 are set to a stationary state or a moved state.
  • the chemical conversion is performed while the aluminum electrode 10 is moved.
  • the chemical conversion is performed while the aluminum electrode 10 is moved while being immersed in the chemical conversion liquid 20.
  • the chemical conversion is performed in a state in which the chemical conversion liquid 20 is moved.
  • the chemical conversion liquid 20 in which the aluminum electrode 10 is immersed is moved by circulation or stirring.
  • the moving speed of the aluminum electrode 10 is represented by a three-dimensional speed vector A, and the average of the chemical conversion liquid 20 in the range Z 0 from the surface of the aluminum electrode 10 to 10 cm in the direction perpendicular to the surface of the aluminum electrode 10.
  • the flow velocity is represented by a three-dimensional velocity vector B
  • the relative velocity of the chemical conversion liquid 20 with respect to the aluminum electrode 10 is represented by a three-dimensional velocity vector BA
  • the absolute value of the velocity vector BA is represented by
  • is expressed by the following conditional expression: 5 cm / s ⁇
  • the relative speed of the chemical conversion liquid with respect to the aluminum electrode surface is appropriate, heat generated from the aluminum electrode during chemical conversion can be efficiently released into the chemical conversion liquid. Accordingly, it is possible to avoid a situation in which the chemical conversion film reaches a high temperature and water is desorbed more than necessary from the hydrated film. Therefore, even if the formation voltage is 400 V or more, the defect is repaired. Accordingly, the electrode for an aluminum electrolytic capacitor to which the present invention is applied has a high electrostatic capacity and has few defects in the chemical conversion film, so that it is difficult to hydrate and deteriorate.
  • the left-right direction (horizontal direction) is the X direction
  • the up-down direction (vertical direction) is the Y direction
  • the direction in which the aluminum electrode 10 and the counter electrode 30 face each other is the Z direction. Therefore, the three-dimensional velocity vector A of the moving speed of the aluminum electrode 10 corresponds to a vector obtained by combining the velocity vector A X in the X direction, the velocity vector A Y in the Y direction, and the velocity vector A Z in the Z direction.
  • of the velocity vector A is expressed by the following equation.
  • ⁇ (A X 2 + A Y 2 + A Z 2 )
  • of the velocity vector B is expressed by the following equation.
  • ⁇ (B X 2 + B Y 2 + B Z 2 )
  • of the three-dimensional velocity vector BA of the relative velocity of the chemical conversion solution 20 with respect to the aluminum electrode 10 is expressed by the following equation.
  • ⁇ ((B X ⁇ A X ) 2 + (B Y ⁇ A Y ) 2 + (B Z ⁇ A Z ) 2 )
  • Table 1 shows the manufacturing conditions of the electrodes for aluminum electrolytic capacitors according to Examples 1 and 2 of the present invention and Comparative Examples 1 and 2.
  • Table 2 shows the characteristics of the aluminum electrolytic capacitor electrodes according to Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention.
  • any of Examples 1 and 2 and Comparative Examples 1 and 2 a high-purity aluminum etched foil subjected to surface expansion treatment by etching treatment was used as the aluminum electrode. Also, at each temperature shown in Table 1, hydration was performed in pure water so that the ratio of the mass of the hydrated film formed by the hydration process to the mass of the aluminum electrode before the boil process was 20%. Then, chemical conversion was performed with each type of chemical conversion liquid shown in Table 1. At that time, in the chemical conversion step, depolarization treatment was performed by immersion in a phosphoric acid aqueous solution or heat treatment. The formation voltage is 600V. The absolute value
  • hydration resistance was measured for the aluminum electrode.
  • the measurement of hydration resistance is the result of measurement according to “Test method for electrode foil for aluminum electrolytic capacitor” defined in EIAJ RC 2364A.
  • the hydration resistance is 60 ⁇ 1 in pure water of 95 ° C. or higher. It is shown as the time (seconds) until the pressure is increased to the withstand voltage of the film when a constant current is applied after immersion for a minute.
  • the number of defects in the chemical conversion film 1 ⁇ m 2 was measured by observing the cross section of the chemical conversion film with an FE-SEM and performing image analysis.
  • Examples 1 and 2 have good hydration resistance because the temperature of the hydration step and the temperature of the chemical conversion solution are appropriate.
  • the temperature of the hydration process is appropriate, but since the temperature of the chemical conversion liquid is high, dehydration from the hydrated film increases. As a result, since it becomes a chemical film with many defects, the hydration resistance is poor.
  • the temperature of the chemical conversion liquid is appropriate, but the water in the hydrated film decreases because the temperature of the hydration process is high. As a result, since it becomes a chemical film with many defects, the hydration resistance is poor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

アルミニウム電極を温度が78℃から92℃までの水和処理液と接触させてアルミニウム電極に水和皮膜を形成する水和工程と、温度が58℃から78℃までの化成液中で400V以上の化成電圧で化成を行い、アルミニウム電極に化成皮膜を形成する化成工程とを行い、アルミニウム電解コンデンサ用電極を製造する。その際、水和皮膜量を適正化する。かかるアルミニウム電解コンデンサ用電極では、化成皮膜を切断した際に切断面で露出する空孔の数が150個/μm2以下であるため、耐水性が高い。

Description

アルミニウム電解コンデンサ用電極およびその製造方法
 本発明は、アルミニウム電極に化成皮膜を形成したアルミニウム電解コンデンサ用電極およびその製造方法に関するものである。
 アルミニウム電解コンデンサ用陽極箔の製造工程では、多孔質層を有するアルミニウム電極を高温の純水等の水和処理液に浸漬してアルミニウム電極の表面に水和皮膜を形成した後(水和工程)、有機酸や無機酸およびそれらの塩を含む化成液中で化成を行い(化成工程)、酸化アルミニウムからなる化成皮膜を表面に形成する。化成工程の前に水和皮膜を形成することによって、化成に要する電気量を削減できるとともに、単位面積当たりの静電容量を向上させることができる(特許文献1参照)。
特開2014-57000号公報
 水和工程の後に400V以上の化成電圧で化成を行った場合に形成される化成皮膜中には、直径数nmから数10nmの空孔からなる欠陥が多数存在する。これは、水和皮膜が脱水して酸化アルミニウムに変化する際に体積収縮を起こすために生じると考えられている。これらの欠陥が存在する化成皮膜は、表面から水が浸入しやすいため、化成皮膜が水和劣化しやすいという欠点を有する。
 かかる欠陥に対して、本発明者等が種々検討した結果、水和工程を行った後に化成を行った際、300V以上の電圧から前記欠陥が生じ始め、それは特に400V以上、さらには500V以上で顕著になることを見出した。また、本発明者等は、実験と考察とを繰り返した結果、300V以下の電圧で化成する場合には、前記欠陥が生じた場合でも、化成工程において欠陥に化成液あるいは水が浸透することにより、欠陥が再び化成されて修復される。しかしながら、400V以上の電圧で化成する場合には、化成皮膜で発生する熱が甚大であるため、化成工程において欠陥に化成液あるいは水が浸透する前に、皮膜の表面で化成液あるいは水が沸騰、蒸発してしまい、欠陥の修復が進みにくいとの知見を得た。
 上記問題点に鑑みて、本発明の課題は、耐電圧が400V以上の化成皮膜の耐水性を向上させることのできるアルミニウム電解コンデンサ用電極およびその製造方法を提供することにある。
 上記課題を解決するために、本発明は、アルミニウム電極に400V以上の耐電圧を有する化成皮膜を形成したアルミニウム電解コンデンサ用電極であって、前記化成皮膜を切断した際に切断面で露出する空孔の数が150個/μm以下であることを特徴とする。
 本発明では、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数が150個/μm以下であり、化成皮膜中の欠陥が少ない。このため、化成皮膜の表面から水が浸入しにくいので、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。
 本発明において、前記空孔の数が100個/μm以下であることが好ましい。
 本発明に係るアルミニウム電解コンデンサ用電極の製造方法では、アルミニウム電極を温度が78℃から92℃までの水和処理液と接触させて前記アルミニウム電極に水和皮膜を形成する水和工程と、温度が58℃から78℃までの化成液中で400V以上の化成電圧で化成を行い、前記アルミニウム電極に化成皮膜を形成する化成工程と、を有し、前記水和皮膜の質量の前記アルミニウム電極の前記水和工程前の質量に対する割合をxwt%としたとき、皮膜耐電圧Vf(V)および割合xwt%が、以下の条件式
    (0.01×Vf)≦x≦(0.017×Vf+28)
を満たすことを特徴とする。
 本発明に係るアルミニウム電解コンデンサ用電極の製造方法においては、水和皮膜に含まれる水が60℃~90℃で脱離しやすいという知見に基づき、水和工程を比較的低い温度の78℃から92℃で行う。このため、水和皮膜中の水が脱離し難く、水分量の多い水和皮膜が形成される。そのため、化成工程において水和皮膜が脱水して酸化アルミニウムに変化する際の体積収縮に起因して欠陥(空孔)が発生しても、化成皮膜中に水分が十分に存在するので、化成工程において欠陥を効果的に修復することができる。また、化成工程では、化成液の温度を58℃から78℃とするため、水和工程で水和皮膜から水が脱離しにくい。このため、化成途中でも水和皮膜中に水分が十分に存在するので、化成工程において欠陥を効果的に修復することができる。従って、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数を150個/μm以下まで低減することができるので、化成皮膜の表面から水が浸入しにくい。それ故、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。
 また、本発明では、水和工程で生成する水和皮膜の量が適切である。すなわち、水和工程で生成する水和皮膜の量が少なすぎる場合には化成時に発生する熱が大きくなるので、化成工程において欠陥の修復が進み難くなる。これに対して、水和工程で生成する水和皮膜の量が多すぎる場合には、厚く形成した水和皮膜によって化成液あるいは水が欠陥に浸透することが妨げられるので、欠陥の修復が妨げられる。従って、本発明によれば、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数を150個/μm以下まで低減することができるので、化成皮膜の表面から水が浸入しにくい。それ故、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。なお、欠陥は、化成工程において、デポラリゼーションを行った後に再化成をすることでもある程度取り除くことは可能であるが、400V以上の化成電圧においては十分に取り除くことができない。これは化成皮膜が厚く形成しているためにデポラリゼーションを行っても皮膜の内部の欠陥が取り残されてしまうためである。
 本発明において、前記化成工程では、前記アルミニウム電極の移動速度を3次元の速度ベクトルAで表し、前記アルミニウム電極の表面から前記アルミニウム電極の表面に対して垂直な方向に10cmまでの範囲における前記化成液の平均流速を3次元の速度ベクトルBで表し、前記アルミニウム電極に対する前記化成液の相対速度を3次元の速度ベクトルB-Aで表し、前記速度ベクトルB-Aの絶対値を|B-A|と表したとき、
 前記速度ベクトルの絶対値|B-A|は、以下の条件式
   3cm/s≦|B-A|≦100cm/s
を満たすことが好ましい。かかる構成によれば、化成液のアルミニウム電極表面に対する相対速度が適正であるため、化成時にアルミニウム電極から発生する熱を化成液中に効率的に逃がすことができる。このため、化成電圧が400V以上であっても、化成工程では、化成皮膜中の欠陥に化成液あるいは水が浸透することができるので、欠陥の修復が行われる。従って、静電容量が高く、化成皮膜中の欠陥が少ないので、化成皮膜が水和劣化し難い。ここで、|B-A|が3cm/s未満の場合には、アルミニウム電極表面からの熱を十分に逃がすことができないことや、イオンの拡散が不十分になること等の理由から、化成皮膜中の欠陥が十分に修復されず、漏れ電流が高く、水和劣化し易いアルミニウム電解コンデンサ用電極となってしまう。これに対して、|B-A|が100cm/sを超える場合、アルミニウム電極表面からのアルミニウムイオン溶出が過剰になるために、静電容量が低下しやすい。
 本発明において、前記速度ベクトルの絶対値|B-A|は、以下の条件式
   5cm/s≦|B-A|≦30cm/s
を満たすことが好ましい。
 本発明において、前記速度ベクトルAおよびBの絶対値を各々、|A|および|B|と表したとき、
 前記速度ベクトルの絶対値|A|および|B|は各々、以下の条件式
   0cm/s≦|A|≦100cm/s
   3cm/s≦|B|≦100cm/s
を満たすことが好ましい。
 本発明に係るアルミニウム電解コンデンサ用電極では、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数が150個/μm以下であり、化成皮膜中の欠陥が少ない。このため、化成皮膜の表面から水が浸入しにくいので、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。また、本発明に係るアルミニウム電解コンデンサ用電極の製造方法では、水和皮膜に含まれる水が60℃~90℃で脱離しやすいという知見に基づき、水和工程を比較的低い温度の78℃から92℃で行う。このため、水和皮膜中の水が脱離し難く、水分量の多い水和皮膜が形成される。また、化成工程では、化成液の温度を58℃から78℃とするため、水和工程で水和皮膜から水が脱離しにくい。このため、水和皮膜中に水分が十分に存在するので、化成工程において欠陥を効果的に修復することができる。また、水和工程で形成する水和皮膜の量が適正である。従って、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数を150個/μm以下まで低減することができるので、化成皮膜の表面から水が浸入しにくい。それ故、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。
アルミニウム電解コンデンサ用電極の化成皮膜中の空孔(欠陥)の検査方法を示す説明図である。 アルミニウム電解コンデンサ用電極の化成皮膜中の空孔(欠陥)の説明図である。 本発明を適用したアルミニウム電解コンデンサ用電極の製造方法において水和工程で生成する水和皮膜量の適正な範囲を示すグラフである。 本発明を適用したアルミニウム電解コンデンサ用電極の化成工程を模式的に示す説明図である。
(アルミニウム電解コンデンサ用電極)
 本発明では、アルミニウム電解コンデンサ用電極を製造するにあたって、アルミニウム電極の表面に化成を行ってアルミニウム電解コンデンサ用電極を製造する。アルミニウム電極としては、アルミニウム箔をエッチングしたエッチド箔や、アルミニウム粉体を焼結してなる多孔質層がアルミニウム芯材の両面に積層された多孔性アルミニウム電極等を用いることができる。エッチド箔は、トンネル状のピットが形成された多孔質層を備えている。多孔性アルミニウム電極は、例えば、厚さが10μm~50μmのアルミニウム芯材の両面の各々に1層当たりの厚さが150μm~3000μmの多孔質層30が形成されている。かかる多孔質層は、アルミニウム粉体を焼結してなる層であり、アルミニウム粉体は、互いに空隙を維持しながら焼結されている。
(アルミニウム電解コンデンサの構成)
 化成済みのアルミニウム電極(アルミニウム電解コンデンサ用電極)を用いてアルミニウム電解コンデンサを製造するには、例えば、化成済みのアルミニウム電極(アルミニウム電解コンデンサ用電極)からなる陽極箔と、陰極箔とをセパレータを介在させて巻回してコンデンサ素子を形成する。次に、コンデンサ素子を電解液(ペースト)に含浸する。しかる後には、電解液を含んだコンデンサ素子を外装ケースに収納し、封口体でケースを封口する。かかる構成のアルミニウム電解コンデンサにおいて、化成皮膜の耐水性が低いと、アルミニウム電解コンデンサ用電極を保存中に化成皮膜が空気中の水分によって劣化し、アルミニウム電解コンデンサの特性が低下することがある。また、アルミニウム電解コンデンサを製造した後、化成皮膜が電解液中の水分によって劣化すると、アルミニウム電解コンデンサの信頼性が低下する。従って、アルミニウム電解コンデンサ用電極には高い耐水性が要求される。
 また、電解液に代えて固体電解質を用いる場合、化成済みのアルミニウム電極(アルミニウム電解コンデンサ用電極)からなる陽極箔の表面に固体電解質層を形成した後、固体電解質層の表面に陰極層を形成し、しかる後に、樹脂等により外装する。その際、陽極に電気的接続する陽極端子と陰極層に電気的接続する陰極端子とを設ける。この場合、陽極箔が複数枚積層されることがある。かかる構成のアルミニウム電解コンデンサでは、アルミニウム電解コンデンサ用電極の耐水性が低いと、樹脂等の外装を介して侵入した水分によって化成皮膜が劣化することから、アルミニウム電解コンデンサ用電極には高い耐水性が要求される。
(アルミニウム電解コデンサ用電極)
 図1は、アルミニウム電解コンデンサ用電極の化成皮膜中の空孔(欠陥)の検査方法を示す説明図である。図2は、アルミニウム電解コンデンサ用電極の化成皮膜中の空孔(欠陥)の説明図である。なお、図2では、空孔の存在が分かりやすいように、空孔の多い化成皮膜の断面をFE-SEMで観察した写真を示してある。
 アルミニウム電解コンデンサ用電極において、化成皮膜中に空孔(欠陥)が多いと、表面から水が浸入しやすいために、化成皮膜が水和劣化しやすい。従って、化成皮膜中の欠陥が少ない方がアルミニウム電解コンデンサ用電極の耐水性が高い。そこで、本形態では、図1および図2を参照して説明するように、化成皮膜中の空孔の数を所定値以下に制御する。より具体的には、アルミニウム電解コンデンサ用電極の化成皮膜を切断した際、切断面で露出する空孔の数を所定値以下に制御することにより、化成皮膜中の空孔の数を所定値以下に制御する。
 図1(a)および図2には、エッチド箔に化成皮膜を形成したアルミニウム電解コンデンサ用電極に対して、表面に沿うように化成皮膜を切断した場合を示してあり、トンネル状のピットが黒色領域として示されている。また、ピットの周りに化成皮膜が存在している。また、図2に示すように、化成皮膜の切断面では空孔(欠陥)が露出するので、1μm当たりの空孔の数を計測することができる。
 なお、図1(b)に示すように、化成皮膜をピットに沿うように切断してもよく、この場合も、化成皮膜の切断面では空孔(欠陥)が露出するので、1μm当たりの空孔の数を計測することができる。
 本形態では、アルミニウム電解コンデンサ用電極の化成皮膜を切断した際に切断面で露出する空孔の数を150個/μm以下に設定してある。このため、化成皮膜中の欠陥が少ない。従って、化成皮膜の表面から水が浸入しにくいので、水和劣化しにくく、耐水性が高い。なお、空孔の数は、100個/μm以下であることがより好ましく、かかる態様によれば、アルミニウム電解コンデンサ用電極の耐水性を大幅に向上することができる。
(アルミニウム電解コデンサ用電極の製造方法)
 本形態のアルミニウム電解コンデンサ用電極の製造方法では、アルミニウム電極を純水等の水和処理液と接触させてアルミニウム電極に水和皮膜を形成する水和工程と、化成液中で400V以上の化成電圧でアルミニウム電極に化成を行い、アルミニウム電極に化成皮膜を形成する化成工程とを行う。本形態において、水和工程では、温度が78℃から92℃までの純水(水和処理液)にアルミニウム電極を浸漬して水和皮膜を形成する。化成工程では、温度が58℃から78℃までの化成液中で400V以上の化成電圧でアルミニウム電極に化成を行う。
 このような製造方法において、水和工程の後に化成工程を行うと、水和皮膜の脱水反応と、アルミニウムの陽極酸化反応の両方によって化成皮膜が形成される。水和皮膜の脱水反応においては、水の脱離によって体積が収縮するので空孔(欠陥)が発生する。かかる欠陥の一部は陽極酸化反応によって修復されるが、欠陥中に化成液や水が存在しないと修復されないため、修復されなかった欠陥は、最終的に化成皮膜中に残存し、漏れ電流の増加や耐水和性の低下の原因となる。本発明者等が化成皮膜の断面を詳細に観察した結果、化成皮膜中の欠陥の大きさは数nm~数10nmであり、400V以上の耐電圧まで化成する場合に特に多く発生することが分かった。また、水和工程の液温が高く、かつ、化成液温度が高温である場合により多くの欠陥が発生することが分かった。
 より具体的には、水和皮膜に含まれる水は約60℃~90℃と、95℃~150℃、200℃~450℃の3段階で脱離することが分かった。従来技術のように、沸騰純水中でボイルを行った場合、水が脱離してしまうので、同じ量のアルミニウムを反応させた場合であっても、水和皮膜中の水分量が少なくなる。そのため、その後の化成工程で化成皮膜中の水分が不足して欠陥を十分に修復することができない。しかるに本発明では、水和工程を比較的低い温度の78℃から92℃で行うため、水和皮膜中の水が脱離し難く、水分量の多い水和皮膜が形成される。そのため、その後の化成工程において化成皮膜中の水分が十分に存在するので効果的に欠陥を修復することができる。
 また、化成工程では、化成液の温度を58℃から78℃とするため、水和皮膜から水が脱離しにくい。それ故、化成皮膜中の水分が十分に存在するので効果的に欠陥を修復することができる。
 よって、化成皮膜を切断した際に切断面で露出する空孔の数を150個/μm以下、好ましくは、100個/μm以下にまで減らすことができるので、アルミニウム電解コンデンサ用電極の耐水性を向上することができる。
 なお、欠陥は、デポラリゼーションを行った後に再化成をすることでもある程度取り除くことは可能であるが、400V以上の化成電圧においては十分に取り除くことができない。これは化成皮膜が厚く形成しているためにデポラリゼーションを行っても皮膜の内部の欠陥が取り残されてしまうためである。しかるに本形態によれば、化成電圧が400V以上の化成皮膜であっても、欠陥の低減でき、アルミニウム電解コンデンサ用電極の耐水性を向上することができる。
(水和皮膜量)
 図3は、本発明を適用したアルミニウム電解コンデンサ用電極の製造方法において水和工程で生成する水和皮膜量の適正な範囲を示すグラフである。本形態では、水和工程で生成する水和皮膜の量は、水和工程によって増加した質量の割合xを以下の式(数1)で表したとき、図1に実線L11で示すxの下限から、図1に破線L12で示すxの上限までの範囲とする。
Figure JPOXMLDOC01-appb-M000001
 より具体的には、化成皮膜の最終的な皮膜耐電圧をVf(V)とし、水和工程によって増加した質量の割合をxとしたとき、xの下限を示す実線L11は、以下の式
   x=(0.01×Vf)
で表される。また、xの上限を示す破線L12は、以下の式
   x=(0.017×Vf+28)
で表される。
 従って、本形態では、皮膜耐電圧Vf(V)および割合x(質量%)が、以下の条件式
    (0.01×Vf)≦x≦(0.017×Vf+28)
を満たすように水和工程の条件を設定する。
 かかる構成によれば、水和工程で生成する水和皮膜の量が適切であるため、欠陥を減らすことができる。すなわち、水和工程で生成する水和皮膜の量が、上記条件式の下限より少ない場合には化成時に発生する熱が大きくなるので欠陥の修復が進み難くなる。これに対して、水和工程で生成する水和皮膜の量が、上記条件式の上限より多い場合には、厚く形成した水和皮膜によって化成液あるいは水が欠陥に浸透することが妨げられるので、欠陥の修復が妨げられる。よって、上記条件を満たせば、化成皮膜を切断した際に切断面で露出する空孔の数を150個/μm以下、好ましくは、100個/μm以下にまで減らすことができるので、アルミニウム電解コンデンサ用電極の耐水性を向上することができる。
(化成工程)
 図4は、本発明を適用したアルミニウム電解コンデンサ用電極の化成工程を模式的に示す説明図である。化成工程では、例えば、図4に示すように、化成槽(図示せず)に貯留された「化成液20にアルミニウム電極10を浸漬する。化成液20中には、1対の対極30が配置されており、アルミニウム電極10の両面が各々、対極30と対向する状態となる。この状態で、アルミニウム電極10を陽極とし、対極30を負極として化成を行い、アルミニウム電極10を化成する。その結果、アルミニウム電極10の両面に酸化アルミニウム(化成皮膜)が形成される。その際、水和工程で形成した水和皮膜の一部が脱水して酸化アルミニウムに変化し、化成皮膜の一部に含まれる。
 かかる化成工程では、例えば、アジピン酸等の有機酸あるいはその塩の水溶液を化成液20として用いる。例えば、アジピン酸等の有機酸あるいはその塩を含み、50℃で測定した比抵抗が5Ωmから500Ωmの水溶液(有機酸系の化成液20)中において、液温が40℃から90℃の条件下でアルミニウム電極10に化成を行う。その際、アルミニウム電極10と対極30との間に印加した電源電圧が、最終的な化成電圧Vfになるまで昇圧を行い、その後、化成電圧Vfでの保持を行う。
 また、アジピン酸等の有機酸あるいはその塩を用いた化成液20に代えて、硼酸やリン酸等の無機酸あるいはその塩を含む水溶液を化成液20として用いてもよい。例えば、硼酸やリン酸等の無機酸あるいはその塩を含み、90℃で測定した比抵抗が10Ωmから1000Ωmの水溶液(無機酸系の化成液20)中において、液温が40℃から95℃の条件下でアルミニウム電極10に化成を行う。
 また、最終的な化成電圧Vfになるまでは、アジピン酸等の有機酸あるいはその塩を用いた化成液20によって化成を行い、その後、硼酸やリン酸等の無機酸あるいはその塩を用いた化成液20によって化成電圧Vfでの保持(定電圧化成)を行ってもよい。
 いずれの化成液20を用いた場合も、化成工程の途中に、アルミニウム電極10を加熱する熱デポラリゼーション処理や、リン酸イオンを含む水溶液等にアルミニウム電極10を浸漬する液中デポラリゼーション処理等のデポラリゼーション処理を行う。熱デポラリゼーション処理では、例えば、処理温度が450℃~550℃であり、処理時間は2分~10分である。液中デポラリゼーション処理では、20質量%~30質量%リン酸の水溶液中において、液温が60℃~70℃の条件で皮膜耐電圧に応じて5分~15分、アルミニウム電極10を浸漬する。なお、液中デポラリゼーション処理では、アルミニウム電極10に電圧を印加しない。
 また、化成電圧まで昇圧する途中に、リン酸イオンを含む水溶液中にアルミニウム電極10を浸漬するリン酸浸漬工程を行ってもよい。かかるリン酸浸漬工程では、液温が40℃から80℃であり、60℃で測定した比抵抗が0.1Ωmから5Ωmであるリン酸水溶液にアルミニウム電極10を3分から30分の時間で浸漬する。かかるリン酸浸漬工程によれば、化成工程で析出した水酸化アルミニウムを効率よく取り除くことができるとともに、その後の水酸化アルミニウムの生成を抑制することができる。また、リン酸浸漬工程によって、化成皮膜内にリン酸イオンを取り込むことができるので、沸騰水や酸性溶液への浸漬に対する耐久性を向上することができる等、化成皮膜の安定性を効果的に向上することができる。
(アルミニウム電極に対する化成液の相対速度)
 本形態では、図2に示す状態で化成工程を行う際、アルミニウム電極10および化成液20については静止させた状態、あるいは移動させた状態とする。アルミニウム電極10を移動させた状態で化成を行うとは、アルミニウム電極10を化成液20に浸漬した状態のまま、移動させた状態で化成を行う。化成液20を移動させた状態で化成を行うとは、アルミニウム電極10を浸漬した化成液20を循環あるいは撹拌によって移動させて化成を行う。
 本形態では、アルミニウム電極10の移動速度を3次元の速度ベクトルAで表し、アルミニウム電極10の表面からアルミニウム電極10の表面に対して垂直な方向に10cmまでの範囲Zにおける化成液20の平均流速を3次元の速度ベクトルBで表し、アルミニウム電極10に対する化成液20の相対速度を3次元の速度ベクトルB-Aで表し、速度ベクトルB-Aの絶対値を|B-A|と表したとき、
速度ベクトルの絶対値|B-A|は、以下の条件式
   3cm/s≦|B-A|≦100cm/s
を満たしている。
 本形態において、速度ベクトルの絶対値|B-A|は、以下の条件式
   5cm/s≦|B-A|≦30cm/s
を満たしている。
 また、速度ベクトルAおよびBの絶対値を各々、|A|および|B|と表したとき、
速度ベクトルの絶対値|A|および|B|は各々、以下の条件式
   0cm/s≦|A|≦100cm/s
   3cm/s≦|B|≦100cm/s
を満たしている。ここで、アルミニウム電極10を静止させた状態で化成を行う場合、速度ベクトルの絶対値|A|は0となる。
 かかる構成によれば、化成液のアルミニウム電極表面に対する相対速度が適正であるため、化成時にアルミニウム電極から発生する熱を化成液中に効率的に逃がすことができる。従って、化成皮膜が高温になって水和皮膜から水が必要以上に脱離するという事態を回避することができる。そのため、化成電圧が400V以上であっても、欠陥の修復が行われる。従って、本発明を適用したアルミニウム電解コンデンサ用電極は、静電容量が高く、化成皮膜中の欠陥が少ないので、水和劣化し難い。ここで、|B-A|が3cm/s未満の場合には、アルミニウム電極表面からの熱を十分に逃がすことができないことや、イオンの拡散が不十分になること等の理由から、化成皮膜中の欠陥が十分に修復されず、漏れ電流が高く水和劣化し易いアルミニウム電解コンデンサ用電極となる。これに対して、|B-A|が100cm/sを超える場合、アルミニウム電極表面からのアルミニウムイオン溶出が過剰になるために、静電容量が低下しやすい。
 図2には、アルミニウム電極10の両面に沿う方向のうち、左右方向(水平方向)をX方向とし、上下方向(垂直方向)をY方向としてある。また、アルミニウム電極10と対極30とが対向する方向をZ方向としてある。従って、アルミニウム電極10の移動速度の3次元の速度ベクトルAは、X方向の速度ベクトルAと、Y方向の速度ベクトルAと、Z方向の速度ベクトルAとを合成したベクトルに相当する。また、速度ベクトルAの絶対値|A|は、以下の式で表される。
   |A|=√(A +A +A
 化成液20の移動速度の3次元の速度ベクトルBは、X方向の速度ベクトルBと、Y方向の速度ベクトルBと、Z方向の速度ベクトルBとを合成したベクトルに相当する。また、速度ベクトルBの絶対値|B|は、以下の式で表される。
   |B|=√(B +B +B
 アルミニウム電極10に対する化成液20の相対速度の3次元の速度ベクトルB-Aの絶対値|B-A|は、以下の式で表される。
   |B-A|=√((B-A+(B-A+(B-A
(実施例)
 次に、本発明の実施例等を説明する。表1に本発明の実施例1、2、および比較例1、2に係るアルミニウム電解コンデンサ用電極の製造条件を示す。表2に本発明の実施例1、2、および比較例1、2に係るアルミニウム電解コンデンサ用電極の特性を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例1、2、および比較例1、2のいずれにおいても、アルミニウム電極として、エッチング処理で拡面処理された高純度アルミニウムのエッチド箔を用いた。また、表1に示す各温度で、水和工程により形成された水和皮膜の質量のアルミニウム電極のボイル工程前の質量に対する割合が20%となるように、純水中で水和処理を行った後、表1に示す各種類の化成液で化成を行った。その際、化成工程では、リン酸水溶液浸漬や、熱処理によるデポラリゼーション処理を行った。化成電圧は600Vである。また、アルミニウム電極に対する化成液の相対速度の3次元の速度ベクトルB-Aの絶対値|B-A|を10cm/sとした。
 次に、アルミニウム電極に対して、耐水和性を測定した。耐水和性の測定は、EIAJ RC 2364Aに規定された「アルミニウム電解コンデンサ用電極箔の試験方法」に従って測定した結果であり、例えば、耐水和性は、95℃以上の純水中に60±1分間浸漬した後に定電流を印加した際の皮膜耐電圧まで昇圧するまでの時間(秒)で示してある。また、化成皮膜の断面をFE-SEMで観察し、画像解析を行うことで、化成皮膜1μmの欠陥個数を計測した。
 実施例1、2は、水和工程の温度および化成液の温度が適正であるので、耐水和性が良い。比較例1は、水和工程の温度は適正であるが、化成液の温度が高いので、水和皮膜からの脱水が多くなる。その結果、欠陥の多い化成皮膜となるため、耐水和性が悪い。比較例2は、化成液の温度は適正であるが、水和工程の温度が高いので、水和皮膜中の水分が少なくなる。その結果、欠陥の多い化成皮膜となるため、耐水和性が悪い。
(その他の実施の形態)
 上記実施例では、アルミニウム電極として、エッチド箔を用いたが、アルミニウム粉体を焼結してなる多孔質層がアルミニウム芯材の両面に積層された多孔性アルミニウム電極等を用いた場合も同様な結果が得られている。また、上記実施例以外にも各種条件を検討した結果、上述した条件を満たしていれば、化成電圧が400V以上の化成皮膜であっても、化成皮膜内の欠陥を低減させることができる結果が得られている。

Claims (6)

  1.  アルミニウム電極に400V以上の耐電圧を有する化成皮膜を形成したアルミニウム電解コンデンサ用電極であって、
     前記化成皮膜を切断した際に切断面で露出する空孔の数が150個/μm以下であることを特徴とするアルミニウム電解コンデンサ用電極。
  2.  前記空孔の数が100個/μm以下であることを特徴とするアルミニウム電解コンデンサ用電極。
  3.  アルミニウム電極を温度が78℃から92℃までの水和処理液と接触させて前記アルミニウム電極に水和皮膜を形成する水和工程と、
     温度が58℃から78℃までの化成液中で400V以上の化成電圧で化成を行い、前記アルミニウム電極に化成皮膜を形成する化成工程と、
     を有し、
     前記水和皮膜の質量の前記アルミニウム電極の前記水和工程前の質量に対する割合をxwt%としたとき、皮膜耐電圧Vf(V)および割合xwt%が、以下の条件式
        (0.01×Vf)≦x≦(0.017×Vf+28)
    を満たすことを特徴とするアルミニウム電解コンデンサ用電極の製造方法。
  4.  前記化成工程では、前記アルミニウム電極の移動速度を3次元の速度ベクトルAで表し、前記アルミニウム電極の表面から前記アルミニウム電極の表面に対して垂直な方向に10cmまでの範囲における前記化成液の平均流速を3次元の速度ベクトルBで表し、前記アルミニウム電極に対する前記化成液の相対速度を3次元の速度ベクトルB-Aで表し、前記速度ベクトルB-Aの絶対値を|B-A|と表したとき、
     前記速度ベクトルの絶対値|B-A|は、以下の条件式
       3cm/s≦|B-A|≦100cm/s
    を満たすことを特徴とする請求項3に記載のアルミニウム電解コンデンサ用電極の製造方法。
  5.  前記速度ベクトルの絶対値|B-A|は、以下の条件式
       5cm/s≦|B-A|≦30cm/s
    を満たすことを特徴とする請求項4に記載のアルミニウム電解コンデンサ用電極の製造方法。
  6.  前記速度ベクトルAおよびBの絶対値を各々、|A|および|B|と表したとき、
     前記速度ベクトルの絶対値|A|および|B|は各々、以下の条件式
       0cm/s≦|A|≦100cm/s
       3cm/s≦|B|≦100cm/s
    を満たすことを特徴とする請求項4または5に記載のアルミニウム電解コンデンサ用電極の製造方法。
PCT/JP2017/044002 2017-02-09 2017-12-07 アルミニウム電解コンデンサ用電極およびその製造方法 WO2018146932A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780085996.2A CN110366764B (zh) 2017-02-09 2017-12-07 铝电解电容器用电极及其制造方法
US16/483,407 US11309137B2 (en) 2017-02-09 2017-12-07 Electrode for aluminium electrolytic capacitor, and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017022060A JP6990974B2 (ja) 2017-02-09 2017-02-09 アルミニウム電解コンデンサ用電極の製造方法
JP2017-022060 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018146932A1 true WO2018146932A1 (ja) 2018-08-16

Family

ID=63107939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044002 WO2018146932A1 (ja) 2017-02-09 2017-12-07 アルミニウム電解コンデンサ用電極およびその製造方法

Country Status (5)

Country Link
US (1) US11309137B2 (ja)
JP (2) JP6990974B2 (ja)
CN (1) CN110366764B (ja)
TW (1) TWI738945B (ja)
WO (1) WO2018146932A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675996B2 (ja) * 2017-02-09 2020-04-08 日本軽金属株式会社 アルミニウム電解コンデンサ用電極の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342740A (ja) * 1993-03-18 1994-12-13 Hitachi Aic Inc 電解コンデンサ用電極箔の製造方法
JPH09275040A (ja) * 1996-04-02 1997-10-21 Nippon Light Metal Co Ltd 中高圧アルミニウム電解コンデンサ用電極箔の化成方法
JP2003193260A (ja) * 2001-12-27 2003-07-09 Showa Denko Kk エッチング特性に優れた電解コンデンサ電極用アルミニウム箔およびその製造方法、ならびに電解コンデンサ電極用アルミニウムエッチド箔のの製造方法
JP2007184301A (ja) * 2005-12-29 2007-07-19 Nichicon Corp 電解コンデンサ用電極箔の製造方法
JP2007324151A (ja) * 2006-05-30 2007-12-13 Nichicon Corp 固体電解コンデンサの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733291A (en) * 1971-07-23 1973-05-15 Sprague Electric Co Formation process for producing dielectric aluminum oxide films
JPH04364019A (ja) * 1991-06-10 1992-12-16 Nichicon Corp 電解コンデンサ用電極箔の製造方法
KR100532686B1 (ko) * 1998-06-09 2005-11-30 쇼와 덴코 가부시키가이샤 고체 전해 콘덴서용 전극박, 그 제조방법 및 고체 전해콘덴서
JP3295841B2 (ja) * 1998-06-15 2002-06-24 日本蓄電器工業株式会社 アルミニウム電解コンデンサ用電極箔の製造方法
JP2008507847A (ja) * 2004-07-23 2008-03-13 サンデュー・テクノロジーズ・エルエルシー 高エネルギー貯蔵密度及び低esrを有するコンデンサ
JP4572649B2 (ja) * 2004-10-12 2010-11-04 パナソニック株式会社 電解コンデンサ用電極箔の製造方法
CN101748472B (zh) * 2010-03-20 2011-08-24 宜都东阳光化成箔有限公司 中压铝电解电容器阳极箔四级化成方法
JP2011216364A (ja) * 2010-03-31 2011-10-27 Toyo Aluminium Kk 負極集電体用金属箔
JP6043133B2 (ja) 2012-09-13 2016-12-14 日本軽金属株式会社 アルミニウム電解コンデンサ用電極の製造方法
JP6342740B2 (ja) 2014-07-31 2018-06-13 株式会社三共 遊技機
CN106252081B (zh) * 2016-08-11 2019-01-29 四川立业电子有限公司 一种电极氧化复合介质膜及其制备方法
JP6933931B2 (ja) * 2017-07-28 2021-09-08 日本軽金属株式会社 アルミニウム電解コンデンサ用電極およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342740A (ja) * 1993-03-18 1994-12-13 Hitachi Aic Inc 電解コンデンサ用電極箔の製造方法
JPH09275040A (ja) * 1996-04-02 1997-10-21 Nippon Light Metal Co Ltd 中高圧アルミニウム電解コンデンサ用電極箔の化成方法
JP2003193260A (ja) * 2001-12-27 2003-07-09 Showa Denko Kk エッチング特性に優れた電解コンデンサ電極用アルミニウム箔およびその製造方法、ならびに電解コンデンサ電極用アルミニウムエッチド箔のの製造方法
JP2007184301A (ja) * 2005-12-29 2007-07-19 Nichicon Corp 電解コンデンサ用電極箔の製造方法
JP2007324151A (ja) * 2006-05-30 2007-12-13 Nichicon Corp 固体電解コンデンサの製造方法

Also Published As

Publication number Publication date
JP7181358B2 (ja) 2022-11-30
CN110366764A (zh) 2019-10-22
JP6990974B2 (ja) 2022-01-12
TW201835953A (zh) 2018-10-01
JP2018129428A (ja) 2018-08-16
CN110366764B (zh) 2022-01-04
US20190362902A1 (en) 2019-11-28
JP2021185626A (ja) 2021-12-09
TWI738945B (zh) 2021-09-11
US11309137B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
JP4650833B2 (ja) 陽極体とその製造方法、および固体電解コンデンサ
CN110959184B (zh) 铝电解电容器用电极及其制造方法
TWI673738B (zh) 鋁電解電容器用電極之製造方法
JPH0258317A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
CN103310981A (zh) 全钽气密封电容器的制备方法
JP7181358B2 (ja) アルミニウム電解コンデンサ用電極
JP2000073198A (ja) バルブ金属を陽極処理するための方法及び電解質
CN102893350A (zh) 固态电解电容器
CN109791850B (zh) 电极用铝部件及电极用铝部件的制造方法
TWI730207B (zh) 鋁電解電容器用電極之製造方法
Tateishi et al. Anodization behavior of aluminum in ionic liquids with a small amount of water
WO2011013375A1 (ja) 固体電解コンデンサの製造方法
JP2000068159A (ja) 固体電解コンデンサ用電極箔、その製造方法及び固体電解コンデンサ
JP4811939B2 (ja) 電解コンデンサ用電極箔の化成方法
JP2010003996A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
JPH09246111A (ja) アルミ電解コンデンサ用電極箔の化成方法
KR101273348B1 (ko) 알루미늄 전해 콘덴서용 전극박 및 그 제조방법
JP4074588B2 (ja) アルミニウム電解コンデンサ用陽極箔の製造方法
JP2005347681A (ja) アルミニウム電解コンデンサ用陽極箔の製造方法
JPH04279017A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
JPH04280413A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
JPH04279018A (ja) アルミニウム電解コンデンサ用電極箔の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896151

Country of ref document: EP

Kind code of ref document: A1