WO2018142996A1 - 感震装置及びこれを用いた保安装置 - Google Patents

感震装置及びこれを用いた保安装置 Download PDF

Info

Publication number
WO2018142996A1
WO2018142996A1 PCT/JP2018/001858 JP2018001858W WO2018142996A1 WO 2018142996 A1 WO2018142996 A1 WO 2018142996A1 JP 2018001858 W JP2018001858 W JP 2018001858W WO 2018142996 A1 WO2018142996 A1 WO 2018142996A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
seismic
seismic intensity
earthquake
acceleration
Prior art date
Application number
PCT/JP2018/001858
Other languages
English (en)
French (fr)
Inventor
志英 高橋
村瀬 孝治
良平 小西
裕介 北野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880004955.0A priority Critical patent/CN110114644A/zh
Priority to EP18747586.8A priority patent/EP3578936A4/en
Priority to US16/476,068 priority patent/US20200183028A1/en
Publication of WO2018142996A1 publication Critical patent/WO2018142996A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis

Definitions

  • the present invention relates to a seismic sensing device that can distinguish between an earthquake and an impact, and a security device using the seismic sensing device.
  • Gas shut-off devices that have the function of shutting off gas when an abnormality occurs are equipped with a safety function that shuts off the gas when an earthquake is detected, and various seismic sensing devices have been proposed for detecting earthquakes. ing.
  • the seismic device described in Patent Document 1 uses a seismic device that generates an ON / OFF repetitive signal by vibration exceeding a specified acceleration.
  • this seismic device attention is paid to the fact that the seismic wave generally varies irregularly in both period and amplitude, but the shock wave has a waveform in which the amplitude gradually attenuates with the passage of time in the same period.
  • each time width of the on / off signal of the seismic device is also irregular in the earthquake vibration, and the on time width gradually decreases as an overall trend in the vibration at the time of impact, and the off time width gradually increases. Using the fact that it shows regularity that increases, earthquakes and impacts are identified.
  • the seismic device described in Patent Document 1 uses a seismic device that generates an on / off repetitive signal due to vibration exceeding a specified acceleration, it is possible to distinguish between an earthquake and an impact depending on the on / off time and period. In addition, it is necessary to judge the magnitude of the earthquake, and there is a case where the magnitude of the earthquake cannot be obtained accurately. In addition, because the prescribed acceleration is determined by the structure of the seismoscope, it could not cope with various earthquake vibration patterns and impacts, and there was a possibility of misjudgment.
  • the present invention provides a seismic sensing device capable of accurately determining an earthquake and an impact and calculating the intensity of the earthquake by using an acceleration sensor.
  • the seismic sensing device of the present invention includes an acceleration sensor that sequentially outputs an acceleration value according to the magnitude of acceleration of an applied vibration, an earthquake determination unit that identifies and determines an earthquake and an impact from the acceleration value, and the acceleration value A seismic intensity calculation unit for calculating a seismic intensity equivalent value.
  • This configuration makes it possible to accurately distinguish between earthquakes and impacts and to calculate earthquake strength. Further, it is possible to prevent a malfunction of the security device using this seismic sensing device.
  • FIG. 1 is a block diagram of the seismic device in the first embodiment.
  • FIG. 2A is an acceleration waveform diagram due to earthquake vibration.
  • FIG. 2B is an acceleration waveform diagram due to impact vibration.
  • FIG. 3A is a graph showing an acceleration waveform due to earthquake vibration and its binarization.
  • FIG. 3B is a graph showing an acceleration waveform due to impact vibration and its binarization.
  • FIG. 4A is a graph showing an acceleration waveform due to earthquake vibration and its binarization.
  • FIG. 4B is a graph showing an acceleration waveform due to impact vibration and its binarization.
  • FIG. 5 is a graph showing an acceleration waveform due to impact vibration detected by the seismic sensing device according to the second embodiment and its binarization.
  • FIG. 6 is a block diagram of the seismic sensing device according to the third embodiment.
  • FIG. 7 is a block diagram of the seismic sensing device in the fourth embodiment.
  • FIG. 8 is a configuration diagram of a gas shut-off device that is a security device according to the fifth embodiment.
  • FIG. 1 shows a block diagram of the seismic sensing device in the first embodiment.
  • the acceleration sensor 10 detects vibration such as an earthquake and sequentially outputs an acceleration value corresponding to the acceleration.
  • the earthquake determination unit 11 identifies and determines an earthquake and an impact from the acceleration value output from the acceleration sensor 10.
  • the seismic intensity calculation unit 12 calculates the seismic intensity equivalent value by a predetermined calculation method using the acceleration value output from the acceleration sensor 10.
  • the acceleration determination unit 13 determines that the acceleration sensor 10 has output an acceleration value greater than or equal to a predetermined value. And when the acceleration determination part 13 determines with the acceleration value more than predetermined, it outputs an acceleration value to the earthquake determination part 11 and the seismic intensity calculation part 12, and instruct
  • the earthquake determination unit 11 and the seismic intensity calculation unit 12 execute the determination and calculation for a predetermined period in response to an instruction from the acceleration determination unit 13, an earthquake determination signal (signal a) indicating the presence or absence of an earthquake, and a seismic intensity equivalent value indicating the magnitude of the seismic intensity (Signal b) is output.
  • the earthquake determination unit 11, the seismic intensity calculation unit 12, and the acceleration determination unit 13 can be realized by processing by a microcomputer (not shown).
  • FIG. 2A shows an acceleration waveform due to earthquake vibration obtained by the acceleration sensor 10
  • FIG. 2B shows an example of an acceleration waveform caused by vibration (hereinafter referred to as impact vibration) obtained by the acceleration sensor 10.
  • FIG. 2B particularly illustrates an acceleration waveform due to impact vibration measured by a seismic device mounted on a gas shutoff device connected to a pipe. In this case, since the casing of the gas shut-off device is affected by the natural frequency of the piping, the vibration continues.
  • the vibration pattern of earthquake and impact acceleration is clearly different, the waveform due to the earthquake shows an irregular vibration pattern, and the period due to the shock is almost constant except for the initial period when the impact was applied. And tend to attenuate gradually.
  • the earthquake determination unit 11 identifies and discriminates earthquakes and impacts by utilizing the fact that the vibration waveform differs between the earthquake and the impact.
  • the seismic intensity equivalent value calculated by the seismic intensity calculating unit 12 is an index value of the magnitude of the earthquake, a measured seismic intensity determined by the Japan Meteorological Agency, or an SI value as an index for measuring how much earthquake motion will damage the building. Yes, it can be calculated based on the acceleration value output by the acceleration sensor 10.
  • the acceleration determination unit 13 since the earthquake determination and the seismic intensity equivalent value are calculated only when the acceleration determination unit 13 detects a predetermined acceleration, that is, when vibration occurs, it is possible to suppress power consumed by the determination and calculation.
  • the acceleration determination unit 13 since the calculation of the seismic intensity equivalent value is realized by complicated numerical calculation processing, the acceleration determination unit 13 is useful for reducing the power consumption of the microcomputer and suppressing the consumption of the battery as the power source.
  • FIG. 3A and FIG. 3B a specific method for determining an earthquake and an impact in the earthquake determination unit 11 is illustrated.
  • FIG. 3A is a graph in which an acceleration waveform due to earthquake vibration and this acceleration waveform are binarized into 0 and 1 with a threshold A (1 is greater than or equal to threshold A and 0 is less than threshold A).
  • FIG. 3B is a graph in which an acceleration waveform due to impact vibration and the acceleration waveform are binarized to 0 and 1 with a threshold A (1 is greater than or equal to threshold A and 0 is less than threshold A).
  • the threshold A is set to 50 gal corresponding to the approximate acceleration caused by an earthquake with seismic intensity 4.
  • the binarized value 1 width is random and the occurrence timing is also random.
  • the generation timing of the binarized value 1 is substantially constant, and the generation time of the binarized value 1 is gradually shortened.
  • the earthquake determination unit 11 can discriminate and discriminate between earthquakes and impacts based on this pattern difference.
  • the acceleration waveform is used for calculation and binarized with a predetermined threshold value, so that it can be expressed by values 0 and 1 and time, and it can be judged more easily than analysis of the acceleration waveform itself. it can.
  • the main frequency of seismic vibration is as low as about 6 Hz
  • the main frequency of shock vibration of a gas cutoff device installed in a general pipe of about 1 m is about 10 Hz.
  • a method of removing high-frequency components through a low-pass filter and discriminating shock vibrations by using a digital filter technique is also conceivable.
  • the processing for realizing the low-pass filter is complicated and burdens the battery.
  • the impact vibration is a composite waveform with a large acceleration fluctuation and low frequency components compared to the earthquake vibration, and there is a large acceleration change in the seismic frequency band. According to the binarization of values, it is possible to pattern the characteristics of waveform differences by simple processing in numerical comparison.
  • this predetermined threshold value may be a fixed value. However, when it is difficult to distinguish between an earthquake and an impact due to the magnitude of vibration or the like, it is possible to extract features more clearly by changing the value.
  • FIGS. 4A and 4B show the case where the threshold value A is set to zero acceleration value.
  • FIG. 4A is a graph in which an acceleration waveform due to earthquake vibration and this acceleration waveform are binarized into 0 and 1 with a threshold A (1 is greater than or equal to threshold A, and 0 is less than threshold A).
  • FIG. 4B is a graph obtained by binarizing the acceleration waveform due to the impact vibration and the acceleration waveform into 0 and 1 with the threshold A (1 is greater than or equal to the threshold A and 0 is less than the threshold A).
  • the binarized value 1 has a random width and the occurrence timing is also random.
  • the generation timing of the binarized value 1 is almost constant, and the time interval between the binarized value 1 and the value 0 is almost the same. .
  • the earthquake judgment unit 11 can identify and discriminate earthquakes and impacts based on the difference in patterns due to different features.
  • the earthquake determination unit 11 obtains the frequency based on the binarized data.
  • the period In the case of seismic vibrations, the period is not constant, so it is difficult to obtain a period that continues to be repeated in the binarized data, but in the case of shock vibrations, the period is almost constant. The period can be determined. And if this period is a period peculiar to an impact vibration, it will determine with the vibration by an impact.
  • this seismic device is applied to a gas shut-off device
  • the frequency 6 Hz or higher, the impact can be determined.
  • FIG. 5 is another example of impact vibration, and a binarized graph based on an acceleration waveform and a threshold A when the vibration ends in a short period of time without receiving the natural vibration of the pipe as shown in FIG. 2B. Show.
  • the earthquake determination unit 11 measures the predetermined time t1 when detecting the threshold A (equivalent to seismic intensity 4 ⁇ 50 gal) or more, and measures another predetermined time t2 after t1. Then, the number of times the binarized data generated at the predetermined time t2 changes from the value 0 to the value 1 is counted, and when this count value is less than the predetermined number, it is determined that the vibration is impact. In the case of this graph, the number of times the binarized data generated at the predetermined time t2 changes from the value 0 to the value 1 is 1, and this number is less than the predetermined number (for example, 3 times). Can be judged.
  • the predetermined time t1 is a time during which the acceleration value fluctuates in a single impact vibration, and is not counted while a severe acceleration change occurs due to the impact. In the gas shut-off device, it is about 2 to 3 seconds.
  • the predetermined time t2 is about 5 seconds, and the predetermined time t1 + predetermined time t2 is smaller than the duration of the earthquake.
  • An earthquake with a short duration is generally small in scale and does not reach the seismic intensity that causes the gas shut-off device to shut off, so there is no problem even if the earthquake judging unit 11 erroneously judges as an impact.
  • FIG. 6 shows a block diagram of the seismic sensing device 200 in the third embodiment.
  • a recording unit 14 that sequentially records acceleration values is provided.
  • the acceleration determination unit 13 determines that the acceleration sensor 10 has output an acceleration value greater than or equal to a predetermined value, outputs the acceleration value to the earthquake determination unit 11 and the recording unit 14, and determines that the earthquake determination unit 11 determines.
  • the recording unit 14 sequentially records the acceleration values output from the acceleration sensor 10.
  • the earthquake determination unit 11 instructs the seismic intensity calculation unit 12 to calculate.
  • the seismic intensity calculation unit 12 reads data from the recording unit 14 and calculates a seismic intensity equivalent value.
  • the recording unit 14 can be realized by a RAM or a flash memory provided in a microcomputer (not shown).
  • FIG. 7 shows a block diagram of a seismic sensing device 300 according to the fourth embodiment.
  • FIG. 1 Components having the same reference numerals as those in FIG. 1 operate in the same manner as in the first embodiment, and a description thereof will be omitted.
  • the difference between the present embodiment and the first embodiment is that a seismic intensity determination unit 15 and an output determination unit 16 are provided.
  • the output determination unit 16 is an earthquake presence signal when the earthquake determination unit 11 determines an earthquake and the seismic intensity determination unit 15 determines that the seismic intensity equivalent value calculated by the seismic intensity calculation unit 12 is greater than or equal to a predetermined value.
  • a certain signal c is output.
  • the predetermined value to be compared with the seismic intensity equivalent value is, for example, a value for determining whether or not to operate the safety part of the safety device that operates the gas shut-off device.
  • the value to be shut off The seismic intensity equivalent to 5 or higher is set.
  • the security device 300 that has received the signal c, which is an earthquake signal, can immediately operate the security unit without performing signal processing.
  • FIG. 8 is a schematic view showing a gas cutoff device as a security device in the fifth embodiment.
  • This security device is equipped with any of the seismic device 100 shown in FIG. 1, the seismic device 200 shown in FIG. 6, and the seismic device 300 shown in FIG.
  • the gas shut-off device 20 includes an inlet portion 21 connected to a gas introduction pipe 31, an outlet portion 22 to which a gas outlet pipe 32 is connected, and the inlet portion 21 and the outlet portion 22. And a gas flow path 23 formed in a U-shape.
  • the gas shut-off device 20 is disposed in the middle of the gas flow path 23 as a flow rate measuring unit 24 that measures the gas flow rate, and a safety unit that is disposed upstream of the flow rate measuring unit 24 and shuts off the gas when an abnormality is detected.
  • the shut-off valve 25 is provided.
  • the gas shut-off device 20 includes a circuit board 27 on which a control circuit 26 is mounted that calculates the gas flow rate from the detection signal of the flow rate measurement unit 24, determines whether or not there is an abnormality, and drives the shut-off valve 25 in the event of an abnormality.
  • the seismic sensing device 100 (200, 300) is mounted on the circuit board 27, and outputs a signal b which is a signal a seismic intensity equivalent value which is an earthquake determination signal or a signal c which is an earthquake signal to the control circuit 26.
  • the control circuit 26 receives the signal a and the signal b, the earthquake determination signal of the signal a determines an earthquake (not an impact), and the seismic intensity equivalent value of the signal b is a value that should block the gas (approximately seismic intensity 5+) Safety) can be ensured by operating the shutoff valve 25 to shut off the gas.
  • the control circuit 26 does not cut off the gas even if the seismic intensity equivalent value is equal to or greater than the seismic intensity 5 so that the life vibration (noise) such as pipe vibration due to the impact is suppressed. ) Does not shut off the gas and improves convenience.
  • control circuit 26 when the control circuit 26 receives the signal c which is an earthquake signal, the control circuit 26 can immediately operate the shutoff valve 25 to shut off the gas.
  • the earthquake determination unit 11, seismic intensity calculation unit 12, acceleration determination unit 13, and recording unit 14 can be realized by microcomputer processing or RAM, so that the real feeling can be realized in the microcomputer provided in the control circuit 26 of the gas cutoff device 20. The same effect can be obtained even if the processing of the seismic device is realized.
  • the signals a and b are not limited to seismic intensity equivalent values, and are not limited as long as they can be detected by the seismic sensing device 100, including the presence or absence of an impact.
  • the seismic device is configured to be able to determine the impact due to the fall, and by transmitting the presence or absence of the fall as a signal a, a signal b, and a signal c to the control circuit 26,
  • the control circuit 26 can take appropriate measures such as notifying that the gas shut-off device may have been damaged due to the drop by display or the like.
  • the function of the security unit can be exhibited only when necessary.
  • the seismic sensing device includes an acceleration sensor that sequentially outputs an acceleration value corresponding to the magnitude of acceleration of an applied vibration, and an earthquake that identifies and determines an earthquake and an impact from the acceleration value.
  • a determination unit includes a seismic intensity calculation unit that calculates a seismic intensity equivalent value from the acceleration value.
  • This configuration makes it possible to accurately distinguish between earthquakes and impacts and to calculate earthquake strength.
  • the seismic sensing device particularly identifies the earthquake and the impact from the binary (0 and 1) generation pattern in which the earthquake determination unit binarizes the acceleration value with a predetermined threshold in the first disclosure. It is good also as a structure to judge.
  • This configuration makes it possible to simplify acceleration pattern determination and facilitate processing with a microcomputer.
  • the seismic sensing device may have a predetermined threshold value of zero acceleration, particularly in the second disclosure.
  • the earthquake determination unit obtains a frequency at which a binary value changes for a predetermined period from the occurrence pattern, and determines that the shock is an impact when the frequency is equal to or higher than a predetermined value. It is good also as composition to do.
  • the earthquake determination unit obtains a frequency at which a binary value for a predetermined period changes from an occurrence pattern, and determines that it is an impact when this frequency is equal to or higher than a predetermined value. It is good also as composition to do.
  • the value that the earthquake determination unit binarizes with a predetermined threshold value changes from a value (0) that is less than the threshold value to a value (1) that is equal to or greater than the threshold value. It is good also as a structure which determines with an impact, when the frequency
  • the value that the earthquake determination unit binarizes with a predetermined threshold value changes from a value less than the threshold value (0) to a value equal to or greater than the threshold value (1). It is good also as a structure which determines with an impact, when the frequency
  • the seismic sensing device has a recording unit that records acceleration values that are sequentially output, particularly in any one of the first to seventh disclosures, and the seismic intensity calculation unit determines that the earthquake is an earthquake.
  • the seismic intensity equivalent value may be calculated using the acceleration value recorded in the recording unit.
  • the seismic device may be configured such that, in particular, any one of the first to seventh disclosures, the seismic intensity calculation unit calculates a seismic intensity equivalent value when the acceleration sensor outputs a predetermined acceleration value or more. Good.
  • the seismic sensitivity device may have a configuration in which the seismic intensity calculation unit calculates a seismic intensity equivalent value when the acceleration sensor outputs a predetermined acceleration value or more.
  • the seismic sensing device is equipped with a seismic intensity determination unit that determines whether or not the seismic intensity equivalent value calculated by the seismic intensity calculation unit is greater than or equal to a predetermined value in any one of the first to seventh disclosures. If the seismic intensity equivalent value is determined to be greater than or equal to a predetermined value in the unit, and the earthquake determination unit determines that there is an earthquake, an earthquake presence signal may be output.
  • the seismic sensing device is provided with a seismic intensity determining unit that determines whether or not the seismic intensity equivalent value calculated by the seismic intensity calculating unit in the eighth disclosure is greater than or equal to a predetermined value. It is good also as a structure which outputs a signal with an earthquake, when it determines with more than a predetermined value and an earthquake determination part determines with an earthquake.
  • the seismic device in the thirteenth disclosure includes a seismic intensity determination unit that determines whether or not the seismic intensity equivalent value calculated by the seismic intensity calculation unit in the ninth disclosure is greater than or equal to a predetermined value. It is good also as a structure which outputs a signal with an earthquake, when it determines with more than a predetermined value and an earthquake determination part determines with an earthquake.
  • the seismic device includes a seismic intensity determination unit that determines whether or not the seismic intensity equivalent value calculated by the seismic intensity calculation unit in the tenth disclosure is greater than or equal to a predetermined value. It is good also as a structure which outputs a signal with an earthquake, when it determines with more than a predetermined value and an earthquake determination part determines with an earthquake.
  • the security device has the seismic device according to any one of the first to fourteenth disclosures and a safety unit that ensures safety when an earthquake occurs, and the seismic intensity equivalent value is a predetermined value or more. And it is good also as a structure operated when an earthquake determination part determines with an earthquake.
  • the seismic sensing device of the present invention it is possible to reliably determine an earthquake and output a seismic intensity equivalent value, so that not only the gas shutoff device but also the power is shut off by the earthquake or the water supply is shut off.
  • Applicable to security devices such as

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

加えられた振動の加速度の大きさに応じた加速度値を逐次出力する加速度センサ(10)と、加速度センサ(10)から出力される加速度値から地震と衝撃を識別し判定する地震判定部(11)と、加速度センサ(10)から出力される加速度値から震度相当値を演算する震度演算部(12)とを備える。さらに、地震判定部(11)は、加速度センサ(10)から出力される加速度値を所定の閾値で二値化した二値(0と1)の発生パターンから地震と衝撃を識別し判定する。

Description

感震装置及びこれを用いた保安装置
 本発明は地震と衝撃を識別できる感震装置及びこれを用いた保安装置に関するものである。
 異常発生時にガスを遮断する機能を有するガス遮断装置においては、地震を検知した場合に、ガスの遮断を行う保安機能を搭載したものがあり、地震を検知する為の感震装置が種々提案されている。
 この様なガス遮断装置においては不要なガス遮断が発生しないようにする為、地震でない場合には遮断しないほうが好ましい。日常発生するようなガス配管を通して伝播される衝撃等を地震と判断して遮断しないようにする必要が有り、地震と衝撃を判別する機能を有する感震装置も提案されている(例えば、特許文献1参照)。
 特許文献1に記載の感震装置は、規定の加速度以上の振動によりオンとオフの繰り返し信号を発生する感震器を用いる。この感震装置は、一般的に地震波は周期、振幅共に不規則に変動するが、衝撃波は同一周期で振幅が時間の経過と共に次第に減衰していく波形となることに着目している。すなわち、感震器のオン・オフ信号の各時間幅も地震の振動では不規則なものとなり、衝撃時の振動では全体的な傾向としてオンの時間幅は次第に減少し、オフの時間幅は次第に増加するといった規則性を示すようになることを利用して、地震と衝撃の識別を行っている。
特開平3-18787号公報
 しかしながら、特許文献1に記載の感震装置は、規定の加速度以上の振動によりオンとオフの繰り返し信号を発生する感震器を用いる為に、オンとオフの時間や周期により地震と衝撃の区別及び地震の大きさを判断する必要があり、地震の大きさに関しては正確に求めることができないという場合があった。また、感震器の構造で規定の加速度が決定される為に、種々の地震振動パターンや衝撃に対応できず誤判定の可能性も有った。
 本発明は、加速度センサを用いることにより、地震と衝撃の判別を精度良く行うと共に、地震の強度を演算することが可能な感震装置を提供する。
 本発明の感震装置は、加えられた振動の加速度の大きさに応じた加速度値を逐次出力する加速度センサと、前記加速度値から地震と衝撃を識別し判定する地震判定部と、前記加速度値から震度相当値を演算する震度演算部と、を備える。
 この構成により、地震と衝撃の判別を精度良く行うと共に、地震の強度を演算することが可能となる。また、この感震装置を利用した保安装置の誤動作を防止することができる。
図1は、第1の実施の形態における感震装置のブロック図である。 図2Aは、地震振動による加速度波形図である。 図2Bは、衝撃振動による加速度波形図である。 図3Aは、地震振動による加速度波形およびその二値化を示すグラフである。 図3Bは、衝撃振動による加速度波形およびその二値化を示すグラフである。 図4Aは、地震振動による加速度波形およびその二値化を示すグラフである。 図4Bは、衝撃振動による加速度波形およびその二値化を示すグラフである。 図5は、第2の実施の形態における感震装置で検知した衝撃振動による加速度波形およびその二値化を示すグラフである。 図6は、第3の実施の形態における感震装置のブロック図である。 図7は、第4の実施の形態における感震装置のブロック図である。 図8は、第5の実施の形態における保安装置であるガス遮断装置の構成図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (第1の実施の形態)
 図1は、第1の実施の形態における感震装置のブロック図を示すものである。
 図1において、加速度センサ10は、地震等の振動を検知し、加速度に応じた加速度値を逐次出力する。地震判定部11は、加速度センサ10から出力された加速度値から地震と衝撃を識別し判別する。震度演算部12は、加速度センサ10から出力された加速度値を用い、所定の演算方法により震度相当値を演算する。加速度判定部13は加速度センサ10が所定以上の加速度値を出力したことを判定する。そして、加速度判定部13が所定以上の加速度値と判定した場合、地震判定部11と震度演算部12に加速度値を出力し、判定や演算をするように指示する。
 地震判定部11と震度演算部12は、加速度判定部13の指示により、判定と演算を所定期間実行し、地震の有無を示す地震判定信号(信号a)、震度の大きさを示す震度相当値(信号b)を出力する。地震判定部11と震度演算部12と加速度判定部13はマイクロコンピュータ(図示せず)による処理で実現することができる。
 図2Aは、加速度センサ10で得られる地震振動による加速度波形であり、図2Bは加速度センサ10で得られる衝撃を受けた場合の振動(以下、衝撃振動と称す)による加速度波形の一例を示す。図2Bは、特に、配管に接続されたガス遮断装置に搭載される感震装置で計測される衝撃振動による加速度波形を例示している。この場合、ガス遮断装置の筐体は配管の固有周波数の影響を受ける為に、振動が継続する。
 図に示すように、地震と衝撃の加速度の振動パターンは明らかに異なっており、地震による波形は不規則な振動パターンを示し、衝撃による波形は衝撃が加わった初期を除いて、周期がほぼ一定であり、次第に減衰する傾向がある。
 地震判定部11は、この地震と衝撃とで振動波形が異なることを利用して地震と衝撃を識別し判別するものである。
 震度演算部12で演算する震度相当値は、地震の大きさの指標値として、気象庁の定める計測震度、或いは、地震動がどの程度、建築物に被害を及ぼすかを計る指標としてのSI値等であり、加速度センサ10が出力する加速度値を基に、演算することができる。
 また、加速度判定部13で所定の加速度を検出した場合、すなわち振動が生じた時のみ地震判定と震度相当値を演算するので、判定や演算で消費する電力を抑制することができる。特に震度相当値の演算は複雑な数値計算処理で実現されるので、加速度判定部13は、マイクロコンピュータの消費電力を軽減し、電源としての電池の消耗を抑制するために有用である。
 以上の構成により、加速度センサ10の加速度値を基に、地震か衝撃かを判別すると同時に地震の大きさを示す震度相当値を求めることが可能な感震装置を実現できる。
 次に、図3A、図3Bを用いて、地震判定部11における地震と衝撃の具体的な判別方法を例示する。
 図3Aは、地震振動による加速度波形と、この加速度波形を閾値Aにより0,1に二値化(閾値A以上を1、閾値A未満を0とする)したグラフである。また、図3Bは、衝撃振動による加速度波形と、この加速度波形を閾値Aにより0,1に二値化(閾値A以上を1、閾値A未満を0とする)したグラフである。例えば、閾値Aは震度4の地震で生じる概加速度相当の50galとする。ガス遮断装置としては震度5強を判定してガスを遮断するため、その震度になる前に加速度波形を二値化することが好ましい。
 図3Aから分かるように、地震振動では、二値化した値1の幅はランダムで、発生タイミングもランダムであることが分かる。一方、衝撃振動では、図3Bから分かるように、二値化した値1の発生タイミングが、ほぼ一定であり、徐々に二値化した値1の発生時間が短くなっていることが分かる。
 従って、地震判定部11は、このパターンの違いで地震と衝撃を識別し、判別することができる。この方法によると、加速度波形を演算に用いるのと同時に所定の閾値で二値化することで値0、1と時間で表すことができ、加速度波形そのものを解析するよりも簡単に判断することができる。
 地震振動の主周波数はおよそ6Hzまでと低周波であり、1m程度の一般的な配管に設置されたガス遮断装置の衝撃振動の主周波数はおよそ10Hzである。デジタルフィルタの手法でローパスフィルタを通し高周波成分を除去し衝撃振動を判別する方法も考えられるが、この方法では、ローパスフィルタを実現する処理が複雑で電池消耗の負担となる。
 また、衝撃振動は地震振動と比べ加速度変動が大きく低周波成分を含む複合波形であり、地震周波数帯にも大きな加速度変化が存在し、震度演算において地震相当の演算値となってしまうが、加速度値の二値化によると数値比較での簡素な処理により、波形の違いの特徴をパターン化することができる。
 なお、この所定の閾値は固定の値でもよいが、振動の大きさ等で地震と衝撃の識別が難しい場合には、可変することで特徴をより明確に抽出することが可能となる。
 次に、図4A、図4Bを用いて他の実施例を示す。図4A、図4Bは、上記の閾値Aを加速度値ゼロとしたものである。図4Aは、地震振動による加速度波形と、この加速度波形を閾値Aにより0,1に二値化(閾値A以上を1、閾値A未満を0とする)したグラフである。また、図4Bは、衝撃振動による加速度波形と、この加速度波形を閾値Aにより0,1に二値化(閾値A以上を1、閾値A未満を0とする)したグラフである。
 図4Aから分かるように、地震振動では、二値化した値1の幅はランダムで、発生タイミングもランダムであることが分かる。一方、衝撃振動では、図4Bから分かるように、二値化した値1の発生タイミングが、ほぼ一定であり、二値化した値1と値0の時間間隔がほぼ同じなっていることが分かる。
 従って、地震判定部11は、異なる特徴によるパターンの違いで地震と衝撃を識別し、判別することができる。
 そして、地震判定部11は、二値化したデータを元に、その周波数を求める。地震振動の場合は周期が一定しないので、二値化データに継続して繰り返す周期を求めることは困難であるが、衝撃振動の場合は、周期がほぼ一定している為、二値化データより周期を求めることができる。そして、この周期が衝撃振動特有の周期であれば、衝撃による振動と判定する。
 この感震装置をガス遮断装置に適用する場合の一例として、ガス遮断装置に接続された配管振動の固有周波数(6Hz以上=配管長130mm以下)での継続的な揺れを想定した場合であれば、6Hz以上に設定することで、衝撃の判別ができる。
 (第2の実施の形態)
 次に、地震判定部11における地震と衝撃の識別の他の実施例を例示する。
 図5は、衝撃振動の他の事例で、図2Bに示すような配管の固有振動を受けず、単発的に短期間で振動が終息する場合の加速度波形と閾値Aによる二値化したグラフを示す。
 このような単発的な衝撃振動の場合、前述のような周期や規則性を見出すことが困難である。しかし、本実施の形態の地震判定部11では、閾値A(震度4相当≒50gal)以上を検出した場合、所定時間t1の計時を行い、t1経過後に別の所定時間t2の計時を行う。そして、この所定時間t2に発生する二値化データの値0から値1に変化する回数をカウントし、このカウント値が所定回数未満の場合に衝撃振動と判別する。このグラフの場合、所定時間t2に発生する二値化データの値0から値1に変化する回数は1回であり、この数が所定回数(例えば3回)未満であるので単発的な衝撃によるものと判断することができる。
 なお、所定時間t1は単発的な衝撃振動において加速度値が変動している時間とし、衝撃による激しい加速度変化が生じている間はカウントしないようにしている。ガス遮断装置では2秒から3秒程度である。所定時間t2は5秒程度とし、所定時間t1+所定時間t2は地震の継続時間と比較し小さいものとする。継続時間が短い地震は一般的にその規模も小さく、ガス遮断装置が遮断に至る震度相当に至らないので、地震判定部11が衝撃と誤判定しても支障はない。
 (第3の実施の形態)
 図6は、第3の実施の形態における感震装置200のブロック図を示すものである。
 図1と符号が同じ構成要素は第1の実施の形態と同様な動作をするものであり説明を省略する。本実施の形態と第1の実施の形態と異なる点は、加速度値を逐次記録する記録部14を備えたことである。図6において、加速度判定部13は、加速度センサ10が所定以上の加速度値を出力したことを判定し、地震判定部11と記録部14に加速度値を出力し、地震判定部11に判定するように指示する。記録部14は加速度センサ10から出力された加速度値を逐次記録する。地震判定部11は、地震と判別した時、震度演算部12に演算するように指示する。震度演算部12は、記録部14からデータを読込み、震度相当値を演算する。
 この構成の場合、地震判定部11が衝撃振動と判断した場合は、震度演算部12による震度演算を実施しないので電池の消耗を更に抑制することができる。記録部14はマイクロコンピュータ(図示せず)に備わったRAMやフラッシュメモリにより実現することができる。
 (第4の実施の形態)
 図7は、第4の実施の形態における感震装置300のブロック図を示すものである。
 図1と符号が同じ構成要素は第1の実施形態と同様な動作をするものであり説明を省略する。本実施の形態と第1の実施の形態と異なる点は、震度判定部15、出力判定部16を備えたことである。
 出力判定部16は、地震判定部11が地震と判定し、且つ、震度判定部15が、震度演算部12が演算した震度相当値が所定の値以上であると判定した時、地震有り信号である信号cを出力する。
 ここで、震度相当値と比較する所定の値は、例えばガス遮断装置を動作させる保安装置の保安部を機能させるかどうかを判定する為の値であり、ガス遮断装置の場合、遮断すべき値であるおよそ震度5強相当に設定される。
 従って、本実施の形態の感震装置300を用いると、地震有り信号である信号cを受けた保安装置は、信号処理を行うことなく、即座に、保安部を動作させることができる。
 (第5の実施の形態)
 図8は、第5の実施の形態における保安装置としてのガス遮断装置を示す概略図である。この保安装置は、図1に示す感震装置100、図6に示す感震装置200および図7に示す感震装置300のいずれかを搭載している。
 図において、ガス遮断装置20は、ガス導入用の配管31と接続される入口部21と、ガス導出用の配管32が接続される出口部22と、入口部21と出口部22との間に構成されたU字状に形成されたガス流路23と、を備える。また、ガス遮断装置20は、ガス流路23の中間に配置されガスの流量を計測する流量計測部24と、流量計測部24よりも上流側に配置され異常検知時にガスを遮断する保安部としての遮断弁25と、を備える。さらに、ガス遮断装置20は、流量計測部24の検知信号からガス流量の演算、異常の有無を判断し異常時に遮断弁25を駆動する制御回路26が実装された回路基板27を備える。
 感震装置100(200、300)は、この回路基板27に搭載され、地震判定信号である信号a震度相当値である信号b或いは、地震有り信号である信号cを制御回路26に出力する。制御回路26は、信号a、信号bを受けて、信号aの地震判定信号が地震(衝撃でない)を判定し、且つ、信号bの震度相当値がガスを遮断すべき値(およそ震度5強相当)であると判定した時、遮断弁25を動作させてガスを遮断することで、安全を確保することが出来る。
 また、制御回路26は、信号aの地震判定信号が地震でない場合、震度相当値が震度5相当以上であってもガスを遮断しない様にすることで、衝撃による配管振動等の生活振動(ノイズ)でガスを遮断することが無く、利便性も向上する。
 また、制御回路26は、地震有り信号である信号cを受けた場合は、即座に遮断弁25を動作させてガスを遮断することができる。
 なお、地震判定部11、震度演算部12、加速度判定部13、記録部14はマイクロコンピュータの処理やRAMで実現可能であるため、ガス遮断装置20の制御回路26に備えたマイクロコンピュータにおいて本感震装置の処理を実現しても同様な効果が得られる。
 なお、信号a、信号bは、震度相当値に限らず、衝撃の有無を含めるなど、感震装置100で検出できるものであれば限定はされない。例えば、本実施の形態では説明していないが、感震装置で落下による衝撃を判別できるように構成し、信号a、信号b、信号cとして落下の有無を制御回路26に送信することで、制御回路26は、表示等によりガス遮断装置が落下により損傷を受けた可能性があることを報知するなど、適切な対応を行うことが出来る。
 以上のように、上記実施の形態における感震装置を保安装置に搭載することで、必要なときのみ保安部の機能を発揮させることができる。
 以上説明したように、第1の開示における感震装置は、加えられた振動の加速度の大きさに応じた加速度値を逐次出力する加速度センサと、加速度値から地震と衝撃を識別し判定する地震判定部と、加速度値から震度相当値を演算する震度演算部と、を備える。
 この構成により、地震と衝撃の判別を精度良く行うと共に、地震の強度を演算することが可能となる。
 第2の開示における感震装置は、特に、第1の開示において、地震判定部が、加速度値を所定の閾値で二値化した二値(0と1)の発生パターンから地震と衝撃を識別し判定する構成としてもよい。
 この構成により、加速度のパターン判定を簡素化することができ、マイクロコンピュータでの処理が容易となる。
 第3の開示における感震装置は、特に、第2の開示において、所定の閾値を加速度値ゼロとしてもよい。
 第4の開示における感震装置は、特に、第2の開示において、地震判定部が、発生パターンから所定期間の二値が変化する周波数を求め、この周波数が所定値以上の場合に衝撃と判定する構成としてもよい。
 第5の開示における感震装置は、特に、第3の開示において、地震判定部が、発生パターンから所定期間の二値が変化する周波数を求め、この周波数が所定値以上の場合に衝撃と判定する構成としてもよい。
 第6の開示における感震装置は、特に第2の開示において、地震判定部が、所定の閾値で二値化した値が閾値未満の値(0)から閾値以上の値(1)へ変化する回数が、所定期間に所定回数未満の場合に衝撃と判定する構成としてもよい。
 第7の開示における感震装置は、特に第3の開示において、地震判定部が、所定の閾値で二値化した値が閾値未満の値(0)から閾値以上の値(1)へ変化する回数が、所定期間に所定回数未満の場合に衝撃と判定する構成としてもよい。
 第8の開示における感震装置は、特に第1~7のいずれか1つの開示において、逐次出力される加速度値を記録する記録部を有し、震度演算部が、地震判定部で地震と判定された場合に、記録部に記録された加速度値を用いて震度相当値を演算する構成としてもよい。
 第9の開示における感震装置は、特に第1~7のいずれか1つの開示において、震度演算部が、加速度センサが所定加速度値以上を出力した場合に、震度相当値を演算する構成としてもよい。
 第10の開示における感震装置は、特に第8の開示において、震度演算部が、加速度センサが所定加速度値以上を出力した場合に、震度相当値を演算する構成としてもよい。
 第11の開示における感震装置は、特に第1~7のいずれか1つの開示において、震度演算部で演算された震度相当値が所定以上か否かを判定する震度判定部を備え、震度判定部で震度相当値が所定値以上と判定し、且つ、地震判定部が地震と判定した場合に、地震有り信号を出力する構成としてもよい。
 第12の開示における感震装置は、特に第8の開示において、震度演算部で演算された震度相当値が所定以上か否かを判定する震度判定部を備え、震度判定部で震度相当値が所定値以上と判定し、且つ、地震判定部が地震と判定した場合に、地震有り信号を出力する構成としてもよい。
 第13の開示における感震装置は、特に第9の開示において、震度演算部で演算された震度相当値が所定以上か否かを判定する震度判定部を備え、震度判定部で震度相当値が所定値以上と判定し、且つ、地震判定部が地震と判定した場合に、地震有り信号を出力する構成としてもよい。
 第14の開示における感震装置は、特に第10の開示において、震度演算部で演算された震度相当値が所定以上か否かを判定する震度判定部を備え、震度判定部で震度相当値が所定値以上と判定し、且つ、地震判定部が地震と判定した場合に、地震有り信号を出力する構成としてもよい。
 第15の開示における保安装置は、特に第1~14のいずれか1つの開示における感震装置と、地震発生時に安全を確保する保安部を有し、保安部を、震度相当値が所定値以上で、且つ、地震判定部が地震と判定した場合に動作させる構成としてもよい。
 以上のように、本願発明の感震装置によれば、地震を確実に判別でき、震度相当値を出力できるので、ガス遮断装置のみならず、地震により電力を遮断したり、水道を遮断したりするなどの保安装置に適用できる。
 10 加速度センサ
 11 地震判定部
 12 震度演算部
 13 加速度判定部
 14 記録部
 15 震度判定部
 20 ガス遮断装置(保安装置)
 25 遮断弁(保安部)
 100,200,300 感震装置

Claims (15)

  1. 加えられた振動の加速度の大きさに応じた加速度値を逐次出力する加速度センサと、
    前記加速度センサから出力された前記加速度値から地震と衝撃を識別し判定する地震判定部と、
    前記加速度センサから出力された前記加速度値から震度相当値を演算する震度演算部と、
    を備えた感震装置。
  2. 前記地震判定部は、前記加速度値を所定の閾値で二値化した二値(0と1)の発生パターンから地震と衝撃を識別し判定することを特徴とする請求項1記載の感震装置。
  3. 前記所定の閾値を加速度値ゼロとした請求項2記載の感震装置。
  4. 前記地震判定部は、前記発生パターンから所定期間の二値が変化する周波数を求め、前記周波数が所定値以上の場合に衝撃と判定することを特徴とする請求項2記載の感震装置。
  5. 前記地震判定部は、前記発生パターンから所定期間の二値が変化する周波数を求め、前記周波数が所定値以上の場合に衝撃と判定することを特徴とする請求項3記載の感震装置。
  6. 前記地震判定部は、所定の閾値で二値化した値が閾値未満の値(0)から閾値以上の値(1)へ変化する回数が、所定期間に所定回数未満の場合に衝撃と判定することを特徴とする請求項2記載の感震装置。
  7. 前記地震判定部は、所定の閾値で二値化した値が閾値未満の値(0)から閾値以上の値(1)へ変化する回数が、所定期間に所定回数未満の場合に衝撃と判定することを特徴とする請求項3記載の感震装置。
  8. 逐次出力される前記加速度値を記録する記録部を有し、
    前記震度演算部は、前記地震判定部で地震と判定された場合に、前記記録部に記録された前記加速度値を用いて震度相当値を演算することを特徴とする請求項1~7のいずれか1項に記載の感震装置。
  9. 前記震度演算部は、前記加速度センサが所定加速度値以上を出力した場合に、震度相当値を演算することを特徴とする請求項1~のいずれか1項に記載の感震装置。
  10. 前記震度演算部は、前記加速度センサが所定加速度値以上を出力した場合に、震度相当値を演算することを特徴とする請求項8記載の感震装置。
  11. 前記震度演算部で演算された震度相当値が所定以上か否かを判定する震度判定部を備え、前記震度判定部で震度相当値が所定値以上と判定し、且つ、前記地震判定部が地震と判定した場合に、地震有り信号を出力する請求項1~7のいずれか1項に記載の感震装置。
  12. 前記震度演算部で演算された震度相当値が所定以上か否かを判定する震度判定部を備え、前記震度判定部で震度相当値が所定値以上と判定し、且つ、前記地震判定部が地震と判定した場合に、地震有り信号を出力する請求項8記載の感震装置。
  13. 前記震度演算部で演算された震度相当値が所定以上か否かを判定する震度判定部を備え、前記震度判定部で震度相当値が所定値以上と判定し、且つ、前記地震判定部が地震と判定した場合に、地震有り信号を出力する請求項9記載の感震装置。
  14. 前記震度演算部で演算された震度相当値が所定以上か否かを判定する震度判定部を備え、前記震度判定部で震度相当値が所定値以上と判定し、且つ、前記地震判定部が地震と判定した場合に、地震有り信号を出力する請求項10記載の感震装置。
  15. 請求項1~14のいずれか1項に記載の感震装置と、地震発生時に安全を確保する保安部を有し、
    前記保安部を、前記震度相当値が所定値以上で、且つ、前記地震判定部が地震と判定した場合に動作させる保安装置。
PCT/JP2018/001858 2017-02-03 2018-01-23 感震装置及びこれを用いた保安装置 WO2018142996A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880004955.0A CN110114644A (zh) 2017-02-03 2018-01-23 测震装置和使用该测震装置的安全装置
EP18747586.8A EP3578936A4 (en) 2017-02-03 2018-01-23 SEISMIC DEVICE AND SAFETY DEVICE THEREFOR
US16/476,068 US20200183028A1 (en) 2017-02-03 2018-01-23 Seismic device and safety device employing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018158A JP2018124222A (ja) 2017-02-03 2017-02-03 感震装置及びこれを用いた保安装置
JP2017-018158 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018142996A1 true WO2018142996A1 (ja) 2018-08-09

Family

ID=63039801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001858 WO2018142996A1 (ja) 2017-02-03 2018-01-23 感震装置及びこれを用いた保安装置

Country Status (5)

Country Link
US (1) US20200183028A1 (ja)
EP (1) EP3578936A4 (ja)
JP (1) JP2018124222A (ja)
CN (1) CN110114644A (ja)
WO (1) WO2018142996A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613299A (zh) * 2018-11-14 2019-04-12 深圳绿米联创科技有限公司 震动检测装置、方法、智能门锁及系统
JP2020091167A (ja) * 2018-12-05 2020-06-11 パナソニックIpマネジメント株式会社 感震センサ
JP2021162461A (ja) * 2020-03-31 2021-10-11 オムロン株式会社 感震センサ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167436A (ja) * 1988-12-21 1990-06-27 Matsushita Electric Ind Co Ltd 感震器
JPH0318787A (ja) 1989-06-15 1991-01-28 Matsushita Electric Ind Co Ltd 感震装置
JPH06273222A (ja) * 1993-03-18 1994-09-30 Omron Corp 地震センサ
JPH08304555A (ja) * 1995-05-02 1996-11-22 Osaka Gas Co Ltd 振動の種類の弁別方法および装置
JPH09133774A (ja) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd 地震検出装置
JPH11248846A (ja) * 1998-03-02 1999-09-17 Omron Corp 感震装置
JP2000162032A (ja) * 1998-12-01 2000-06-16 Sensor Gijutsu Kenkyusho:Kk 地震検出装置
JP2010127473A (ja) * 2008-11-25 2010-06-10 Sharp Corp 温水器
US20120091737A1 (en) * 2010-10-15 2012-04-19 Joseph Conley Earthquake Cabinet Safety

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2575294Y2 (ja) * 1992-03-25 1998-06-25 オムロン株式会社 振動解析装置
CN102562164B (zh) * 2011-12-22 2013-06-05 中国神华能源股份有限公司 用于露天采煤区爆破的防洪坝系安全监测方法和监测系统
CN104483700B (zh) * 2014-12-05 2017-11-03 招商局重庆交通科研设计院有限公司 地层裂缝监测与预警系统及方法
CN104793239A (zh) * 2015-05-15 2015-07-22 威亚讯通(北京)科技有限公司 基于mems加速度传感器的综合测震系统
JP6528567B2 (ja) * 2015-07-02 2019-06-12 オムロン株式会社 感震センサ及び閾値調整方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167436A (ja) * 1988-12-21 1990-06-27 Matsushita Electric Ind Co Ltd 感震器
JPH0318787A (ja) 1989-06-15 1991-01-28 Matsushita Electric Ind Co Ltd 感震装置
JPH06273222A (ja) * 1993-03-18 1994-09-30 Omron Corp 地震センサ
JPH08304555A (ja) * 1995-05-02 1996-11-22 Osaka Gas Co Ltd 振動の種類の弁別方法および装置
JPH09133774A (ja) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd 地震検出装置
JPH11248846A (ja) * 1998-03-02 1999-09-17 Omron Corp 感震装置
JP2000162032A (ja) * 1998-12-01 2000-06-16 Sensor Gijutsu Kenkyusho:Kk 地震検出装置
JP2010127473A (ja) * 2008-11-25 2010-06-10 Sharp Corp 温水器
US20120091737A1 (en) * 2010-10-15 2012-04-19 Joseph Conley Earthquake Cabinet Safety

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578936A4

Also Published As

Publication number Publication date
JP2018124222A (ja) 2018-08-09
EP3578936A4 (en) 2020-01-15
US20200183028A1 (en) 2020-06-11
EP3578936A1 (en) 2019-12-11
CN110114644A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2018142996A1 (ja) 感震装置及びこれを用いた保安装置
US20200400615A1 (en) Detection of blockage in a porous member
JP5194754B2 (ja) ガスメータ装置及びこの装置を用いたガス供給システム
EP1260806A3 (en) A preignition detection apparatus
JP2017053756A (ja) 検知システム、信号処理装置、検知方法及びプログラム
JP4804914B2 (ja) ガスメータ
JP2009216471A (ja) 流量計測装置
JP4744441B2 (ja) 大気水象を検出するための方法及び装置
WO2016143043A1 (ja) 検出装置、電力量計
JP4208439B2 (ja) ガスメータ及び地震判定方法
WO2023088931A1 (en) Method and apparatus for detecting hydraulic shock
JP5147473B2 (ja) 流量計測装置
US6082169A (en) Method for detecting water meter malfunction, calculating the duration thereof, and device for implementing same
WO2023088929A1 (en) Method and apparatus for detecting hydraulic shock
JPH11142526A (ja) 感震装置
JP4251187B2 (ja) ガス保安装置
JPH08247817A (ja) ガス遮断装置およびガスメータ
KR100602199B1 (ko) 포락선의 도달 시간차기법을 이용한 고장위치판단시스템및 그 방법
WO2016143042A1 (ja) 電力量計
JP3662661B2 (ja) ガス遮断装置
JP2006338356A (ja) 不正器材取り付け検出装置
JP2006112843A (ja) 渦流量計
JP3620062B2 (ja) ガス遮断制御装置
JP2004233300A (ja) ガラス破壊センサ
JP3428118B2 (ja) ガス遮断制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018747586

Country of ref document: EP

Effective date: 20190903