WO2018142972A1 - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
WO2018142972A1
WO2018142972A1 PCT/JP2018/001643 JP2018001643W WO2018142972A1 WO 2018142972 A1 WO2018142972 A1 WO 2018142972A1 JP 2018001643 W JP2018001643 W JP 2018001643W WO 2018142972 A1 WO2018142972 A1 WO 2018142972A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
cathode
layer
anode
electrolytic capacitor
Prior art date
Application number
PCT/JP2018/001643
Other languages
English (en)
French (fr)
Inventor
拓哉 中山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880006195.7A priority Critical patent/CN110168687B/zh
Priority to JP2018566055A priority patent/JP7113286B2/ja
Priority to US16/472,683 priority patent/US10957494B2/en
Publication of WO2018142972A1 publication Critical patent/WO2018142972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor including a capacitor element having an anode portion provided on the first end portion side and a cathode portion provided on the second end portion side opposite to the first end portion.
  • Solid electrolytic capacitors are mounted on various electronic devices because of their low equivalent series resistance (ESR) and excellent frequency characteristics.
  • the solid electrolytic capacitor includes at least one capacitor element.
  • the capacitor element is composed of an anode part and a cathode part.
  • a cathode lead is connected to the cathode portion via a conductive adhesive.
  • cathode parts are connected through the conductive adhesive agent.
  • Patent Document 1 proposes forming an insulating resin layer at the boundary between the anode part and the cathode part from the viewpoint of suppressing an increase in leakage current due to heat of the reflow process.
  • Patent Document 2 proposes that the capacitor element is covered with an insulating barrier layer that shields moisture and oxygen.
  • Patent Document 1 covers a small part of the cathode part in order to suppress leakage current, and does not have a function of shielding moisture and oxygen.
  • Patent Document 2 is for transferring a barrier layer formed on a film substrate onto the surface of a capacitor element. As the size of a solid electrolytic capacitor is reduced, it is difficult to cover a cathode portion without excess or deficiency. Become. In particular, in the case of a solid electrolytic capacitor having an element laminate in which a plurality of capacitor elements are laminated, only the outermost surface can be covered with a barrier layer, and it is difficult to suppress deterioration of the solid electrolytic capacitor.
  • One aspect of the present invention includes an anode portion provided on the first end portion side, and a cathode portion provided on the second end portion side opposite to the first end portion so as to be adjacent to the anode portion.
  • a capacitor lead having a cathode lead connected to the cathode part, and the capacitor element has an insulating first protective layer provided on the first end side on the surface of the cathode part;
  • a solid electrolytic capacitor having at least one of an insulating second protective layer provided on the second end side, wherein the cathode portion and the cathode lead are connected via a conductive adhesive layer About.
  • Another aspect of the present invention includes an anode portion provided on the first end portion side, and a cathode portion provided on the second end portion opposite to the first end portion so as to be adjacent to the anode portion.
  • a plurality of capacitor elements wherein the plurality of capacitor elements include an insulating first protective layer provided on the first end side on the surface of the cathode portion, and the first capacitor layer.
  • a solid electrolytic capacitor having at least one of insulating second protective layers provided on two end portions, wherein the cathode portions of the plurality of capacitor elements are connected to each other via a conductive adhesive layer About.
  • the solid electrolytic capacitor according to this embodiment includes one or more capacitor elements.
  • the capacitor element includes an anode portion provided on the first end portion side and a cathode portion provided on the second end portion side opposite to the first end portion so as to be adjacent to the anode portion.
  • An insulating first protective layer is provided on the first end side of the surface of the cathode part, and an insulating second protective layer is provided on the second end side.
  • a cathode lead is electrically connected to the cathode portion, and an anode lead is electrically connected to the anode portion.
  • the cathode lead can be electrically connected to the cathode portion via the conductive adhesive layer.
  • the solid electrolytic capacitor may include an element laminate in which a plurality of (two or more) capacitor elements are laminated.
  • the plurality of capacitor elements are stacked such that, for example, the anode portions are overlapped and the cathode portions are overlapped.
  • the anode lead and the cathode lead are respectively connected to the anode laminate portion in which a plurality of anode portions are laminated and the cathode laminate portion in which a plurality of cathode portions are laminated.
  • an insulating first protective layer is provided on the surface of the cathode portion of two or more capacitor elements on the first end side, and an insulating second protective layer is provided on the second end side. It may be provided. And you may electrically connect the cathode parts of a capacitor
  • the solid electrolytic capacitor having the first protective layer and the second protective layer can cover the cathode portion with the first protective layer and the second protective layer without excess or deficiency.
  • the region between the first protective layer and the second protective layer is relatively less susceptible to moisture and oxygen. Therefore, according to the first protective layer and the second protective layer, the influence of moisture, oxygen, etc. on the capacitor element can be greatly reduced.
  • the first protective layer and the second protective layer do not hinder the connection between the cathode part and the cathode lead or the connection between the cathode parts, it is easy to achieve low ESR. Furthermore, since the structure having the first protective layer and the second protective layer at both ends is excellent in objectivity, the connection between the cathode part and the cathode lead or the connection between the cathode parts is also improved.
  • the capacitor element includes, for example, a foil-shaped anode body, a dielectric layer provided on the surface of the anode body, a solid electrolyte layer provided on the second end side so as to cover a part of the dielectric layer, A cathode lead layer covering at least a part of the solid electrolyte layer.
  • An anode part is comprised by the area
  • the cathode part is composed of a solid electrolyte layer and a cathode lead layer.
  • the cathode lead layer covering at least a part of the solid electrolyte layer includes, for example, a carbon layer and a conductive paste layer.
  • the conductive paste layer is usually formed from a conductive paste containing a thermosetting resin component and metal particles dispersed in the resin component.
  • the resin component may be cured by heating the conductive paste.
  • the resin component allows external air (humidity, oxygen, etc.) to pass therethrough, but moisture, oxygen, and the like do not easily reach the cathode part by covering the cathode part with the insulating first protective layer and the second protective layer. Therefore, deterioration of the cathode part (particularly the solid electrolyte layer) or increase in ESR of the solid electrolytic capacitor is suppressed.
  • the solid electrolyte layer may have an exposed portion that is not covered with the cathode lead layer. Since the exposed portion of the solid electrolyte layer is particularly susceptible to moisture and oxygen from the outside, deterioration of the solid electrolyte layer easily proceeds from the exposed portion. Therefore, it is preferable that the first protective layer covers at least a part of the exposed portion of the solid electrolyte layer. Thereby, deterioration of a solid electrolytic capacitor is further suppressed.
  • the second protective layer preferably covers the end face of the cathode portion arranged on the second end portion side. That is, the second protective layer is not limited to the two main surfaces on the second end side of the cathode part of the foil-shaped capacitor element, but the second protective layer formed on the two main surfaces is continuous with the second protective layer. It is preferable to cover the end face of the end. It is preferable that the second protective layer covers two side surfaces in addition to both main surfaces and end surfaces.
  • first protective layer and the second protective layer are separated from each other. Thereby, the conductive path by the conductive adhesive layer can be formed between the first protective layer and the second protective layer without interposing any protective layer. Therefore, it is advantageous for reducing the ESR of the solid electrolytic capacitor.
  • the combination of the first protective layer and the second protective layer preferably covers 60% or more of the surface of the cathode portion.
  • the capacitor element is usually sealed with an exterior resin together with a part of the anode lead and a part of the cathode lead.
  • the exterior resin constitutes the exterior body of the solid electrolytic capacitor.
  • a part of the anode lead that functions as the external terminal of the anode and a part of the cathode lead that functions as the external terminal of the cathode are led out to the outside without being covered with the exterior resin.
  • Each of the anode lead and the cathode lead is a metal material, and is formed of, for example, a material cut out from a metal plate material.
  • FIG. 1 is a cross-sectional view schematically showing a solid electrolytic capacitor 130 including an element laminate in which a plurality of capacitor elements 120 (120A to 120C) are laminated.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the capacitor element 20.
  • the plurality of capacitor elements 120 each include a foil-like anode body 111 having an anode portion 110N and a cathode forming portion 110E.
  • the anode portion 110N constitutes the first end portion 1201 side of the capacitor element 120.
  • the cathode forming portion 110E constitutes the second end portion 1202 side of the capacitor element 120.
  • the anode body 111 having the anode part 110N and the cathode forming part 110E is formed, for example, by etching a part of a metal foil.
  • a dielectric layer 122 is formed on the surface of the cathode forming portion 110E. Regardless of the illustrated example, the dielectric layer 122 may be formed on the entire anode body 111 including the anode portion 110N. A part of the dielectric layer 122 is covered with a solid electrolyte layer 123, and the solid electrolyte layer 123 is covered with a cathode lead layer 124 (carbon layer 124A and conductive paste layer 124B). That is, the anode portion 110N is formed from a region not covered with the solid electrolyte layer 123 of the anode body 111.
  • the cathode part is composed of a solid electrolyte layer 123 and a cathode lead layer 124.
  • the first end portion 1201 side of the cathode portion is covered with the first protective layer 125A
  • the second end portion 1202 side is covered with the second protective layer 125B.
  • An exposed portion 123T of the solid electrolyte layer 123 that is not covered with the cathode lead layer 124 is present on the most end portion 1201 side of the solid electrolyte layer 123.
  • the exposed portion 123T is covered with the first protective layer 125A, deterioration of the solid electrolyte layer 123 starting from the exposed portion 123T is suppressed.
  • the cathode portion for example, 60% or more
  • the combination of the first protective layer 125A and the second protective layer 125B not only the exposed portion 123T but most of the cathode portion is exposed from the outside air. Shielded from moisture and oxygen.
  • the insulating material solution may be applied to the cathode portion and dried.
  • a conductive adhesive is applied at least between the first protective layer 125A and the second protective layer 125B.
  • the capacitor elements 120A to 120C are connected in parallel by a conductive adhesive layer 126 interposed between the cathode portions.
  • An anode lead 132 that is bent into a predetermined shape is electrically connected to the anode laminated portion in which the plurality of anode portions 110N are stacked.
  • a cathode lead 133 is electrically connected to the cathode laminated portion via a conductive adhesive layer 126. Since the first protective layer 125 ⁇ / b> A and the second protective layer 125 ⁇ / b> B are separated from each other, their connection is not significantly hindered by each protective layer.
  • the element laminate is sealed with the exterior resin 131 together with a part of the anode lead 132 and a part of the cathode lead 133.
  • a part of the anode lead 132 and a part of the cathode lead 133 are exposed from the exterior resin 131 and function as external terminals.
  • the cathode part is covered with the first protective layer and the second protective layer disposed on both sides of the conductive adhesive layer, the deterioration of the solid electrolytic capacitor is suppressed.
  • the solid electrolytic capacitor according to this embodiment includes one or more capacitor elements.
  • the capacitor element includes an anode portion provided on the first end portion side and a cathode portion provided on the second end portion side opposite to the first end portion so as to be adjacent to the anode portion.
  • a cathode lead is electrically connected to the cathode portion, and an anode lead is electrically connected to the anode portion.
  • the cathode lead can be electrically connected to the cathode portion via the conductive adhesive layer.
  • the conductive adhesive is used to prevent the short circuit and the anode part and the cathode part. It is arranged at a position separated from the boundary. Therefore, a gap in which the cathode part is exposed is formed between the insulating resin layer and the conductive adhesive. When such a gap exists, stress concentrates on a portion near the gap and the strength of the capacitor element may be reduced. Further, when the capacitor element is sealed with the exterior resin, the exterior resin cannot enter the gap, and an internal space is easily formed in the solid electrolytic capacitor. Furthermore, when moisture or oxygen enters from a gap where the cathode portion is exposed, the cathode layer is likely to deteriorate.
  • an insulating first protective layer is provided on at least the first end side of the surface of the cathode portion.
  • the first end side of the surface of the cathode part includes a boundary with the anode part.
  • the boundary between the anode part and the cathode part is easily affected by moisture, oxygen, etc., and the cathode part is likely to deteriorate starting from the boundary.
  • the first protective layer preferably covers the boundary between the anode part and the cathode part as much as possible.
  • a second protective layer may be further provided on the second end side of the surface of the cathode portion.
  • the solid electrolytic capacitor may include an element laminate in which a plurality of (two or more) capacitor elements are laminated.
  • the plurality of capacitor elements are stacked such that, for example, the anode portions are overlapped and the cathode portions are overlapped.
  • the anode lead and the cathode lead are respectively connected to the anode laminate portion in which a plurality of anode portions are laminated and the cathode laminate portion in which a plurality of cathode portions are laminated.
  • an insulating first protective layer may be provided on the surface of the cathode part of two or more capacitor elements. And you may electrically connect the cathode parts of a capacitor
  • the first protective layer is at least 0.5 ⁇ L from the boundary. It is preferable to cover the area of the cathode part.
  • the solid electrolytic capacitor having such a first protective layer can greatly reduce the influence of moisture, oxygen, and the like.
  • the conductive adhesive layer that connects the cathode part and the cathode lead or connects the cathode parts to each other is disposed so as to cover at least a part of the first protective layer provided in the capacitor element. At this time, it is preferable to provide the first protective layer and the conductive adhesive so that no gap is formed between the first protective layer and the conductive adhesive.
  • the ratio of the surface of the cathode part covered with the first protective layer is not particularly limited, but from the viewpoint of suppressing the deterioration of the cathode part, It is preferable to cover as much of the surface as possible with the first protective layer.
  • the region of the first protective layer from the boundary between the anode part and the cathode part (first end part side of the cathode part) to 0.25 ⁇ L is a conductive adhesive layer. It is preferable not to be covered with.
  • the capacitor element includes, for example, a foil-shaped anode body, a dielectric layer provided on the surface of the anode body, a solid electrolyte layer provided on the second end side so as to cover a part of the dielectric layer, A cathode lead layer covering at least a part of the solid electrolyte layer.
  • An anode part is comprised by the area
  • the cathode part is composed of a solid electrolyte layer and a cathode lead layer.
  • the cathode lead layer covering at least a part of the solid electrolyte layer includes, for example, a carbon layer and a conductive paste layer.
  • the conductive paste layer is usually formed from a conductive paste containing a thermosetting resin component and metal particles dispersed in the resin component.
  • the resin component may be cured by heating the conductive paste.
  • the resin component transmits the outside air (humidity, oxygen, etc.).
  • the solid electrolyte layer may have an exposed portion that is not covered with the cathode lead layer. Since the exposed portion of the solid electrolyte layer is particularly susceptible to moisture and oxygen from the outside, deterioration of the solid electrolyte layer easily proceeds from the exposed portion. Therefore, it is preferable that the first protective layer covers at least a part of the exposed portion of the solid electrolyte layer. Thereby, deterioration of a solid electrolytic capacitor is further suppressed.
  • a second protective layer may be provided on the second end side of the surface of the cathode part.
  • the 2nd protective layer has covered the end surface by the side of the 2nd edge part of a cathode part. That is, the second protective layer is not limited to the two main surfaces on the second end side of the cathode part of the foil-shaped capacitor element, but the second protective layer formed on the two main surfaces is continuous with the second protective layer. It is preferable to cover the end face of the end. It is preferable that the second protective layer covers two side surfaces in addition to both main surfaces and end surfaces.
  • first and second protective layers are separated from each other.
  • the conductive path by the conductive adhesive layer which does not interpose any protective layer can be formed between the 1st protective layer and the 2nd protective layer. Therefore, it is advantageous for reducing the ESR of the solid electrolytic capacitor.
  • the first protective layer preferably covers 50% or more of the surface of the cathode portion.
  • the first protective layer it is preferable that 60% or more of the surface of a cathode part is covered with the combination of a 1st protective layer and a 2nd protective layer.
  • the conductive adhesive layer also has an effect of shielding moisture and oxygen from the outside, 60% or more of the surface of the cathode portion may be covered with a combination of the first protective layer and the conductive adhesive layer. .
  • the capacitor element is usually sealed with an exterior resin together with a part of the anode lead and a part of the cathode lead.
  • the exterior resin constitutes the exterior body of the solid electrolytic capacitor.
  • a part of the anode lead that functions as the external terminal of the anode and a part of the cathode lead that functions as the external terminal of the cathode are led out to the outside without being covered with the exterior resin.
  • Each of the anode lead and the cathode lead is a metal material, and is formed of, for example, a material cut out from a metal plate material.
  • FIG. 3 is a cross-sectional view schematically showing a solid electrolytic capacitor 230 including an element laminate in which a plurality of capacitor elements 220 (220A to 220C) are laminated.
  • FIG. 4 is a cross-sectional view schematically showing the structure of the capacitor element 220.
  • Each of the plurality of capacitor elements 220 includes a foil-like anode body 211 having an anode portion 210N and a cathode forming portion 210E.
  • the anode part 210N constitutes the first end part 2201 side of the capacitor element 220.
  • the cathode forming portion 210E constitutes the second end 2202 side of the capacitor element 220.
  • the anode body 211 having the anode part 210N and the cathode forming part 210E is formed, for example, by etching a part of a metal foil.
  • a dielectric layer 222 is formed on the surface of the cathode forming portion 210E. Regardless of the illustrated example, the dielectric layer 222 may be formed on the entire anode body 211 including the anode section 210N.
  • the dielectric layer 222 is covered with a solid electrolyte layer 223, and the solid electrolyte layer 223 is covered with a cathode lead layer 224 (carbon layer 224A and conductive paste layer 224B). That is, the anode part 210N is formed from a region not covered with the solid electrolyte layer 223 of the anode body 211.
  • the cathode part is composed of a solid electrolyte layer 223 and a cathode lead layer 224.
  • the first end portion 2201 side of the cathode portion is covered with the protective layer 225.
  • the exposed portion 223T of the solid electrolyte layer 223 that is not covered by the cathode lead layer 224 exists on the most end side 2201 of the solid electrolyte layer 223.
  • the protective layer 225 since the exposed portion 223T is covered with the protective layer 225, deterioration of the solid electrolyte layer 223 starting from the exposed portion 223T is suppressed.
  • many areas on the first end side of the cathode part are covered with the protective layer 225, not only the exposed part 223T but also the first end side of the cathode part as a whole is exposed to moisture from the outside air. Shielded from oxygen.
  • a solution of an insulating material may be applied to the first end portion side of the cathode portion and dried. Thereafter, a conductive adhesive is applied so that at least a part of the protective layer 225 is covered.
  • the capacitor elements 220A to 220C are connected in parallel by a conductive adhesive layer 226 interposed between the cathode portions.
  • Each of the conductive adhesive layers 226 covers a part of the protective layer 225 and is disposed so that no gap is formed between the protective layer 225 and the conductive adhesive layer 226. Electrically connected.
  • An anode lead 232 that is bent into a predetermined shape is electrically connected to the anode laminated portion in which the plurality of anode portions 210N are stacked.
  • a cathode lead 233 is electrically connected to the cathode laminated portion via a conductive adhesive layer 226.
  • the element laminate is sealed with the exterior resin 231 together with a part of the anode lead 232 and a part of the cathode lead 233.
  • a part of the anode lead 232 and a part of the cathode lead 233 are exposed from the exterior resin 231 and function as external terminals.
  • FIG. 5 is a cross-sectional view schematically showing a solid electrolytic capacitor 230A according to another embodiment including an element laminate in which a plurality of capacitor elements 220 (220A to 220C) are laminated.
  • the same reference numerals as those in FIG. 3 are assigned to the components corresponding to the components in FIG.
  • the capacitor elements 220A to 220C are all covered with the first protective layer 225A on the first end portion 2201 side of the cathode portion and with the second protective layer 225B on the second end portion 2202 side.
  • the first end side of the surface of the cathode part is covered with the first protective layer 225A and the second end side is covered with the second protective layer 225B, for example, a region where the conductive adhesive layer 226 is disposed is arranged. Then, the insulating material solution may be applied to the cathode portion and dried. At this time, as shown in FIG. 5, it is preferable to cover the entire end surface (and side surface) of the cathode portion on the second end portion 2202 side with the second protective layer 225B. Thereafter, a conductive adhesive is applied between the first protective layer 225A and the second protective layer 225B. Since the first protective layer 225A and the second protective layer 225B are separated from each other, the connection between the capacitor elements and the connection between the capacitor element and the cathode lead are not significantly hindered by the protective layer 225.
  • the conductive adhesive is disposed so as to cover at least a part of the protective layer, it is difficult to form a gap that exposes the cathode portion between the protective layer and the conductive adhesive. Moreover, it becomes easy to suppress deterioration of the cathode layer due to moisture or oxygen entering from such a gap. Therefore, a solid electrolytic capacitor excellent in strength and reliability of the capacitor element can be obtained.
  • the anode body forming the anode part is a foil (metal foil) including a valve metal and having a first main surface and a second main surface opposite to the first main surface.
  • a valve action metal titanium, tantalum, aluminum, niobium, or the like is used.
  • the thickness of the anode body is not particularly limited, but is, for example, 50 to 250 ⁇ m.
  • the dielectric layer is formed by anodizing the surface of the anode body by chemical conversion treatment or the like.
  • a dielectric layer containing Al 2 O 3 is formed.
  • the dielectric layer is not limited to this, and any layer that functions as a dielectric may be used.
  • the solid electrolyte layer preferably contains a conductive polymer.
  • a conductive polymer polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, and / or polythiophene vinylene, and derivatives thereof can be used.
  • the solid electrolyte layer containing a conductive polymer can be formed by chemical polymerization and / or electrolytic polymerization of a raw material monomer on a dielectric layer. Alternatively, the dielectric layer can be formed by applying a solution in which the conductive polymer is dissolved or a dispersion liquid in which the conductive polymer is dispersed.
  • the cathode lead layer may be configured to have a current collecting function.
  • the cathode lead layer has, for example, a carbon layer and a conductive paste layer formed on the surface of the carbon layer.
  • the carbon layer is formed of a composition containing a conductive carbon material.
  • the conductive carbon material carbon black, graphite, graphene, carbon nanotube, or the like can be used.
  • the conductive paste layer is formed by heating a conductive paste containing a resin component and metal particles and curing the resin component.
  • a resin component for example, silver particles are used as the metal particles.
  • a resin composition contains an epoxy resin, a phenol resin, etc., and an epoxy resin is especially preferable.
  • the first protective layer and the second protective layer may be formed of an insulating material having a function of shielding moisture and oxygen from the outside.
  • the insulating material include polyphenylene sulfone, polyether sulfone, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyimide, polyamideimide, and epoxy resin.
  • a polyamide-imide resin is preferable in that it has excellent insulating properties, easily adheres to the cathode portion, and can form a dense layer.
  • the polyamide-imide resin can easily form a thin and uniform protective layer, which is advantageous for reducing the height of the solid electrolytic capacitor.
  • Polyamideimide resin is particularly excellent in the effect of shielding moisture and oxygen.
  • the first protective layer and the second protective layer may be formed of the same insulating material or different insulating materials. At least one of the first protective layer and the second protective layer preferably contains a polyamideimide resin.
  • first protective layer and the second protective layer for example, a solution in which an insulating material is dissolved in a solvent is applied to the first end side or the second end side of the surface of the cathode part, and then the solvent is volatilized. Can be provided.
  • the thickness of the first protective layer and the second protective layer is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the thicknesses of the first protective layer and the second protective layer are preferably 5 ⁇ m or less so that the thickness of the element laminate in which the capacitor elements are laminated does not increase.
  • the conductive adhesive layer is formed, for example, by applying a conductive adhesive containing a resin component and metal particles to the cathode portion and curing the resin component.
  • a resin component contains an epoxy resin, a phenol resin, etc.
  • the exterior resin constitutes the exterior body of the solid electrolytic capacitor. What is necessary is just to form an exterior body, for example by transfer molding of a resin composition.
  • the resin composition includes resin components such as epoxy resin, phenol resin, silicone resin, melamine resin, urea resin, alkyd resin, polyurethane, polyimide, polyamideimide, and unsaturated polyester.
  • the exterior resin desirably contains a filler.
  • the average particle diameter of the filler is not particularly limited.
  • the type of filler is not particularly limited, and silica, alumina, and the like can be used.
  • the solid electrolytic capacitor according to the present invention is not easily deteriorated, it is suitable for use in a high temperature environment for a long period of time.
  • 110N anode portion
  • 110E cathode forming portion
  • 111 anode body
  • 122 dielectric layer
  • 123 solid electrolyte layer
  • 123T exposed portion
  • 124 cathode lead layer
  • 125A first protective layer
  • 125B second protective layer
  • 126 conductive adhesive layer
  • 130 solid electrolytic capacitor
  • 1201 first end
  • 1202 second end
  • 210N anode part
  • 210E cathode forming part
  • 211 anode body
  • 220 (220A, 220B, 220C): capacitor element
  • 222 dielectric layer
  • 223 solid electrolyte layer
  • 223T exposed part
  • 224 cathode lead layer
  • 225B silver paste layer
  • 225 protective layer
  • 226 conductive adhesive layer
  • 231 exterior resin
  • 232 anode lead
  • 233 cathode lead
  • 2201 First end 2202: Second end

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

第1端部側に設けられた陽極部と、第1端部とは逆の第2端部側に陽極部に隣接するように設けられた陰極部とを有するコンデンサ素子と、陰極部に接続された陰極リードと、を具備し、コンデンサ素子は、陰極部の表面において、第1端部側に設けられた絶縁性の第1保護層および第2端部側に設けられた絶縁性の第2保護層の少なくとも一方を有し、陰極部と陰極リードとは、導電性接着剤層を介して接続されている、固体電解コンデンサ。

Description

固体電解コンデンサ
 本発明は、第1端部側に設けられた陽極部と第1端部とは逆の第2端部側に設けられた陰極部とを有するコンデンサ素子を具備する固体電解コンデンサに関する。
 固体電解コンデンサは、等価直列抵抗(ESR)が小さく、周波数特性が優れているため、様々な電子機器に搭載されている。固体電解コンデンサは、少なくとも1つのコンデンサ素子を含む。コンデンサ素子は、陽極部と陰極部とで構成されている。陰極部には、導電性接着剤を介して陰極リードが接続されている。また、複数のコンデンサ素子を積層する場合には、陰極部同士が、導電性接着剤を介して接続されている。
 特許文献1は、リフロー処理の熱による漏れ電流の増大を抑制する観点から、陽極部と陰極部との境界に絶縁性樹脂層を形成することを提案している。一方、特許文献2は、湿気や酸素を遮蔽する絶縁性のバリア層でコンデンサ素子を被覆することを提案している。
特開2011-155236号公報 特開2007-194310号公報
 特許文献1の絶縁性樹脂層は、漏れ電流を抑制するために陰極部の僅かな部分を覆うものであり、湿気や酸素を遮蔽する機能を有するものではない。また、特許文献2は、フィルム基材上に形成されたバリア層をコンデンサ素子の表面に転写するものであり、固体電解コンデンサが小型化するほど、陰極部を過不足なく被覆することが困難になる。中でも複数のコンデンサ素子を積層した素子積層体を具備する固体電解コンデンサの場合、その最表面しかバリア層で被覆することができず、固体電解コンデンサの劣化を抑制することは困難である。
 本発明の一側面は、第1端部側に設けられた陽極部と、前記第1端部とは逆の第2端部側に前記陽極部に隣接するように設けられた陰極部とを有するコンデンサ素子と、前記陰極部に接続された陰極リードと、を具備し、前記コンデンサ素子は、前記陰極部の表面において、前記第1端部側に設けられた絶縁性の第1保護層および前記第2端部側に設けられた絶縁性の第2保護層の少なくとも一方を有し、前記陰極部と前記陰極リードとは、導電性接着剤層を介して接続されている、固体電解コンデンサに関する。
 本発明の別の側面は、第1端部側に設けられた陽極部と、前記第1端部とは逆の第2端部側に前記陽極部に隣接するように設けられた陰極部とを有する複数のコンデンサ素子を積層した素子積層体を具備し、前記複数のコンデンサ素子は、前記陰極部の表面において、前記第1端部側に設けられた絶縁性の第1保護層および前記第2端部側に設けられた絶縁性の第2保護層の少なくとも一方を有し、前記複数のコンデンサ素子の前記陰極部同士は、導電性接着剤層を介して接続されている、固体電解コンデンサに関する。
 本発明によれば、固体電解コンデンサの劣化が抑制される。
第1実施形態に係る積層された複数のコンデンサ素子を具備する固体電解コンデンサの一例の縦断面図である。 第1実施形態に係るコンデンサ素子の一例を模式的に示す断面図である。 第2実施形態に係る積層された複数のコンデンサ素子を具備する固体電解コンデンサの一例の縦断面図である。 第2実施形態に係るコンデンサ素子の一例を模式的に示す断面図である。 第2実施形態に係る積層された複数のコンデンサ素子を具備する別の固体電解コンデンサの一例の縦断面図である。
<第1実施形態>
 本実施形態に係る固体電解コンデンサは、1つ以上のコンデンサ素子を具備する。コンデンサ素子は、第1端部側に設けられた陽極部と、第1端部とは逆の第2端部側に陽極部に隣接するように設けられた陰極部とを有する。陰極部の表面の第1端部側には、絶縁性の第1保護層が設けられており、第2端部側には、絶縁性の第2保護層が設けられている。
 通常、陰極部には陰極リードが、陽極部には陽極リードがそれぞれ電気的に接続されている。陰極リードは、導電性接着剤層を介して、陰極部と電気的に接続することができる。
 固体電解コンデンサは、複数(2つ以上)のコンデンサ素子を積層した素子積層体を具備してもよい。複数のコンデンサ素子は、例えば、陽極部同士が重なり、陰極部同士が重なるように積層される。この場合、複数の陽極部が積層された陽極積層部および複数の陰極部が積層された陰極積層部に、それぞれ陽極リードおよび陰極リードが接続される。
 素子積層体においては、2つ以上のコンデンサ素子の陰極部の表面に、それぞれ第1端部側に絶縁性の第1保護層を設け、第2端部側に絶縁性の第2保護層を設けてもよい。そして、コンデンサ素子の陰極部同士を、導電性接着剤層を介して電気的に接続してもよい。また、全てのコンデンサ素子の陰極部をそれぞれ個別に第1保護層および第2保護層で被覆することが好ましい。
 第1保護層と第2保護層を具備する固体電解コンデンサは、第1保護層と第2保護層により陰極部を過不足なく被覆することが可能である。また、第1保護層と第2保護層との間の領域は、湿気や酸素の影響を比較的受けにくい。よって、第1保護層と第2保護層によれば、コンデンサ素子に対する湿気、酸素などの影響を大きく低減することができる。一方、第1保護層や第2保護層は、陰極部と陰極リードとの接続または陰極部同士の接続を阻害するものではないため、低ESRを達成することも容易である。更に、両端に第1保護層および第2保護層を有する構造体は対象性に優れるため、陰極部と陰極リードとの接続または陰極部同士の接続の信頼性も向上する。
 コンデンサ素子は、例えば、箔状の陽極体と、陽極体の表面に設けられた誘電体層と、誘電体層の一部を覆うように第2端部側に設けられた固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを有する。陽極部は、陽極体の固体電解質層に覆われていない領域で構成される。一方、陰極部は、固体電解質層と陰極引出層とで構成される。
 固体電解質層の少なくとも一部を覆う陰極引出層は、例えば、カーボン層と、導電性ペースト層とを具備する。導電性ペースト層は、通常、熱硬化性の樹脂成分と、樹脂成分に分散させた金属粒子とを含む導電性ペーストから形成される。導電性ペーストを加熱して樹脂成分を硬化させてもよい。樹脂成分は、外気(湿気、酸素など)を透過させるが、絶縁性の第1保護層および第2保護層で陰極部を被覆することで、湿気、酸素などが陰極部に到達しにくくなる。よって、陰極部(特に固体電解質層)の劣化もしくは固体電解コンデンサのESRの上昇が抑制される。
 固体電解質層は、陰極引出層で覆われない露出部を有することがある。固体電解質層の露出部は、特に外部からの湿気や酸素の影響を受け易いため、露出部を起点に固体電解質層の劣化が進行しやすくなる。よって、第1保護層は、固体電解質層の露出部の少なくとも一部を覆っていることが好ましい。これにより、固体電解コンデンサの劣化が更に抑制される。
 第2保護層は、第2端部側に配される陰極部の端面を覆っていることが好ましい。すなわち、第2保護層は、箔状のコンデンサ素子が有する陰極部の第2端部側の両主面だけでなく、当該両主面に形成された第2保護層を連続させるように第2端部の端面を覆っていることが好ましい。第2保護層は、両主面および端面に加え、2つの側面も覆っていることが好ましい。
 第1保護層と第2保護層とは、互いに離間していることが好ましい。これにより、第1保護層と第2保護層との間に、いずれの保護層も介在させずに導電性接着剤層による導電経路を形成することができる。よって、固体電解コンデンサのESRの低減に有利となる。
 第1保護層および第2保護層の組み合わせは、陰極部の表面の60%以上を覆っていることが好ましい。このように、第1保護層および第2保護層により、陰極部の多くの表面を被覆することにより、外部からの湿気や酸素による固体電解コンデンサの劣化が更に抑制される。
 コンデンサ素子は、通常、陽極リードの一部および陰極リードの一部とともに外装樹脂により封止される。外装樹脂は、固体電解コンデンサの外装体を構成する。陽極の外部端子として機能する陽極リードの一部および陰極の外部端子として機能する陰極リードの一部は、それぞれ外装樹脂で覆われずに外部に導出される。陽極リードおよび陰極リードはいずれも金属材料であり、例えば金属製板材から切り出された材料で形成されている。
 図1は、複数のコンデンサ素子120(120A~120C)が積層された素子積層体を備える固体電解コンデンサ130を模式的に示す断面図である。図2は、コンデンサ素子20の構造を模式的に示す断面図である。
 複数のコンデンサ素子120は、それぞれ陽極部110Nと陰極形成部110Eとを有する箔状の陽極体111を具備する。陽極部110Nは、コンデンサ素子120の第1端部1201側を構成する。陰極形成部110Eは、コンデンサ素子120の第2端部1202側を構成する。陽極部110Nと陰極形成部110Eとを有する陽極体111は、例えば金属箔の一部をエッチングすることにより形成される。
 陰極形成部110Eの表面には、誘電体層122が形成されている。図示例にかかわらず、誘電体層122は、陽極部110Nを含む陽極体111の全体に形成してもよい。誘電体層122の一部は固体電解質層123で覆われ、固体電解質層123は陰極引出層124(カーボン層124Aおよび導電性ペースト層124B)で覆われている。すなわち、陽極部110Nは、陽極体111の固体電解質層123に覆われない領域から形成されている。陰極部は、固体電解質層123および陰極引出層124により構成されている。
 コンデンサ素子120A~120Cは、いずれも陰極部の第1端部1201側が第1保護層125Aで覆われ、第2端部1202側が第2保護層125Bで覆われている。固体電解質層123の最も第1端部1201側には、陰極引出層124で覆われない固体電解質層123の露出部123Tが存在する。ただし、露出部123Tは、第1保護層125Aで覆われているため、露出部123Tを起点とする固体電解質層123の劣化は抑制される。また、陰極部の大半の領域(例えば60%以上)が、第1保護層125Aおよび第2保護層125Bの組み合わせにより覆われているため、露出部123Tだけでなく、陰極部の大半が外気からの湿気や酸素から遮蔽される。
 陰極部の表面の第1端部側を第1保護層125Aにより、第2端部側を第2保護層125Bにより被覆する際には、例えば、導電性接着剤層126が配置される領域を残して、陰極部に絶縁材料の溶液を塗布し、乾燥させればよい。このとき、図2に示されるように、陰極部の第2端部1202側の端面(および側面)の全体を第2保護層125Bで被覆することが好ましい。その後、少なくとも第1保護層125Aと第2保護層125Bとの間に導電性接着剤が塗布される。
 コンデンサ素子120A~120C同士は、陰極部間に介在する導電性接着剤層126により並列に接続されている。複数の陽極部110Nが重ねられた陽極積層部には、所定形状に折り曲げ成形された陽極リード132が電気的に接続されている。陰極積層部には、導電性接着剤層126を介して、陰極リード133が電気的に接続されている。第1保護層125Aと第2保護層125Bとは互いに離間しているため、これらの接続が各保護層によって大きく阻害されることはない。
 次に、素子積層体が、陽極リード132の一部および陰極リード133の一部とともに外装樹脂131により封止される。陽極リード132の一部および陰極リード133の一部は、外装樹脂131から露出して外部端子として機能する。
 本発明によれば、陰極部が、導電性接着剤層の両側に配置された第1保護層および第2保護層により覆われているため、固体電解コンデンサの劣化が抑制される。
<第2実施形態>
 本実施形態に係る固体電解コンデンサは、1つ以上のコンデンサ素子を具備する。コンデンサ素子は、第1端部側に設けられた陽極部と、第1端部とは逆の第2端部側に陽極部に隣接するように設けられた陰極部とを有する。通常、陰極部には陰極リードが、陽極部には陽極リードがそれぞれ電気的に接続されている。陰極リードは、導電性接着剤層を介して、陰極部と電気的に接続することができる。
 特許文献1が提案する構造では、コンデンサ素子の陰極部同士を接続し、もしくは陰極部と陰極リードとを接続する場合、導電性接着剤は、短絡を防止する観点から、陽極部と陰極部との境界から離間した位置に配される。そのため、絶縁性樹脂層と導電性接着剤との間には陰極部が露出する隙間が形成される。このような隙間が存在すると、隙間付近の部位に応力が集中し、コンデンサ素子の強度が低下することがある。また、コンデンサ素子を外装樹脂で封止する際には、隙間に外装樹脂が侵入できず、固体電解コンデンサに内部空隙が形成されやすくなる。更に、陰極部が露出する隙間から湿気や酸素が浸入することにより、陰極層が劣化しやすくなる。
 以上に鑑み、本実施形態では、陰極部の表面の少なくとも第1端部側に、絶縁性の第1保護層が設けられている。陰極部の表面の第1端部側は、陽極部との境界を含んでいる。陽極部と陰極部との境界は、湿気、酸素などの影響を受けやすく、境界を起点に陰極部が劣化しやすい。陰極部の表面の第1端部側を第1保護層で覆うことにより、陰極部の劣化を効果的に抑制することができる。第1保護層は、陽極部と陰極部との境界をできるだけ覆っていることが好ましい。第1保護層に加え、更に、陰極部の表面の第2端部側に第2保護層を設けてもよい。
 固体電解コンデンサは、複数(2つ以上)のコンデンサ素子を積層した素子積層体を具備してもよい。複数のコンデンサ素子は、例えば、陽極部同士が重なり、陰極部同士が重なるように積層される。この場合、複数の陽極部が積層された陽極積層部および複数の陰極部が積層された陰極積層部に、それぞれ陽極リードおよび陰極リードが接続される。
 素子積層体においては、2つ以上のコンデンサ素子の陰極部の表面に、それぞれ絶縁性の第1保護層を設けてもよい。そして、コンデンサ素子の陰極部同士を、導電性接着剤層を介して電気的に接続してもよい。また、全てのコンデンサ素子の陰極部にそれぞれ個別に第1保護層を設けることが好ましい。これにより、陽極部と陰極部との境界に対する湿気、酸素などの影響を大きく低減することができる。
 陽極部と陰極部との境界(陰極部の第1端部側)から第2端部までの長さをLとするとき、第1保護層は、当該境界から少なくとも0.5×Lまでの陰極部の領域を覆っていることが好ましい。このような第1保護層を具備する固体電解コンデンサは、湿気、酸素などの影響を大きく低減できる。
 ここで、陰極部と陰極リードとを接続し、もしくは陰極部同士を接続する導電性接着剤層は、コンデンサ素子に設けられた第1保護層の少なくとも一部を覆うように配置される。このとき、第1保護層と導電性接着剤との間に隙間が形成されないように、第1保護層と導電性接着剤とを設けることが好ましい。導電性接着剤と陰極部とが電気的に接続され得る限り、陰極部の表面の第1保護層で覆われる割合は特に限定されないが、陰極部の劣化を抑制する観点からは、陰極部の表面のできるだけ多くの割合を第1保護層で覆うことが好ましい。一方、ESRを低減する観点からは、陰極部の表面のできるだけ多くの割合を導電性接着剤層と接触させることが好ましい。また、内部短絡を防止する観点からは、陽極部と陰極部との境界(陰極部の第1端部側)から0.25×Lまでの第1保護層の領域は、導電性接着剤層で覆われないことが好ましい。
 コンデンサ素子は、例えば、箔状の陽極体と、陽極体の表面に設けられた誘電体層と、誘電体層の一部を覆うように第2端部側に設けられた固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを有する。陽極部は、陽極体の固体電解質層に覆われていない領域で構成される。一方、陰極部は、固体電解質層と陰極引出層とで構成される。
 固体電解質層の少なくとも一部を覆う陰極引出層は、例えば、カーボン層と導電性ペースト層とを具備する。導電性ペースト層は、通常、熱硬化性の樹脂成分と、樹脂成分に分散させた金属粒子とを含む導電性ペーストから形成される。導電性ペーストを加熱して樹脂成分を硬化させてもよい。樹脂成分は、外気(湿気、酸素など)を透過させる。湿気、酸素などの影響を受けやすい陰極部の第1端部側の表面を絶縁性の第1保護層で被覆することで、陰極部(特に固体電解質層)の劣化もしくは固体電解コンデンサのESRの上昇が抑制される。
 固体電解質層は、陰極引出層で覆われない露出部を有することがある。固体電解質層の露出部は、特に外部からの湿気や酸素の影響を受け易いため、露出部を起点に固体電解質層の劣化が進行しやすくなる。よって、第1保護層は、固体電解質層の露出部の少なくとも一部を覆っていることが好ましい。これにより、固体電解コンデンサの劣化が更に抑制される。
 更に、第2保護層を陰極部の表面の第2端部側に設けてもよい。このとき、第2保護層は、陰極部の第2端部側の端面を覆っていることが好ましい。すなわち、第2保護層は、箔状のコンデンサ素子が有する陰極部の第2端部側の両主面だけでなく、当該両主面に形成された第2保護層を連続させるように第2端部の端面を覆っていることが好ましい。第2保護層は、両主面および端面に加え、2つの側面も覆っていることが好ましい。
 第1端部側および第2端部側にそれぞれ第1および第2保護層を設ける場合、これらの保護層は、互いに離間していることが好ましい。これにより、第1保護層と第2保護層との間に、いずれの保護層も介在しない導電性接着剤層による導電経路を形成することができる。よって、固体電解コンデンサのESRの低減に有利となる。
 第2保護層を有さない場合には、第1保護層は、陰極部の表面の50%以上を覆っていることが好ましい。このように第1保護層を設けることにより、外部からの湿気や酸素による陰極部の劣化が更に抑制される。第2保護層を有する場合には、第1保護層と第2保護層の組み合わせによって、陰極部の表面の60%以上が覆われていることが好ましい。なお、導電性接着剤層にも外部からの湿気や酸素を遮蔽する効果があるため、第1保護層および導電性接着剤層の組み合わせによって、陰極部の表面の60%以上を覆ってもよい。また、第1および第2保護層と導電性接着剤層との組み合わせによって、陰極部の表面の60%以上を覆ってもよい。
 コンデンサ素子は、通常、陽極リードの一部および陰極リードの一部とともに外装樹脂により封止される。外装樹脂は、固体電解コンデンサの外装体を構成する。陽極の外部端子として機能する陽極リードの一部および陰極の外部端子として機能する陰極リードの一部は、それぞれ外装樹脂で覆われずに外部に導出される。陽極リードおよび陰極リードは、いずれも金属材料であり、例えば金属製板材から切り出された材料で形成されている。
 図3は、複数のコンデンサ素子220(220A~220C)が積層された素子積層体を備える固体電解コンデンサ230を模式的に示す断面図である。図4は、コンデンサ素子220の構造を模式的に示す断面図である。
 複数のコンデンサ素子220は、それぞれ陽極部210Nと陰極形成部210Eとを有する箔状の陽極体211を具備する。陽極部210Nは、コンデンサ素子220の第1端部2201側を構成する。陰極形成部210Eは、コンデンサ素子220の第2端部2202側を構成する。陽極部210Nと陰極形成部210Eとを有する陽極体211は、例えば金属箔の一部をエッチングすることにより形成される。
 陰極形成部210Eの表面には、誘電体層222が形成されている。図示例にかかわらず、誘電体層222は、陽極部210Nを含む陽極体211の全体に形成してもよい。誘電体層222は、固体電解質層223で覆われ、固体電解質層223は陰極引出層224(カーボン層224Aおよび導電性ペースト層224B)で覆われている。すなわち、陽極部210Nは、陽極体211の固体電解質層223に覆われない領域から形成されている。陰極部は、固体電解質層223および陰極引出層224により構成されている。
 コンデンサ素子220A~220Cは、いずれも陰極部の第1端部2201側が保護層225で覆われている。固体電解質層223の最も第1端部2201側には、陰極引出層224で覆われない固体電解質層223の露出部223Tが存在する。ただし、露出部223Tは、保護層225で覆われているため、露出部223Tを起点とする固体電解質層223の劣化は抑制される。また、陰極部の第1端部側の多くの領域が、保護層225により覆われているため、露出部223Tだけでなく、陰極部の第1端部側が全体的に、外気からの湿気や酸素から遮蔽される。
 陰極部の表面の第1端部側を保護層225により被覆する際には、例えば、陰極部の第1端部側に絶縁材料の溶液を塗布し、乾燥させればよい。その後、保護層225の少なくとも一部が覆われるように導電性接着剤が塗布される。
 コンデンサ素子220A~220C同士は、陰極部間に介在する導電性接着剤層226により並列に接続されている。導電性接着剤層226は、いずれも保護層225の一部を覆い、かつ保護層225と導電性接着剤層226との間に隙間が形成されないように配置されるとともに、陰極引出層224と電気的に接続されている。複数の陽極部210Nが重ねられた陽極積層部には、所定形状に折り曲げ成形された陽極リード232が電気的に接続されている。陰極積層部には、導電性接着剤層226を介して、陰極リード233が電気的に接続されている。
 次に、素子積層体が、陽極リード232の一部および陰極リード233の一部とともに外装樹脂231により封止される。陽極リード232の一部および陰極リード233の一部は、外装樹脂231から露出して外部端子として機能する。
 図5は、複数のコンデンサ素子220(220A~220C)が積層された素子積層体を備える別の実施形態に係る固体電解コンデンサ230Aを模式的に示す断面図である。図5では、図3の構成要素に対応する構成要素に、図3と同じ符号を付している。図5では、コンデンサ素子220A~220Cは、いずれも陰極部の第1端部2201側が第1保護層225Aで覆われ、第2端部2202側が第2保護層225Bで覆われている。この場合、陰極部の大半の領域(例えば60%以上)が、第1保護層225Aおよび第2保護層225Bの組み合わせにより覆われているため、陰極部の大半が外気からの湿気や酸素から遮蔽される。
 陰極部の表面の第1端部側を第1保護層225Aにより、第2端部側を第2保護層225Bにより被覆する際には、例えば、導電性接着剤層226が配置される領域を残して、陰極部に絶縁材料の溶液を塗布し、乾燥させればよい。このとき、図5に示されるように、陰極部の第2端部2202側の端面(および側面)の全体を第2保護層225Bで被覆することが好ましい。その後、第1保護層225Aと第2保護層225Bとの間に導電性接着剤が塗布される。第1保護層225Aと第2保護層225Bとは互いに離間しているため、コンデンサ素子間の接続やコンデンサ素子と陰極リードとの接続が保護層225によって大きく阻害されることはない。
 本実施形態によれば、導電性接着剤が保護層の少なくとも一部を覆うように配置されるため、保護層と導電性接着剤との間に陰極部が露出するような隙間が形成されにくい。また、そのような隙間から湿気や酸素が浸入することによる陰極層の劣化を抑制しやすくなる。よって、コンデンサ素子の強度および信頼性に優れた固体電解コンデンサが得られる。
 次に、固体電解コンデンサの構成要素について更に説明する。
(陽極体)
 陽極部を形成する陽極体は、弁作用金属を含み、第1主面とその反対側の第2主面とを備える箔(金属箔)である。弁作用金属としては、チタン、タンタル、アルミニウム、ニオブなどが使用される。陽極体の厚さは、特に限定されないが、例えば50~250μmである。
(誘電体層)
 誘電体層は、陽極体の表面を化成処理等で陽極酸化することにより形成される。弁作用金属としてアルミニウムを用いた場合には、Al23を含む誘電体層が形成される。誘電体層はこれに限らず、誘電体として機能するものであればよい。
(固体電解質層)
 固体電解質層は、導電性高分子を含むことが好ましい。導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、および/またはポリチオフェンビニレン、およびこれらの誘導体などを用いることができる。導電性高分子を含む固体電解質層は、原料モノマーを誘電体層上で化学重合および/または電解重合することにより形成することができる。あるいは、導電性高分子が溶解した溶液または導電性高分子が分散した分散液を誘電体層に塗布することにより形成することができる。
(陰極引出層)
 陰極引出層は、集電機能を有する構成であればよい。陰極引出層は、例えば、カーボン層と、カーボン層の表面に形成された導電性ペースト層とを有している。カーボン層は、導電性炭素材料を含む組成物により形成される。導電性炭素材料としては、カーボンブラック、黒鉛、グラフェン、カーボンナノチューブなどを用いることができる。
 導電性ペースト層は、樹脂成分および金属粒子を含む導電性ペーストを加熱し、樹脂成分を硬化させることにより形成される。金属粒子には、例えば銀粒子が用いられる。樹脂組成物は、エポキシ樹脂、フェノール樹脂などを含み、中でもエポキシ樹脂が好ましい。
(第1保護層および第2保護層)
 第1保護層および第2保護層は、外部からの湿気や酸素を遮蔽する機能を有する絶縁材料により形成すればよい。絶縁材料としては、ポリフェニレンスルホン、ポリエーテルスルホン、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリイミド、ポリアミドイミド、エポキシ樹脂などが挙げられる。中でも、ポリアミドイミド樹脂が、絶縁性に優れ、陰極部に密着しやすく、緻密な層を形成できる点で好ましい。また、ポリアミドイミド樹脂は、薄く、均質な保護層を容易に形成することができ、固体電解コンデンサの低背化に有利である。ポリアミドイミド樹脂は、湿気や酸素を遮蔽する効果にも特に優れている。
 第1保護層および第2保護層は、同じ絶縁材料で形成してもよく、異なる絶縁材料で形成してもよい。第1保護層および第2保護層の少なくとも一方は、ポリアミドイミド樹脂を含むことが好ましい。
 第1保護層および第2保護層は、例えば、絶縁材料を溶媒に溶解させた溶液を、陰極部の表面の第1端部側または第2端部側に塗布し、その後、溶媒を揮発させることにより設けることができる。
 第1保護層および第2保護層の厚さは、0.5μm以上が好ましく、1μm以上がより好ましい。コンデンサ素子を積層した素子積層体の厚さが大きくならないように、第1保護層および第2保護層の厚さは5μm以下が好ましい。
(導電性接着剤層)
 導電性接着剤層は、例えば、樹脂成分および金属粒子を含む導電性接着剤を陰極部に塗布し、樹脂成分を硬化させることにより形成される。金属粒子には、例えば銀粒子が用いられる。樹脂成分は、エポキシ樹脂、フェノール樹脂などを含むことが好ましい。
(外装樹脂)
 外装樹脂は、固体電解コンデンサの外装体を構成する。外装体は、例えば樹脂組成物のトランスファー成形により形成すればよい。樹脂組成物は、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、ポリイミド、ポリアミドイミド、不飽和ポリエステルなどの樹脂成分を含む。
 外装樹脂は、フィラーを含むことが望ましい。フィラーの平均粒子径は、特に限定されない。フィラーの種類は、特に限定されないが、シリカ、アルミナなどを用いることができる。
 本発明に係る固体電解コンデンサは、劣化しにくいため、長期間にわたって高温環境下で使用される用途などに適している。
 110N:陽極部、110E:陰極形成部、111:陽極体、120(120A,120B,120C):コンデンサ素子、122:誘電体層、123:固体電解質層、123T:露出部、124:陰極引出層(124A:カーボン層、125B:銀ペースト層)、125A:第1保護層、125B:第2保護層、126:導電性接着剤層、130:固体電解コンデンサ、131:外装樹脂、132:陽極リード、133:陰極リード、1201:第1端部、1202:第2端部
 210N:陽極部、210E:陰極形成部、211:陽極体、220(220A,220B,220C):コンデンサ素子、222:誘電体層、223:固体電解質層、223T:露出部、224:陰極引出層(224A:カーボン層、225B:銀ペースト層)、225:保護層、226:導電性接着剤層、230(230A):固体電解コンデンサ、231:外装樹脂、232:陽極リード、233:陰極リード、2201:第1端部、2202:第2端部

Claims (12)

  1.  第1端部側に設けられた陽極部と、前記第1端部とは逆の第2端部側に前記陽極部に隣接するように設けられた陰極部とを有するコンデンサ素子と、
     前記陰極部に接続された陰極リードと、を具備し、
     前記コンデンサ素子は、前記陰極部の表面において、前記第1端部側に設けられた絶縁性の第1保護層および前記第2端部側に設けられた絶縁性の第2保護層の少なくとも一方を有し、
     前記陰極部と前記陰極リードとは、導電性接着剤層を介して接続されている、固体電解コンデンサ。
  2.  前記コンデンサ素子は、前記第1保護層と前記第2保護層とを有し、
     前記導電性接着剤層は、少なくとも前記第1保護層と前記第2保護層との間に設けられている、請求項1に記載の固体電解コンデンサ。
  3.  前記コンデンサ素子は、少なくとも前記第1保護層を有し、
     前記導電性接着剤層は、前記第1保護層の少なくとも一部を覆うように配置されている、請求項1に記載の固体電解コンデンサ。
  4.  第1端部側に設けられた陽極部と、前記第1端部とは逆の第2端部側に前記陽極部に隣接するように設けられた陰極部とを有する複数のコンデンサ素子を積層した素子積層体を具備し、
     前記複数のコンデンサ素子は、前記陰極部の表面において、前記第1端部側に設けられた絶縁性の第1保護層および前記第2端部側に設けられた絶縁性の第2保護層の少なくとも一方を有し、
     前記複数のコンデンサ素子の前記陰極部同士は、導電性接着剤層を介して接続されている、固体電解コンデンサ。
  5.  前記コンデンサ素子は、前記第1保護層と前記第2保護層とを有し、
     前記導電性接着剤層は、少なくとも前記第1保護層と前記第2保護層との間に設けられている、請求項4に記載の固体電解コンデンサ。
  6.  前記複数のコンデンサ素子は、少なくとも前記第1保護層を有し、
     前記導電性接着剤層は、それぞれの前記第1保護層の少なくとも一部を覆うように配置されている、請求項4に記載の固体電解コンデンサ。
  7.  前記第2保護層が、前記第2端部側に配される前記陰極部の端面を覆っている、請求項2または5に記載の固体電解コンデンサ。
  8.  前記第1保護層と前記第2保護層とが離間している、請求項2、5または7に記載の固体電解コンデンサ。
  9.  前記第1保護層および前記第2保護層の組み合わせが、前記陰極部の表面の60%以上を覆っている、請求項2、5、7または8に記載の固体電解コンデンサ。
  10.  前記コンデンサ素子が、箔状の陽極体と、前記陽極体の表面に設けられた誘電体層と、前記誘電体層の少なくとも一部を覆うように前記第2端部側に設けられた固体電解質層と、前記固体電解質層の少なくとも一部を覆う陰極引出層とを有し、
     前記陽極部が、前記陽極体の前記固体電解質層に覆われていない領域で構成され、
     前記陰極部が、前記固体電解質層と前記陰極引出層とで構成され、
     前記固体電解質層が、前記陰極引出層で覆われない露出部を有し、
     前記第1保護層が、前記露出部の少なくとも一部を、前記陰極引出層の表面の少なくとも一部とともに覆っている、請求項2、3、5、6、7、8または9に記載の固体電解コンデンサ。
  11.  前記第2保護層が、前記第2端部側に設けられており、前記第2端部側に配される前記陰極部の端面を覆っている、請求項3、6または10に記載の固体電解コンデンサ。
  12.  前記第1保護層および/または前記第2保護層が、ポリアミドイミド樹脂を含む、請求項1~11のいずれか1項に記載の固体電解コンデンサ。
PCT/JP2018/001643 2017-01-31 2018-01-19 固体電解コンデンサ WO2018142972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880006195.7A CN110168687B (zh) 2017-01-31 2018-01-19 固体电解电容器
JP2018566055A JP7113286B2 (ja) 2017-01-31 2018-01-19 固体電解コンデンサ
US16/472,683 US10957494B2 (en) 2017-01-31 2018-01-19 Solid electrolytic capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-015793 2017-01-31
JP2017015793 2017-01-31
JP2017015466 2017-01-31
JP2017-015466 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142972A1 true WO2018142972A1 (ja) 2018-08-09

Family

ID=63040616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001643 WO2018142972A1 (ja) 2017-01-31 2018-01-19 固体電解コンデンサ

Country Status (4)

Country Link
US (1) US10957494B2 (ja)
JP (1) JP7113286B2 (ja)
CN (1) CN110168687B (ja)
WO (1) WO2018142972A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167267A (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
CN111834123A (zh) * 2019-04-15 2020-10-27 钰冠科技股份有限公司 堆叠型电容器组件结构
US20230076194A1 (en) * 2020-02-26 2023-03-09 Panasonic Intellectual Property Management Co., Ltd. Capacitor element, electrolytic capacitor, insulating material, and method for manufacturing mounting substrate
WO2023053811A1 (ja) * 2021-10-01 2023-04-06 ルビコン株式会社 コンデンサ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211615A (ja) * 1987-02-26 1988-09-02 日通工株式会社 固体電解コンデンサ
JP2004165265A (ja) * 2002-11-11 2004-06-10 Nippon Chemicon Corp 電解コンデンサ
JP2005079463A (ja) * 2003-09-02 2005-03-24 Nec Tokin Corp 積層型固体電解コンデンサおよび積層型伝送線路素子
JP2009129936A (ja) * 2007-11-20 2009-06-11 Nec Tokin Corp 表面実装薄型コンデンサ及びその製造方法
JP2009130166A (ja) * 2007-11-26 2009-06-11 Sanyo Electric Co Ltd 固体電解コンデンサ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400554B1 (en) * 1998-06-19 2002-06-04 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor, its anode body, and method of producing the same
US6906913B2 (en) * 2001-10-18 2005-06-14 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and manufacturing method thereof
JP2003272950A (ja) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd 固体電解コンデンサ及びその製造方法
JP4275044B2 (ja) * 2004-02-04 2009-06-10 三洋電機株式会社 固体電解コンデンサおよびその製造方法
JP4508945B2 (ja) * 2005-05-26 2010-07-21 三洋電機株式会社 固体電解コンデンサおよびその製造方法
JP2007194310A (ja) 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP4873415B2 (ja) * 2007-02-28 2012-02-08 三洋電機株式会社 固体電解コンデンサの製造方法
JP4812118B2 (ja) * 2007-03-23 2011-11-09 Necトーキン株式会社 固体電解コンデンサ及びその製造方法
WO2009028183A1 (ja) * 2007-08-29 2009-03-05 Panasonic Corporation 固体電解コンデンサ
JP2009170897A (ja) * 2007-12-21 2009-07-30 Sanyo Electric Co Ltd 固体電解コンデンサ
JP5105479B2 (ja) * 2008-02-13 2012-12-26 Necトーキン株式会社 固体電解コンデンサ
US8310815B2 (en) * 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
US8503165B2 (en) * 2009-05-21 2013-08-06 Kemet Electronics Corporation Solid electrolytic capacitors with improved reliability
EP2517220B1 (en) * 2009-12-22 2018-05-16 Kemet Electronics Corporation Solid electrolytic capacitor and method of manufacture
JP5257796B2 (ja) 2009-12-28 2013-08-07 株式会社村田製作所 固体電解コンデンサ素子及びその製造方法
JP2013219362A (ja) * 2012-04-11 2013-10-24 Avx Corp 過酷な条件下で強化された機械的安定性を有する固体電解コンデンサ
TWI546834B (zh) * 2014-10-28 2016-08-21 鈺邦科技股份有限公司 晶片型固態電解電容器及其製造方法
CN108701547B (zh) * 2016-03-10 2020-10-30 松下知识产权经营株式会社 固体电解电容器及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211615A (ja) * 1987-02-26 1988-09-02 日通工株式会社 固体電解コンデンサ
JP2004165265A (ja) * 2002-11-11 2004-06-10 Nippon Chemicon Corp 電解コンデンサ
JP2005079463A (ja) * 2003-09-02 2005-03-24 Nec Tokin Corp 積層型固体電解コンデンサおよび積層型伝送線路素子
JP2009129936A (ja) * 2007-11-20 2009-06-11 Nec Tokin Corp 表面実装薄型コンデンサ及びその製造方法
JP2009130166A (ja) * 2007-11-26 2009-06-11 Sanyo Electric Co Ltd 固体電解コンデンサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167267A (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP7382591B2 (ja) 2019-03-29 2023-11-17 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
CN111834123A (zh) * 2019-04-15 2020-10-27 钰冠科技股份有限公司 堆叠型电容器组件结构
US20230076194A1 (en) * 2020-02-26 2023-03-09 Panasonic Intellectual Property Management Co., Ltd. Capacitor element, electrolytic capacitor, insulating material, and method for manufacturing mounting substrate
WO2023053811A1 (ja) * 2021-10-01 2023-04-06 ルビコン株式会社 コンデンサ装置

Also Published As

Publication number Publication date
JPWO2018142972A1 (ja) 2019-11-21
CN110168687B (zh) 2021-11-09
US20190362903A1 (en) 2019-11-28
CN110168687A (zh) 2019-08-23
US10957494B2 (en) 2021-03-23
JP7113286B2 (ja) 2022-08-05

Similar Documents

Publication Publication Date Title
CN109791844B (zh) 固体电解电容器
KR101119053B1 (ko) 고체 전해 콘덴서 및 그 제조 방법
WO2018142972A1 (ja) 固体電解コンデンサ
JP7300616B2 (ja) 電解コンデンサおよびその製造方法
WO2019087692A1 (ja) 電解コンデンサおよびその製造方法
JP4478695B2 (ja) 固体電解コンデンサ素子およびそれを備えた固体電解コンデンサ
US11443903B2 (en) Solid electrolytic capacitor having an insulating layer between exposed anode portions
WO2018066254A1 (ja) 固体電解コンデンサ
WO2017154374A1 (ja) 固体電解コンデンサおよびその製造方法
KR100623804B1 (ko) 고체 전해질 캐패시터 및 그 제조방법
WO2018131691A1 (ja) 電解コンデンサ
WO2018066253A1 (ja) 固体電解コンデンサ
US20180012704A1 (en) Power storage device
US8559165B2 (en) Solid electrolytic capacitor
WO2019230591A1 (ja) 固体電解コンデンサ
JP4715299B2 (ja) 固体電解コンデンサ
JP4671339B2 (ja) 積層型固体電解コンデンサ
JP4735110B2 (ja) 固体電解コンデンサ
JP2004281515A (ja) 積層型固体電解コンデンサ
JP6729153B2 (ja) 固体電解コンデンサ
CN111095452A (zh) 固体电解电容器及其制造方法
JP2011091444A (ja) 固体電解コンデンサ
US11508528B2 (en) Electrolytic capacitor and method for producing same
JP7029666B2 (ja) 固体電解コンデンサ
JP2007227716A (ja) 積層型固体電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747583

Country of ref document: EP

Kind code of ref document: A1