WO2018142787A1 - メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法 - Google Patents

メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法 Download PDF

Info

Publication number
WO2018142787A1
WO2018142787A1 PCT/JP2017/045372 JP2017045372W WO2018142787A1 WO 2018142787 A1 WO2018142787 A1 WO 2018142787A1 JP 2017045372 W JP2017045372 W JP 2017045372W WO 2018142787 A1 WO2018142787 A1 WO 2018142787A1
Authority
WO
WIPO (PCT)
Prior art keywords
atoms
catalyst
inorganic oxide
less
methanation reaction
Prior art date
Application number
PCT/JP2017/045372
Other languages
English (en)
French (fr)
Inventor
匠磨 森
侑介 西田
恵美 庄野
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to AU2017397313A priority Critical patent/AU2017397313A1/en
Priority to MYPI2019004387A priority patent/MY191064A/en
Priority to CN201780085452.6A priority patent/CN110248728A/zh
Priority to EP17895068.9A priority patent/EP3578257A4/en
Priority to US16/480,868 priority patent/US20190344246A1/en
Priority to KR1020197022845A priority patent/KR20190113804A/ko
Publication of WO2018142787A1 publication Critical patent/WO2018142787A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a methanation reaction catalyst, a method for producing a methanation reaction catalyst, and a method for producing methane.
  • a methanation catalyst for methanation reaction of CO or CO 2 with hydrogen is known.
  • a catalyst for methanation reaction for example, a catalyst precursor having a composition of Ni: 60.2 atomic%, Zr: 20.6 atomic%, Sm: 14.0 atomic%, Si: 5.1 atomic%
  • a catalyst produced by reducing the above for example, see Patent Document 1.
  • Such a catalyst is obtained by adding samarium nitrate hexahydrate, nickel nitrate hexahydrate and silica sol to a zirconia hydrosol and kneading the resulting pellet (kneaded product) to obtain a catalyst precursor. Thereafter, the catalyst precursor is produced by reduction.
  • Patent Document 1 has insufficient catalytic activity, and there is a limit to improving the production rate of methane.
  • an object of the present invention is to provide a methanation reaction catalyst, a methanation reaction catalyst production method, and a methane production method capable of improving the catalyst activity and improving the methanogenesis rate.
  • the present invention [1] is a methanation catalyst for methanation reaction of CO and / or CO 2 and hydrogen, comprising a zirconia and / or Zr salt, a stabilizing element salt, Ni A sintered body of a wet mixture of a salt and an inorganic oxide, wherein the stabilizing element is a group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca, Mg, Mn, Fe and Co And the inorganic oxide is at least one inorganic oxide selected from the group consisting of silica, alumina, titania and ceria, and the inorganic oxide includes silica.
  • the molar ratio of Ni atoms to Si atoms is 0.20 or more and 10.0 or less
  • the molar ratio of Ni atoms to Al atoms is 0.20 or more and 7.0
  • the molar ratio of Ni atoms to Ti atoms is 0.30 or more and 10.5 or less
  • the moles of Ni atoms relative to Ce atoms A methanation reaction catalyst having a ratio of 0.70 or more and 25.0 or less is included.
  • the catalyst for methanation reaction is a fired body of a wet mixture of a zirconia and / or Zr salt, a stabilizing element salt, a Ni salt, and an inorganic oxide, and Si
  • the molar ratio of Ni atoms to at least one of atoms, Al atoms, Ti atoms, and Ce atoms is within the above range.
  • the inorganic oxide acts to form a space between a plurality of Nis which are catalytic active components, and suppresses the aggregation of Ni.
  • the pore volume in the methanation reaction catalyst can be improved, and the dispersibility of Ni can be improved.
  • the specific surface area of the catalyst for methanation reaction can be improved, and the surface exposure amount of Ni can be increased.
  • the catalytic activity of the methanation reaction catalyst can be improved, and the methane production rate can be improved.
  • the molar ratio of Zr atoms to Si atoms is 0.10 or more and 4.5 or less, and when the inorganic oxide contains alumina, Al atoms
  • the molar ratio of Zr atoms to Ti atoms is 0.15 or more and 6.0 or less
  • the methanation catalyst according to the above [1] wherein the molar ratio of Zr atoms to Ce atoms is 0.30 or more and 12.0 or less.
  • the inorganic oxide is mainly composed of Zr.
  • the pore volume in the catalyst for methanation reaction can be further improved by acting so as to form a space between a plurality of particles of the zirconia support.
  • the specific surface area of the methanation reaction catalyst can be further improved, and the methane production rate can be further improved.
  • the content of the inorganic oxide is the sum of the calcination body of a wet mixture of a zirconia and / or Zr salt, a stabilizing element salt, a Ni salt, and an inorganic oxide.
  • the methanation reaction catalyst according to the above [1] or [2] which is 5% by mass or more and 62% by mass or less.
  • the present invention [4] has a plurality of pores, and the total volume of pores having a pore diameter of 2 nm to 12 nm among the plurality of pores is 0.050 cm 3 / g or more per unit mass.
  • the catalyst for methanation reaction according to any one of [1] to [3] above is included.
  • the total volume of pores having a pore diameter of 2 nm to 12 nm is 0.050 cm 3 / g or more per unit mass, so that the surface exposure amount of Ni in the methanation reaction catalyst Can be further increased, and the catalytic activity of the methanation reaction catalyst can be further improved.
  • the present invention [5] provides the methanation reaction catalyst according to any one of the above [1] to [4], wherein the mixed gas contains CO and / or CO 2 and hydrogen gas at 200 ° C. or higher.
  • the present invention [6] includes zirconia and / or Zr salt, at least one inorganic oxide selected from the group consisting of silica, alumina, titania and ceria, and Y, La, Ce, Pr, Nd, Sm.
  • the inorganic oxide contains silica, the molar ratio of Ni atoms to Si atoms is 0.20 or higher.
  • the molar ratio of Ni atoms to Al atoms is 0.20 or more and 7.0 or less.
  • the inorganic oxide contains titania
  • the mixture is prepared so that the molar ratio of Ni atom to Ti atom is 0.30 or more and 10.5 or less, and the inorganic oxide is ceria.
  • the method for producing a methanation catalyst is prepared by preparing the mixture so that the molar ratio of Ni atoms to Ce atoms is 0.70 or more and 25.0 or less.
  • the salt of zirconia and / or Zr, the inorganic oxide, the salt of the stabilizing element, and the salt of Ni are selected from at least one of Si atom, Al atom, Ti atom, and Ce atom.
  • the mixture is prepared by wet mixing so that the molar ratio of Ni atoms to one is in the above range, and then the mixture is calcined at 400 ° C. or higher and 800 ° C. or lower to produce a catalyst for methanation reaction.
  • the catalyst activity can be improved, and a methanation reaction catalyst capable of improving the methane production rate can be produced.
  • the catalytic activity can be improved and the methane production rate can be improved.
  • methane can be produced efficiently.
  • the method for producing a catalyst for methanation reaction of the present invention it is possible to produce a catalyst for methanation reaction that can improve the catalytic activity and can improve the rate of methane production.
  • FIG. 1 is a graph showing pore distributions in the catalysts for methanation reaction (pre-reduction catalyst) of Examples 4 to 6 and Comparative Examples 1 and 4.
  • FIG. 2 shows the molar ratio of Ni atom to Si atom (Ni / Si) and inorganic oxide in the methanation reaction catalysts (post-reduction catalysts) of Examples 1 to 14 and Comparative Examples 1 to 3 and 6 to 8. is a graph showing the correlation between the ratio of the methane production rate of each methanation reaction catalyst (k / k 0) for methane generation rate of the additive-free methanation reaction catalyst.
  • FIG. 1 is a graph showing pore distributions in the catalysts for methanation reaction (pre-reduction catalyst) of Examples 4 to 6 and Comparative Examples 1 and 4.
  • FIG. 2 shows the molar ratio of Ni atom to Si atom (Ni / Si) and inorganic oxide in the methanation reaction catalysts (post-reduction catalysts) of Examples 1 to 14 and Comparative Examples 1 to 3
  • FIG. 3 shows the molar ratio (Zr / Si) of Zr atoms to Si atoms and the methane production rate in the methanation reaction catalysts (post-reduction catalysts) of Examples 1 to 14 and Comparative Examples 1 to 3 and 6 to 8. it is a graph showing the correlation between the ratio of (k / k 0).
  • FIG. 4 shows the molar ratio of Ni atom to Ni atom (Ni / Al) and the ratio of methane production rate (k / k 0) is a graph showing the correlation between.
  • FIG. 5 shows the ratio of the molar ratio of Zr atoms to Al atoms (Zr / Al) and the ratio of methane production rate (k / k 0) is a graph showing the correlation between.
  • FIG. 6 shows the ratio of the molar ratio of Ni atoms to Ti atoms (Ni / Ti) and the ratio of methane production rate (k / k 0) is a graph showing the correlation between.
  • FIG. 7 shows the ratio of the molar ratio of Zr atoms to Ti atoms (Zr / Ti) and the ratio of methane production rate (k / k 0) is a graph showing the correlation between.
  • FIG. 6 shows the ratio of the molar ratio of Ni atoms to Ti atoms (Ni / Ti) and the ratio of methane production rate (k / k 0) is a graph showing the correlation between.
  • FIG. 7 shows the ratio of the molar ratio of Zr atoms to Ti
  • FIG. 8 shows the ratio of the molar ratio of Ni atoms to Ce atoms (Ni / Ce) and the ratio of the methane production rate (k / k 0) is a graph showing the correlation between.
  • FIG. 9 shows the ratio of the molar ratio of Zr atom to Ce atom (Zr / Ce) and the ratio of methane production rate (k / k 0) is a graph showing the correlation between.
  • the methanation reaction catalyst is a methanation reaction catalyst for the methanation reaction of CO and / or CO 2 and hydrogen, and includes a stabilized zirconia support and a stabilized zirconia support. Ni supported on the substrate and an inorganic oxide.
  • a stabilizing element and Ni are dissolved in a tetragonal and / or cubic crystal structure (unit cell) mainly composed of Zr.
  • the crystal structure of the stabilized zirconia support is composed mainly of Zr (basic component), and Zr ions (Zr 4+ ) are mainly arranged at a plurality of lattice points of the crystal structure of the stabilized zirconia support. .
  • the stabilizing element stabilizes the crystal structure of the stabilized zirconia support to be tetragonal and / or cubic.
  • the stabilizing element is at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca, Mg, Mn, Fe, and Co.
  • Sm, Ca and Mn are preferable, and Ca and Mn are more preferable.
  • the stabilizing element and Ni are dissolved in the stabilized zirconia support, some of the plurality of lattice points of the crystal structure are replaced with any of the above-described stabilizing element ions and Ni ions from the Zr ions.
  • the stabilization element is solid-solved in the stabilized zirconia support means that the Zr ions arranged at the lattice points of the crystal structure are replaced by the above-mentioned stabilization element ion, and when Ni is dissolved in the stabilization zirconia support. Is that Zr ions arranged at lattice points of the crystal structure are replaced with Ni ions. Therefore, any one of Zr ions, the above-described stabilizing element ions, and Ni ions is arranged at a plurality of lattice points of the stabilized zirconia support.
  • Such a stabilized zirconia support contains Zr, the above-mentioned stabilizing element, Ni, and O, and preferably consists of Zr, the above-described stabilizing element, Ni, and O. More specifically, the stabilized zirconia carrier is represented by the following general formula (1).
  • x and y are less than 1 and x + y is less than 1.
  • M is Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca, Mg, Mn, (At least one stabilizing element selected from the group consisting of Fe and Co is used, and ⁇ represents the valence of the stabilizing element.)
  • x is, for example, 0.133 or more and less than 1, preferably 0.248 or less.
  • y is 0.010 or more and less than 1, for example, Preferably, it is 0.050 or less.
  • the stabilized zirconia support has oxygen vacancies.
  • Oxygen vacancies are those in which a stabilizing element and / or Ni is dissolved in a stabilized zirconia support, and a stabilizing element ion and / or Ni ion having a valence of 3 or less (divalent or trivalent) is combined with Zr ion. Formed by substitution.
  • Such a stabilized zirconia support may be contained alone in the methanation reaction catalyst, or may be contained in two or more kinds.
  • Ni may be NiO or Ni in a metallic state, but is preferably Ni in a metallic state from the viewpoint of catalytic activity.
  • Ni is dissolved in the stabilized zirconia support and is supported on the stabilized zirconia support. Therefore, the methanation reaction catalyst is supported on Zr constituting the stabilized zirconia support, the stabilizing element dissolved in the stabilized zirconia support, Ni dissolved in the stabilized zirconia support, and the stabilized zirconia support.
  • Ni and inorganic oxide preferably, Zr constituting a stabilized zirconia support, a stabilizing element solid-solved in the stabilized zirconia support, Ni dissolved in the stabilized zirconia support, It consists of Ni supported on a stabilized zirconia support and an inorganic oxide.
  • the inorganic oxide is uniformly dispersed in the methanation reaction catalyst, and acts to form a space between a plurality of particles of the stabilized zirconia support supporting Ni.
  • the inorganic oxide is at least one inorganic oxide selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), and ceria (CeO 2 ).
  • silica examples include quartz, cristobarate, tridymite, and cosite, and preferably quartz.
  • alumina examples include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and preferably ⁇ -alumina.
  • titania examples include rutile type titania, anatase type titania, brookite type titania, and preferably, rutile type titania.
  • ceria examples include fluorite ceria.
  • silica is preferable.
  • the inorganic oxide may be contained alone in the methanation reaction catalyst, or may be contained in two or more kinds.
  • the total of Ni supported on the stabilized zirconia support and Ni dissolved in the stabilized zirconia support is indicated as Ni.
  • each of Si atom, Al atom, Ti atom, and Ce atom contained in the inorganic oxide is an inorganic element, and the sum of these inorganic elements is shown as the total inorganic element.
  • Element + Ni + total inorganic elements) ⁇ 100) is, for example, 8.5 atomic% or more, preferably 15.0 atomic% or more, more preferably 23.0 atomic% or more, such as 70 atomic% or less, preferably Is at most 60 atomic%, more preferably at most 55.0 atomic%.
  • the atomic ratio of each atom in the methanation reaction catalyst is a raw material component (zirconia and / or Zr salt, stabilizing element salt, Ni salt) used in the method for producing a methanation reaction catalyst described later. And inorganic oxide).
  • the atomic ratio of the total inorganic elements is, for example, 2.0 atomic% with respect to the sum of each atom. As mentioned above, Preferably, it is 3.0 atomic% or more, Preferably, it is 10 atomic% or more, for example, 75 atomic% or less, Preferably, it is 50 atomic% or less.
  • the molar ratio of Ni atoms to Si atoms is 0.20 or more, preferably 0.35 or more, more preferably 0.70 or more, 10.0 or less, preferably 5.0 or less, more preferably 3.0 or less.
  • the molar ratio of Zr atoms to Si atoms is, for example, 0.10 or more, preferably 0.20 or more, for example, 4.5 or less, preferably 3.0 or less. More preferably, it is 1.5 or less.
  • the molar ratio of Ni atoms to Al atoms is 0.20 or more, preferably 0.30 or more, more preferably 1.0 or more, 7.0 or less, preferably 5.0 or less, more preferably 2.5 or less.
  • the molar ratio of Zr atoms to Al atoms is, for example, 0.10 or more, preferably 0.15 or more, more preferably 0.50 or more, for example, 4.0 or less, Preferably, it is 2.5 or less, more preferably 1.5 or less.
  • the molar ratio of Ni atoms to Ti atoms is 0.30 or more, preferably 0.40 or more, more preferably 1.0 or more, 10.5 or less, preferably , 8.0 or less, more preferably 4.0 or less.
  • the molar ratio of Zr atoms to Ti atoms is, for example, 0.15 or more, preferably 0.20 or more, more preferably 0.50 or more, for example, 6.0 or less, Preferably, it is 4.0 or less, more preferably 2.0 or less.
  • the molar ratio of Ni atoms to Ce atoms is 0.70 or more, preferably 1.0 or more, more preferably 2.0 or more, 25.0 or less, preferably 15.0 or less, more preferably 9.0 or less.
  • the molar ratio of Zr atoms to Ce atoms is 0.30 or more, preferably 0.50 or more, more preferably 1.0 or more, 12.0 or less, preferably 7 0.0 or less, more preferably 5.0 or less.
  • the molar ratio of Ni atom to inorganic element is less than the above lower limit, the content ratio of Ni as a catalyst active component is sufficiently secured. It is possible to improve the methane production rate of the methanation reaction catalyst. If the molar ratio of Ni atoms to inorganic elements exceeds the above upper limit, the pore volume of the methanation reaction catalyst can be improved, and the methanation rate of the methanation reaction catalyst can be improved. it can.
  • the present invention is applicable as long as the molar ratio of Ni atoms to at least one of the inorganic elements contained in these inorganic elements is within the above range. Included in the range.
  • the molar ratio of Ni atoms is outside the above range for any of the inorganic elements contained in these inorganic elements, It is outside the scope of the present invention.
  • the pore volume in the methanation reaction catalyst can be further improved, and the methane production rate of the methanation reaction catalyst can be further improved. Can be planned.
  • the shape of the catalyst for methanation reaction is not particularly limited, but is preferably particulate.
  • the average secondary particle size of the methanation catalyst is, for example, 1.0 ⁇ m or more, preferably 10 ⁇ m or more, for example, 200 ⁇ m or less, preferably 150 ⁇ m or less.
  • an average secondary particle diameter is measured according to the electron microscope method (JIS H7803: 2005).
  • the methanation reaction catalyst has a plurality of pores.
  • the total volume of pores having a pore diameter of 2 nm to 12 nm (hereinafter referred to as 2-12 nm pores) among the plurality of pores is, for example, 0.050 cm per unit mass of the catalyst for methanation reaction. 3 / g or more, preferably 0.070 cm 3 / g or more.
  • the total volume of 2-12 nm pores is measured according to the examples described later.
  • the specific surface area of the methanation reaction catalyst can be improved, and the surface exposure of Ni can be improved.
  • the specific surface area (BET specific surface area) of the catalyst for methanation reaction is, for example, 50 m 2 ⁇ g ⁇ 1 or more, preferably 70 m 2 ⁇ g ⁇ 1 or more.
  • the specific surface area (BET specific surface area) of the methanation reaction catalyst is preferably as large as possible. For example, it is 200 m 2 ⁇ g ⁇ 1 or less, preferably 150 m 2 ⁇ g ⁇ 1 or less.
  • the specific surface area of the methanation reaction catalyst is measured according to the BET method (JIS Z8830: 2013).
  • Such a methanation reaction catalyst comprises a wet mixture of a zirconia and / or Zr salt, a stabilizing element salt, a Ni salt, and an inorganic oxide. It is a fired body.
  • the method for producing a catalyst for methanation reaction includes a step of wet mixing raw material components to prepare a wet mixture (mixing step) and a step of firing the wet mixture (firing step). It further includes a step of reducing to Ni (reduction step).
  • zirconia examples include low crystalline ZrO 2 fine particles.
  • Examples of the salt of Zr include nitrates of Zr (for example, zirconium nitrate (Zr (NO 3 ) 4 ), zirconium nitrate oxide (ZrO (NO 3 ) 2 ), etc.), and hydrochlorides of Zr (for example, zirconium chloride oxide ( ZrCl 2 O) and the like, and Zr acetate (eg, zirconium acetate oxide (ZrO (C 2 H 3 O 2 ) 2 ) and the like).
  • Zr salts may be used alone or in combination of two or more.
  • zirconia and Zr salts Zr acetate is preferable, and zirconium acetate is more preferable.
  • the salt of the stabilizing element examples include nitrates of the stabilizing element (for example, samarium nitrate (Sm (NO 3 ) 3 ), calcium nitrate (Ca (NO 3 ) 2 ), manganese nitrate (Mn (NO 3 ) 2 )). , Iron nitrate (Fe (NO 3 ) 3 ), cobalt nitrate (Co (NO 3 ) 2 ), etc.), stabilizing element chlorides (eg samarium chloride (SmCl 3 ), calcium chloride (CaCl 2 ), manganese chloride (MnCl 2 ), iron chloride (FeCl 3 ), cobalt chloride (CoCl 2 ) and the like.
  • Stabilizing element salts may be used alone or in combination of two or more. Commercially available products can be used as the salt of the stabilizing element.
  • the stabilizing element salts are preferable, and samarium nitrate and calcium nitrate are more preferable.
  • Ni salts examples include Ni nitrate (eg, nickel nitrate (Ni (NO 3 ) 2 )), Ni chloride (eg, nickel chloride (NiCl 2 )), and the like. Ni salts may be used alone or in combination of two or more.
  • Ni nitrate is preferable, and nickel nitrate is more preferable.
  • a salt of a stabilizing element for example, a salt of Ni, and an inorganic oxide are added to each atom (Zr, stabilizing element).
  • Ni and inorganic elements are added so that the atomic ratio is in the above range, followed by stirring and mixing.
  • a stabilizing element salt is added to an aqueous solution of zirconia hydrosol and / or Zr salt, and stirred and mixed (wet mixing) until a uniform slurry is obtained.
  • Ni salt preferably an aqueous solution of Ni salt
  • stirring and mixing are performed until a uniform mixed solution is obtained.
  • an inorganic oxide preferably an inorganic oxide hydrosol
  • stirred wet mixing
  • the wet mixture is heated by, for example, a constant temperature drying furnace to volatilize excess water.
  • the heating temperature of the wet mixture is, for example, 100 ° C. or higher, preferably 150 ° C. or higher, for example, 200 ° C. or lower, preferably 170 ° C. or lower.
  • the heating time of the wet mixture is, for example, 30 minutes or more, preferably 1 hour or more, for example, 10 hours or less, preferably 3 hours or less.
  • the wet mixture is fired in a firing step, for example, in a heating furnace such as an electric furnace.
  • Calcination temperature is 400 ° C or higher, preferably 500 ° C or higher, more preferably 600 ° C or higher and 800 ° C or lower, preferably 750 ° C or lower, more preferably 700 ° C or lower.
  • the crystal structure of the stabilized zirconia support can be surely made tetragonal and / or cubic.
  • Calcination time is, for example, 1 hour or more, preferably 5 hours or more, for example, 24 hours or less, preferably 10 hours or less.
  • the wet mixture is baked to form a stabilized zirconia support represented by the above general formula (1), and nickel oxide is supported on the stabilized zirconia support as represented by the following general formula (2).
  • the catalyst for methanation reaction is a pre-reduction catalyst before NiO is reduced to Ni, and contains a stabilized zirconia support on which nickel oxide represented by the general formula (2) is supported, and an inorganic oxide. is doing.
  • the stabilized zirconia support of the above general formula (2) and the inorganic oxide are uniformly dispersed.
  • the content ratio of the inorganic oxide with respect to the pre-reduction catalyst (the total of the fired body of the wet mixture of the zirconia and / or Zr salt, the stabilizing element salt, the Ni salt, and the inorganic oxide) is, for example, 5 mass% or more, preferably 10 mass% or more, for example, 62 mass% or less, preferably 45 mass% or less.
  • the Ni dispersibility can be stably improved, and the pore volume of the methanation reaction catalyst can be stably improved.
  • the total volume of 2-12 nm pores in the pre-reduction catalyst is the same as the above range.
  • the pre-reduction catalyst is reduced with a hydrogen stream.
  • the reaction tube is heated by a heater such as an electric tube furnace so that the following reduction temperature is reached, and hydrogen is added to the reaction tube. Circulate.
  • the reduction temperature is, for example, 200 ° C. or higher, preferably 300 ° C. or higher, for example, 600 ° C. or lower, preferably 500 ° C. or lower.
  • the reduction time is, for example, 2 hours or more, preferably 5 hours or more, for example, 10 hours or less.
  • nickel oxide supported on the stabilized zirconia support is reduced to nickel in a metallic state as shown by the following general formula (3).
  • a methanation reaction catalyst (post-reduction catalyst) containing a stabilized zirconia support on which nickel in the metal state represented by the general formula (3) is supported and an inorganic oxide is prepared.
  • the stabilized zirconia support of the general formula (3) and the inorganic oxide are uniformly dispersed with each other.
  • the range of the molar ratio of Ni atoms to Si atoms and the range of the molar ratio of Zr atoms to Si atoms in the post-reduction catalyst are the same as above.
  • the range of the total volume of 2-12 nm pores per unit mass of the catalyst after reduction is the same as the above range.
  • the methanation reaction catalyst is brought into contact with a mixed gas containing CO and / or CO 2 and hydrogen gas at a reaction temperature of 200 ° C. or higher.
  • a predetermined reaction tube is filled with a catalyst for methanation reaction. Then, the reaction tube is maintained at the following reaction temperature under normal pressure, and a mixed gas is supplied to the reaction tube.
  • the reaction temperature is 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher, for example, 500 ° C. or lower, preferably 400 ° C. or lower.
  • the molar ratio between CO 2 and hydrogen gas is 1: 4
  • the mixed gas containing CO and hydrogen gas the molar ratio of CO and hydrogen gas Is 1: 3.
  • the flow rate of the mixed gas is, for example, 1000 L ⁇ h ⁇ 1 ⁇ g ⁇ 1 or more, preferably 2000 L ⁇ h ⁇ 1 ⁇ g ⁇ 1 or more, for example, 5000 L ⁇ h ⁇ 1 per 1 g of the methanation reaction catalyst.
  • ⁇ G ⁇ 1 or less preferably 4000 L ⁇ h ⁇ 1 ⁇ g ⁇ 1 or less.
  • NiO is converted into Ni in a metallic state by hydrogen in the mixed gas. Reduced.
  • the oxygen vacancies of the stabilized zirconia support attract the oxygen atoms of CO and / or CO 2 and the metallic Ni supported on the stabilized zirconia support attracts hydrogen, the surface of the methanation reaction catalyst , CO and / or CO 2 and hydrogen react efficiently to produce methane.
  • the methane production rate per 1 g of the methanation reaction catalyst at 250 ° C. is, for example, 0.070 mmol ⁇ s ⁇ 1 ⁇ g ⁇ 1 or more, preferably 0.080 mmol ⁇ s ⁇ 1 ⁇ g ⁇ 1 or more. is there.
  • the methanation reaction catalyst is a fired body of a wet mixture of a zirconia and / or Zr salt, a stabilizing element salt, a Ni salt, and an inorganic oxide.
  • the molar ratio of Ni atoms to Si atoms is 0.20 or more and 10.0 or less
  • the molar ratio of Ni atoms to Al atoms is
  • the molar ratio of Ni atoms to Ti atoms is 0.30 or more and 10.5 or less
  • the molar ratio of Ni atoms to Ce atoms is 0.70 or more and 25.0 or less.
  • the inorganic oxide acts to form a space between a plurality of Nis which are catalytic active components, and suppresses the aggregation of Ni.
  • the pore volume in the methanation reaction catalyst can be improved, and the dispersibility of Ni can be improved.
  • the specific surface area of the methanation reaction catalyst can be improved, and the surface exposure amount of Ni can be increased. Therefore, the catalytic activity of the methanation reaction catalyst can be improved, and the methane production rate can be improved.
  • the molar ratio of Zr atoms to Si atoms is 0.10 or more and 4.5 or less, and the inorganic oxide contains alumina.
  • the molar ratio of Zr atoms to Al atoms is 0.10 or more and 4.0 or less and the inorganic oxide contains titania
  • the molar ratio of Zr atoms to Ti atoms is 0.15 or more and 6.0 or less.
  • the inorganic oxide contains ceria the molar ratio of Zr atoms to Ce atoms is 0.30 or more and 12.0 or less.
  • the inorganic oxide acts so as to form a space between the plurality of particles of the stabilized zirconia support, and the pore volume in the methanation reaction catalyst can be further improved.
  • the specific surface area of the catalyst for methanation reaction can be further improved, and the methane production rate can be further improved.
  • the content ratio of the inorganic oxide is preferably 5% by mass or more and 62% by mass or less with respect to the pre-reduction catalyst (the total of the fired bodies of the wet mixture). Therefore, it is possible to stably improve the dispersibility of Ni, and to stably improve the pore volume in the methanation reaction catalyst.
  • the total volume of pores having a pore diameter of 2 nm to 12 nm is preferably 0.050 cm 3 / g or more per unit mass. Therefore, it is possible to further increase the surface exposure amount of Ni and further improve the catalytic activity of the catalyst for methanation reaction.
  • a salt of zirconia and / or Zr, an inorganic oxide, a salt of a stabilizing element, and a salt of Ni are formed of Ni atoms relative to at least one of Si atoms, Al atoms, Ti atoms, and Ce atoms.
  • the wet mixture is calcined at 400 ° C. or higher and 800 ° C. or lower to produce a catalyst for methanation reaction.
  • the catalytic activity of the methanation reaction catalyst can be improved, and the methanation reaction catalyst capable of improving the methane production rate can be produced.
  • blending ratio content ratio
  • physical property values and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. may be replaced with the upper limit values (numerical values defined as “less than” or “less than”) or lower limit values (numbers defined as “greater than” or “exceeded”). it can.
  • a catalyst for methanation reaction (post-reduction catalyst) was filled in a reaction tube (SUS304 tube, inner diameter 15 mm ⁇ height 100 mm).
  • reaction tube is maintained at 250 ° C. (reaction temperature) under normal pressure, and a raw material gas (mixed gas) containing carbon dioxide, hydrogen and nitrogen is supplied to the reaction tube to be brought into contact with the catalyst for methanation reaction. It was.
  • reaction gas flowing out from the reaction tube was analyzed by thermal conductivity detection (TCD) type gas chromatography.
  • TCD thermal conductivity detection
  • an aqueous nickel nitrate solution in which 19.81 g of nickel nitrate hexahydrate was dissolved in 20 mL of pure water was added to the slurry, and stirred (wet mixing) until a uniform mixed solution was obtained.
  • the wet mixture was placed in a constant temperature drying oven maintained at 170 ° C. and dried for 2 hours. Thereby, excess water was volatilized from the wet mixture.
  • pre-reduction catalyst a catalyst for methanation reaction
  • the pre-reduction catalyst was provided with a stabilized zirconia support in which Ni and Sm were dissolved, NiO supported on the stabilized zirconia support, and silica. Note that the pre-reduction catalyst of Comparative Example 1 did not include silica.
  • the pore distribution of each pre-reduction catalyst was measured by the nitrogen adsorption method. From the obtained pore distribution, the total volume V of pores having pore diameters of 2 nm to 12 nm (hereinafter referred to as 2-12 nm pores) was calculated. The results are shown in Table 1. In Table 1, the ratio of the total volume V of 2-12 nm pores in each of the pre-reduction catalysts to the total volume V 0 of 2-12 nm pores in the pre-reduction catalyst of Comparative Example 1 (V / V 0 ).
  • reaction tube a quartz tube having an inner diameter of 15 mm.
  • the reaction tube was placed in an electric furnace and heated so that the temperature in the reaction tube was 300 ° C., and hydrogen was circulated in the reaction tube and maintained for 2 hours.
  • NiO contained in the pre-reduction catalyst was reduced to Ni in a metallic state.
  • a methanation reaction catalyst comprising stabilized zirconia in which Ni and Sm are dissolved, silica, and Ni in a metal state was prepared. Note that the catalyst for methanation reaction (post-reduction catalyst) of Comparative Example 1 did not include silica.
  • FIG. 2 shows the correlation between the molar ratio of Ni atom to Si atom (Ni / Si) and k / k 0 in each methanation reaction catalyst (post-reduction catalyst), and each methanation reaction catalyst (reduction) the molar ratio of Zr atoms to Si atoms in the rear catalyst) and (Zr / Si), shown in FIG. 3 for correlation with k / k 0.
  • Comparative Example 4 A pre-reduction catalyst was prepared in the same manner as in Comparative Example 1. The silica sol was fired at 500 ° C. for 8 hours to prepare silica powder.
  • Example 5 A pre-reduction catalyst was prepared in the same manner as in Comparative Example 1. Then, the pre-reduction catalyst and the above silica sol were stirred and mixed so that the atomic ratio of Si [Si / (Ni + Zr + Sm + Si)] was 29.8 atomic% to prepare a suspension solution.
  • the suspension solution was calcined at 500 ° C. for 8 hours to produce a pre-reduction catalyst.
  • the pore distribution of the pre-reduction catalyst was measured by nitrogen adsorption method. The results are shown in Table 1.
  • Example 1 the pre-reduction catalyst was reduced under the same conditions as in Example 1 to produce a methanation reaction catalyst (post-reduction catalyst). Then, the methane production rate k of the methanation catalyst (post-reduction catalyst) was measured. The results are shown in Table 1.
  • Example 10 to 14 and Comparative Examples 6 to 8 instead of 1.97 g of samarium nitrate hexahydrate, 2.15 g of calcium nitrate tetrahydrate was used, and the silica sol was mixed into a mixed solution, and the atomic ratio of Si [Si / (Ni + Zr + Ca + Si)] was as follows: A catalyst for methanation reaction (post-reduction catalyst) was produced in the same manner as in Example 1 except that the values shown in Table 2 were added. In Comparative Example 6, no silica sol was added to the mixed solution.
  • FIG. 2 shows the correlation between the molar ratio of Ni atom to Si atom (Ni / Si) and k / k 0 in each methanation reaction catalyst (post-reduction catalyst), and each methanation reaction catalyst (reduction) the molar ratio of Zr atoms to Si atoms in the rear catalyst) and (Zr / Si), shown in FIG. 3 for correlation with k / k 0.
  • the stabilizing element is Sm or Ca
  • the molar ratio of Ni atoms to Si atoms (Ni / Si) is 0.20 or more and 10.0 or less, the total volume of 2-12 nm pores A significant increase in the methane production rate was confirmed (see Examples 1 to 14).
  • Comparative Example 2 and Comparative Example 7 in which Ni / Si exceeds 10.0, the increase in the total volume of 2-12 nm pores was insufficient, and the methane production rate was not sufficiently improved. Moreover, also in Comparative Example 3 and Comparative Example 8 in which Ni / Si was less than 0.20, the methane production rate was not sufficiently improved.
  • Comparative Example 4 it was confirmed that the total volume of 2-12 nm pores was reduced and the methane production rate was reduced.
  • Comparative Example 5 it was confirmed that the total volume of 2-12 nm pores increased while the methane production rate decreased. This is presumably because Ni, which is a catalytically active component, was coated with an inorganic oxide (silica), and the exposure amount of Ni was reduced.
  • a methanation reaction catalyst post-reduction catalyst
  • the pore distribution and the methane production rate were measured. The results are shown in Table 3, FIG. 4 and FIG.
  • Example 20 to 24, Comparative Examples 11 and 12 Examples 10 to 14 and Comparative Examples 7 and 8, except that the alumina sol was added in place of the silica sol so that the atomic ratio [Al / (Ni + Zr + Ca + Al)] of Al was the value shown in Table 4 below.
  • a catalyst for methanation reaction post-reduction catalyst was produced. Further, in the same manner as described above, the pore distribution and the methane production rate were measured. The results are shown in Table 4, FIG. 4 and FIG.
  • the stabilizing element is Sm or Ca, if the molar ratio of Ni to Al (Ni / Al) is not less than 0.20 and not more than 7.0, the total volume of 2-12 nm pores A remarkable increase in the methane production rate was confirmed.
  • Examples 30 to 34, Comparative Examples 15 and 16 Examples 10 to 14 and Comparative Examples 7 and 8, except that the titania sol was added in place of the silica sol so that the atomic ratio of Ti [Ti / (Ni + Zr + Ca + Ti)] was a value shown in Table 6 below.
  • a catalyst for methanation reaction post-reduction catalyst was produced. Further, in the same manner as described above, the pore distribution and the methane production rate were measured. The results are shown in Table 6, FIG. 6 and FIG.
  • the stabilizing element is Sm or Ca, if the molar ratio of Ni atoms to Ti atoms (Ni / Ti) is not less than 0.30 and not more than 10.5, the total volume of 2-12 nm pores A remarkable increase in the methane production rate was confirmed.
  • Catalysts for methanation reaction post-reduction catalyst
  • the pore distribution and the methane production rate were measured. The results are shown in Table 7, FIG. 8 and FIG.
  • Examples 40 to 44, Comparative Examples 19 and 20 Examples 10 to 14 and Comparative Examples 7 and 8, except that the ceria sol was added in place of the silica sol so that the Ce atomic ratio [Ce / (Ni + Zr + Ca + Ce)] was a value shown in Table 8 below. Similarly, a catalyst for methanation reaction (post-reduction catalyst) was produced. Further, in the same manner as described above, the pore distribution and the methane production rate were measured. The results are shown in Table 8, FIG. 8 and FIG.
  • the stabilizing element is Sm or Ca, if the molar ratio of Ni atom to Ce atom (Ni / Ce) is 0.70 or more and 25.0 or less, the total volume of 2-12 nm pores A remarkable increase in the methane production rate was confirmed.
  • Example 45 to 48 A methanation catalyst (post-reduction catalyst) was produced in the same manner as in Example 4 except that the composition of the methanation catalyst was changed to atomic% shown in Table 9 below.
  • Example 49 A methanation catalyst (post-reduction catalyst) was produced in the same manner as in Example 12 except that the composition of the methanation catalyst was changed to atomic% shown in Table 9 below.
  • Example 53 and Comparative Example 29 The hydrosol of zirconia was changed to a zirconium acetate aqueous solution (trade name: Zircosol ZA-20, manufactured by Daiichi Rare Element Chemical Industries, Ltd., ZrO (C 2 H 3 O 2 ) 2 : 20 wt.%). In the same manner as in Example 4, a catalyst for methanation reaction (post-reduction catalyst) was produced. In Comparative Example 29, no silica sol was added to the mixed solution.
  • Example 54 Except that the hydrosol of zirconia was changed to a zirconium nitrate aqueous solution (trade name: Zircosol ZN, manufactured by Daiichi Rare Element Chemical Industries, Ltd., ZrO (NO 3 ) 2 : 25 wt.%), The same as in Example 4. Thus, a catalyst for methanation reaction (post-reduction catalyst) was produced. Further, in the same manner as described above, the pore distribution and the methane production rate were measured. The results are shown in Table 10.
  • the catalyst for methanation reaction is produced from a salt of Zr (eg, zirconium acetate oxide, zirconium nitrate oxide, etc.), the molar ratio of Ni atoms to Ni atoms (Ni / Ce) is 0.20 or more and 10.0. It was confirmed that the methane production rate was improved if it was below.
  • Zr eg, zirconium acetate oxide, zirconium nitrate oxide, etc.
  • Examples 55 to 57 A catalyst for methanation reaction (reduction) was carried out in the same manner as in Example 1 except that the silica sol and the alumina sol were added to the mixed solution so as to have the atomic ratio of Si and Al as shown in Table 11 below. A postcatalyst) was prepared. Further, in the same manner as described above, the pore distribution and the methane production rate were measured. The results are shown in Table 11.
  • the catalyst for methanation reaction and the method for producing methane of the present invention are suitably used for a carbon dioxide methanation apparatus or the like.
  • the method for producing a methanation reaction catalyst of the present invention is suitably used for producing a methanation reaction catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

COおよび/またはCO2と水素とをメタン化反応するためのメタン化反応用触媒であって、ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体である。安定化元素は、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ca、Mg、Mn、FeおよびCoからなる群から選択され、無機酸化物は、シリカ、アルミナ、チタニアおよびセリアからなる群から選択される。無機酸化物がシリカを含む場合、Si原子に対するNi原子のモル比が、0.20以上10.0以下である。無機酸化物がアルミナを含む場合、Al原子に対するNi原子のモル比が、0.20以上7.0以下である。無機酸化物がチタニアを含む場合、Ti原子に対するNi原子のモル比が、0.30以上10.5以下である。無機酸化物がセリアを含む場合、Ce原子に対するNi原子のモル比が、0.70以上25.0以下である。

Description

メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
 本発明は、メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法に関する。
 COやCOと水素とをメタン化反応させるためのメタン化反応用触媒が知られている。そのようなメタン化反応用触媒として、例えば、Ni:60.2原子%、Zr:20.6原子%、Sm:14.0原子%、Si:5.1原子%の組成を有する触媒前駆体を還元することにより製造される触媒が提案されている(例えば、特許文献1参照)。
 そのような触媒は、ジルコニアのヒドロゾルに、硝酸サマリウム六水和物、硝酸ニッケル六水和物およびシリカゾルを加えて混練し、得られたペレット(混練物)を焼成して、触媒前駆体を得た後、触媒前駆体を還元することにより製造される。
特開2013-119526号公報
 しかし、特許文献1に記載の触媒では、触媒活性が不十分であり、メタンの生成速度の向上を図るには限度がある。
 そこで、本発明の目的は、触媒活性の向上を図ることができ、メタン生成速度の向上を図ることができるメタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法を提供することにある。
 本発明[1]は、COおよび/またはCOと水素とをメタン化反応するためのメタン化反応用触媒であって、ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体であり、前記安定化元素は、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ca、Mg、Mn、FeおよびCoからなる群から選択される少なくとも1種の元素であり、前記無機酸化物は、シリカ、アルミナ、チタニアおよびセリアからなる群から選択される少なくとも1種の無機酸化物であり、前記無機酸化物がシリカを含む場合、Si原子に対するNi原子のモル比が、0.20以上10.0以下であり、前記無機酸化物がアルミナを含む場合、Al原子に対するNi原子のモル比が、0.20以上7.0以下であり、前記無機酸化物がチタニアを含む場合、Ti原子に対するNi原子のモル比が、0.30以上10.5以下であり、前記無機酸化物がセリアを含む場合、Ce原子に対するNi原子のモル比が、0.70以上25.0以下である、メタン化反応用触媒を含んでいる。
 このような構成によれば、メタン化反応用触媒は、ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体であり、Si原子、Al原子、Ti原子およびCe原子の少なくともいずれか1つに対するNi原子のモル比が上記の範囲内である。
 そのため、無機酸化物が、触媒活性成分である複数のNiの間にスペースを形成するように作用して、Niの凝集を抑制する。その結果、メタン化反応用触媒における細孔容積の向上を図ることができ、Niの分散性の向上を図ることができる。
 これによって、メタン化反応用触媒の比表面積の向上を図ることができ、Niの表面露出量の増加を図ることができる。その結果、メタン化反応用触媒の触媒活性の向上を図ることができ、メタン生成速度の向上を図ることができる。
 本発明[2]は、前記無機酸化物がシリカを含む場合、Si原子に対するZr原子のモル比が、0.10以上4.5以下であり、前記無機酸化物がアルミナを含む場合、Al原子に対するZr原子のモル比が、0.10以上4.0以下であり、前記無機酸化物がチタニアを含む場合、Ti原子に対するZr原子のモル比が、0.15以上6.0以下であり、前記無機酸化物がセリアを含む場合、Ce原子に対するZr原子のモル比が、0.30以上12.0以下である、上記[1]に記載のメタン化反応用触媒含んでいる。
 このような構成によれば、Si原子、Al原子、Ti原子およびCe原子の少なくともいずれか1つに対するZr原子のモル比が上記の範囲内であるので、無機酸化物が、Zrを主体として構成されるジルコニア担体の複数の粒子の間にスペースを形成するように作用して、メタン化反応用触媒における細孔容積のさらなる向上を図ることができる。
 これによって、メタン化反応用触媒の比表面積のさらなる向上を図ることができ、メタン生成速度のさらなる向上を図ることができる。
 本発明[3]は、前記無機酸化物の含有割合は、ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体の総和に対して、5質量%以上62質量%以下である、上記[1]または[2]に記載のメタン化反応用触媒を含んでいる。
 このような構成によれば、無機酸化物の含有割合が上記の範囲であるので、Niの分散性の向上を安定して図ることができ、メタン化反応用触媒における細孔容積の向上を安定して図ることができる。
 本発明[4]は、複数の細孔を有し、前記複数の細孔のうち細孔直径が2nm~12nmである細孔の容積の総和が、単位質量当たり、0.050cm/g以上である、上記[1]~[3]のいずれか一項に記載のメタン化反応用触媒を含んでいる。
 このような構成によれば、細孔直径が2nm~12nmである細孔の容積の総和が、単位質量当たり0.050cm/g以上であるので、メタン化反応用触媒におけるNiの表面露出量のさらなる増加を図ることができ、メタン化反応用触媒の触媒活性のさらなる向上を図ることができる。
 本発明[5]は、上記[1]~[4]のいずれか一項に記載のメタン化反応用触媒を、200℃以上において、COおよび/またはCOと、水素ガスとを含む混合ガスに接触させる、メタンの製造方法を含んでいる。
 このような方法によれば、メタン化反応用触媒の触媒活性が向上されているので、効率よくメタンを製造することができる。
 本発明[6]は、ジルコニアおよび/またはZrの塩と、シリカ、アルミナ、チタニアおよびセリアからなる群から選択される少なくとも1種の無機酸化物と、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ca、Mg、Mn、FeおよびCoからなる群から選択される少なくとも1種の安定化元素の塩と、Niの塩と、を湿式混合して、混合物を調製する工程と、前記混合物を400℃以上800℃以下で焼成する工程と、を含み、前記混合物を調製する工程において、前記無機酸化物がシリカを含む場合、Si原子に対するNi原子のモル比が、0.20以上10.0以下となるように前記混合物を調製し、前記無機酸化物がアルミナを含む場合、Al原子に対するNi原子のモル比が、0.20以上7.0以下となるように前記混合物を調製し、前記無機酸化物がチタニアを含む場合、Ti原子に対するNi原子のモル比が、0.30以上10.5以下となるように前記混合物を調製し、前記無機酸化物がセリアを含む場合、Ce原子に対するNi原子のモル比が、0.70以上25.0以下となるように前記混合物を調製する、メタン化反応用触媒の製造方法を含んでいる。
 このような方法によれば、ジルコニアおよび/またはZrの塩と、無機酸化物と、安定化元素の塩と、Niの塩とを、Si原子、Al原子、Ti原子およびCe原子の少なくともいずれか1つに対するNi原子のモル比が上記の範囲となるように、湿式混合して、混合物を調製した後、混合物を400℃以上800℃以下で焼成して、メタン化反応用触媒を製造する。
 そのため、簡易な方法でありながら、触媒活性の向上を図ることができ、メタン生成速度の向上を図ることができるメタン化反応用触媒を製造できる。
 本発明のメタン化反応用触媒によれば、触媒活性の向上を図ることができ、メタン生成速度の向上を図ることができる。
 本発明のメタンの製造方法によれば、効率よくメタンを製造することができる。
 本発明のメタン化反応用触媒の製造方法によれば、触媒活性の向上を図ることができ、メタン生成速度の向上を図ることができるメタン化反応用触媒を製造できる。
図1は、実施例4~6および比較例1、4のメタン化反応用触媒(還元前触媒)における細孔分布を示すグラフである。 図2は、実施例1~14および比較例1~3、6~8のメタン化反応用触媒(還元後触媒)における、Si原子に対するNi原子のモル比(Ni/Si)と、無機酸化物無添加のメタン化反応用触媒のメタン生成速度に対する各メタン化反応用触媒のメタン生成速度の比(k/k)との相関を示すグラフである。 図3は、実施例1~14および比較例1~3、6~8のメタン化反応用触媒(還元後触媒)における、Si原子に対するZr原子のモル比(Zr/Si)と、メタン生成速度の比(k/k)との相関を示すグラフである。 図4は、実施例15~24および比較例9~12のメタン化反応用触媒(還元後触媒)における、Al原子に対するNi原子のモル比(Ni/Al)とメタン生成速度の比(k/k)との相関を示すグラフである。 図5は、実施例15~24および比較例9~12のメタン化反応用触媒(還元後触媒)における、Al原子に対するZr原子のモル比(Zr/Al)とメタン生成速度の比(k/k)との相関を示すグラフである。 図6は、実施例25~34および比較例13~16のメタン化反応用触媒(還元後触媒)における、Ti原子に対するNi原子のモル比(Ni/Ti)とメタン生成速度の比(k/k)との相関を示すグラフである。 図7は、実施例25~34および比較例13~16のメタン化反応用触媒(還元後触媒)における、Ti原子に対するZr原子のモル比(Zr/Ti)とメタン生成速度の比(k/k)との相関を示すグラフである。 図8は、実施例35~44および比較例17~20のメタン化反応用触媒(還元後触媒)における、Ce原子に対するNi原子のモル比(Ni/Ce)とメタン生成速度の比(k/k)との相関を示すグラフである。 図9は、実施例35~44および比較例17~20のメタン化反応用触媒(還元後触媒)における、Ce原子に対するZr原子のモル比(Zr/Ce)とメタン生成速度の比(k/k)との相関を示すグラフである。
 (第1実施形態)
(1)メタン化反応用触媒
 メタン化反応用触媒は、COおよび/またはCOと水素とをメタン化反応するためのメタン化反応用触媒であって、安定化ジルコニア担体と、安定化ジルコニア担体に担持されるNiと、無機酸化物とを含有している。
 安定化ジルコニア担体は、Zrを主体とする正方晶系および/または立方晶系の結晶構造(単位格子)に、安定化元素およびNiが固溶している。安定化ジルコニア担体の結晶構造は、Zrを主体(基本成分)として構成しており、安定化ジルコニア担体の結晶構造の複数の格子点には、主にZrイオン(Zr4+)が配置されている。
 安定化元素は、安定化ジルコニア担体の結晶構造を、正方晶系および/または立方晶系となるように安定化している。安定化元素は、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ca、Mg、Mn、FeおよびCoからなる群から選択される少なくとも1種の元素である。安定化元素のなかでは、好ましくは、Sm、CaおよびMnが挙げられ、より好ましくは、CaおよびMnが挙げられる。
 安定化ジルコニア担体に安定化元素およびNiが固溶すると、結晶構造の複数の格子点のうち一部の格子点が、Zrイオンから、上記の安定化元素イオンおよびNiイオンのいずれかに置き換わる。
 つまり、安定化ジルコニア担体に安定化元素が固溶するとは、結晶構造の格子点に配置されるZrイオンが上記の安定化元素イオンに置き換わることであり、安定化ジルコニア担体にNiが固溶するとは、結晶構造の格子点に配置されるZrイオンがNiイオンに置き換わることである。そのため、安定化ジルコニア担体の複数の格子点には、Zrイオン、上記の安定化元素イオンおよびNiイオンのいずれか1つが配置される。
 このような安定化ジルコニア担体は、Zrと、上記の安定化元素と、Niと、Oとを含んでおり、好ましくは、Zrと、上記の安定化元素と、Niと、Oとからなる。より具体的には、安定化ジルコニア担体は、下記一般式(1)で示される。
 一般式(1):
Figure JPOXMLDOC01-appb-C000001
(式(1)中、xおよびyは1未満であり、かつ、x+yは1未満である。Mは、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ca、Mg、Mn、FeおよびCoからなる群から選択される少なくとも1種の安定化元素であり、αは、安定化元素の価数を示す。)
 一般式(1)において、xは、例えば、0.133以上で、1未満、好ましくは、0.248以下である。一般式(1)において、yは、例えば、0.010以上、1未満、好ましくは、0.050以下である。
 また、安定化ジルコニア担体は、酸素空孔を有している。酸素空孔は、安定化ジルコニア担体に安定化元素および/またはNiが固溶して、価数が3以下(2価または3価)の安定化元素イオンおよび/またはNiイオンが、Zrイオンと置換することにより形成される。このような安定化ジルコニア担体は、メタン化反応用触媒に単独で含有されてもよく、2種以上含有されてもよい。
 Niは、NiOであってもよく、金属状態のNiであってもよいが、触媒活性の観点から好ましくは、金属状態のNiである。
 Niは、上記のように、安定化ジルコニア担体に固溶するとともに、安定化ジルコニア担体に担持されている。そのため、メタン化反応用触媒は、安定化ジルコニア担体を構成するZrと、安定化ジルコニア担体に固溶する安定化元素と、安定化ジルコニア担体に固溶するNiと、安定化ジルコニア担体に担持されるNiと、無機酸化物とを含んでおり、好ましくは、安定化ジルコニア担体を構成するZrと、安定化ジルコニア担体に固溶する安定化元素と、安定化ジルコニア担体に固溶するNiと、安定化ジルコニア担体に担持されるNiと、無機酸化物とからなる。
 無機酸化物は、メタン化反応用触媒に均一に分散されており、Niを担持する安定化ジルコニア担体の複数の粒子の間にスペースを形成するように作用する。
 無機酸化物は、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)およびセリア(CeO)からなる群から選択される少なくとも1種の無機酸化物である。
 シリカとしては、例えば、石英、クリストバラト、トリディマイト、コーサイトなどが挙げられ、好ましくは、石英が挙げられる。
 アルミナとしては、例えば、α-アルミナ、θ-アルミナ、γ-アルミナなどが挙げられ、好ましくは、γ-アルミナが挙げられる。
 チタニアとしては、例えば、ルチル型チタニア、アナターゼ型チタニア、ブルッカイト型チタニアなどが挙げられ、好ましくは、ルチル型チタニアが挙げられる。
 セリアとしては、例えば、蛍石型セリアなどが挙げられる。
 無機酸化物のなかでは、好ましくは、シリカが挙げられる。無機酸化物は、メタン化反応用触媒に単独で含有されてもよく、2種以上含有されてもよい。
 なお、以下において、Niの含有量を表す場合には、安定化ジルコニア担体に担持されるNiと、安定化ジルコニア担体に固溶するNiとの総和を、Niとして示す。また、無機酸化物に含まれるSi原子、Al原子、Ti原子およびCe原子のそれぞれを、無機元素とし、それら無機元素の総和を、総無機元素として示す。
 メタン化反応用触媒において、Zrと、安定化元素と、Niと、総無機元素との総和(以下、各原子の総和とする。)に対して、Zrの原子割合(=Zr/(Zr+安定化元素+Ni+総無機元素)×100)は、例えば、8.5原子%以上、好ましくは、15.0原子%以上、より好ましくは、23.0原子%以上、例えば、70原子%以下、好ましくは、60原子%以下、より好ましくは、55.0原子%以下である。なお、メタン化反応用触媒における、各原子の原子割合は、後述するメタン化反応用触媒の製造方法において使用される原料成分(ジルコニアおよび/またはZrの塩、安定化元素の塩、Niの塩および無機酸化物)の仕込量から算出される。
 また、メタン化反応用触媒において、各原子の総和に対して、安定化元素の原子割合(=安定化元素/(Zr+安定化元素+Ni+総無機元素)×100)は、例えば、1.0原子%以上、好ましくは、1.5原子%以上、例えば、20原子%以下、好ましくは、7.5原子%以下である。
 また、メタン化反応用触媒において、各原子の総和に対して、Niの原子割合(=Ni/(Zr+安定化元素+Ni+総無機元素)×100)は、例えば、10原子%以上、好ましくは、15原子%以上、より好ましくは、23.0原子%以上、例えば、70原子%以下、好ましくは、55.0原子%以下である。
 また、メタン化反応用触媒において、各原子の総和に対して、総無機元素の原子割合(=無機元素/(Zr+安定化元素+Ni+総無機元素)×100)は、例えば、2.0原子%以上、好ましくは、3.0原子%以上、好ましくは、10原子%以上、例えば、75原子%以下、好ましくは、50原子%以下である。
 また、無機酸化物がシリカを含む場合、Si原子に対するNi原子のモル比が、0.20以上、好ましくは、0.35以上、より好ましくは、0.70以上、10.0以下、好ましくは、5.0以下、より好ましくは、3.0以下である。
 また、無機酸化物がシリカを含む場合、Si原子に対するZr原子のモル比が、例えば、0.10以上、好ましくは、0.20以上、例えば、4.5以下、好ましくは、3.0以下、より好ましくは、1.5以下である。
 また、無機酸化物がアルミナを含む場合、Al原子に対するNi原子のモル比が、0.20以上、好ましくは、0.30以上、より好ましくは、1.0以上、7.0以下、好ましくは、5.0以下、より好ましくは、2.5以下である。
 無機酸化物がアルミナを含む場合、Al原子に対するZr原子のモル比が、例えば、0.10以上、好ましくは、0.15以上、より好ましくは、0.50以上、例えば、4.0以下、好ましくは、2.5以下、より好ましくは、1.5以下である。
 また、無機酸化物がチタニアを含む場合、Ti原子に対するNi原子のモル比が、0.30以上、好ましくは、0.40以上、より好ましくは、1.0以上、10.5以下、好ましくは、8.0以下、より好ましくは、4.0以下である。
 無機酸化物がチタニアを含む場合、Ti原子に対するZr原子のモル比が、例えば、0.15以上、好ましくは、0.20以上、より好ましくは、0.50以上、例えば、6.0以下、好ましくは、4.0以下、より好ましくは、2.0以下である。
 また、無機酸化物がセリアを含む場合、Ce原子に対するNi原子のモル比が、0.70以上、好ましくは、1.0以上、より好ましくは、2.0以上、25.0以下、好ましくは、15.0以下、より好ましくは、9.0以下である。
 無機酸化物がセリアを含む場合、Ce原子に対するZr原子のモル比が、0.30以上、好ましくは、0.50以上、より好ましくは、1.0以上、12.0以下、好ましくは、7.0以下、より好ましくは、5.0以下である。
 無機元素(Si原子、Al原子、Ti原子およびCe原子の少なくともいずれか1つ)に対するNi原子のモル比が、上記の下限未満であれば、触媒活性成分であるNiの含有割合を十分に確保でき、メタン化反応用触媒のメタン生成速度の向上を図ることができる。無機元素に対するNi原子のモル比が、上記の上限を超過すれば、メタン化反応用触媒における細孔容積の向上を図ることができ、メタン化反応用触媒のメタン生成速度の向上を図ることができる。
 なお、無機酸化物がメタン化反応用触媒に2種以上含有される場合、それら無機元素に含有される無機元素の少なくとも1つに対するNi原子のモル比が上記の範囲内であれば、本発明の範囲に含まれる。一方、無機酸化物がメタン化反応用触媒に2種以上含有される場合、それら無機元素に含有される無機元素のいずれに対しても、Ni原子のモル比が上記の範囲外であれば、本発明の範囲外である。
 また、無機元素に対するZr原子のモル比が、上記の範囲であれば、メタン化反応用触媒における細孔容積のさらなる向上を図ることができ、メタン化反応用触媒のメタン生成速度のさらなる向上を図ることができる。
 メタン化反応用触媒の形状は、特に制限されないが、好ましくは、粒子状である。メタン化反応用触媒が粒子状である場合、メタン化反応用触媒の平均二次粒子径は、例えば、1.0μm以上、好ましくは、10μm以上、例えば、200μm以下、好ましくは、150μm以下である。なお、平均二次粒子径は、電子顕微鏡法(JIS H7803:2005)に従って測定される。
 また、メタン化反応用触媒は、複数の細孔を有している。
 複数の細孔のうち細孔直径が2nm~12nmである細孔(以下、2-12nm細孔とする。)の容積の総和は、メタン化反応用触媒の単位質量当たり、例えば、0.050cm/g以上、好ましくは、0.070cm/g以上である。2-12nm細孔の容積の総和は、大きければ大きいほどよいが、例えば、0.220cm/g以下、好ましくは、0.180cm/g以下である。2-12nm細孔の容積の総和は、後述する実施例に準拠して測定される。
 2-12nm細孔の容積の総和が、上記の範囲であれば、メタン化反応用触媒の比表面積の向上を図ることができ、Niの表面露出量の向上を図ることができる。
 メタン化反応用触媒の比表面積(BET比表面積)は、例えば、50m・g-1以上、好ましくは、70m・g-1以上である。メタン化反応用触媒の比表面積(BET比表面積)は、大きければ大きいほどよいが、例えば、200m・g-1以下、好ましくは、150m・g-1以下である。なお、メタン化反応用触媒の比表面積は、BET法(JIS Z8830:2013)に従って測定される。
 (2)メタン化反応用触媒の製造方法
 このようなメタン化反応用触媒は、ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体である。
 次に、メタン化反応用触媒の製造方法の一実施形態について説明する。
 メタン化反応用触媒の製造方法は、原料成分を湿式混合して湿式混合物を調製する工程(混合工程)と、湿式混合物を焼成する工程(焼成工程)とを含み、必要に応じて、NiOをNiに還元する工程(還元工程)をさらに含んでいる。
 混合工程では、原料成分としての、ジルコニア(ZrO)および/またはZrの塩と、上記の安定化元素の塩と、Niの塩と、上記の無機酸化物とを、例えば、各原子(Zr、安定化元素、Niおよび無機元素)の原子割合が上記の範囲となるように湿式混合する。
 ジルコニアとしては、例えば、低結晶性のZrO微粒子などが挙げられる。
 Zrの塩としては、例えば、Zrの硝酸塩(例えば、硝酸ジルコニウム(Zr(NO)、硝酸酸化ジルコニウム(ZrO(NO)など)、Zrの塩酸塩(例えば、塩化酸化ジルコニウム(ZrClO)など)、Zrの酢酸塩(例えば、酢酸酸化ジルコニウム(ZrO(C)など)などが挙げられる。Zrの塩は、単独で使用してもよく、2種以上併用することもできる。
 ジルコニアおよびZrの塩のなかでは、好ましくは、Zrの酢酸塩が挙げられ、より好ましくは、酢酸酸化ジルコニウムが挙げられる。
 安定化元素の塩としては、例えば、安定化元素の硝酸塩(例えば、硝酸サマリウム(Sm(NO)、硝酸カルシウム(Ca(NO)、硝酸マンガン(Mn(NO)、硝酸鉄(Fe(NO)、硝酸コバルト(Co(NO)など)、安定化元素の塩化物(例えば、塩化サマリウム(SmCl)、塩化カルシウム(CaCl)、塩化マンガン(MnCl)、塩化鉄(FeCl)、塩化コバルト(CoCl)など)などが挙げられる。安定化元素の塩は、単独で使用してもよく、2種以上併用することもできる。安定化元素の塩は、市販品を用いることもできる。
 安定化元素の塩のなかでは、好ましくは、安定化元素の硝酸塩が挙げられ、より好ましくは、硝酸サマリウムおよび硝酸カルシウムが挙げられる。
 Niの塩としては、例えば、Niの硝酸塩(例えば、硝酸ニッケル(Ni(NO)など)、Niの塩化物(例えば、塩化ニッケル(NiCl)など)などが挙げられる。Niの塩は、単独で使用してもよく、2種以上併用することもできる。
 Niの塩のなかでは、好ましくは、Niの硝酸塩が挙げられ、より好ましくは、硝酸ニッケルが挙げられる。
 原料成分を湿式混合するには、例えば、ジルコニアのヒドロゾルおよび/またはZrの塩の水溶液に、安定化元素の塩と、Niの塩と、無機酸化物とを、各原子(Zr、安定化元素、Niおよび無機元素)の原子割合が上記の範囲となるように添加して、撹拌混合する。
 より具体的には、ジルコニアのヒドロゾルおよび/またはZrの塩の水溶液に、安定化元素の塩を加えて、均一なスラリーになるまで撹拌混合(湿式混合)する。
 次いで、そのスラリーに、Niの塩(好ましくは、Niの塩の水溶液)を加えて、均一な混合溶液になるまで撹拌混合(湿式混合)する。
 次いで、混合溶液に、無機酸化物(好ましくは、無機酸化物のヒドロゾル)を加えて、均一な溶液になるまで撹拌(湿式混合)して、湿式混合物を調製する。
 これによって、ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物とを含有する湿式混合物が調製される。
 次いで、湿式混合物を、例えば、恒温乾燥炉により加熱して、余剰な水分を揮発させる。
 湿式混合物の加熱温度としては、例えば、100℃以上、好ましくは、150℃以上、例えば、200℃以下、好ましくは、170℃以下である。湿式混合物の加熱時間としては、例えば、30分以上、好ましくは、1時間以上、例えば、10時間以下、好ましくは、3時間以下である。
 次いで、湿式混合物を、焼成工程において、例えば電気炉などの加熱炉により焼成する。
 焼成温度としては、400℃以上、好ましくは、500℃以上、より好ましくは、600℃以上、800℃以下、好ましくは、750℃以下、より好ましくは、700℃以下である。
 焼成温度が上記範囲内であれば、安定化ジルコニア担体の結晶構造を確実に正方晶系および/または立方晶系とすることができる。
 焼成時間としては、例えば、1時間以上、好ましくは、5時間以上、例えば、24時間以下、好ましくは、10時間以下である。
 これによって、湿式混合物が焼成されて、上記一般式(1)で示す安定化ジルコニア担体が形成するとともに、下記一般式(2)で示すように、安定化ジルコニア担体に酸化ニッケルが担持される。
 一般式(2):
Figure JPOXMLDOC01-appb-C000002
(式(2)中、xおよびyは一般式(1)のxおよびyと同様の範囲であり、Mは一般式(1)のMと同様の安定化元素を示し、αは一般式(1)のαと同様の範囲である。)
 以上によって、湿式混合物の焼成体であるメタン化反応用触媒が調製される。
 メタン化反応用触媒は、NiOがNiに還元される前の還元前触媒であって、上記一般式(2)に示される酸化ニッケルが担持される安定化ジルコニア担体と、無機酸化物とを含有している。メタン化反応用触媒において、上記一般式(2)の安定化ジルコニア担体と、無機酸化物とは、互いに均一に分散されている。
 還元前触媒(ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体の総和)に対する、無機酸化物の含有割合は、例えば、5質量%以上、好ましくは、10質量%以上、例えば、62質量%以下、好ましくは、45質量%以下である。
 無機酸化物の含有割合が上記の範囲であれば、Niの分散性の向上を安定して図ることができ、メタン化反応用触媒における細孔容積の向上を安定して図ることができる。
 還元前触媒における2-12nm細孔の容積の総和は、上記した範囲と同じである。
 次いで、還元工程において、還元前触媒を、水素気流により還元処理する。
 より具体的には、還元前触媒を、所定の反応管内に充填した後、反応管内が下記の還元温度となるように、例えば電気管状炉などの加熱器によって加熱するとともに、反応管内に水素を流通させる。
 還元温度としては、例えば、200℃以上、好ましくは、300℃以上、例えば、600℃以下、好ましくは、500℃以下である。還元時間としては、例えば、2時間以上、好ましくは、5時間以上、例えば、10時間以下である。
 これによって、安定化ジルコニア担体に担持される酸化ニッケルが、下記一般式(3)で示すように、金属状態のニッケルに還元される。
 一般式(3):
Figure JPOXMLDOC01-appb-C000003
 以上によって、上記一般式(3)に示される金属状態のニッケルが担持される安定化ジルコニア担体と、無機酸化物とを含有するメタン化反応用触媒(還元後触媒)が調製される。還元後触媒において、上記一般式(3)の安定化ジルコニア担体と、無機酸化物とは、互いに均一に分散されている。
 また、還元後触媒におけるSi原子に対するNi原子のモル比の範囲およびSi原子に対するZr原子のモル比の範囲のそれぞれは、上記と範囲と同じである。還元後触媒の単位質量当たりの2-12nm細孔の容積の総和の範囲は、上記と範囲と同じである。
 (3)メタンの製造方法
 次に、上記のメタン化反応用触媒を用いたメタンの製造方法について説明する。
 メタン化反応用触媒によりメタンを製造するには、メタン化反応用触媒を、200℃以上の反応温度において、COおよび/またはCOと、水素ガスとを含む混合ガスに接触させる。
 より具体的には、メタン化反応用触媒を所定の反応管に充填する。そして、その反応管を、常圧下において、下記の反応温度に維持し、混合ガスを反応管に供給する。
 反応温度は、200℃以上、好ましくは、250℃以上、より好ましくは、300℃以上、例えば、500℃以下、好ましくは、400℃以下である。
 混合ガスがCOおよび水素ガスを含有する場合、COと水素ガスとのモル比は、1:4であり、混合ガスがCOおよび水素ガスを含有する場合、COと水素ガスとのモル比は、1:3である。
 また、混合ガスの流量は、メタン化反応用触媒1g当たり、例えば、1000L・h-1・g-1以上、好ましくは、2000L・h-1・g-1以上、例えば、5000L・h-1・g-1以下、好ましくは、4000L・h-1・g-1以下である。
 このように、メタン化反応用触媒と混合ガスとを接触させると、安定化ジルコニア担体がNiOを担持している場合であっても、NiOが、混合ガス中の水素によって、金属状態のNiに還元される。
 そして、安定化ジルコニア担体の酸素空孔がCOおよび/またはCOの酸素原子を引き付けるとともに、安定化ジルコニア担体に担持される金属状態のNiが水素を引き付けるため、メタン化反応用触媒の表面上において、COおよび/またはCOと水素とが効率よく反応して、メタンが生成する。
 このとき、250℃におけるメタン化反応用触媒1g当たりのメタン生成速度は、例えば、0.070mmol・s-1・g-1以上、好ましくは、0.080mmol・s-1・g-1以上である。250℃におけるメタン化反応用触媒1g当たりのメタン生成速度は、速ければ速いほどよいが、例えば、0.125mmol・s-1・g-1以下である。
 (4)作用効果
 メタン化反応用触媒は、ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体である。
 また、無機酸化物がシリカを含む場合、Si原子に対するNi原子のモル比が、0.20以上10.0以下であり、無機酸化物がアルミナを含む場合、Al原子に対するNi原子のモル比が、0.20以上7.0以下であり、無機酸化物がチタニアを含む場合、Ti原子に対するNi原子のモル比が、0.30以上10.5以下であり、無機酸化物がセリアを含む場合、Ce原子に対するNi原子のモル比が、0.70以上25.0以下である。
 そのため、無機酸化物が、触媒活性成分である複数のNiの間にスペースを形成するように作用して、Niの凝集を抑制する。その結果、メタン化反応用触媒における細孔容積の向上を図ることができ、Niの分散性の向上を図ることができる。これによって、メタン化反応用触媒の比表面積の向上を図ることができ、Niの表面露出量の増加を図ることができる。そのため、メタン化反応用触媒の触媒活性の向上を図ることができ、メタン生成速度の向上を図ることができる。
 一方、無機酸化物が含有する無機元素(Si原子、Al原子、Ti原子およびCe原子のそれぞれ)に対するNi原子のモル比が上記範囲外である場合、上記の作用効果を奏することはできない。
 詳しくは、無機酸化物が含有する無機元素に対するNi原子のモル比が上記上限を超過する場合、例えば、特許文献1に記載されるように、Si原子に対するNi原子のモル比が、11.8(=60.2/5.1)である場合、無機酸化物の含有割合が不十分であり、複数のNiの間にスペースを十分に形成することができず、メタン化反応用触媒における細孔容積の向上を十分に図ることができない。
 そのため、メタン化反応用触媒の触媒活性の向上を十分に図ることができず、メタン生成速度の向上を十分に図ることができない。
 また、無機酸化物が含有する無機元素に対するNi原子のモル比が上記下限未満である場合、触媒活性成分であるNiの含有割合を十分に確保できず、メタン生成速度が低下してしまう。これらは、後述する実施例および比較例からも明らかである。
 また、メタン化反応用触媒は、好ましくは、無機酸化物がシリカを含む場合、Si原子に対するZr原子のモル比が、0.10以上4.5以下であり、無機酸化物がアルミナを含む場合、Al原子に対するZr原子のモル比が、0.10以上4.0以下であり、無機酸化物がチタニアを含む場合、Ti原子に対するZr原子のモル比が、0.15以上6.0以下であり、無機酸化物がセリアを含む場合、Ce原子に対するZr原子のモル比が、0.30以上12.0以下である。
 そのため、無機酸化物が、安定化ジルコニア担体の複数の粒子の間にスペースを形成するように作用して、メタン化反応用触媒における細孔容積のさらなる向上を図ることができる。これによって、メタン化反応用触媒の比表面積のさらなる向上を図ることができ、メタン生成速度のさらなる向上を図ることができる。
 また、無機酸化物の含有割合は、好ましくは、還元前触媒(湿式混合物の焼成体の総和)に対して、5質量%以上62質量%以下である。そのため、Niの分散性の向上を安定して図ることができ、メタン化反応用触媒における細孔容積の向上を安定して図ることができる。
 また、メタン化反応用触媒(還元前触媒)において、好ましくは、細孔直径が2nm~12nmである細孔の容積の総和が、単位質量当たり0.050cm/g以上である。
そのため、Niの表面露出量のさらなる増加を図ることができ、メタン化反応用触媒の触媒活性のさらなる向上を図ることができる。
 また、ジルコニアおよび/またはZrの塩と、無機酸化物と、安定化元素の塩と、Niの塩とを、Si原子、Al原子、Ti原子およびCe原子の少なくともいずれか1つに対するNi原子のモル比が上記の範囲となるように湿式混合して、湿式混合物を調製した後、湿式混合物を400℃以上800℃以下で焼成して、メタン化反応用触媒を製造する。
 そのため、簡易な方法でありながら、メタン化反応用触媒の触媒活性の向上を図ることができ、メタン生成速度の向上を図ることができるメタン化反応用触媒を製造できる。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
 以下において記載されるメタン生成速度の測定法を下記する。
 <メタン生成速度>
 メタン化反応用触媒(還元後触媒)を、反応管(SUS304管、内径15mm×高さ100mm)に充填した。
 次いで、反応管を、常圧下において、250℃(反応温度)に維持し、二酸化炭素、水素および窒素を含む原料ガス(混合ガス)を反応管に供給して、メタン化反応用触媒と接触させた。
 なお、原料ガスにおいて、水素/二酸化炭素=4(モル比)であり、窒素は5体積%であった。また、原料ガスの流量は、1.0L/minであった。
 そして、メタン化反応用触媒と接触した後、反応管から流出する反応ガスを、熱伝導度検出(TCD)型ガスクロマトグラフィで分析した。反応ガスには、未反応の水素、未反応の二酸化炭素、および、生成物であるメタンのみが含有されていた。
 反応管に供給した水素および二酸化炭素の量と、反応管から流出する未反応の水素および二酸化炭素の量の比率から、触媒1g当たりのメタン生成速度(単位:mmol・s-1・g-1)を算出した。
 (実施例1~9、比較例1~3)
 ジルコニアのヒドロゾル(商品名:Zr30AH、日産化学工業社製、ZrO:30wt.%、pH=4.0)15.00gに、硝酸サマリウム六水和物の結晶1.97gを加え、均一なスラリー(クリーム状のスラッジ)になるまで撹拌(湿式混合)した。
 次いで、そのスラリーに、硝酸ニッケル六水和物19.81gを20mLの純水に溶解した硝酸ニッケル水溶液を加えて、均一な混合溶液になるまで撹拌(湿式混合)した。
 次いで、混合溶液に、シリカゾル(商品名:スノーテックスOS、日産化学工業社製、SiO:20wt.%、pH=2.0~4.0)を、Siの原子比[Si/(Ni+Zr+Sm+Si)]が下記表1に示す値となるように加えて、均一な溶液になるまで撹拌(湿式混合)して、湿式混合物を調製した。湿式混合物は、比較例1を除き、ジルコニアと、硝酸サマリウムと、硝酸ニッケルと、シリカとの混合物であった。なお、比較例1では、混合溶液にシリカゾルを添加せず、湿式混合物は、シリカを含有しなかった。
 次いで、湿式混合物を170℃に維持した恒温乾燥炉に入れて2時間乾燥させた。これにより、湿式混合物から余剰水分を揮発させた。
 次いで、乾燥後の湿式混合物を、500℃で8時間焼成して、メタン化反応用触媒(以下、還元前触媒とする。)を調製した。還元前触媒は、NiおよびSmが固溶する安定化ジルコニア担体と、安定化ジルコニア担体に担持されるNiOと、シリカとを備えていた。なお、比較例1の還元前触媒は、シリカを備えていなかった。
 各還元前触媒の細孔分布を窒素吸着法により測定した。得られた細孔分布から、細孔直径が2nm~12nmである細孔(以下、2-12nm細孔とする。)の容積の総和Vを算出した。その結果を表1に示す。なお、表1では、比較例1の還元前触媒における2-12nm細孔の容積の総和Vに対する、各還元前触媒のそれぞれにおける2-12nm細孔の容積の総和Vの割合(V/V)を示す。
 また、実施例4~6および比較例1のそれぞれの細孔分布を、図1に示す。
 次いで、還元前触媒20mgと反応不活性なアルミナ(γ-Al)5gと均一に混合し、内径15mmの石英管(反応管)中に石英ウールで固定した。反応管を電気炉内に配置して、反応管内の温度が300℃となるように加熱し、反応管内に水素を流通させて、2時間維持した。これによって、還元前触媒に含まれるNiOが、金属状態のNiに還元された。
 以上によって、NiおよびSmが固溶する安定化ジルコニアと、シリカと、金属状態のNiとを備えるメタン化反応用触媒(還元後触媒)が調製された。なお、比較例1のメタン化反応用触媒(還元後触媒)は、シリカを備えていなかった。
 次いで、各メタン化反応用触媒(還元後触媒)のメタン生成速度kを測定した。その結果を表1に示す。なお、表1では、比較例1のメタン化反応用触媒のメタン生成速度kに対する、各メタン化反応用触媒のそれぞれのメタン生成速度kの割合(k/k)を示す。
 また、各メタン化反応用触媒(還元後触媒)におけるSi原子に対するNi原子のモル比(Ni/Si)と、k/kとの相関について図2に示し、各メタン化反応用触媒(還元後触媒)におけるSi原子に対するZr原子のモル比(Zr/Si)と、k/kとの相関について図3に示す。
(比較例4)
 比較例1と同様にして還元前触媒を製造した。また、上記のシリカゾルを、500℃で8時間焼成して、シリカ粉体を調製した。
 次いで、比較例1の還元前触媒とシリカ粉体とを、Siの原子比[Si/(Ni+Zr+Sm+Si)]が29.8原子%となるように乾式混合して、乾式混合物を調製した。
乾式混合物の細孔分布を窒素吸着法により測定した。その結果を表1および図1に示す。
 次いで、乾式混合物を、実施例1と同様の条件で還元して、メタン化反応用触媒(還元後触媒)を製造した。そして、メタン化反応用触媒(還元後触媒)のメタン生成速度kを測定した。その結果を表1に示す。
(比較例5)
 比較例1と同様にして還元前触媒を製造した。そして、還元前触媒と上記のシリカゾルとを、Siの原子比[Si/(Ni+Zr+Sm+Si)]が29.8原子%となるように撹拌混合して、懸濁溶液を調製した。
 次いで、懸濁溶液を、500℃で8時間焼成して還元前触媒を製造した。還元前触媒の細孔分布を窒素吸着法により測定した。その結果を表1に示す。
 次いで、還元前触媒を、実施例1と同様の条件で還元して、メタン化反応用触媒(還元後触媒)を製造した。そして、メタン化反応用触媒(還元後触媒)のメタン生成速度kを測定した。その結果を表1に示す。
 (実施例10~14および比較例6~8)
 硝酸サマリウム六水和物1.97gに代えて、硝酸カルシウム四水和物2.15gを用いたこと、および、混合溶液に、上記シリカゾルを、Siの原子比[Si/(Ni+Zr+Ca+Si)]が下記表2に示す値となるように加えたこと以外は、実施例1と同様にして、メタン化反応用触媒(還元後触媒)を製造した。なお、比較例6では、混合溶液にシリカゾルを添加しなかった。
 また、各還元前触媒における2-12nm細孔の容積の総和V、および、比較例6の還元前触媒における2-12nm細孔の容積の総和Vに対する、各還元前触媒のそれぞれにおける2-12nm細孔の容積の総和Vの割合(V/V)を、表2に示す。
 また、各メタン化反応用触媒(還元後触媒)のメタン生成速度k、および、比較例6のメタン化反応用触媒のメタン生成速度kに対する、各メタン化反応用触媒のそれぞれのメタン生成速度kの割合(k/k)を、表2に示す。
 また、各メタン化反応用触媒(還元後触媒)におけるSi原子に対するNi原子のモル比(Ni/Si)と、k/kとの相関について図2に示し、各メタン化反応用触媒(還元後触媒)におけるSi原子に対するZr原子のモル比(Zr/Si)と、k/kとの相関について図3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 安定化元素がSmおよびCaのいずれであっても、Si原子に対するNi原子のモル比(Ni/Si)が、0.20以上10.0以下であれば、2-12nm細孔の容積の総和の著しい増加が認められ、メタン生成速度の顕著な向上が確認された(実施例1~14参照)。
 一方、Ni/Siが10.0を超過する比較例2および比較例7では、2-12nm細孔の容積の総和の増加が不十分であり、メタン生成速度が十分に向上されなかった。また、Ni/Siが0.20未満の比較例3および比較例8においても、メタン生成速度が十分に向上されなかった。
 また、比較例4では、2-12nm細孔の容積の総和が減少しており、メタン生成速度が低下することが確認された。比較例5では、2-12nm細孔の容積の総和の増加がみられる一方、メタン生成速度が低下することが確認された。これは、触媒活性成分であるNiが、無機酸化物(シリカ)により被覆されて、Niの露出量が減少したことに起因すると推察される。
 (実施例15~19、比較例9、10)
 上記のシリカゾルを、アルミナゾル(商品名:アルミナゾル520、産化学工業社製、Al:20wt.%、pH=3.0~5.0)に変更したこと以外は、実施例1、3、4、7、9および比較例2、3と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表3、図4および図5に示す。
 (実施例20~24、比較例11、12)
 上記シリカゾルに代えて、上記アルミナゾルを、Alの原子比[Al/(Ni+Zr+Ca+Al)]が下記表4に示す値となるように加えたこと以外は、実施例10~14および比較例7、8と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表4、図4および図5に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 安定化元素がSmおよびCaのいずれであっても、Al原子に対するNi原子のモル比(Ni/Al)が、0.20以上7.0以下であれば、2-12nm細孔の容積の総和の著しい増加が認められ、メタン生成速度の顕著な向上が確認された。
 (実施例25~29、比較例13、14)
 上記のシリカゾルを、チタニアゾル(商品名:タイノックAM-15、多木化学社製、TiO:15wt.%、pH=4.0)に変更したこと以外は、実施例1、3、4、7、9および比較例2、3と同様にして、メタン化反応用触媒(還元後触媒)を製造した。
また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表5、図6および図7に示す。
 (実施例30~34、比較例15、16)
 上記シリカゾルに代えて、上記チタニアゾルを、Tiの原子比[Ti/(Ni+Zr+Ca+Ti)]が下記表6に示す値となるように加えたこと以外は、実施例10~14および比較例7、8と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表6、図6および図7に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 安定化元素がSmおよびCaのいずれであっても、Ti原子に対するNi原子のモル比(Ni/Ti)が、0.30以上10.5以下であれば、2-12nm細孔の容積の総和の著しい増加が認められ、メタン生成速度の顕著な向上が確認された。
 (実施例35~39、比較例17、18)
 上記のシリカゾルを、セリアゾル(商品名:CE-20A、日産化学工業社製、CeO:20wt.%、pH=2.0~4.0)に変更したこと以外は、実施例1、3、4、7、9および比較例2、3と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表7、図8および図9に示す。
 (実施例40~44、比較例19、20)
 上記シリカゾルに代えて、上記セリアゾルを、Ceの原子比[Ce/(Ni+Zr+Ca+Ce)]が下記表8に示す値となるように加えたこと以外は、実施例10~14および比較例7、8と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表8、図8および図9に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 安定化元素がSmおよびCaのいずれであっても、Ce原子に対するNi原子のモル比(Ni/Ce)が、0.70以上25.0以下であれば、2-12nm細孔の容積の総和の著しい増加が認められ、メタン生成速度の顕著な向上が確認された。
 (実施例45~48)
 メタン化反応用触媒の組成を下記表9に示す原子%に変更したこと以外は、実施例4と同様にして、メタン化反応用触媒(還元後触媒)を製造した。
 (比較例21~24)
 シリカゾルを添加しなかったこと以外は、実施例45~48と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表9に示す。
 (実施例49~52)
 メタン化反応用触媒の組成を下記表9に示す原子%に変更したこと以外は、実施例12と同様にして、メタン化反応用触媒(還元後触媒)を製造した。
 (比較例25~28)
 シリカゾルを添加しなかったこと以外は、実施例45~48と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000012
 メタン化反応用触媒の組成が種々変更されても、Si原子に対するNi原子のモル比(Ni/Ce)が、0.20以上10.0以下であれば、2-12nm細孔の容積の総和の著しい増加が認められ、メタン生成速度の顕著な向上が確認された。
 (実施例53および比較例29)
 上記のジルコニアのヒドロゾルを、酢酸酸化ジルコニウム水溶液(商品名:ジルコゾールZA-20、第一稀元素化学工業社製、ZrO(C:20wt.%)に変更したこと以外は、実施例4と同様にして、メタン化反応用触媒(還元後触媒)を製造した。なお、比較例29では、混合溶液にシリカゾルを添加しなかった。
 (実施例54)
 上記のジルコニアのヒドロゾルを、硝酸酸化ジルコニウム水溶液(商品名:ジルコゾールZN、第一稀元素化学工業社製、ZrO(NO:25wt.%)に変更したこと以外は、実施例4と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000013
 メタン化反応用触媒が、Zrの塩(例えば、酢酸酸化ジルコニウム、硝酸酸化ジルコニウムなど)から製造されても、Si原子に対するNi原子のモル比(Ni/Ce)が、0.20以上10.0以下であれば、メタン生成速度が向上することが確認された。
 (実施例55~57)
 混合溶液に、上記シリカゾルおよび上記アルミナゾルを、下記表11に示すSiの原子比およびAlの原子比となるように加えたこと以外は、実施例1と同様にして、メタン化反応用触媒(還元後触媒)を製造した。また、上記と同様にして、細孔分布およびメタン生成速度を測定した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000014
 無機酸化物として2種以上が混合されても、2-12nm細孔の容積の総和の著しい増加が認められ、メタン生成速度の顕著な向上が確認された。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 本発明のメタン化反応用触媒およびメタンの製造方法は、二酸化炭素のメタン化装置などに好適に用いられる。本発明のメタン化反応用触媒の製造方法は、メタン化反応用触媒の製造に好適に用いられる。

Claims (6)

  1.  COおよび/またはCOと水素とをメタン化反応するためのメタン化反応用触媒であって、
     ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体であり、
     前記安定化元素は、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ca、Mg、Mn、FeおよびCoからなる群から選択される少なくとも1種の元素であり、
     前記無機酸化物は、シリカ、アルミナ、チタニアおよびセリアからなる群から選択される少なくとも1種の無機酸化物であり、
     前記無機酸化物がシリカを含む場合、Si原子に対するNi原子のモル比が、0.20以上10.0以下であり、
     前記無機酸化物がアルミナを含む場合、Al原子に対するNi原子のモル比が、0.20以上7.0以下であり、
     前記無機酸化物がチタニアを含む場合、Ti原子に対するNi原子のモル比が、0.30以上10.5以下であり、
     前記無機酸化物がセリアを含む場合、Ce原子に対するNi原子のモル比が、0.70以上25.0以下であることを特徴とする、メタン化反応用触媒。
  2.  前記無機酸化物がシリカを含む場合、Si原子に対するZr原子のモル比が、0.10以上4.5以下であり、
     前記無機酸化物がアルミナを含む場合、Al原子に対するZr原子のモル比が、0.10以上4.0以下であり、
     前記無機酸化物がチタニアを含む場合、Ti原子に対するZr原子のモル比が、0.15以上6.0以下であり、
     前記無機酸化物がセリアを含む場合、Ce原子に対するZr原子のモル比が、0.30以上12.0以下であることを特徴とする、請求項1に記載のメタン化反応用触媒。
  3.  前記無機酸化物の含有割合は、ジルコニアおよび/またはZrの塩と、安定化元素の塩と、Niの塩と、無機酸化物との湿式混合物の焼成体の総和に対して、5質量%以上62質量%以下であることを特徴とする、請求項1に記載のメタン化反応用触媒。
  4.  複数の細孔を有し、
     前記複数の細孔のうち細孔直径が2nm~12nmである細孔の容積の総和が、単位質量当たり、0.050cm/g以上であることを特徴とする、請求項1に記載のメタン化反応用触媒。
  5.  請求項1に記載のメタン化反応用触媒を、200℃以上において、COおよび/またはCOと、水素ガスとを含む混合ガスに接触させることを特徴とする、メタンの製造方法。
  6.  ジルコニアおよび/またはZrの塩と、
     シリカ、アルミナ、チタニアおよびセリアからなる群から選択される少なくとも1種の無機酸化物と、
     Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ca、Mg、Mn、FeおよびCoからなる群から選択される少なくとも1種の安定化元素の塩と、
     Niの塩と、を湿式混合して、混合物を調製する工程と、
     前記混合物を400℃以上800℃以下で焼成する工程と、を含み、
     前記混合物を調製する工程において、
     前記無機酸化物がシリカを含む場合、Si原子に対するNi原子のモル比が、0.20以上10.0以下となるように前記混合物を調製し、
     前記無機酸化物がアルミナを含む場合、Al原子に対するNi原子のモル比が、0.20以上7.0以下となるように前記混合物を調製し、
     前記無機酸化物がチタニアを含む場合、Ti原子に対するNi原子のモル比が、0.30以上10.5以下となるように前記混合物を調製し、
     前記無機酸化物がセリアを含む場合、Ce原子に対するNi原子のモル比が、0.70以上25.0以下となるように前記混合物を調製することを特徴とする、メタン化反応用触媒の製造方法。
PCT/JP2017/045372 2017-02-01 2017-12-18 メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法 WO2018142787A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2017397313A AU2017397313A1 (en) 2017-02-01 2017-12-18 Methanation reaction catalyst, producing method of methanation reaction catalyst, and producing method of methane
MYPI2019004387A MY191064A (en) 2017-02-01 2017-12-18 Methanation reaction catalyst, producing method of methanation reaction catalyst, and producing method of methane
CN201780085452.6A CN110248728A (zh) 2017-02-01 2017-12-18 甲烷化反应用催化剂、甲烷化反应用催化剂的制备方法及甲烷的制备方法
EP17895068.9A EP3578257A4 (en) 2017-02-01 2017-12-18 METHANIZATION REACTION CATALYST, A METHANIZATION REACTION CATALYST MANUFACTURING METHOD AND METHANE MANUFACTURING PROCESS
US16/480,868 US20190344246A1 (en) 2017-02-01 2017-12-18 Methanation reaction catalyst, producing method of methanation reaction catalyst, and producing method of methane
KR1020197022845A KR20190113804A (ko) 2017-02-01 2017-12-18 메탄화 반응용 촉매, 메탄화 반응용 촉매의 제조방법 및 메탄의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-016497 2017-02-01
JP2017016497A JP6867179B2 (ja) 2017-02-01 2017-02-01 メタン化反応用触媒の製造方法およびメタンの製造方法

Publications (1)

Publication Number Publication Date
WO2018142787A1 true WO2018142787A1 (ja) 2018-08-09

Family

ID=63040427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045372 WO2018142787A1 (ja) 2017-02-01 2017-12-18 メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法

Country Status (8)

Country Link
US (1) US20190344246A1 (ja)
EP (1) EP3578257A4 (ja)
JP (1) JP6867179B2 (ja)
KR (1) KR20190113804A (ja)
CN (1) CN110248728A (ja)
AU (1) AU2017397313A1 (ja)
MY (1) MY191064A (ja)
WO (1) WO2018142787A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433815A (zh) * 2019-09-02 2019-11-12 华东理工大学 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN114713234A (zh) * 2021-01-04 2022-07-08 中国科学院过程工程研究所 一种复合载体负载Ni基催化剂及其制备方法和应用
WO2023085275A1 (ja) * 2021-11-09 2023-05-19 株式会社村田製作所 電場触媒およびそれを用いたガスの改質方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802524B2 (ja) * 2017-03-24 2020-12-16 株式会社豊田中央研究所 メタン化触媒担体、それを用いたメタン化触媒及びメタンの製造方法
CN112387283A (zh) * 2020-11-28 2021-02-23 郑州大学 一种低温二氧化碳甲烷化催化剂及其制备方法
JP2023172767A (ja) 2022-05-24 2023-12-06 トヨタ自動車株式会社 メタン化触媒の処理方法及びメタンの製造方法並びにメタン化触媒
CN115888739B (zh) * 2022-11-07 2024-08-20 北京科技大学 稀土镍氧化物电子相变半导体甲烷合成催化剂及使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022944A (ja) * 2008-07-18 2010-02-04 Daiki Ataka Engineering Co Ltd 炭素酸化物のメタン化触媒、その製造方法およびそれを使用したメタン化方法
JP2013119526A (ja) 2011-12-06 2013-06-17 Daiki Ataka Engineering Co Ltd 炭化水素のメタン化方法
WO2016013488A1 (ja) * 2014-07-19 2016-01-28 日立造船株式会社 メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
JP2016190226A (ja) * 2015-03-31 2016-11-10 日立造船株式会社 触媒処理装置およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167775B2 (ja) * 1999-03-10 2008-10-22 三井造船株式会社 二酸化炭素メタン化用触媒及びその製造方法
JP5372780B2 (ja) * 2007-02-23 2013-12-18 ビーエーエスエフ ソシエタス・ヨーロピア 一酸化炭素の選択メタン化のための触媒及び方法
JP5358909B2 (ja) * 2007-08-03 2013-12-04 アタカ大機株式会社 炭素酸化物のメタン化触媒の製造方法およびメタン化方法
CN101703933B (zh) * 2009-11-06 2012-05-23 山西大学 一种双金属甲烷化催化剂及其制备方法
JP5879029B2 (ja) * 2010-11-09 2016-03-08 日立造船株式会社 アンモニア酸化・分解触媒
CN102247861A (zh) * 2011-05-11 2011-11-23 神华集团有限责任公司 一种煤制天然气高温甲烷化催化剂及其制备方法
JP5353952B2 (ja) * 2011-06-02 2013-11-27 アタカ大機株式会社 炭素酸化物のメタン化反応用触媒の製造方法
CN104857964A (zh) * 2014-02-26 2015-08-26 天津大学 合成气甲烷化催化剂及其制备方法
EP3090801B1 (en) * 2015-05-08 2018-07-25 The Siam Cement Public Company Limited Catalyst for 1,3-butadiene production from ethanol
JP6674860B2 (ja) * 2016-08-02 2020-04-01 日立造船株式会社 メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022944A (ja) * 2008-07-18 2010-02-04 Daiki Ataka Engineering Co Ltd 炭素酸化物のメタン化触媒、その製造方法およびそれを使用したメタン化方法
JP2013119526A (ja) 2011-12-06 2013-06-17 Daiki Ataka Engineering Co Ltd 炭化水素のメタン化方法
WO2016013488A1 (ja) * 2014-07-19 2016-01-28 日立造船株式会社 メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
JP2016190226A (ja) * 2015-03-31 2016-11-10 日立造船株式会社 触媒処理装置およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578257A4
TAKANO, HIROYUKI ET AL.: "The effect of heat treatment on the performance of the Ni/ (Zr-Sm oxide) catalysts for carbon dioxide methanation", APPLIED SURFACE SCIENCE, vol. 257, no. 19, 15 July 2011 (2011-07-15), pages 8171 - 8176, XP055390003, ISSN: 0169-4332 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433815A (zh) * 2019-09-02 2019-11-12 华东理工大学 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
WO2021042874A1 (zh) * 2019-09-02 2021-03-11 华东理工大学 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN114713234A (zh) * 2021-01-04 2022-07-08 中国科学院过程工程研究所 一种复合载体负载Ni基催化剂及其制备方法和应用
WO2023085275A1 (ja) * 2021-11-09 2023-05-19 株式会社村田製作所 電場触媒およびそれを用いたガスの改質方法

Also Published As

Publication number Publication date
JP6867179B2 (ja) 2021-04-28
CN110248728A (zh) 2019-09-17
EP3578257A4 (en) 2020-12-09
KR20190113804A (ko) 2019-10-08
AU2017397313A1 (en) 2019-08-08
MY191064A (en) 2022-05-30
EP3578257A1 (en) 2019-12-11
JP2018122247A (ja) 2018-08-09
US20190344246A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018142787A1 (ja) メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
JP5326001B2 (ja) アルミナまたはオキシ水酸化アルミニウム基材上にランタンペロブスカイトを含む組成物、調製方法および触媒における使用
JP6674860B2 (ja) メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
JP2006036576A (ja) ジルコニア系多孔質体及びその製造方法
JP2010207783A (ja) アンモニア分解触媒、それを用いたアンモニア分解方法、およびアンモニア分解反応装置
JP6538688B2 (ja) メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
WO2021192871A1 (ja) 還元剤およびガスの製造方法
JPWO2010119904A1 (ja) 排ガス浄化用触媒及びその製造方法
JP5703924B2 (ja) 柱状セリア触媒
US9079164B2 (en) Single reaction synthesis of texturized catalysts
JP4777891B2 (ja) シクロオレフィン製造用触媒及び製造方法
CN112076740A (zh) 一种元素梯度分布的铈锆基复合氧化物及其制备方法
JP2015100731A (ja) 排ガス浄化用触媒及びその製造方法
JP6684669B2 (ja) アンモニア分解用触媒およびこの触媒を用いた水素含有ガスの製造方法
CN106984318B (zh) 一种双金属钴基催化剂及制备方法和应用
WO2017094688A1 (ja) 炭化水素の水蒸気改質触媒
JP5690372B2 (ja) 酸化鉄−ジルコニア系複合酸化物およびその製造方法
CN115970679A (zh) 一种过渡金属元素负载型铈基催化剂及其制备方法和用途
JP6751606B2 (ja) アンモニア分解用触媒およびこの触媒を用いた水素含有ガスの製造方法
JP2020032331A (ja) メタン化触媒、その製造方法、及びメタンの製造方法
JP2006341206A (ja) 一酸化炭素選択酸化触媒およびその製造方法
JP2006137651A (ja) 複合酸化物及び排ガス浄化用触媒
Yang et al. A composite material with CeO 2-ZrO 2 nanocrystallines embedded in SiO 2 matrices and its enhanced thermal stability and oxygen storage capacity
JP2001276620A (ja) 炭化水素改質用触媒
JP2024020895A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022845

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017397313

Country of ref document: AU

Date of ref document: 20171218

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017895068

Country of ref document: EP

Effective date: 20190902