WO2018139555A1 - 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 - Google Patents

電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 Download PDF

Info

Publication number
WO2018139555A1
WO2018139555A1 PCT/JP2018/002355 JP2018002355W WO2018139555A1 WO 2018139555 A1 WO2018139555 A1 WO 2018139555A1 JP 2018002355 W JP2018002355 W JP 2018002355W WO 2018139555 A1 WO2018139555 A1 WO 2018139555A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge transport
photosensitive member
electrophotographic photosensitive
transport layer
group
Prior art date
Application number
PCT/JP2018/002355
Other languages
English (en)
French (fr)
Inventor
光央 和田
渉 宮下
長田 卓博
明 安藤
宏恵 渕上
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201880008533.0A priority Critical patent/CN110226132A/zh
Priority to JP2018564635A priority patent/JP7115320B2/ja
Publication of WO2018139555A1 publication Critical patent/WO2018139555A1/ja
Priority to US16/522,198 priority patent/US11307510B2/en
Priority to US17/692,927 priority patent/US20220197162A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • G03G5/061473Amines arylamine alkenylarylamine plural alkenyl groups linked directly to the same aryl group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/0507Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0539Halogenated polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0618Acyclic or carbocyclic compounds containing oxygen and nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0672Dyes containing a methine or polymethine group containing two or more methine or polymethine groups

Definitions

  • the present invention relates to an electrophotographic photosensitive member, an electrophotographic photosensitive member cartridge, and an image forming apparatus used for a copying machine, a printer, and the like, and the image forming apparatus also remains in a high temperature and high humidity environment even when used repeatedly.
  • the present invention relates to a highly durable electrophotographic photosensitive member with little deterioration such as an increase in potential.
  • organic photoreceptors (hereinafter also simply referred to as photoreceptors) are widely used as electrophotographic photoreceptors.
  • Organic photoreceptors have advantages over other photoreceptors, such as easy development of materials suitable for various exposure light sources from visible light to infrared light, the ability to select materials that are free from environmental pollution, and low manufacturing costs. is there.
  • disadvantages such as weak mechanical strength and easy wear, and electrostatic characteristics of the photoconductor are likely to deteriorate when printing a large number of sheets.
  • the photoreceptor is required to have durability such as filming and stability of potential against repeated use.
  • the photoreceptor itself is regarded as a part of the parts of the image forming apparatus, and durability (wear resistance) is required more than ever.
  • members used for process cartridges are becoming cheaper, and there is a problem that leakage tends to occur when a charging roll having a low volume resistivity is used.
  • Filming occurs from the toner-derived wax adhering to the photosensitive layer of the photoconductor and the external additive as a starting point. Therefore, for the purpose of preventing the wax and external additive from adhering to the photoconductor, Studies are being made to disperse materials such as fluoroethylene resin particles in the photosensitive layer to reduce the surface free energy of the photosensitive layer and reduce the adhesion between the photosensitive layer and the wax / external additive.
  • Patent Document 1 In order to improve the abrasion resistance of the photoreceptor, a technique is known in which fluorine-containing resin fine particles such as polytetrafluoroethylene resin (PTFE) are contained in the outermost surface layer of the photoreceptor (Patent Document 1). In addition, a technique for improving leakage by adding a specific amount of fluororesin particles is known (Patent Document 2). In addition, a technique for improving the electrical characteristics of a photoreceptor by using a specific charge transport material having excellent electrical characteristics is known (Patent Document 3).
  • PTFE polytetrafluoroethylene resin
  • the present invention provides an electrophotographic photosensitive member that can suppress an increase in potential even when a fluororesin is used for the charge transport layer, and further achieve both wear resistance and leakage that are in a trade-off relationship with electrical characteristics.
  • An object is to provide an electrophotographic photosensitive member cartridge and an image forming apparatus.
  • the present inventors have found that a combination of a compound serving as a specific charge transport material and fluororesin particles can achieve both the electrical characteristics and the wear resistance of the photoreceptor. Further, it has been found that it is possible to provide a highly durable electrophotographic photosensitive member with little deterioration such as an increase in residual potential even when repeatedly used under high temperature and high humidity, and the following present invention has been completed. It was. That is, the present invention provides specific embodiments shown in [1] to [10] below.
  • a laminated electrophotographic photosensitive member comprising a conductive support, and a charge generation layer and a charge transport layer on the conductive support,
  • the charge transport layer contains a compound having a HOMO energy level (E_homo) of ⁇ 4.550 eV or more based on a structure optimization calculation by density functional calculation B3LYP / 6-31G (d, p) and fluororesin particles.
  • E_homo HOMO energy level
  • the electrophotographic photosensitive member according to any one of [1] to [4], wherein the compound having E_homo of ⁇ 4.550 eV or more includes a compound represented by the following formula (1).
  • Ar 1 to Ar 5 each independently represents an aryl group which may have a substituent
  • Ar 6 to Ar 9 may each independently have a substituent.
  • m and n each independently represents an integer of 1 to 3.
  • the electrophotographic photosensitive member according to any one of [1] to [4], wherein the compound having E_homo of ⁇ 4.550 eV or more includes a compound represented by the following formula (2).
  • R 1 , R 2 , R 5 and R 6 each independently represents an alkyl group, an alkoxy group, an aryl group or an aralkyl group.
  • M, n, p and q are each independently An integer of 0 to 3, provided that when R 1 and R 2 are the same group, m and n are different integers, and when R 5 and R 6 are the same group, p and q represents a different integer, R 3 and R 4 each independently represent a hydrogen atom or an alkyl group, and when there are a plurality of R 1 , R 2 , R 5 and R 6 , May be the same or different, and a plurality of groups may be bonded to form a ring.
  • a laminated electrophotographic photosensitive member comprising a conductive support, and a charge generation layer and a charge transport layer on the conductive support,
  • the charge transport layer contains a compound represented by the following formula (1) and fluororesin particles
  • Ar 1 to Ar 5 each independently represents an aryl group which may have a substituent
  • Ar 6 to Ar 9 may each independently have a substituent.
  • m and n each independently represents an integer of 1 to 3.
  • a laminated electrophotographic photosensitive member comprising a conductive support, and a charge generation layer and a charge transport layer on the conductive support,
  • the charge transport layer contains a compound represented by the following formula (2) and fluororesin particles,
  • An electrophotographic photoreceptor wherein the content of the fluororesin particles is 3% by weight to 20% by weight with respect to the total mass of the charge transport layer.
  • R 1 , R 2 , R 5 and R 6 each independently represents an alkyl group, an alkoxy group, an aryl group or an aralkyl group.
  • M, n, p and q are each independently An integer of 0 to 3, provided that when R 1 and R 2 are the same group, m and n are different integers, and when R 5 and R 6 are the same group, p and q represents a different integer, R 3 and R 4 each independently represents a hydrogen atom or an alkyl group, and when there are a plurality of R 1 , R 2 , R 5 and R 6 , Each may be the same or different, and a plurality of existing groups may combine to form a ring.
  • the electrophotographic photosensitive member according to any one of [1] to [8], a charging device for charging the electrophotographic photosensitive member, and exposing the charged electrophotographic photosensitive member to electrostatic latent image.
  • An electrophotographic photosensitive member cartridge comprising at least one device selected from the group consisting of an exposure device for forming an image and a developing device for developing an electrostatic latent image formed on the electrophotographic photosensitive member.
  • An image forming apparatus comprising: an exposure device for forming; and a developing device for developing the electrostatic latent image formed on the electrophotographic photosensitive member.
  • the present invention uses a combination of a compound that is a specific charge transport material and fluororesin particles in the charge transport layer, so that even when it is repeatedly used under high temperature and high humidity, there is little deterioration such as an increase in residual potential and durability.
  • a high electrophotographic photoreceptor can be provided.
  • the present invention simultaneously solves the conflicting properties between the electrical properties and the wear resistance of the photoreceptor, and preferably resolves the conflicting properties such as the electrical properties and leakage properties at the same time.
  • the pores based on the compound are filled with fluororesin particles, the rise of the electric field can be suppressed, the leakage property can be improved, and further, the photosensitivity excellent in the overall performance balance that contributes to the electrical characteristics and wear resistance. It is thought that a body is obtained.
  • FIG. 1 is a schematic diagram showing a main configuration of an embodiment of an image forming apparatus according to the present invention.
  • FIG. 2 is a diagram showing a diffraction spectrum by CuK ⁇ characteristic X-ray of D-type oxytitanium phthalocyanine used in Examples.
  • FIG. 3 is a diagram showing a diffraction spectrum of the A-type oxytitanium phthalocyanine used in the examples by a CuK ⁇ characteristic X-ray.
  • FIG. 4 is a schematic diagram for explaining a method for measuring the volume resistivity of the charging roll.
  • Charge transport material used in the photoreceptor of the present invention >> Usually, in the case of a negatively charged laminated type photoreceptor, the surface of the photoreceptor is negatively charged, and after exposure, holes generated in the charge generation layer are injected into the charge transport layer. The injected holes reach the surface of the photosensitive layer while hopping through the HOMO orbit of the charge transport material, cancel the negative charge on the surface of the photoreceptor, and attenuate to a desired surface potential.
  • the fluororesin particles are contained in the charge transport layer, it is necessary to disperse the fluororesin particles in the charge transport layer coating solution, and the dispersant is dispersed in the coating solution.
  • the fluororesin particles and the dispersant often contain impurities that adversely affect the hopping conduction of holes in the charge transport layer such as the catalyst during production and the raw material residue. When used, the adverse effect of increasing the surface potential after exposure appears.
  • the fluororesin particles and the dispersant have a HOMO energy level at a level higher than the HOMO energy level of a generally used charge transport material. It was concluded that an impurity compound is present, and the impurity compound traps holes injected into the charge transport layer, so that the surface potential increases after exposure due to repeated use of the photoreceptor.
  • holes injected into the charge transport layer are obtained by using a charge transport material having a higher HOMO energy level than the HOMO energy level of the impurity compound derived from the fluororesin particles and the dispersant. Is not trapped by impurities derived from fluororesin particles, and does not accumulate charge in the charge transport layer when it reaches the surface of the photoconductor, thus suppressing an increase in surface potential after exposure even when the photoconductor is used repeatedly It becomes possible to do.
  • the charge transport material contained in the charge transport layer that can be used in the present invention has a HOMO energy level (E_homo) by structural optimization calculation using B3LYP / 6-31G (d, p). It is preferably ⁇ 4.550 eV or more, more preferably ⁇ 4.500 eV or more, and further preferably ⁇ 4.450 eV or more.
  • E_homo HOMO energy level
  • the upper limit is not particularly limited, but from the viewpoint of improving gas resistance and preventing ghosting, it is preferably ⁇ 4.150 eV or less, more preferably ⁇ 4.220 eV or less, and even more preferably ⁇ 4.250 eV or less. .
  • the calculated value ⁇ cal of the polarizability of the stable structure is calculated. Can be calculated.
  • Stable structure of the hole transport material based on the density functional calculation B3LYP / 6-31G (d, p) and HF / 6-31G (d, p) calculation of the compound having E_homo of ⁇ 4.550 eV or more
  • the calculated value ⁇ cal of polarization at, usually preferably 70 ⁇ 3 or more, more preferably 80 ⁇ 3 or more, further preferably 90 ⁇ 3 or more.
  • a charge transport layer containing a charge transport material having a large ⁇ cal exhibits high charge mobility, and by using the charge transport layer, an electrophotographic photoreceptor excellent in chargeability and sensitivity can be obtained.
  • it is usually 200 3 or less, preferably 170 3 or less, more preferably 150 3 or less, and still more preferably 130 3 or less.
  • the energy level E_homo of HOMO is B3LYP (A. D. Becke, J. Chem. Phys. 98, 5648 (1993), C. Lee, W. Yang, and R. G, which is a kind of density functional method. Parr, Phys. Rev. B37, 785 (1988) and B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989)) The stable structure was obtained by calculation. At this time, 6-31G (d, p) obtained by adding a polarization function to 6-31G was used as a basis set (R. Ditchfield, W. J. Hehre, and J. A.
  • the polarizability ⁇ cal is calculated by the limited Hartley-Fock method (“Modern Quantum Chemistry”, A. Szabo and N. S. in the stable structure obtained by the structure optimization calculation by the B3LYP / 6-31G (d, p). Ostlund, McGraw-Hill publishing company, New York, 1989).
  • 6-31G (d, p) was used as the basis function.
  • the Hartley-Fock calculation using 6-31G (d, p) is described as HF / 6-31G (d, p).
  • the programs used for the B3LYP / 6-31G (d, p) calculation and the HF / 6-31G (d, p) calculation are Gaussian 03, Revision D. 01 (M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven , K. N. Kudin, J. C. Burant, J. M. Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G . A. Petersson, H.
  • aromatic amine derivatives aromatic amine derivatives, stilbene derivatives, butadiene derivatives, hydrazone derivatives, carbazole derivatives, aniline derivatives, enamine derivatives, and a combination of these compounds.
  • an electron donating material such as a polymer having a group composed of these compounds in the main chain or side chain.
  • aromatic amine derivatives, stilbene derivatives, hydrazone derivatives, enamine derivatives, and those in which a plurality of these compounds are bonded are preferable, and among them, enamine derivatives and those in which a plurality of aromatic amines are bonded are more preferable. It is more preferable to contain at least one of the compounds represented by the following formula (1) and formula (2).
  • Ar 1 to Ar 5 each independently represents an aryl group which may have a substituent
  • Ar 6 to Ar 9 may each independently have a substituent.
  • m and n each independently represents an integer of 1 to 3.
  • Ar 1 to Ar 5 each independently represents an aryl group which may have a substituent.
  • carbon number of an aryl group 30 or less are preferable, More preferably, it is 20 or less, More preferably, it is 15 or less.
  • Specific examples include a phenyl group, a naphthyl group, a biphenyl group, an anthryl group, and a phenanthryl group.
  • a phenyl group, a naphthyl group, and an anthryl group are preferable. From the viewpoint of charge transport capability, a phenyl group and a naphthyl group are more preferable, and a phenyl group is further preferable.
  • Examples of the substituent that Ar 1 to Ar 5 may have include an alkyl group, an aryl group, an alkoxy group, and a halogen atom.
  • the alkyl group includes a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, a branched alkyl group such as an isopropyl group and an ethylhexyl group, and a cyclic group such as a cyclohexyl group.
  • An alkyl group is mentioned.
  • Examples of the aryl group include an optionally substituted phenyl group and naphthyl group.
  • alkoxy group examples include linear alkoxy groups such as methoxy group, ethoxy group, n-propoxy group and n-butoxy group, branched alkoxy groups such as isopropoxy group and ethylhexyloxy group, and cyclic alkoxy groups such as cyclohexyloxy group.
  • alkoxy groups having a fluorine atom such as a group, a trifluoromethoxy group, a pentafluoroethoxy group, and a 1,1,1-trifluoroethoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms are preferable in view of versatility of production raw materials, and an alkyl group having 1 to 12 carbon atoms and carbon number from the viewpoint of handleability during production.
  • An alkoxy group having 1 to 12 carbon atoms is more preferable, and an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms are more preferable from the viewpoint of light attenuation characteristics as an electrophotographic photoreceptor.
  • Ar 1 to Ar 5 are phenyl groups, it is preferable to have a substituent from the viewpoint of charge transport capability, and the number of substituents can be 1 to 5, but from the versatility of the raw materials for production, 1 1 to 3 is preferable, and 1 to 2 is more preferable from the viewpoint of the characteristics of the electrophotographic photosensitive member.
  • the number of substituents is 2 or less, or that they have no substituents, more preferably the number of substituents is 1, because of the versatility of the production raw materials. Or it does not have a substituent.
  • Ar 1 to Ar 5 preferably have at least one substituent in the ortho position or para position with respect to the nitrogen atom, and the substituent includes an alkoxy group having 1 to 6 carbon atoms or a carbon number from the viewpoint of solubility. 1-6 alkyl groups are preferred.
  • Ar 6 to Ar 9 each independently represents a 1,4-phenylene group that may have a substituent, that is, an arylene group.
  • a substituent that is, an arylene group.
  • carbon number of an arylene group 30 or less are preferable, More preferably, it is 20 or less, More preferably, it is 15 or less.
  • Specific examples include a phenylene group, a biphenylene group, a naphthylene group, an anthrylene group, and a phenanthrylene group.
  • a phenylene group and a naphthylene group are preferable, and a phenylene group is more preferable in consideration of the characteristics of the electrophotographic photoreceptor. is there.
  • substituents that Ar 6 to Ar 9 may have, those listed as the substituents that Ar 1 to Ar 5 may have are applicable.
  • alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms are preferable from the viewpoint of versatility of production raw materials, and alkyl groups having 1 to 4 carbon atoms and carbon numbers from the viewpoint of handleability during production.
  • An alkoxy group of 1 to 4 is more preferable, and a methyl group, an ethyl group, a methoxy group, and an ethoxy group are more preferable from the viewpoint of light attenuation characteristics as an electrophotographic photosensitive member.
  • Ar 6 to Ar 9 may have a substituent, the molecular structure may be twisted, which may hinder ⁇ -conjugate expansion in the molecule and reduce the electron transport capability. Therefore, Ar 6 to Ar 9 may have a substituent. It is preferable not to have.
  • M and n each independently represents an integer of 1 to 3.
  • m and n are large, the solubility in a coating solvent tends to decrease. Therefore, it is preferably 2 or less, and more preferably 1 from the viewpoint of charge transport ability as a charge transport material.
  • m and n are 1, it represents an ethenyl group and has a geometric isomer, but from the viewpoint of electrophotographic photoreceptor characteristics, a trans isomer structure is preferred.
  • m and n are 2, it represents a butadienyl group, which also has a geometric isomer, but is preferably a mixture of two or more geometric isomers from the viewpoint of coating solution storage stability.
  • R 1 , R 2 , R 5 and R 6 each independently represents an alkyl group, an alkoxy group, an aryl group or an aralkyl group.
  • M, n, p and q are each independently An integer of 0 to 3, provided that when R 1 and R 2 are the same group, m and n are different integers, and when R 5 and R 6 are the same group, p and q represents a different integer, R 3 and R 4 each independently represent a hydrogen atom or an alkyl group, and when there are a plurality of R 1 , R 2 , R 5 and R 6 , May be the same or different, and a plurality of groups may be bonded to form a ring.
  • the electrophotographic photoreceptor of the present invention may contain a compound represented by formula (1) or formula (2) as a single component in the charge transport layer, or a compound represented by formula (1) and It can also be contained as a mixture of at least one of the compounds represented by the formula (2), and further contained as a mixture of the compound represented by the formula (1) and the compound represented by the formula (2). It is also possible.
  • Formula (3) is a phenyl group in which Ar 1 in formula (1) has an alkyl group, an alkoxy group, an aryloxy group, or an aralkyloxy group, and Ar 2 to Ar 5 are each independently a substituent.
  • R a to R e each independently represents an alkyl group, an alkoxy group, an aryloxy group, an aralkyloxy group, or a hydrogen atom.
  • the ratio of the binder resin (binder resin) in the photosensitive layer to at least one of the compounds represented by formulas (1) and (2) or the total of these compounds (charge transport material) is the same as in the same layer.
  • the charge transport material is used in an amount of 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the binder resin. 25 parts by mass or more is more preferable from the viewpoint of reducing the residual potential, 30 parts by mass or more is more preferable, and 40 parts by mass or more is particularly preferable from the viewpoint of stability and charge mobility when repeatedly used.
  • the charge transport material is usually used in an amount of 150 parts by mass or less, preferably 80 parts by mass or less.
  • 75 parts by mass or less is preferable from the viewpoint of compatibility between the charge transport material and the binder resin, 70 parts by mass or less is more preferable from the viewpoint of heat resistance, and 65 parts by mass or less is more preferable from the viewpoint of scratch resistance, and wear resistance. In view of the above, 60 parts by mass or less is particularly preferable. Further, the above range is preferable from the viewpoints of charge mobility, stability, and abrasion resistance of the photosensitive layer.
  • compounds represented by CT1, CT2, CT3, CT5, CT8, CT9, CT10, CT18, CT20 and CT22 are preferable from the viewpoint of residual potential after exposure, and CT1 , CT2, CT5, CT8, CT10, CT20 and CT22 are more preferable from the viewpoint of mobility and responsiveness of hole transport.
  • (HT-17) is preferred from the viewpoints of electrical properties, wear resistance, and leakage.
  • CT1, CT2, CT3, CT5, CT8, CT9, CT10, CT18, CT20, CT22 and (HT-17) are preferable, and CT1, CT2 , CT5, CT8, CT10, CT20, CT22 and (HT-17) are more preferred.
  • the charge transport layer of the present invention contains fluororesin particles, and the content of the fluororesin particles is usually 3% by mass or more, preferably 4.5% by mass or more, more preferably 5%, based on the total mass of the charge transport layer. % By mass or more, more preferably 6% by mass or more, and usually 20% by mass or less, preferably 17.5% by mass or less, more preferably 15% by mass or less, still more preferably 12% by mass or less, particularly preferably 10% by mass. It is below mass%. Within the above range, it is preferable from the viewpoint of the stability of the light attenuation behavior when the photoreceptor is repeatedly used and the balance with the development / cleaning process after exposure. Moreover, it is preferable from a viewpoint of abrasion property and a dispersibility in it being said range.
  • fluororesin particles examples include polytetrafluoroethylene, polychlorotrifluoroethylene, polyhexafluoropropylene, polyvinyl fluoride, polyvinylidene fluoride, polydichlorodifluoroethylene, and copolymers thereof. It is desirable to select two or more. Of these, polytetrafluoroethylene and polyvinylidene fluoride are particularly preferred, and polytetrafluoroethylene is most preferred.
  • the fluororesin particles are preferable from the viewpoint of wear.
  • the average primary particle size of the fluororesin particles is not particularly limited, but is usually preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, from the viewpoint of achieving both dispersibility and wear. On the other hand, it is usually preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the average primary particle size was obtained by obtaining a sample piece from the outermost surface layer (charge transport layer) of the electrophotographic photosensitive member, and observing this with a SEM (scanning electron microscope) at a magnification of 5000 times. The maximum diameter of the fluororesin particles is measured and taken as the average value.
  • Fluorine resin particles are preferably used in combination with a fluorine-based graft polymer as a dispersant.
  • the amount of the dispersant is not particularly limited, but is preferably 0.1% by mass or more and 10% by mass or less with respect to the fluororesin particles.
  • a fluorine-based comb-type graft polymer manufactured by Toa Gosei: GF400 can be used.
  • the charge transport layer may further contain a fluorine-modified silicone oil as necessary.
  • a fluorine-modified silicone oil examples include fluorine-modified silicone oil in which a part or all of the substituents of the organopolysiloxane are substituted with a fluoroalkyl group (for example, a fluoroalkyl group having 1 to 10 carbon atoms).
  • 0.1 ppm or more Preferably it is 0.5 mass% or more, On the other hand, it is 1000 ppm or less normally, Preferably it is the range of 500 ppm or less.
  • a disperser using a medium such as a paint shaker, a ball mill, or a sand mill, or a disperser that does not use a medium such as a high-pressure collision type can be used.
  • the high pressure is largely determined by the discharge amount of the high-pressure pump, the discharge pressure, the orifice diameter and length, and the viscosity of the solvent and the material to be dispersed.
  • the pressure is increased to a high pressure state and pulverized and / or dispersed by the high-pressure liquid collision (high-pressure liquid collision dispersion method), for example, by feeding a fluid into a fine flow path and discharging the fine flow path. It is to pulverize and / or disperse the object to be dispersed by collision between the high-pressure liquids immediately after the exit and collision between the high-pressure liquid and the wall surface of the apparatus.
  • a high-pressure pump and a jig having a plurality of small-diameter orifices connected to the high-pressure pump and a jig machined so that the liquids collide with each other when the liquid is discharged from the orifices are used.
  • a constructed device can be used.
  • metal powder such as copper, tin, aluminum, indium, silica, tin oxide, zinc oxide, titanium oxide, alumina, indium oxide, antimony oxide, bismuth oxide, calcium oxide, antimony doped tin oxide, tin doped
  • metal oxides such as indium oxide, metal fluorides such as tin fluoride, calcium fluoride, and aluminum fluoride, potassium titanate, and boron nitride.
  • the electrophotographic photosensitive member of the present invention includes a conductive support, and a charge generation layer and a charge transport layer on the conductive support. That is, the photosensitive layer of the electrophotographic photosensitive member is provided on the conductive support, and if it further has an undercoat layer, it is provided on the undercoat layer.
  • a charge generation material and a charge transport material exist in the same layer and are dispersed in a binder resin, a so-called single layer type photoreceptor, and a charge in which the charge generation material is dispersed in a binder resin.
  • a so-called multilayer photoreceptor having a multilayer structure in which the generation layer and the charge transport material are separated into two functions of a charge transport layer in which the charge transport material is dispersed in a binder resin can be mentioned, but any configuration may be used. Further, an overcoat layer may be provided on the photosensitive layer for the purpose of improving the chargeability and improving the wear resistance.
  • a charge generation layer and a charge transport layer are laminated in this order from the conductive support side, and a reverse lamination layer in which a charge transport layer and a charge generation layer are laminated in reverse order. Any one of them can be used, but a sequentially laminated photosensitive layer that can exhibit the most balanced photoconductivity is preferable.
  • conductive support used for the photoreceptor examples include metal materials such as aluminum, aluminum alloy, stainless steel, copper, and nickel, and metals, carbon, and tin oxide. Resin materials added with conductive powder to provide conductivity, resin, glass, paper, etc. that are deposited or coated on the surface with conductive materials such as aluminum, nickel, ITO (indium tin oxide) are mainly used.
  • a drum shape, a sheet shape, a belt shape or the like is used.
  • a conductive material having an appropriate resistance value may be applied to a conductive support of a metal material in order to control conductivity, surface properties, etc., or to cover defects.
  • anodic oxidation film is formed by anodizing in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, boric acid, sulfamic acid, etc. give.
  • the sulfuric acid concentration is 100 to 300 g / l
  • the dissolved aluminum concentration is 2 to 15 g / l
  • the liquid temperature is 15 to 30 ° C.
  • the electrolysis voltage is 10 to 20 V
  • the current density is 0.5 to it is preferably in the range of 2A / dm 2, but not limited to the above conditions.
  • the sealing treatment may be performed by a known method. For example, it is immersed in an aqueous solution containing nickel fluoride as a main component, or immersed in an aqueous solution containing nickel acetate as a main component. A high temperature sealing treatment is preferably performed.
  • the concentration of the aqueous nickel fluoride solution used in the case of the low temperature sealing treatment can be selected as appropriate, but more preferable results can be obtained when it is used in the range of 3 to 6 g / l.
  • the treatment temperature is 25 to 40 ° C., preferably 30 to 35 ° C.
  • the pH of the nickel fluoride aqueous solution is 4.5 to 6.5, preferably 5 It is better to process in the range of .5 to 6.0.
  • As the pH adjuster oxalic acid, boric acid, formic acid, acetic acid, sodium hydroxide, sodium acetate, aqueous ammonia and the like can be used.
  • the treatment time is preferably in the range of 1 to 3 minutes per 1 ⁇ m of film thickness.
  • cobalt fluoride, cobalt acetate, nickel sulfate, a surfactant or the like may be added to the nickel fluoride aqueous solution. Subsequently, it is washed with water and dried to finish the low temperature sealing treatment.
  • an aqueous solution of a metal salt such as nickel acetate, cobalt acetate, lead acetate, nickel acetate-cobalt, barium nitrate can be used, and it is particularly preferable to use nickel acetate.
  • the concentration in the case of using an aqueous nickel acetate solution is preferably in the range of 5 to 20 g / l.
  • the treatment temperature is preferably 80 to 100 ° C., more preferably 90 to 98 ° C.
  • the pH of the aqueous nickel acetate solution is preferably 5.0 to 6.0.
  • ammonia water, sodium acetate, or the like can be used as the pH adjuster.
  • the treatment time is preferably 10 minutes or longer, more preferably 20 minutes or longer.
  • sodium acetate, organic carboxylic acid, anionic and nonionic surfactants may be added to the nickel acetate aqueous solution in order to improve the film properties. Subsequently, it is washed with water and dried to finish the high temperature sealing treatment.
  • the average film thickness of the anodic oxide coating is usually 20 ⁇ m or less, particularly 7 ⁇ m or less.
  • the support surface may be smooth, or may be roughened by using a special cutting method or by polishing. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the support.
  • a special cutting method or by polishing In order to reduce the cost, it is possible to use the drawing tube as it is without cutting.
  • the process eliminates dirt, foreign matter, etc. on the surface, small scratches, etc., and a uniform and clean support can be obtained. Therefore, it is preferable.
  • An undercoat layer may be provided between the conductive support and the photosensitive layer in order to improve adhesiveness, blocking property and the like.
  • a resin or a resin in which particles such as a metal oxide are dispersed is used, but it is preferable in terms of electrical characteristics and the like to contain an inorganic filler such as metal oxide particles.
  • metal oxide particles used for the undercoat layer include one kind of metal element such as silica, alumina, titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, iron oxide, lead oxide, and indium oxide.
  • metal oxide particles include metal oxide particles, metal oxide particles containing a plurality of metal elements such as calcium titanate, strontium titanate, and barium titanate.
  • metal oxide particles metal oxide particles exhibiting n-type semiconductor characteristics are preferable, titanium oxide, zinc oxide, tin oxide, and aluminum oxide are more preferable, and titanium oxide is particularly preferable.
  • the metal oxide particles described above are preferred because of high dispersion stability in the undercoat layer coating solution.
  • the surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicon.
  • Titanium oxide can be either crystalline or amorphous, but crystalline is preferred.
  • any of rutile, anatase, brookite, and amorphous can be used.
  • the thing of the several crystal state may be contained.
  • the anatase type or the rutile type is preferred, and the rutile type is more preferred.
  • the average primary particle diameter is usually 1 nm or more, preferably 10 nm, from the viewpoint of electrical characteristics and the stability of the coating liquid for forming the undercoat layer. As described above, it is usually 100 nm or less, preferably 50 nm or less.
  • the particle size of the particles used in the coating solution may be uniform or a composite system having different particle sizes. In the case of composite systems having different particle sizes, those having a maximum particle size peak near 150 nm and a minimum particle size of about 30 nm to about 500 nm are preferred. For example, a mixture having an average particle size of 0.1 ⁇ m and 0.03 ⁇ m may be used.
  • the metal oxide particles are preferably surface-treated with an organometallic compound or the like.
  • the surface treatment can be produced by a dry method or a wet method. That is, in the dry method, the surface treatment agent can be coated with the metal oxide particles by mixing with the metal oxide particles, and the heat treatment can be performed as necessary. In the wet method, a mixture of metal oxide particles and a surface treatment agent in an appropriate solvent is thoroughly stirred until it is uniformly attached, or mixed with media, then dried, and heat-treated as necessary. It can be processed in the way that it does
  • the surface treatment agent is preferably a reactive organometallic compound.
  • methyl hydrogen polysiloxane and a silane treating agent having a structure represented by the following formula are preferable, and methyldimethoxysilane is particularly preferable.
  • a silane coupling agent having an acrylic group is also preferable, and 3-acryloxypropylmethoxysilane is particularly preferable.
  • R 11 represents a hydrogen atom or an alkyl group
  • R 12 independently represents an alkyl group
  • R 13 represents an alkyl group or an alkoxy group.
  • a surface treating agent Usually, it is 0.3 mass part or more, Preferably it is 1 mass part, On the other hand, Usually, it is 20 mass parts or less, Preferably it is 10 mass parts or less. . Within the above range, the effect of the surface treatment can be suitably obtained, which is preferable from the viewpoint of preventing the coating film from being repelled during the coating process.
  • the undercoat layer is preferably formed by dispersing metal oxide particles in a binder resin.
  • binder resin used for the undercoat layer, epoxy resin, polyethylene resin, polypropylene resin, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl chloride resin, vinyl acetate resin, phenol resin, polycarbonate resin, polyurethane resin, Polyimide resin, vinylidene chloride resin, polyvinyl acetal resin, vinyl chloride-vinyl acetate copolymer, polyvinyl alcohol resin, polyurethane resin, polyacrylic acid resin, polyacrylamide resin, polyvinyl pyrrolidone resin, polyvinyl pyridine resin, water-soluble polyester resin, nitro Cellulose ester resins such as cellulose, cellulose ether resins, casein, gelatin, polyglutamic acid, starch, starch acetate, amino starch, zirconium chelate Compounds, organic zirconium compounds such as zirconium alkoxide compounds,
  • Alcohol-soluble copolymerized polyamides, modified polyamides, and the like are preferred because they exhibit good dispersibility and coating properties.
  • a copolyamide having a ring structure as a constituent component is preferred, more preferably a ring structure containing at least one of carbon atoms and hydrogen atoms, more preferably a ring structure consisting of carbon atoms and hydrogen atoms.
  • the ring structure is usually a 4-membered ring or more, preferably a 5-membered ring or more, and is usually an 8-membered ring or less, preferably a 7-membered ring or less, and most preferably a 6-membered ring.
  • the use ratio of the inorganic particles to the binder resin used in the undercoat layer can be arbitrarily selected, but from the viewpoint of the stability of the dispersion and coating properties, it is usually 10% by mass or more, preferably 50% by mass or more, More preferably it is 200% by weight or more, while it is usually 800% by weight or less, preferably 500% by weight or less.
  • the thickness of the undercoat layer is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and usually 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 6 ⁇ m or less.
  • the above range is preferable from the viewpoints of chargeability, suppression of increase in residual potential, and adhesive strength between the conductive substrate and the photosensitive layer. Further, the above range is preferable from the viewpoint of improving the photoreceptor characteristics and applicability.
  • a known antioxidant or the like may be mixed in the undercoat layer. For the purpose of preventing image defects, pigment particles, resin particles and the like may be contained and used.
  • the volume resistance value of the undercoat layer is not particularly limited, but is usually 1 ⁇ 10 11 ⁇ ⁇ cm or more, preferably 1 ⁇ 10 12 ⁇ ⁇ cm or more, and usually 1 ⁇ 10 14 ⁇ ⁇ cm or less, preferably Is 1 ⁇ 10 13 ⁇ ⁇ cm or less.
  • a metal oxide treated with a pulverization or dispersion treatment device such as a planetary mill, ball mill, sand mill, bead mill, paint shaker, attritor, or ultrasonic wave.
  • the particle slurry may be mixed with a binder resin or a solution obtained by dissolving the binder resin in an appropriate solvent, and dissolved and stirred.
  • metal oxide particles may be added to the binder resin solution, and pulverization or dispersion treatment may be performed with the above-described dispersion apparatus.
  • the charge generation layer is formed by binding a charge generation material with a binder resin.
  • the charge generation material include inorganic photoconductive materials such as selenium and its alloys, cadmium sulfide, and organic photoconductive materials such as organic pigments, but organic photoconductive materials are preferred, especially organic pigments. Is preferred.
  • organic pigments include phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene (squarylium) pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments. .
  • phthalocyanine pigments or azo pigments are particularly preferable.
  • When organic pigments are used as the charge generation material usually, particles of these organic pigments are used in the form of a dispersion layer bound with various binder resins.
  • a highly sensitive photoconductor can be obtained with respect to a relatively long wavelength laser beam, for example, a laser beam having a wavelength around 780 nm.
  • a laser beam having a wavelength around 780 nm When an azo pigment such as monoazo, diazo, or trisazo is used, white light, laser light having a wavelength around 660 nm, or laser light having a relatively short wavelength, for example, laser having a wavelength around 450 nm or 400 nm is used.
  • a photoreceptor having sufficient sensitivity can be obtained.
  • a phthalocyanine pigment or an azo pigment is particularly preferable.
  • the phthalocyanine pigment provides a photosensitive material with high sensitivity to a laser beam having a relatively long wavelength, and the azo pigment has a sufficient sensitivity to white light and a laser beam having a relatively short wavelength. , Each is excellent.
  • a phthalocyanine pigment as a charge generation material, specifically, metal-free phthalocyanine, copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, aluminum or other metal or oxide thereof, halide, water Those having crystal forms of coordinated phthalocyanines such as oxides and alkoxides, and phthalocyanine dimers using oxygen atoms as bridging atoms are used.
  • titanyl phthalocyanines also known as oxytitanium
  • A-type also known as ⁇ -type
  • B-type also known as ⁇ -type
  • D-type also known as Y-type
  • vanadyl phthalocyanine vanadyl phthalocyanine
  • chloroindium phthalocyanine hydroxyindium phthalocyanine
  • chlorogallium phthalocyanine such as type II
  • hydroxygallium phthalocyanine such as type V
  • ⁇ -oxo-gallium phthalocyanine dimer such as type G and type I, type II, etc.
  • the ⁇ -oxo-aluminum phthalocyanine dimer is preferred.
  • A-type also known as ⁇ -type
  • B-type also known as ⁇ -type
  • powder X-ray diffraction angle 2 ⁇ ⁇ 0.2 °
  • D-type (Y-type) titanyl phthalocyanine, II-type chlorogallium phthalocyanine, V-type and 28.1 ° have the strongest peaks, and 26.2 ° have peaks Hydroxygallium phthalocyanine, G-type ⁇ -oxo-gallium, characterized by having a clear peak at 28.1 ° and a full width at half maximum W of 25.9 ° of 1 ° ⁇ W ⁇ 0.4 °
  • a phthalocyanine dimer and the like are particularly preferable.
  • the phthalocyanine compound may be a single compound or several mixed or mixed crystal states.
  • the mixed state in the phthalocyanine compound or crystal state here, those obtained by mixing the respective constituent elements later may be used, or the mixed state in the production / treatment process of the phthalocyanine compound such as synthesis, pigmentation, crystallization, etc. It may be the one that gave rise to.
  • acid paste treatment, grinding treatment, solvent treatment and the like are known.
  • two kinds of crystals are mixed, mechanically ground and made amorphous, and then a specific crystal is obtained by solvent treatment. There is a method of converting to a state.
  • an azo pigment When an azo pigment is used as the charge generating substance, various bisazo pigments and trisazo pigments are preferably used.
  • an organic pigment When an organic pigment is used as the charge generation material, one kind may be used alone, or two or more kinds of pigments may be mixed and used. In this case, it is preferable to use a combination of two or more kinds of charge generating materials having spectral sensitivity characteristics in different spectral regions of the visible region and the near red region.
  • a disazo pigment, a trisazo pigment and a phthalocyanine pigment are preferably used in combination. More preferred.
  • the binder resin used for the charge generation layer is not particularly limited, but examples include polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal type such as partially acetalized polyvinyl butyral resin in which a part of butyral is modified with formal, acetal, or the like.
  • the charge generation layer is specifically prepared by, for example, preparing a coating solution by dispersing a charge generation material in a solution obtained by dissolving the above-described binder resin in an organic solvent, and providing this on a conductive support (providing an undercoat layer). In some cases, it is formed by coating (on the undercoat layer).
  • the solvent used for preparing the coating solution is not particularly limited as long as it dissolves the binder resin. For example, saturated aliphatic solvents such as pentane, hexane, octane, and nonane, and aromatics such as toluene, xylene, and anisole.
  • Group solvents halogenated aromatic solvents such as chlorobenzene, dichlorobenzene, chloronaphthalene, amide solvents such as N, N-dimethylformamide, N-methyl-2-pyrrolidone, methanol, ethanol, isopropanol, n-butanol, Alcohol solvents such as benzyl alcohol, aliphatic polyhydric alcohols such as glycerin and polyethylene glycol, chain or cyclic ketone solvents such as acetone, cyclohexanone and methyl ethyl ketone, ester systems such as methyl formate, ethyl acetate and n-butyl acetate Solvent, methyl chloride Halogenated hydrocarbon solvents such as chloroform and 1,2-dichloroethane, chain ether or cyclic ether solvents such as diethyl ether, dimethoxyethane, tetrahydrofuran, 1,4-dioxane,
  • the mixing ratio (mass) of the binder resin and the charge generation material is usually 10 parts by mass or more, preferably 30 parts by mass or more, and usually 1000 parts by mass with respect to 100 parts by mass of the binder resin. Part or less, preferably 500 parts by mass or less, and the film thickness is usually 0.1 ⁇ m or more, preferably 0.15 ⁇ m or more, and usually 10 ⁇ m or less, preferably 0.6 ⁇ m or less. If the ratio of the charge generation material is too high, the stability of the coating solution may be reduced due to aggregation of the charge generation material, while if the ratio of the charge generation material is too low, the sensitivity as a photoreceptor may be decreased. There is.
  • a known dispersion method such as a ball mill dispersion method, an attritor dispersion method, a sand mill dispersion method, or a bead mill dispersion can be used. At this time, it is effective to refine the particles to a particle size in the range of 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less, more preferably 0.15 ⁇ m or less.
  • the charge transport layer of the multilayer photoreceptor contains a charge transport material and fluororesin particles, and usually contains a binder resin and other components used as necessary.
  • a charge transport layer is prepared by, for example, preparing a coating solution by dissolving or dispersing a charge transport material and a binder resin in a solvent.
  • a reverse lamination type photosensitive layer it can be obtained by coating and drying on a conductive support (or on the undercoat layer when an undercoat layer is provided).
  • a compound and / or a compound represented by the formula (2) may be used as a charge transport material, and another charge transport material may be mixed and used.
  • charge transport materials that may be used in combination are not particularly limited, and any material can be used.
  • charge transport materials include aromatic nitro compounds such as 2,4,7-trinitrofluorenone, cyano compounds such as tetracyanoquinodimethane, electron withdrawing materials such as quinone compounds such as diphenoquinone, and carbazole derivatives.
  • Indole derivatives Indole derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazole derivatives, heterocyclic compounds such as benzofuran derivatives, aniline derivatives, hydrazone derivatives, aromatic amine derivatives, stilbene derivatives, butadiene derivatives, enamine derivatives and multiple types of these compounds Or an electron donating substance such as a polymer having a group composed of these compounds in the main chain or side chain.
  • carbazole derivatives, aromatic amine derivatives, stilbene derivatives, butadiene derivatives, enamine derivatives, and those in which a plurality of these compounds are bonded are preferable.
  • the photosensitive layer may be a vapor-deposited film, but is usually formed by binding raw materials such as the above-described charge generation material and charge transport material with a binder resin, preferably using polycarbonate or the like as the binder resin. It is done. Binder resins include vinyl polymers such as polymethyl methacrylate, polystyrene, and polyvinyl chloride, and copolymers thereof, thermoplastic resins such as polycarbonate, polyester, polyester polycarbonate, polysulfone, phenoxy, epoxy, and silicone resin, and various types of heat. Examples thereof include curable resins, and these partially crosslinked cured products can also be used. Among these resins, a polycarbonate resin, a polyester resin, or a polyarylate resin is preferable. These resins may be used alone or in combination.
  • the viscosity average molecular weight of the binder resin is arbitrary as long as the effect of the present invention is not significantly impaired, but is preferably 10,000 or more, more preferably 20,000 or more, and the upper limit thereof is preferably 150,000 or less, More preferably, it is 120,000 or less, and still more preferably 100,000 or less. If the value of the viscosity average molecular weight is too small, the mechanical strength of the photoreceptor may be insufficient.If it is too large, the viscosity of the coating solution for forming the photosensitive layer may be too high and the productivity may decrease. is there.
  • the film thickness of the photosensitive layer of the single layer type photoreceptor is usually 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m, and the film thickness of the charge transport layer of the sequentially laminated photoreceptor is usually 5 ⁇ m or more, preferably 10 ⁇ m. Above, more preferably 15 ⁇ m or more, on the other hand, usually 50 ⁇ m or less, preferably 45 ⁇ m or less, more preferably 35 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 25 ⁇ m or less. The above range is preferable from the viewpoints of electrical characteristics, image stability, and high resolution.
  • a normal laminated type photoreceptor it is preferably 10 to 45 ⁇ m from the viewpoint of long life and image stability, and more preferably 10 to 30 ⁇ m from the viewpoint of high resolution.
  • an antioxidant, a plasticizer, an ultraviolet absorber, an electron-withdrawing compound, and a dye are used to improve the film formability, flexibility, coatability, stain resistance, gas resistance, light resistance, and the like.
  • additives such as pigments, leveling agents, visible light shielding agents and the like may be included.
  • antioxidant examples include a hindered phenol compound, a hindered amine compound, a trialkylamine, a dialkylarylamine, a diarylalkylamine, etc., but a hindered phenol compound in terms of characteristics as a photoreceptor such as residual potential, A trialkylamine compound is preferable, and a hindered phenol compound is more preferable.
  • plasticizer examples include hydrocarbon compounds, ester compounds, ether compounds, thioether compounds, and the like. From the viewpoint of electrical characteristics, hydrocarbon compounds, ester compounds, and ether compounds are preferable, and hydrocarbon compounds and ether compounds are more preferable.
  • the plasticizer preferably has an aromatic group from the viewpoint of compatibility with the binder resin.
  • the molecular weight of the plasticizer is preferably 150 or more, more preferably 170 or more, further preferably 200 or more, on the other hand, 400 or less, more preferably 380 or less, and even more preferably 350 or less.
  • plasticizers may be used alone or in combination. Specific examples of suitable structures of the plasticizer are shown below.
  • AD-2, AD-4, AD-5, AD-6, AD-8, AD-10, AD-11, and AD-13 are preferable, and AD-2 is more preferable.
  • gas resistance and crack resistance can be improved, without deteriorating an electrical property.
  • dyes and pigments include various pigment compounds and azo compounds.
  • inorganic particles such as alumina and silica, fluororesin particles, Organic particles such as silicone particles, polyethylene particles, crosslinked polystyrene particles, and crosslinked (meth) acrylate particles may be contained.
  • the photosensitive layer may contain various additives such as a leveling agent, an antioxidant, and a sensitizer for improving the coating property as necessary.
  • the antioxidant include hindered phenol compounds and hindered amine compounds.
  • dyes and pigments include various pigment compounds and azo compounds.
  • surfactants include silicone oil and fluorine-based oil.
  • electron withdrawing compounds include tetracyanoquinodimethane, dicyanoquinomethane, cyano compounds such as aromatic esters having a dicyanoquinovinyl group, nitro compounds such as 2,4,6-trinitrofluorenone, and condensation of perylene.
  • cyanide compounds nitro compounds, condensed polycyclic aromatic compounds, diphenoquinone derivatives, metal complexes of substituted and unsubstituted salicylic acid, metal salts of substituted and unsubstituted salicylic acid, metal complexes of aromatic carboxylic acid, aromatic carboxylic acid Metal salts are used.
  • the surface roughness (Rz) of the electrophotographic photosensitive member is preferably 0.1 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, still more preferably 0.6 ⁇ m or less, and still more preferably 0.
  • the range is 4 ⁇ m or less. If it exceeds 1 ⁇ m, wear resistance may be deteriorated. This is presumably because the dispersion state of the filler deteriorates, the contact interface between the filler and the inside of the photosensitive member decreases, and the effect of the filler decreases. If the dispersion state of the filler is deteriorated, the amount of the aggregated filler is increased and the roughness is also increased.
  • Rz is too large, the chargeability differs between the convex portion and the concave portion (that is, where the surface layer is relatively thick and thin), and uneven charging and uneven wear tend to occur.
  • the roughness (Rz) means a ten-point average roughness defined by JIS-B-0601 (1994). That is, in the part extracted by the reference length from the cross-sectional curve of the photoconductor, the altitude of the highest to fifth peaks measured in the direction perpendicular to the average line from a straight line that is parallel to the average line and does not cross the cross-section curve. The difference between the average value and the average value of the altitude of the bottom from the deepest to the fifth is expressed in micrometers ( ⁇ m).
  • This roughness (Rz) is determined using, for example, a surface roughness measuring device (Surface roughness measuring machine SV-548 manufactured by Mitutoyo), a reference length of 0.8 mm, a cutoff wavelength of 0.8 mm, and a measurement speed of 0.1 mm. Measurement is performed by the method of / sec, cutoff type Gaussian. The roughness measurement position is the central portion in the axial direction of the electrophotographic photosensitive member.
  • a surface roughness measuring device Surface roughness measuring machine SV-548 manufactured by Mitutoyo
  • the roughness measurement position is the central portion in the axial direction of the electrophotographic photosensitive member.
  • a protective layer may be provided on the outermost surface layer of the photosensitive member for the purpose of preventing the photosensitive layer from being worn out or preventing or reducing the deterioration of the photosensitive layer due to a discharge substance generated from a charger or the like.
  • the protective layer is formed by containing a conductive material in a suitable binder resin, or a triphenylamine skeleton as described in Japanese Patent Application Laid-Open No. 9-190004 or Japanese Patent Application Laid-Open No. 10-252377.
  • a copolymer using a compound having a charge transporting ability such as the above can be used.
  • the conductive material examples include aromatic amino compounds such as TPD (N, N′-diphenyl-N, N′-bis- (m-tolyl) benzidine), antimony oxide, indium oxide, tin oxide, titanium oxide, and tin oxide.
  • aromatic amino compounds such as TPD (N, N′-diphenyl-N, N′-bis- (m-tolyl) benzidine
  • antimony oxide indium oxide, tin oxide, titanium oxide, and tin oxide.
  • -Metal oxides such as antimony oxide, aluminum oxide and zinc oxide can be used, but are not limited thereto.
  • the binder resin used for the protective layer known resins such as polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polyvinyl ketone resin, polystyrene resin, polyacrylamide resin, and siloxane resin can be used.
  • a copolymer of the above resin with a skeleton having a charge transporting ability such as a triphenylamine skeleton as described in Japanese Patent Laid-Open No. 9-190004 and Japanese Laid-Open Patent Publication No. 10-252377 is used. You can also
  • the protective layer is preferably configured to have an electric resistance of 10 9 to 10 14 ⁇ ⁇ cm.
  • the protective layer is configured so as not to substantially prevent transmission of light irradiated for image exposure.
  • fluorine resin, silicone resin, polyethylene resin, polystyrene resin, etc. are used for the surface layer for the purpose of reducing frictional resistance and abrasion on the surface of the photoconductor and increasing the transfer efficiency of the toner from the photoconductor to the transfer belt and paper. May be included.
  • grains which consist of these resin, and particles of inorganic compounds, such as a silica and an alumina, may be included.
  • Each layer constituting the photoreceptor is formed by sequentially applying a coating solution containing the material constituting each layer on the support using a known coating method and repeating the coating and drying process for each layer.
  • ethers such as tetrahydrofuran, 1,4-dioxane and dimethoxyethane
  • esters such as methyl formate and ethyl acetate, acetone, Ketones such as methyl ethyl ketone and cyclohexanone
  • aromatic hydrocarbons such as benzene, toluene and xylene, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, Chlorinated hydrocarbons such as 1,2-dichloropropane and trichloroethylene, nitrogen-containing compounds such as n-butylamine, isopropanolamine, diethylamine, triethanolamine, ethylenediamine and triethylenediamine, aceton
  • the amount of the solvent or dispersion medium used is not particularly limited, but considering the purpose of each layer and the properties of the selected solvent / dispersion medium, it is appropriate so that the physical properties such as solid content concentration and viscosity of the coating liquid are within a desired range. It is preferable to adjust.
  • the coating solution for forming a layer has a solid concentration of the coating solution of usually 5% by mass or more, preferably 10% by mass or more, and usually 40%.
  • the mass is not more than mass%, preferably not more than 35 mass%.
  • the viscosity of the coating solution is usually 10 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, and usually 1,500 mPa ⁇ s or less, preferably 1,200 mPa ⁇ s, more preferably 500 mPa ⁇ s or less, and still more preferably.
  • the range is 400 mPa ⁇ s or less.
  • the solid content concentration of the coating solution is usually 0.1% by mass or more, preferably 1% by mass or more, and usually 15% by mass or less, preferably 10% by mass or less. Range.
  • the viscosity of the coating solution is usually 0.01 mPa ⁇ s or more, preferably 0.1 mPa ⁇ s or more, and usually 20 mPa ⁇ s or less, preferably 10 mPa ⁇ s or less.
  • Examples of the coating method include a dip coating method, a spray coating method, a spinner coating method, a bead coating method, a wire bar coating method, a blade coating method, a roller coating method, an air knife coating method, and a curtain coating method. Other known coating methods can also be used.
  • the coating liquid is preferably dried by touching at room temperature, followed by heat drying in a temperature range of 30 to 200 ° C. for 1 minute to 2 hours with no air or air. The heating temperature may be constant or may be changed while drying.
  • Electrophotographic photosensitive member cartridge used in a copying machine, a printer, or the like using the electrophotographic photosensitive member of the present invention, and an image forming apparatus equipped with the cartridge are charged, exposed, developed, transferred, Although each process such as cleaning is included, any method that is usually used may be used for any process.
  • the electrophotographic photosensitive member cartridge of the present invention includes an electrophotographic photosensitive member, a charging device that charges the electrophotographic photosensitive member, an exposure device that exposes the charged electrophotographic photosensitive member to form an electrostatic latent image, and And at least one device selected from the group consisting of developing devices for developing an electrostatic latent image formed on the electrophotographic photosensitive member.
  • the image forming apparatus of the present invention includes an electrophotographic photosensitive member, a charging device that charges the electrophotographic photosensitive member, an exposure device that exposes the charged electrophotographic photosensitive member to form an electrostatic latent image, and A developing device for developing the electrostatic latent image formed on the electrophotographic photosensitive member is provided.
  • a direct charging means for charging a surface by contacting a directly charged member to which a voltage is applied may be used.
  • the direct charging means any of charging charging, contact charging with a brush, a film, or the like may be used. Either charging with air discharge or injection charging without air discharge is possible. Among these, scorotron charging is preferable in the charging method using corona discharge in order to keep the dark portion potential constant.
  • the charging roll used in the present application preferably has a conductive elastic layer formed on a conductive shaft core.
  • direct current charging or alternating current direct current charging can be used.
  • the volume resistivity of the charging roll used in the present invention is preferably 0.1 M ⁇ ⁇ cm or more and 5 M ⁇ ⁇ cm or less at 25 ° C. and a humidity of 50% RH. Within the above range, the leak resistance is improved and the discharge start voltage becomes moderate, so that the ghost property is improved with respect to the same applied voltage, which is preferable.
  • the image forming apparatus includes an electrophotographic photosensitive member 1, a charging device 2, an exposure device 3, and a developing device 4, and further, a transfer device 5, a cleaning device 6, and a fixing device as necessary.
  • a device 7 is provided.
  • the electrophotographic photoreceptor 1 is not particularly limited as long as it is the above-described electrophotographic photoreceptor of the present invention, but in FIG. 1, as an example, a drum in which the above-described photosensitive layer is formed on the surface of a cylindrical conductive support.
  • the photoconductor is shown.
  • a charging device 2, an exposure device 3, a developing device 4, a transfer device 5, and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photoreceptor 1.
  • the charging device 2 charges the electrophotographic photosensitive member 1 and uniformly charges the surface of the electrophotographic photosensitive member 1 to a predetermined potential.
  • a roller-type charging device (charging roller) is shown as an example of the charging device 2, but other corona charging devices such as corotron and scorotron, and contact-type charging devices such as charging brushes are often used.
  • the electrophotographic photoreceptor 1 and the charging device 2 are designed to be removable from the main body of the image forming apparatus as a cartridge having both of them (hereinafter also referred to as a photoreceptor cartridge).
  • a photoreceptor cartridge For example, when the electrophotographic photoreceptor 1 or the charging device 2 deteriorates, the photoreceptor cartridge can be removed from the image forming apparatus main body, and another new photosensitive cartridge can be mounted on the image forming apparatus main body.
  • the cartridge including the photosensitive member 1, the exposure device 3 and / or the developing device 4 may be designed to be removable from the main body of the image forming apparatus. Good.
  • the toner T described later is stored in the toner cartridge and is designed to be removable from the main body of the image forming apparatus, and this toner cartridge is used when the toner in the used toner cartridge runs out. Is removed from the main body of the image forming apparatus, and another new toner cartridge can be mounted. Further, a cartridge provided with all of the electrophotographic photosensitive member 1, the charging device 2, and the toner T may be used.
  • the type of exposure apparatus 3 is not particularly limited as long as it can expose the electrophotographic photoreceptor 1 to form an electrostatic latent image on the photosensitive surface of the electrophotographic photoreceptor 1.
  • Specific examples include halogen lamps, fluorescent lamps, lasers such as semiconductor lasers and He—Ne lasers, LEDs, and the like.
  • exposure may be performed by a photoreceptor internal exposure method.
  • the light used for the exposure is arbitrary.
  • the exposure may be performed using monochromatic light having a wavelength of 780 nm, monochromatic light having a wavelength of 600 nm to 700 nm, slightly short wavelength, or monochromatic light having a wavelength of 380 nm to 500 nm. .
  • the type of the developing device 4 is not particularly limited as long as it can develop the electrostatic latent image formed on the electrophotographic photosensitive member 1.
  • an arbitrary apparatus such as a dry development method such as cascade development, one-component conductive toner development, or two-component magnetic brush development, or a wet development method can be used.
  • the developing device 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which toner T is stored inside the developing tank 41.
  • a replenishing device (not shown) for replenishing the toner T may be attached to the developing device 4 as necessary.
  • the replenishing device is configured to be able to replenish toner T from a container such as a bottle or a cartridge.
  • the type of the transfer device 5 is not particularly limited, and an apparatus using an arbitrary system such as an electrostatic transfer method such as corona transfer, roller transfer, or belt transfer, a pressure transfer method, or an adhesive transfer method can be used.
  • the transfer device 5 includes a transfer charger, a transfer roller, a transfer belt, and the like disposed so as to face the electrophotographic photoreceptor 1.
  • the transfer device 5 applies a predetermined voltage value (transfer voltage) having a polarity opposite to the charging potential of the toner T, and transfers the toner image formed on the electrophotographic photosensitive member 1 to a recording paper (paper, medium) P. Is.
  • the cleaning device 6 is not particularly limited, and any cleaning device such as a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, or a blade cleaner can be used. However, the present invention is effective for a blade cleaner. Is easy to demonstrate.
  • the cleaning device 6 is for scraping off residual toner adhering to the photoreceptor 1 with a cleaning member and collecting the residual toner.
  • an image is recorded as follows.
  • a drum-shaped photoconductor 1 is rotationally driven in a direction of an arrow at a predetermined peripheral speed.
  • the photoreceptor 1 is uniformly charged at a predetermined positive or negative potential on the surface thereof by the charging device 2 during the rotation process.
  • charging may be performed with a DC voltage, or charging may be performed by superimposing an AC voltage on the DC voltage.
  • exposure for forming a latent image is performed by the image exposure means in the exposure apparatus 3.
  • the formed electrostatic latent image is then developed with toner by the developing device 4, and the toner developed image is a recording paper P such as paper that is a transfer body fed from a paper feeding unit by a transfer device 5 such as corona transfer. Will be transferred sequentially.
  • the developing device 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which toner T is stored inside the developing tank 41. .
  • a replenishing device (not shown) for replenishing the toner T may be attached to the developing device 4 as necessary.
  • the replenishing device is configured to be able to replenish toner T from a container such as a bottle or a cartridge.
  • the image-transferred transfer body is then sent to the fixing device 7 where the image is fixed and printed out of the apparatus.
  • the fixing device 7 includes an upper fixing member (fixing roller) 71 and a lower fixing member (fixing roller) 72, and a heating device 73 is provided inside the upper or lower fixing member 71 or 72.
  • FIG. 1 shows an example in which a heating device 73 is provided inside the upper fixing member 71.
  • the upper and lower fixing members 71 and 72 are known heat fixings such as a fixing roll in which a metal base tube such as stainless steel or aluminum is coated with silicon rubber, a fixing roll in which Teflon (registered trademark) resin is coated, or a fixing sheet. A member can be used.
  • the upper and lower fixing members 71 and 72 may be configured to supply a release agent such as silicone oil in order to improve the releasability, or may be configured to forcibly apply pressure to each other by a spring or the like. Good.
  • the toner transferred onto the recording paper P passes between the upper fixing member 71 and the lower fixing member 72 heated to a predetermined temperature, the toner is heated to a molten state and cooled after passing through the recording paper. Toner is fixed on P.
  • the surface of the photoreceptor 1 after the image transfer is cleaned by the cleaning device 6 after the transfer residual toner is removed, and is neutralized by the neutralizing means for the next image formation.
  • a direct charging means for charging a charged member by contacting a directly charged member to which a voltage is applied. It may be used.
  • direct charging means include contact chargers such as charging rollers and charging brushes.
  • the direct charging means any of those that involve air discharge or injection charging that does not involve air discharge is possible.
  • a voltage applied at the time of charging it is possible to use only a direct current voltage or to superimpose an alternating current on a direct current.
  • a halogen lamp, a fluorescent lamp, a laser (semiconductor, He—Ne), an LED, a photoconductor internal exposure system, or the like is used.
  • a laser semiconductor, He—Ne
  • an LED semiconductor, a photoconductor internal exposure system, or the like
  • the digital electrophotographic system it is preferable to use a laser, an LED, an optical shutter array, or the like.
  • the wavelength in addition to monochromatic light of 780 nm, monochromatic light near a short wavelength in the 600 to 700 nm region can be used.
  • a dry development method such as cascade development, one-component insulating toner development, one-component conductive toner development, two-component magnetic brush development, or the like is used.
  • toner in addition to the pulverized toner, chemical toners such as suspension granulation, suspension polymerization, and emulsion polymerization aggregation can be used.
  • chemical toners those having a small particle size of about 4 to 8 ⁇ m are used, and those having a shape close to a sphere, or those outside a sphere such as a potato shape can also be used.
  • the polymerized toner is excellent in charging uniformity and transferability, and is preferably used for high image quality.
  • electrostatic transfer methods such as corona transfer, roller transfer, and belt transfer, pressure transfer methods, and adhesive transfer methods are used.
  • fixing heat roller fixing, flash fixing, oven fixing, pressure fixing, IH fixing, belt fixing, IHF fixing, etc. are used. These fixing methods may be used alone or in combination with a plurality of fixing methods. May be.
  • cleaning brush cleaner, magnetic brush cleaner, electrostatic brush cleaner, magnetic roller cleaner, blade cleaner, etc. are used.
  • the static elimination step is often omitted, but when used, a fluorescent lamp, LED, or the like is used, and an exposure energy that is three times or more of the exposure light is often used as the intensity.
  • a pre-exposure process and an auxiliary charging process may be included.
  • a plurality of components such as the drum-shaped photoconductor 1, the charging device 2, the developing device 4, the cleaning device 6 and the like are integrally coupled as a drum cartridge. It may be configured to be detachable from the main body of an electrophotographic apparatus such as a copying machine or a laser beam printer.
  • at least one of the charging device 2, the developing device 4, and the cleaning device 6 can be integrally supported together with the drum-shaped photoconductor 1 to form a cartridge.
  • the image forming apparatus may be further modified.
  • the image forming apparatus may be configured to perform a pre-exposure process, an auxiliary charging process, or the like, or may be configured to perform offset printing.
  • a full-color tandem system configuration using toner may be used.
  • Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-10 >> ⁇ Manufacture of coating liquid for undercoat layer formation> Coating liquid A Rutile type titanium oxide (“TTO55N” manufactured by Ishihara Sangyo Co., Ltd.) with an average primary particle size of 40 nm and 3% by mass of methyldimethoxysilane (“TSL8117” manufactured by Toshiba Silicone Co., Ltd.) with respect to the titanium oxide were added to a Henschel mixer. And mixed.
  • Compound molar ratio of compound represented] / hexamethylenediamine [compound represented by formula C below] / decamethylene dicarboxylic acid [compound represented by formula D below] / octadecamethylene dicarboxylic acid [compound represented by formula E below]
  • 75% / 9.5% / 3% / 9.5% / 3% of the copolymerized polyamide pellets were stirred and mixed with heating to dissolve the polyamide pellets.
  • ultrasonic dispersion treatment with an ultrasonic transmitter with an output of 1200 W is performed for 1 hour, and further filtered through a PTFE membrane filter (Advantech Mytex LC) having a pore diameter of 5 ⁇ m, and the mass ratio of the surface-treated titanium oxide / copolymerized polyamide is 3/1, the mixed solvent ratio of methanol / 1-propanol / toluene is 7/1/2, and the concentration of the solid content contained is 18.0% by weight of the undercoat layer forming coating solution A Got.
  • a PTFE membrane filter Advanced Chemical Mytex LC
  • Charge generation layer forming coating solution B The charge generation layer forming coating solution was prepared as follows. As a charge generation material, 20 parts by mass of oxytitanium phthalocyanine shown in the X-ray diffraction spectrum of FIG. 2 and 280 parts by mass of 1,2-dimethoxyethane are mixed, and pulverized in a sand grind mill for 1 hour for atomization dispersion treatment. It was.
  • oxytitanium phthalocyanine shown in the X-ray diffraction spectrum of FIG. 3 and 280 parts by mass of 1,2-dimethoxyethane are mixed, and pulverized with a sand grind mill for 4 hours for atomization dispersion treatment. It was.
  • KTL polytetrafluoroethylene particles
  • GF400 fluorine-based graft polymer
  • the primary slurry liquid CA1 was pressurized to 100 MPa using a high-pressure collision type disperser (Sugino Machine Starbust Mini), and the dispersion process was repeated 5 times to obtain a KTL dispersion CA2.
  • a polycarbonate resin represented by the following repeating structure (resin X1, viscosity average molecular weight 50,000), 29 parts by mass of the compound represented by (HT-17) described above as the charge transport material, 1 part by weight of compound AD1 represented by the following formula and 0.03 part by weight of leveling agent silicone oil (Shin-Etsu Chemical KF96-10CS) were heated and stirred in a mixed solvent of 9: 1 (mass ratio) of tetrahydrofuran and anisole.
  • concentration of solid content was 18 mass% was obtained.
  • the KTL dispersion CA2 was added to the CB solution so that the fluororesin particles would be 6 parts by mass, and the mixture was further dispersed at 7000 rpm for about 1 hour using a homoxer, to obtain a charge transport layer forming coating solution C1.
  • Charge transport layer forming coating solution C2 For charge transport layer formation, similar to C1, except that the added mass part of the CB liquid of the KTL dispersion CA2 used for the charge transport layer forming coating liquid C1 was added so that the fluororesin particles would be 11 parts by mass.
  • the coating liquid C2 was prepared.
  • Charge transport layer forming coating solution C3 For charge transport layer formation in the same manner as C1, except that the added mass part of the CB liquid of the KTL dispersion CA2 used for the charge transport layer forming coating liquid C1 was added so that the fluororesin particles were 16 parts by mass. Coating solution C3 was prepared.
  • Charge transport layer forming coating solution C4 Instead of the KTL dispersion CA2 used in the coating liquid C1 for charge transport layer formation, C1 except that the primary slurry liquid CA1 containing only ultrasonic dispersion was added to the CB liquid so that the fluororesin particles would be 6 parts by mass. In the same manner as described above, a coating solution C4 for forming a charge transport layer was prepared.
  • Charge transport layer forming coating solution C5 Charge transport layer formation was performed in the same manner as C4, except that the addition of parts by mass of the primary slurry liquid CA1 used in the charge transport layer forming coating liquid C4 to the CB liquid was 11 parts by mass of the fluororesin particles. Preparation liquid C5 was prepared.
  • Charge transport layer forming coating solution C6 Charge transport layer formation was performed in the same manner as C4, except that the addition of parts by mass of the primary slurry liquid CA1 used in the charge transport layer forming coating liquid C4 to the CB liquid was added so that the fluororesin particles would be 16 parts by mass. Preparation liquid C6 was prepared.
  • Charge transport layer forming coating solution C7 The charge transport layer forming coating solution C7 was prepared in the same manner as C1, except that the KTL dispersion CA2 used in the charge transport layer forming coating solution C1 was not added to the CB solution and the CB solution was used as it was. did.
  • Charge transport layer forming coating solution C8 Charge transport layer formation in the same manner as C1, except that the KTL dispersion CA2 used in the charge transport layer forming coating liquid C1 was added to the CB liquid so that the fluororesin particles would be 1 part by weight. Preparation liquid C8 was prepared.
  • Charge transport layer forming coating solution C9 Charge transport layer formation in the same manner as C1, except that the KTL dispersion CA2 used in the charge transport layer forming coating solution C1 was added to the CB solution so that the fluororesin particles were 22 parts by weight. Preparation liquid C9 was prepared.
  • Charge transport layer forming coating solution C10 The KTL dispersion CA2 used for the charge transport layer forming coating liquid C1 was not added to the CB liquid, and the CTM in the CB liquid was changed from (HT-17) to HT-20 represented by the following formula.
  • a charge transport layer forming coating solution C10 was prepared in the same manner as C1.
  • Coating liquid C11 for forming a charge transport layer The added mass part of the KTL dispersion CA2 used for the charge transport layer forming coating liquid C1 to the CB liquid is added so that the fluororesin particles become 1 part by mass, and the CTM in the CB liquid is (HT-17).
  • a coating solution C11 for forming a charge transport layer was prepared in the same manner as C1, except for changing from (HT-20) to (HT-20).
  • Charge transport layer forming coating solution C12 Charge transport layer formation in the same manner as C11 except that the KTL dispersion CA2 used in the charge transport layer forming coating solution C11 was added to the CB solution so that the fluororesin particles would be 6 parts by weight. Preparation liquid C12 was prepared.
  • Charge transport layer forming coating solution C13 Charge transport layer formation was performed in the same manner as C11, except that the KTL dispersion CA2 used in the charge transport layer forming coating solution C11 was added to the CB solution so that the fluororesin particles were 11 parts by weight. Preparation liquid C13 was prepared.
  • Charge transport layer forming coating solution C14 Charge transport layer formation was performed in the same manner as C11, except that the KTL dispersion CA2 used for the charge transport layer forming coating solution C11 was added to the CB solution so that the fluororesin particles were 22 parts by weight. Preparation liquid C14 was prepared.
  • Charge transport layer forming coating solution C15 The charge transport layer forming coating solution C15 was prepared in the same manner as C2, except that the CTM used in the charge transport layer forming coating solution C2 was changed from (HT-17) to HT-21 represented by the following formula. .
  • Charge transport layer forming coating solution C16 The charge transport layer forming coating solution C16 was prepared in the same manner as C2, except that the CTM used in the charge transport layer forming coating solution C2 was changed from (HT-17) to HT-22 represented by the following formula. .
  • CB17 liquid 64 parts by mass of a polycarbonate resin (resin X1, viscosity average molecular weight 50,000) represented by the same repeating structure as the CB liquid, 29 parts by mass of the above (HT-17) as a charge transport material, and the above compound AD1 1 part by weight, 0.03 part by weight of leveling agent silicone oil (Shin-Etsu Chemical KF96-10CS) was dissolved in a mixed solvent of 9: 1 (mass ratio) of tetrahydrofuran and anisole by heating and stirring, and the solid content was 18 mass% CB17 liquid was obtained.
  • a polycarbonate resin resin X1, viscosity average molecular weight 50,000
  • HT-17 charge transport material
  • AD1 1 part by weight 0.03 part by weight of leveling agent silicone oil (Shin-Etsu Chemical KF96-10CS) was dissolved in a mixed solvent of 9: 1 (mass ratio) of tetrahydrofuran and anisole by heating and stirring, and the solid content
  • the primary slurry liquid CA17 liquid was added to the CB17 liquid so that KET30 was 11 parts by mass, and the mixture was further dispersed at 7000 rpm for about 1 hour using a homoxer, to obtain a charge transport layer forming coating liquid C17.
  • Examples 1-1 to 1-8 (coating liquids C1 to C6, C12, and C13) as shown in Table 1 using the charge transport layer forming coating liquids (coating liquids) C1 to C17 obtained above.
  • photosensitive drums corresponding to Comparative Examples 1-1 to 1-10 (coating liquids C7 to C11, C14 to C17) were produced as follows.
  • the coating solution for forming the charge transport layer is sequentially applied and dried by the dip coating method, and the undercoat layer, the charge generation layer, and the charge transport are adjusted so that the film thickness after drying is 1.5 ⁇ m, 0.5 ⁇ m, and 36 ⁇ m, respectively
  • a layer was formed to produce a photoreceptor drum.
  • the charge transport layer was dried at 125 ° C. for 24 minutes.
  • the surface of the charge transport layer was changed to 20 ⁇ m using a cylinder made of an aluminum alloy having an outer diameter of 24 mm, a length of 255 mm, and a wall thickness of 0.75 mm.
  • a photoreceptor drum was manufactured.
  • electrophotographic photoreceptors are electrophotographic characteristic evaluation apparatuses prepared according to the standard of the Electrophotographic Society (Fundamentals and applications of electrophotographic technology, edited by the Electrophotographic Society, Corona (1996), pages 404-405. ), Mounted on a photoreceptor characteristic measuring machine, and evaluated according to the following procedure in an environment of 25 ° C / humidity 50% RH of electrical characteristics by charging (minus polarity), exposure, potential measurement, static elimination cycle. I did it.
  • the photosensitive member is charged so that the initial surface potential becomes ⁇ 800 V, and the light from the halogen lamp is irradiated with monochromatic light having a wavelength of 780 nm by an interference filter, and the exposure light is 0.6 ⁇ J / cm 2 .
  • the volume resistivity of the charging rolls used in Examples 1-1 to 1-8, Comparative Examples 1-1 to 1-8, and Comparative Example 1-10 was 1.3 M ⁇ ⁇ cm.
  • the charging roll used in No. 9 was 10.3 M ⁇ ⁇ cm.
  • the obtained photoreceptor is mounted on a photoreceptor cartridge of a monochrome printer ML6510 (DC roller charging, laser exposure, non-magnetic two-component, non-contact development) manufactured by Samsung, at a temperature of 25 ° C. and a relative humidity of 50%. Continuous printing of 30,000 sheets was performed at a printing rate of 5%. The film thickness before and after printing was measured after printing 30,000 sheets, and the amount of film reduction in terms of 1,000 rotations of the photoreceptor was calculated. The results are shown in Table 1.
  • Examples 1-1 to 1-6 are excellent in overall balance.
  • the dispersibility of Comparative Example 1-3 and Comparative Example 1-6, in which the amount of fluororesin particles added is large, is at the level of x, and the roughness value is also large.
  • Examples 1-1 to 1-6 are better than Comparative Examples 1-7 to 1-10.
  • the leakage resistance of the fluororesin particles is good by comparing Example 1-2, Example 1-5 and Comparative Example 1-10.
  • Examples 1-1 to 1-6 are compared with Comparative Examples 1-1 to 1-3, the effect of the present application is obtained when the addition amount of the fluororesin particles is 3 to 20% by mass from the viewpoint of wear resistance and leak resistance. You can see that Furthermore, by comparing Examples 1-2 and 1-5 and Comparative Examples 1-8 and 1-9, it can be seen that leakage resistance is good even when a charging roll having a low volume resistance is used.
  • Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-12 >> [Example 2-1] ⁇ Manufacture of coating liquid for undercoat layer formation> Rutile type titanium oxide (“TTO55N” manufactured by Ishihara Sangyo Co., Ltd.) with an average primary particle size of 40 nm and 3% by mass of methyldimethoxysilane (“TSL8117” manufactured by Toshiba Silicone Co., Ltd.) with respect to the titanium oxide were added to a Henschel mixer. And mixed.
  • Rutile type titanium oxide (“TTO55N” manufactured by Ishihara Sangyo Co., Ltd.) with an average primary particle size of 40 nm and 3% by mass of methyldimethoxysilane (“TSL8117” manufactured by Toshiba Silicone Co., Ltd.) with respect to the titanium oxide were added to a Henschel mixer. And mixed.
  • Compound molar ratio of compound represented] / hexamethylenediamine [compound represented by formula C below] / decamethylene dicarboxylic acid [compound represented by formula D below] / octadecamethylene dicarboxylic acid [compound represented by formula E below]
  • 75% / 9.5% / 3% / 9.5% / 3% of the copolymerized polyamide pellets were stirred and mixed with heating to dissolve the polyamide pellets.
  • ultrasonic dispersion treatment with an ultrasonic transmitter with an output of 1200 W is performed for 1 hour, and further filtered through a PTFE membrane filter (Advantech Mytex LC) having a pore diameter of 5 ⁇ m, and the mass ratio of the surface-treated titanium oxide / copolymerized polyamide is 3/1, and the mass ratio of the mixed solvent of methanol / 1-propanol / toluene is 7/1/2, and the concentration of the solid content contained is 18.0% by mass.
  • ⁇ Manufacture of coating solution for forming charge generation layer As a charge generation material, 20 parts of oxytitanium phthalocyanine showing X-ray diffraction spectrum by CuK ⁇ characteristic X-ray in FIG. 2 and 280 parts of 1,2-dimethoxyethane are mixed, and pulverized in a sand grind mill for 1 hour to be atomized and dispersed. Processing was performed. Subsequently, 10 parts of polyvinyl butyral (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denkabutyral” # 6000C), 255 parts of 1,2-dimethoxyethane, and 4-methoxy-4-methyl are added to the refined treatment liquid. A binder solution obtained by dissolving in a mixed solution of 85 parts of -2-pentanone and 230 parts of 1,2-dimethoxyethane were mixed to prepare a coating solution for forming a charge generation layer.
  • ⁇ Manufacture of coating liquid for charge transport layer formation 10 parts by mass of polytetrafluoroethylene resin particles (KTL-500F, Kitamura Chemical Co., Ltd. average primary particle size: 0.3 ⁇ m) and 0.5 parts by mass of fluorine-based graft polymer (GF400, manufactured by Toagosei Co., Ltd.) After stirring and mixing together with 90 parts by mass, a polytetrafluoroethylene resin particle suspension was obtained by increasing the pressure to 70 MPa using a high-pressure homogenizer (manufactured by Sugino Machine Co., Ltd.) equipped with a ball collision chamber. .
  • KTL-500F Kitamura Chemical Co., Ltd. average primary particle size: 0.3 ⁇ m
  • fluorine-based graft polymer GF400, manufactured by Toagosei Co., Ltd.
  • the resulting mixture was mixed with the previously obtained polytetrafluoroethylene resin particle suspension and stirred with a homogenizer to prepare a coating solution for forming a charge transport layer.
  • the coating solution for forming the undercoat layer and the coating solution for forming the charge generation layer produced in the coating liquid production example on a cylinder made of an aluminum alloy having an outer diameter of 30 mm, a length of 254 mm, and a wall thickness of 0.8 mm.
  • the coating solution for forming the charge transport layer is sequentially applied and dried by the dip coating method, and the undercoat layer, the charge generation layer, the charge are formed so that the dried film thicknesses are 1.5 ⁇ m, 0.4 ⁇ m, and 25 ⁇ m, respectively.
  • a transport layer was formed to produce a photoreceptor drum. The charge transport layer was dried at 125 ° C. for 24 minutes.
  • Example 2-2 A photoconductor in the same manner as in Example 2-1, except that the amount of the charge transport material CTM-1 used in ⁇ Manufacture of coating solution for forming a charge transport layer> in Example 2-1 was changed to 60 parts by mass. A drum was made.
  • Example 2-3 A photoconductor in the same manner as in Example 2-1, except that the amount of the charge transport material CTM-1 used in ⁇ Manufacture of coating solution for forming a charge transport layer> in Example 2-1 was changed to 40 parts by mass. A drum was made.
  • Example 2-2 The charge transport material used in ⁇ Manufacture of Coating Solution for Forming Charge Transport Layer> in Example 2-1 was used as charge transport material CTM-A as in Comparative Example 2-1, and the amount used was 60 parts by mass. A photosensitive drum was produced in the same manner as in Example 2-1, except that the changes were made.
  • Example 2-4 The charge transport material used in ⁇ Manufacture of coating liquid for forming a charge transport layer> in Example 2-1 was designated as charge transport material CTM-B as in Comparative Example 2-3, and the amount used was 60 parts by mass.
  • a photosensitive drum was produced in the same manner as in Example 2-1, except that the changes were made.
  • a photosensitive drum was produced in the same manner as in Example 2-1, except that a coating solution for forming a charge transport layer was prepared by dissolving in 620 parts of a solvent.
  • the initial surface potential of the photosensitive member is charged to ⁇ 700 V, and the halogen lamp light is converted to monochromatic light having a wavelength of 780 nm by an interference filter at an intensity of 0.8 ⁇ J / cm 2 and repeatedly tested after 100 ms.
  • the surface potential (VL1) after the previous exposure was measured ( ⁇ V). Then, after measuring the surface potential after exposure before the repeated durability test, after repeating the cycle of ⁇ 700 V charging and neutralization of about 15 ⁇ J / cm 2 intensity with the above apparatus 5000 times, the surface potential is set to ⁇ 700 V.
  • VL2 surface potential after exposure after repeated endurance tests was measured after charging 100% of the light from the halogen lamp that was converted to monochromatic light with a wavelength of 780 nm with an interference filter at an intensity of 0.8 ⁇ J / cm 2. It was.
  • the photoconductor having a smaller change amount before and after the repeated durability test shows that the characteristic change is smaller with repeated use, and the electrical property of the photoconductor is high in stability and excellent in durability performance.
  • Comparative Example 2-1 the value of VL2-VL1 is significantly increased compared to Comparative Example 2-9, while in Example 2-1, the value of VL2-VL1 is increased compared to Comparative Example 2-7. It is suppressed.
  • the photoreceptor of the present invention has a small amount of change in the surface potential after exposure before and after the repeated durability test, and the present invention can provide a photoreceptor that is very stable against repeated use and has excellent durability performance. Became clear.
  • the electrophotographic photosensitive member, the electrophotographic photosensitive member cartridge, and the image forming apparatus according to the present invention are expected to significantly contribute to improving the quality and extending the life of various image forming apparatuses such as copying machines and printers.
  • Photoconductor (Electrophotographic photoconductor) 2 Charging device (charging roller; charging unit) 3 Exposure equipment (exposure section) 4 Development device (development unit) DESCRIPTION OF SYMBOLS 5 Transfer apparatus 6 Cleaning apparatus 7 Fixing apparatus 41 Developing tank 42 Agitator 43 Supply roller 44 Developing roller 45 Control member 71 Upper fixing member (fixing roller) 72 Lower fixing member (fixing roller) 73 Heating device T Toner P Recording paper (paper, medium)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

本発明は、電荷輸送層にフッ素樹脂を用いても電位の上昇を抑制し、更に、電気特性と耐摩耗性を両立して実現できる電子写真感光体を提供することを目的とする。本発明は、積層型電子写真感光体の電荷輸送層が密度汎関数計算B3LYP/6-31G(d,p)による構造最適化計算に基づくE_homoが-4.550eV以上である化合物とフッ素樹脂粒子とを含有し、前記フッ素樹脂粒子の含有量が前記電荷輸送層の総質量に対し、3重量%以上20重量%以下である電子写真感光体に関する。

Description

電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
 本発明は、複写機やプリンター等に用いられる電子写真感光体、電子写真感光体カートリッジ及び画像形成装置に関するものであり、画像形成装置においても高温高湿環境下において、繰り返し使用した場合においても残留電位の上昇等の劣化が少なく耐久性の高い電子写真感光体に関する。
 従来、電子写真感光体には有機感光体(以下、単に感光体とも云う)が広く用いられている。有機感光体は可視光から赤外光まで各種露光光源に対応した材料が開発しやすいこと、環境汚染のない材料を選択できること、製造コストが安いことなど他の感光体に対して有利な点がある。
 一方、欠点としては機械的強度が弱く摩耗しやすい、多数枚のプリント時に感光体の静電特性が劣化しやすい等の課題がある。特に昨今は、画像形成装置の高速・高画質化が進むに連れて、感光体には感度以外に、フィルミングや繰り返し使用に対する電位の安定性などの耐久性が求められる。さらに、感光体自身が画像形成装置の部品の一部とみなされ、これまで以上に耐久性(耐摩耗性)が要求されている。またプロセスカートリッジ(電子写真感光体カートリッジ)に使用される部材も安価化が進み、体積抵抗率の低い帯電ロールを用いるとリークしやすい課題がある。
 フィルミングは感光体における感光層上に付着したトナー由来のワックスや、外添剤を起点として発生することから、ワックスや外添剤が感光体に付着するのを防ぐことを目的として、ポリテトラフルオロエチレン樹脂粒子等の材料を感光層中に分散し、感光層の表面自由エネルギーを下げ感光層とワックス・外添剤との間の付着力を低減させるための検討が行われている。
 そこで、感光体の耐摩耗性を向上させるために、感光体の最表面層にポリテトラフルオロエチレン樹脂(PTFE)等の含フッ素樹脂微粒子を含有させる技術が知られている(特許文献1)。またフッ素樹脂粒子を特定量含有させることにより、リーク性を向上させる技術が知られている(特許文献2)。
 また電気特性の優れた特定の電荷輸送物質を用いることにより、感光体の電気特性を向上する技術が知られている(特許文献3)。
日本国特開2005-345686号公報 日本国特開平06-230590号公報 日本国特開2009-186969号公報
 しかしながら、フッ素樹脂粒子を感光層中に分散すると感光体を繰り返し使用した際の露光後電位の上昇が顕著となり、感光体の耐久性に大きな問題が発生する。また、使用される電荷輸送物質によっては、電気特性の観点から耐摩耗性との両立が困難である。
 また、電気特性の優れた特定の電荷輸送物質を用いた場合には、感光体の耐摩耗性が不十分、また耐リーク性が悪化するという課題があった。
 上記のように、電荷輸送層にフッ素樹脂粒子を用いると、電位の上昇が顕著になってしまう。本発明は、電荷輸送層にフッ素樹脂を用いても電位の上昇を抑制し、更に、電気特性とトレードオフの関係にある耐摩耗性及びリーク性を、両立して実現できる電子写真感光体、電子写真感光体カートリッジ及び画像形成装置を提供することを目的とする。
 本発明者らは、鋭意検討を行った結果、特定の電荷輸送材料となる化合物とフッ素樹脂粒子とを組み合わせて用いることにより、感光体の電気特性、耐摩耗性を両立できることを見出した。さらに、高温高湿下で繰り返し使用した場合においても残留電位の上昇等の劣化が少なく耐久性の高い電子写真感光体を提供することが可能であることを見出し、以下の本発明の完成に至った。
 すなわち、本発明は、以下[1]~[10]に示す具体的態様等を提供する。
[1] 導電性支持体と、前記導電性支持体上に電荷発生層及び電荷輸送層とを備えた積層型電子写真感光体であって、
 前記電荷輸送層が密度汎関数計算B3LYP/6-31G(d,p)による構造最適化計算に基づくHOMOのエネルギーレベル(E_homo)が-4.550eV以上である化合物とフッ素樹脂粒子とを含有し、
 前記フッ素樹脂粒子の含有量が前記電荷輸送層の総質量に対し、3重量%以上20重量%以下である電子写真感光体。
[2] 電子写真感光体表面の粗さ(Rz)が0.1μm以上0.4μm以下である前記[1]に記載の電子写真感光体。
[3] 前記E_homoが-4.550eV以上である化合物の安定構造における、密度汎関数計算B3LYP/6-31G(d,p)及びHF/6-31G(d,p)計算に基づく分極率の計算値αcalが、70Å以上である前記[1]又は[2]に記載の電子写真感光体。
[4] 前記フッ素樹脂粒子の平均一次粒径が0.05μm以上1μm以下である前記[1]乃至[3]のいずれか一に記載の電子写真感光体。
[5] 前記E_homoが-4.550eV以上である化合物が下記式(1)で示される化合物を含む前記[1]乃至[4]のいずれか一に記載の電子写真感光体。
Figure JPOXMLDOC01-appb-C000005
(上記式(1)において、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m及びnはそれぞれ独立して1以上3以下の整数を表す。)
[6] 前記E_homoが-4.550eV以上である化合物が下記式(2)で示される化合物を含む前記[1]乃至[4]のいずれか一に記載の電子写真感光体。
Figure JPOXMLDOC01-appb-C000006
(上記式(2)において、R、R、R及びRはそれぞれ独立して、アルキル基、アルコキシ基、アリール基又はアラルキル基を示す。m、n、p及びqはそれぞれ独立して0~3の整数を示す。但し、R及びRが同一の基であるとき、m及びnは異なる整数を示す。また、R及びRが同一の基であるとき、p及びqは異なる整数を示す。R及びRはそれぞれ独立して、水素原子又はアルキル基を示す。また、R、R、R及びRがそれぞれ複数存在する場合、複数存在する基はそれぞれ同一でも異なっていてもよく、また複数存在する基同士が結合して環を形成していてもよい。)
[7] 導電性支持体と、前記導電性支持体上に電荷発生層及び電荷輸送層とを備えた積層型電子写真感光体であって、
 前記電荷輸送層が下記式(1)で示される化合物とフッ素樹脂粒子とを含有し、
 前記フッ素樹脂粒子の含有量が前記電荷輸送層の総質量に対し、3重量%以上20重量%以下である電子写真感光体。
Figure JPOXMLDOC01-appb-C000007
(上記式(1)において、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m及びnはそれぞれ独立して1以上3以下の整数を表す。)
[8] 導電性支持体と、前記導電性支持体上に電荷発生層及び電荷輸送層とを備えた積層型電子写真感光体であって、
 前記電荷輸送層が下記式(2)で示される化合物とフッ素樹脂粒子とを含有し、
 前記フッ素樹脂粒子の含有量が電荷輸送層の総質量に対し、3重量%以上20重量%以下である電子写真感光体。
Figure JPOXMLDOC01-appb-C000008
(上記式(2)において、R、R、R及びRはそれぞれ独立して、アルキル基、アルコキシ基、アリール基又はアラルキル基を示す。m、n、p及びqはそれぞれ独立して0~3の整数を示す。但し、R及びRが同一の基であるとき、m及びnは異なる整数を示す。また、R及びRが同一の基であるとき、p及びqは異なる整数を示す。R及びRはそれぞれ独立に、水素原子又はアルキル基を示す。また、R、R、R及びRがそれぞれ複数存在する場合、複数存在する基はそれぞれ同一でも異なっていてもよく、また複数存在する基同士が結合して環を形成していてもよい。)
[9] 前記[1]乃至[8]のいずれか一に記載の電子写真感光体、並びに、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、及び、前記電子写真感光体上に形成された静電潜像を現像する現像装置よりなる群から選ばれる少なくとも1の装置を備えた電子写真感光体カートリッジ。
[10] 前記[1]乃至[8]のいずれか一に記載の電子写真感光体、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、及び、前記電子写真感光体上に形成された前記静電潜像を現像する現像装置を備えた画像形成装置。
 本発明は、電荷輸送層に特定の電荷輸送材料である化合物とフッ素樹脂粒子を組み合わせて用いることにより、高温高湿下で繰り返し使用した場合においても残留電位の上昇等の劣化が少なく耐久性の高い電子写真感光体を提供することが可能となる。
 また、本発明は、感光体の電気特性と耐摩耗性と相反する特性を同時に解決し、好ましくは、さらに電気特性とリーク性といった相反する特性をも同時に解決し、電気特性及び耐摩耗性、好ましくは、さらにリーク性にも優れた電子写真感光体、電子写真カートリッジ(プロセスカートリッジ)を提供することができる。
 本発明の効果が奏される理由は完全に解明されてはいないが、電荷輸送層中に、相対的に大きい分子である、特定のHOMOのエネルギーレベルを有する化合物又は特定の構造を有する化合物によって形成される空孔を、特定量のフッ素樹脂粒子が適度に埋めるためであると推測される。前記化合物が誘電体中に存在すると空孔が生じ、その部分にかかる電場は、空孔以外の部分よりも大きくなってしまう。その結果、感光層内でも破壊が進行され、リークが発生しやすくなる。フッ素樹脂粒子により、当該化合物に基づく空孔が埋められれば、電場の上昇が抑えられ、リーク性を改善でき、更には電気特性、耐摩耗性にも寄与する総合的な性能バランスに優れた感光体が得られると考えられる。
図1は、本発明の画像形成装置の一実施態様の要部構成を示す概略図である。 図2は、実施例で用いたD型オキシチタニウムフタロシアニンのCuKα特性X線による回折スペクトルを示す図である。 図3は、実施例で用いたA型オキシチタニウムフタロシアニンのCuKα特性X線による回折スペクトルを示す図である。 図4は、帯電ロールの体積抵抗率の測定方法を説明するための概略図である。
 以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。また、本明細書において“質量部”と“重量部”、“質量%”と“重量%”とはそれぞれ同義であり、単に“ppm”と記載した場合は“重量ppm”であることを意味する。
 ≪本発明の感光体に使用する電荷輸送物質≫
 通常負帯電積層型感光体の場合、感光体表面がマイナスに帯電され、露光後、電荷発生層で発生された正孔は電荷輸送層中に注入される。この注入された正孔は電荷輸送物質のHOMOの軌道をホッピング伝導しながら感光層表面に到達し、感光体表面のマイナス電荷を打ち消し、所望の表面電位まで減衰する。
 一般的にフッ素樹脂粒子を電荷輸送層に含有させる場合、フッ素樹脂粒子を電荷輸送層用塗布液中に分散させる必要性があり、分散剤を用いて塗布液中に分散させ、その塗布液を塗布することでフッ素樹脂粒子を含有する電荷輸送層を形成する。ただ、フッ素樹脂粒子や分散剤には製造時の触媒や、原料残渣等の電荷輸送層中での正孔のホッピング伝導に悪影響を与える不純物が残存している場合が多く、感光体を繰り返して使用した際、露光後表面電位が上昇していくという弊害が現れる。
 この課題を克服するために、鋭意検討を行った結果、フッ素樹脂粒子、及び分散剤中に、一般的に用いられる電荷輸送物質のHOMOのエネルギーレベルよりも高い準位のHOMOのエネルギーレベルを有する不純物化合物が存在し、この不純物化合物が電荷輸送層に注入された正孔をトラップすることで、感光体の繰り返し使用で露光後表面電位が上昇してしまうという結論に達した。
 そこで本発明では、フッ素樹脂粒子、及び分散剤由来の不純物化合物のHOMOのエネルギーレベルよりも高い準位のHOMOのエネルギーレベルを有する電荷輸送物質を用いることで、電荷輸送層に注入された正孔がフッ素樹脂粒子由来の不純物にトラップされず、感光体表面に到達することで電荷輸送層中の電荷の蓄積が起こらないため、感光体を繰り返し使用した場合でも露光後の表面電位の上昇を抑制することが可能となる。
 上記理由から、本願発明に用いることの出来る、電荷輸送層に含まれる電荷輸送物質は、そのB3LYP/6-31G(d,p)を用いた構造最適化計算によるHOMOのエネルギーレベル(E_homo)が-4.550eV以上が好ましく、より好ましくは-4.500eV以上、さらに好ましくは-4.450eV以上である。上記の範囲内であると、電荷輸送層に注入された正孔がフッ素樹脂粒子由来の不純物にトラップされず、感光体表面に到達することで電荷輸送層中の電荷の蓄積が起こらないため、感光体を繰り返し使用した場合でも露光後の表面電位の上昇を抑制することが可能となる。一方、上限に特に制限はないが、耐ガス性の向上、ゴーストの防止の観点から、好ましくは-4.150eV以下、より好ましくは-4.200eV以下、更に好ましくは-4.250eV以下である。
 さらにB3LYP/6-31G(d,p)を用いた構造最適化計算に基づく安定構造に対し、HF/6-31G(d,p)計算を行うと、該安定構造の分極率の計算値αcalを算出することができる。前記E_homoが-4.550eV以上である化合物の該密度汎関数計算B3LYP/6-31G(d,p)及びHF/6-31G(d,p)計算に基づく、該正孔輸送材料の安定構造における分極率の計算値αcalに特に制限はないが、通常は70Å以上が好ましく、より好ましくは80Å以上、さらに好ましくは90Å以上である。
 αcalが大きい電荷輸送物質を含む電荷輸送層は高い電荷移動度を示し、該電荷輸送層を用いることにより、帯電性、感度などに優れた電子写真感光体が得られるからである。一方、溶解性の観点から、通常200Å以下であり、好ましくは170Å以下、より好ましくは150Å以下、更に好ましくは130Å以下である。
 本発明においてHOMOのエネルギーレベルE_homoは密度汎関数法の一種であるB3LYP(A. D. Becke, J. Chem. Phys. 98, 5648 (1993), C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B37, 785 (1988)及びB. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989)参照)を用い構造最適化計算により安定構造を求めて得た。この時、基底関数系として6-31Gに分極関数を加えた6-31G(d,p)を用いた(R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971), W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972), P. C. Hariharan and J. A. Pople, Mol. Phys. 27, 209 (1974), M. S. Gordon, Chem. Phys. Lett. 76, 163 (1980), P. C. Hariharan and J. A. Pople, Theo. Chim. Acta 28, 213 (1973), J. -P. Blaudeau, M. P. McGrath, L. A. Curtiss, and L. Radom, J. Chem. Phys. 107, 5016 (1997), M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon, J. Chem. Phys. 77, 3654 (1982), R. C. Binning Jr. and L. A. Curtiss, J. Comp. Chem. 11, 1206 (1990), V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, J. Chem. Phys. 109, 1223 (1998),及びV. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, J. Comp. Chem. 22, 976 (2001)を参照)。本発明において6-31G(d,p)を用いたB3LYP計算をB3LYP/6-31G(d,p)と記述する。
 さらに分極率αcalは上記B3LYP/6-31G(d,p)による構造最適化計算により得られた安定構造において、制限Hartree-Fock法計算(“Modern Quantum Chemistry”, A. Szabo and N. S. Ostlund, McGraw-Hill publishing company, New York, 1989を参照)により求めた。この時、基底関数は6-31G(d,p)を用いた。本発明において6-31G(d,p)を用いたHartree-Fock計算をHF/6-31G(d,p)と記述する。
 本発明では、B3LYP/6-31G(d,p)計算及びHF/6-31G(d,p)計算とも用いたプログラムはGaussian 03,Revision D.01(M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Ilratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.を参照)である。
 本発明のパラメータを満たす電荷輸送物質の構造に制限はなく、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、ヒドラゾン誘導体、カルバゾール誘導体、アニリン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖、もしくは側鎖に有する重合体等の電子供与性材料等が挙げられる。これらの中で、芳香族アミン誘導体、スチルベン誘導体、ヒドラゾン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したものが好ましく、中でも、エナミン誘導体、及び芳香族アミンが複数結合したものがより好ましく、下記式(1)及び式(2)で表される化合物の少なくともいずれか一方を含有することがより好ましい。
Figure JPOXMLDOC01-appb-C000009
 (上記式(1)において、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m及びnはそれぞれ独立して1以上3以下の整数を表す。)
 上記式(1)において、Ar~Arは、それぞれ独立して置換基を有していてもよいアリール基を表す。アリール基の炭素数としては、30以下が好ましく、より好ましくは20以下、更に好ましくは15以下である。具体的にはフェニル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基等が挙げられる。中でも、電子写真感光体の特性を考慮すると、フェニル基、ナフチル基、アントリル基が好ましく、電荷輸送能力の観点からは、フェニル基、ナフチル基がより好ましく、フェニル基が更に好ましい。
 Ar~Arが有していてもよい置換基としてはアルキル基、アリール基、アルコキシ基、ハロゲン原子等が挙げられる。具体的には、アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基等の直鎖状アルキル基、イソプロピル基、エチルヘキシル基等の分岐状アルキル基、シクロヘキシル基等の環状アルキル基が挙げられる。アリール基としては、置換基を有していてもよいフェニル基、ナフチル基等が挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等の直鎖状アルコキシ基、イソプロポキシ基、エチルヘキシロキシ基等の分岐状アルコキシ基、シクロヘキシロキシ基等の環状アルコキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、1,1,1-トリフルオロエトキシ基等のフッ素原子を有するアルコキシ基が挙げられる。ハロゲン原子としてはフッ素原子、塩素原子、臭素原子等が挙げられる。
 これらの中でも、製造原料の汎用性から炭素数1~20のアルキル基、炭素数1~20のアルコキシ基が好ましく、製造時の取扱性の面から、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基がより好ましく、電子写真感光体としての光減衰特性の面から、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基が更に好ましい。
 Ar~Arがフェニル基である場合、電荷輸送能力の観点から置換基を有することが好ましく、置換基の数としては1~5個が可能であるが、製造原料の汎用性からは1~3個が好ましく、電子写真感光体の特性の面からは、1~2個がより好ましい。また、Ar~Arがナフチル基である場合は、製造原料の汎用性から置換基の数が2以下、もしくは置換基を有さないことが好ましく、より好ましくは置換基の数が1、もしくは置換基を有さないことである。
 Ar~Arは、窒素原子に対してオルト位又はパラ位に少なくとも1つの置換基を有することが好ましく、置換基としては、溶解性の観点から炭素数1~6のアルコキシ基又は炭素数1~6のアルキル基が好ましい。
 上記式(1)において、Ar~Arは、それぞれ独立して置換基を有していてもよい1,4-フェニレン基、すなわちアリーレン基を表す。アリーレン基の炭素数としては、30以下が好ましく、より好ましくは20以下、更に好ましくは15以下である。具体的にはフェニレン基、ビフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基が例として挙げられ、この中でも電子写真感光体の特性を考慮すると、フェニレン基、ナフチレン基が好ましく、より好ましくはフェニレン基である。Ar~Arが有していてもよい置換基としては、Ar~Arが有していてもよい置換基として挙げたものが適用できる。これらの中でも、製造原料の汎用性から炭素数1~6のアルキル基、炭素数1~6のアルコキシ基が好ましく、製造時の取扱性の面から、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基がより好ましく、電子写真感光体としての光減衰特性の面から、メチル基、エチル基、メトキシ基、エトキシ基が更に好ましい。Ar~Arが置換基を有すると、分子構造にねじれが生じ、分子内でのπ共役拡張を妨げ、電子輸送能力が低下する可能性があることから、Ar~Arは置換基を有さないことが好ましい。
 m、nはそれぞれ独立して1以上3以下の整数を表す。m、nが大きくなると塗布溶媒への溶解性が低下する傾向にあることから、好ましくは2以下であり、電荷輸送物質としての電荷輸送能力の面から、より好ましくは1である。m、nが1の場合、エテニル基を表し、幾何異性体を有するが、電子写真感光体特性の面から、好ましくはトランス体構造が好ましいである。m、nが2の場合、ブタジエニル基を表し、この場合も幾何異性体を有するが、塗布液保管安定性の面から、2種以上の幾何異性体混合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(上記式(2)において、R、R、R及びRはそれぞれ独立して、アルキル基、アルコキシ基、アリール基又はアラルキル基を示す。m、n、p及びqはそれぞれ独立して0~3の整数を示す。但し、R及びRが同一の基であるとき、m及びnは異なる整数を示す。また、R及びRが同一の基であるとき、p及びqは異なる整数を示す。R及びRはそれぞれ独立して、水素原子又はアルキル基を示す。また、R、R、R及びRがそれぞれ複数存在する場合、複数存在する基はそれぞれ同一でも異なっていてもよく、また複数存在する基同士が結合して環を形成していてもよい。)
 本発明の電子写真感光体は、電荷輸送層に、式(1)又は式(2)で表される化合物を単一成分として含有するものでもよいし、式(1)で表される化合物及び式(2)で表される化合物の少なくとも一方の混合物として含有することも可能であり、さらには、式(1)で表される化合物及び式(2)で表される化合物の混合物として含有することも可能である。
 また、式(1)で表される化合物の中でも、特に下記式(3)で表される化合物が特に好ましい。式(3)は、式(1)におけるArがアルキル基、アルコキシ基、アリールオキシ基、又はアラルキルオキシ基を有する、フェニル基であり、Ar~Arはそれぞれ独立して、置換基として炭素数1~6のアルキル基を有していてもよい、フェニル基であり、Ar~Arはいずれも無置換の1,4-フェニレン基であり、m及びnは共に1である。
Figure JPOXMLDOC01-appb-C000011
 (上記式(3)において、R~Rはそれぞれ独立して、アルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、又は水素原子を表す。)
 感光層中の結着樹脂(バインダー樹脂)と式(1)及び式(2)で表される化合物の少なくとも一方の化合物またはそれら化合物の合計(電荷輸送物質)との割合は、同一層中の結着樹脂100質量部に対して、通常、電荷輸送物質を10質量部以上、好ましくは20質量部以上で使用する。残留電位低減の観点から25質量部以上がより好ましく、繰り返し使用した際の安定性や電荷移動度の観点から30質量部以上が更に好ましく、40質量部以上が特に好ましい。一方、感光層の熱安定性の観点から、通常、電荷輸送物質を150質量部以下、好ましくは80質量部以下で使用する。電荷輸送物質と結着樹脂との相溶性の観点から75質量部以下が好ましく、耐熱性の観点から70質量部以下がより好ましく、耐傷性の観点から65質量部以下が更に好ましく、耐摩耗性の観点から60質量部以下が特に好ましい。また、上記の範囲であると、感光層の電荷移動度、安定性、耐摩耗性の観点から、好ましい。
 以下に本発明に好適な、式(1)で表される電荷輸送物質の構造を例示する。以下の構造は本発明をより具体的にするために例示するものであり、本発明の概念を逸脱しない限りは下記構造に限定されるものではない。
 なお、本明細書における構造式中、Etはエチル基、Meはメチル基、Buがブチル基を表し、nはノルマル(枝分かれのない直鎖状)、t-はターシャリー(枝分かれのある分枝状)であることを意味する。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014

                
Figure JPOXMLDOC01-appb-C000015
 上記の式(1)で表される化合物の中でも、CT1、CT2、CT3、CT5、CT8、CT9、CT10、CT18、CT20及びCT22で表される化合物が露光後の残留電位の観点で好ましく、CT1、CT2、CT5、CT8、CT10、CT20及びCT22で表される化合物が正孔輸送の移動度・応答性の観点でより好ましい。
 また、式(2)で表される電荷輸送物質の構造を例示する。以下の構造は本発明をより具体的にするために例示するものであり、本発明の概念を逸脱しない限りは下記構造に限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 上記の式(2)で表される化合物の中でも、電気特性、耐摩耗性、リーク性の観点から、(HT-17)が好ましい。
 上記の式(1)又は式(2)で表される化合物の中でも、CT1、CT2、CT3、CT5、CT8、CT9、CT10、CT18、CT20、CT22及び(HT-17)が好ましく、CT1、CT2、CT5、CT8、CT10、CT20、CT22及び(HT-17)がより好ましい。
 ≪フッ素樹脂粒子≫
 本発明の電荷輸送層はフッ素樹脂粒子を含有し、該フッ素樹脂粒子の含有量が電荷輸送層の総質量に対し、通常3質量%以上、好ましくは4.5質量%以上、より好ましくは5質量%以上、更に好ましくは6質量%以上であり、一方通常20質量%以下、好ましくは17.5質量%以下、より好ましくは15質量%以下、更に好ましくは12質量%以下、特に好ましくは10質量%以下である。上記の範囲内であると感光体を繰り返し使用した際の光減衰挙動の安定性、及び露光後の現像・クリーニングプロセスとのバランスの観点から好ましい。また、上記の範囲であると、摩耗性、分散性の観点から好ましい。
 フッ素樹脂粒子としては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリヘキサフルオロプロピレン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリジクロロジフルオロエチレン及びそれらの共重合体の粒子の中から1種又は2種以上を選択するのが望ましい。これらの中も、特に好ましくはポリテトラフルオロエチレン、ポリフッ化ビニリデンが好ましく、最も好ましくはポリテトラフルオロエチレンである。上記のフッ素樹脂粒子であると、摩耗性の観点から好ましい。
 フッ素樹脂粒子の平均一次粒径は特に制限されないが、分散性と摩耗性の両立観点から、通常、0.05μm以上が好ましく、より好ましくは0.1μm以上である。一方、通常、1μm以下が好ましく、より好ましくは0.5μm以下である。
 なお、この平均一次粒径は、電子写真感光体の最表面層(電荷輸送層)から試料片を得て、これをSEM(走査型電子顕微鏡)により、倍率5000倍で観察し、一次粒子状態のフッ素樹脂粒子の最大径を測定し、その平均値とする。
 フッ素樹脂粒子は、分散剤としてフッ素系グラフトポリマーを併用することがよい。この分散剤の量は、特に規定するものではないが、フッ素樹脂粒子に対して0.1質量%以上10質量%以下であることがよい。分散剤としては、例えばフッ素系クシ型グラフトポリマー(東亜合成製:GF400)などを利用できる。
 また、電荷輸送層には、必要に応じて、さらにフッ素変性シリコーンオイルを含んでもよい。このフッ素変性シリコーンオイルは、例えば、オルガノポリシロキサンの置換基の一部又は全部がフルオロアルキル基(例えば炭素数1以上10以下のフルオロアルキル基)で置換されたフッ素変性シリコーンオイル等が挙げられる。
 フッ素変性シリコーンオイルの含有量に特に制限はないが、通常0.1ppm以上、好ましくは0.5質量%以上であり、一方、通常1000ppm以下、好ましくは500ppm以下の範囲である。
 フッ素樹脂粒子を最外層塗液中に分散させるために、ペイントシェーカー、ボールミル、サンドミル等のメディアを用いる分散機や、高圧衝突タイプ等のメディアを用いない分散機を用いることができる。高圧とは、前記高圧ポンプの吐出量、吐出圧とオリフィス径及び長さ、更には溶媒及び被分散物の粘度によりおおむね決定される。
 中でも分散中にフッ素樹脂粒子を傷つけないという観点から、メディアを用いない分散機が好ましく、特に高圧衝突タイプの分散機が凝集防止という意味で好ましい。本発明における高圧状態に昇圧し、該高圧の液衝突により粉砕及び/又は分散させる(高圧液体衝突分散法)とは、例えば、微細な流路に流体を圧送し、該微細な流路の吐出口直後の高圧液同士の衝突、及び高圧液と装置の壁面との衝突により被分散物を粉砕及び/又は分散させることである。このための手段としては、高圧ポンプとこれに配管により接続された複数の小径のオリフィスを有する治具と、該オリフィスより液が吐出される際に液同士が衝突すべく加工された治具により構成される装置を用いることができる。
 このような装置としては、スギノマシン(株)のスターバースト、吉田機械興業(株)のナノヴェイタ、マイクロフルイディックスのマイクロフルイダイザーが利用できる。衝突パス回数が増えると、液衝突の発熱が蓄積しやすいことから、分散回路に冷却装置をつけるのが望ましい。
 液衝突の圧力に特に制限はないが、通常10MPa以上、より好ましくは50MPa以上であり、一方、通常300MPa以下、好ましくは50MPa以下である。上記の圧力であると、液同士の衝突エネルギーが好適であり、所望する粒径まで分散しやすくなるため、好ましい。また分散物の安定性の観点から好ましい。
 樹脂粒子以外の粒子としては、無機粒子がある。例えば、銅、スズ、アルミニウム、インジウムなどの金属粉末、シリカ、酸化錫、酸化亜鉛、酸化チタン、アルミナ、酸化インジウム、酸化アンチモン、酸化ビスマス、酸化カルシウム、アンチモンをドープした酸化錫、錫をドープした酸化インジウム等の金属酸化物、フッ化錫、フッ化カルシウム、フッ化アルミニウム等の金属フッ化物、チタン酸カリウム、窒化硼素などが挙げられる。
 ≪電子写真感光体≫
 以下、本発明の電子写真感光体について説明する。
 本発明の電子写真感光体は、導電性支持体と、前記導電性支持体上に電荷発生層及び電荷輸送層とを備える。すなわち、電子写真感光体の感光層は、導電性支持体上に設けられ、さらに下引き層を有する場合は下引き層上に設けられる。
 感光層の型式としては、電荷発生物質と電荷輸送物質とが同一層に存在し、バインダー樹脂中に分散された、いわゆる単層型感光体と、電荷発生物質がバインダー樹脂中に分散された電荷発生層及び電荷輸送物質がバインダー樹脂中に分散された電荷輸送層の二つに機能分離された複層構造の、いわゆる積層型感光体とが挙げられるが、何れの構成であってもよい。また、感光層上に、帯電性の改善や、耐摩耗性改善を目的としてオーバーコート層を設けてもよい。
 積層型感光層としては、導電性支持体側から電荷発生層、電荷輸送層をこの順に積層して設ける順積層型感光層と、逆に電荷輸送層、電荷発生層の順に積層して設ける逆積層型感光層とがあり、いずれを採用することも可能であるが、最もバランスの取れた光導電性を発揮できる順積層型感光層が好ましい。
 <導電性支持体>
 感光体に用いる導電性支持体(以下、単に支持体と称することがある。)としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。
 形態としては、ドラム状、シート状、ベルト状などのものが用いられる。金属材料の導電性支持体に、導電性、表面性などの制御のためや欠陥被覆のために、適当な抵抗値をもつ導電性材料を塗布したものでもよい。
 導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いてもよい。陽極酸化被膜を施した場合、公知の方法により封孔処理を施すのが望ましい。
 例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸等の酸性浴中で、陽極酸化処理することにより陽極酸化被膜が形成されるが、硫酸中での陽極酸化処理がより良好な結果を与える。硫酸中での陽極酸化の場合、硫酸濃度は100~300g/l、溶存アルミニウム濃度は2~15g/l、液温は15~30℃、電解電圧は10~20V、電流密度は0.5~2A/dmの範囲内に設定されるのが好ましいが、前記条件に限定されるものではない。
 このようにして形成された陽極酸化被膜に対して、封孔処理を行なうことが好ましい。封孔処理は、公知の方法で行われればよいが、例えば、主成分としてフッ化ニッケルを含有する水溶液中に浸漬させる低温封孔処理、あるいは主成分として酢酸ニッケルを含有する水溶液中に浸漬させる高温封孔処理が施されるのが好ましい。
 上記低温封孔処理の場合に使用されるフッ化ニッケル水溶液濃度は、適宜選べるが、3~6g/lの範囲で使用された場合、より好ましい結果が得られる。また、封孔処理をスムーズに進めるために、処理温度としては、25~40℃、好ましくは30~35℃で、また、フッ化ニッケル水溶液pHは、4.5~6.5、好ましくは5.5~6.0の範囲で処理するのがよい。
 pH調節剤としては、シュウ酸、ホウ酸、ギ酸、酢酸、水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いることが出来る。処理時間は、被膜の膜厚1μmあたり1~3分の範囲で処理することが好ましい。なお、被膜物性を更に改良するためにフッ化コバルト、酢酸コバルト、硫酸ニッケル、界面活性剤等をフッ化ニッケル水溶液に添加しておいてもよい。
 次いで水洗、乾燥して低温封孔処理を終える。
 前記高温封孔処理の場合の封孔剤としては、酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸ニッケル-コバルト、硝酸バリウム等の金属塩水溶液を用いることが出来るが、特に酢酸ニッケルを用いるのが好ましい。酢酸ニッケル水溶液を用いる場合の濃度は5~20g/lの範囲内で使用するのが好ましい。処理温度は好ましくは80~100℃、より好ましくは90~98℃で、また、酢酸ニッケル水溶液のpHは5.0~6.0の範囲で処理するのが好ましい。
 ここでpH調節剤としてはアンモニア水、酢酸ナトリウム等を用いることが出来る。処理時間は10分以上が好ましく、20分以上処理するのがより好ましい。なお、この場合も被膜物性を改良するために酢酸ナトリウム、有機カルボン酸、アニオン系、ノニオン系界面活性剤等を酢酸ニッケル水溶液に添加してもよい。
 次いで水洗、乾燥して高温封孔処理を終える。
 平均膜厚が厚い場合には、封孔液の高濃度化、高温・長時間処理により強い封孔条件を必要とする。従って生産性が悪くなると共に、被膜表面にシミ、汚れ、粉ふきといった表面欠陥を生じやすくなる。このような点から、陽極酸化被膜の平均膜厚は通常20μm以下、特に7μm以下で形成されることが好ましい。
 支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには切削処理を施さず、引き抜き管をそのまま使用することも可能である。特に引き抜き加工、インパクト加工、しごき加工等の非切削アルミニウム支持体を用いる場合、処理により、表面に存在した汚れや異物等の付着物、小さな傷等が無くなり、均一で清浄な支持体が得られるので好ましい。
 <下引き層>
 導電性支持体と感光層との間には、接着性、ブロッキング性等の改善のため、下引き層を設けてもよい。下引き層としては、樹脂や、樹脂に金属酸化物等の粒子を分散したものなどが用いられるが、金属酸化物粒子のような無機フィラーを含有することが電気特性等の面で好ましい。
 下引き層に用いる金属酸化物粒子の例としては、シリカ、アルミナ、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄、酸化鉛、酸化インジウム等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子などが挙げられる。これらは一種類の粒子を単独で用いてもよいし、複数の種類の粒子を混合して用いてもよい。これらの金属酸化物粒子の中で、n型半導体特性を示す金属酸化物粒子が好ましく、酸化チタン、酸化亜鉛、酸化スズ及び酸化アルミニウムがより好ましく、特に酸化チタンが好ましい。上述した金属酸化物粒子は下引き層塗布液において分散安定性が高いため好ましい。
 酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコン等の有機物による処理を施されていてもよい。酸化チタンは結晶質、非晶質いずれも使用できるが、結晶質が好ましい。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、複数の結晶状態のものが含まれていてもよい。好ましくはアナターゼ型又はルチル型であり、より好ましくはルチル型である。これらの酸化チタンは吸水性、表面処理の効率等から好ましい。
 また、金属酸化物粒子の粒径としては種々のものが利用できるが、中でも電気特性及び下引き層形成用の塗布液の安定性の面から、平均一次粒径として通常1nm以上、好ましくは10nm以上、また、通常100nm以下、好ましくは50nm以下のものが望ましい。塗布液に用いる粒子の粒径は、均一であってもまた、異なる粒径の複合系でもよい。
 異なる粒径の複合系の場合、粒径の最大ピークが150nm付近にあり最小粒径が約30nmから約500nmの粒径分布をもつようなものが好ましい。例えば、平均粒径が0.1μmのものと0.03μmのものを混合して用いてもよい。
 金属酸化物粒子は、有機金属化合物等により表面処理されていることが好ましい。表面処理は乾式法及び湿式法の製造法で製造することができる。すなわち、乾式法では、表面処理剤を、金属酸化物粒子と混合することによって金属酸化物粒子に被覆させ、必要に応じて加熱処理を行う方法で処理することができる。湿式法では、金属酸化物粒子と、適当な溶媒に表面処理剤を混合したものを、均一に付着されるまでよく攪拌するか、メディアによって混合し、その後乾燥し、必要に応じて加熱処理を行う方法で処理することができる。
 表面処理剤は、反応性有機金属化合物が好ましい。例えば、メチルハイドロジェンポリシロキサン、下記式で表される構造を有するシラン処理剤が好ましく、メチルジメトキシシランが特に好ましい。また、アクリル基を有するシランカップリング剤も好ましく、3-アクリロキシプロピルメトキシシランが特に好ましい。
Figure JPOXMLDOC01-appb-C000019
(R11は水素原子又はアルキル基、R12はそれぞれ独立してアルキル基、R13はアルキル基又はアルコキシ基を表す。)
 表面処理剤の量に特に制限はないが、通常、0.3質量部以上であり、好ましくは1質量部であり、一方、通常、20質量部以下であり、好ましくは10質量部以下である。上記の範囲であると、表面処理の効果が好適に得られ、塗布工程等の際に塗布膜のはじきの防止の観点から好ましい。
 下引き層は、金属酸化物粒子をバインダー樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダー樹脂としては、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム化合物、チタニルキレート化合物、チタニルアルコキシド化合物等の有機チタニル化合物、シランカップリング剤などの公知のバインダー樹脂が挙げられる。これらは単独で用いてもよく、或いは2種以上を任意の組み合わせ及び比率で併用してもよい。また、硬化剤とともに硬化した形で使用してもよい。中でも、支持体の接着性に優れることから、ポリアミド樹脂が好ましい。
 アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性、塗布性を示すことから好ましい。さらに、環構造を構成成分として有する共重合ポリアミドが好ましく、より好ましくは炭素原子及び水素原子の少なくとも一種が含まれている環構造が好ましく、更に好ましくは炭素原子及び水素原子からなる環構造である。
 環構造は、通常4員環以上であり、好ましくは5員環以上、一方、通常8員環以下、好ましくは7員環以下であり、最も好ましくは6員環である。
 下引き層に用いられるバインダー樹脂に対する無機粒子の使用比率は任意に選ぶことが可能であるが、分散液の安定性、塗布性の観点から、通常10質量%以上、好ましくは50質量%以上、より好ましくは200質量%以上であり、一方通常800質量%以下、好ましくは500質量%以下である。
 下引き層の膜厚に特に制限はないが、通常0.1μm以上、好ましくは2μm以上、より好ましくは3μm以上であり、一方通常20μm以下、好ましくは10μm以下、より好ましくは6μm以下である。上記の範囲であると、帯電性や残留電位上昇抑制、導電性基体と感光層の間での接着強度の観点から好ましい。また、上記の範囲であると、感光体特性及び塗布性を向上させる観点から好ましい。
 下引き層には、公知の酸化防止剤等を混合してもよい。画像欠陥防止などを目的として、顔料粒子、樹脂粒子等を含有させ用いてもよい。
 下引き層の体積抵抗値に特に制限はないが、通常1×1011Ω・cm以上、好ましくは1×1012Ω・cm以上であり、一方、通常1×1014Ω・cm以下、好ましくは1×1013Ω・cm以下である。
 金属酸化物粒子とバインダー樹脂を含有する下引き塗布液を得るには、遊星ミル、ボールミル、サンドミル、ビーズミル、ペイントシェーカー、アトライター、超音波などの粉砕又は分散処理装置で処理された金属酸化物粒子のスラリーに、バインダー樹脂又は、バインダー樹脂を適当な溶媒に溶かした溶解液を混合し、溶解及び攪拌処理を行えばよい。逆に、バインダー樹脂溶解液に金属酸化物粒子を添加し、上記のような分散装置で、粉砕又は分散処理を行う事によってもよい。
 <電荷発生層>
 電荷発生層は、電荷発生物質をバインダー樹脂で結着することにより形成される。
 電荷発生物質としては、セレニウム及びその合金、硫化カドミウム等の無機系光導電材料と、有機顔料等の有機系光導電材料とが挙げられるが、有機系光導電材料の方が好ましく、特に有機顔料が好ましい。
 有機顔料としては、例えば、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。これらの中でも、特にフタロシアニン顔料又はアゾ顔料が好ましい。電荷発生物質として有機顔料を使用する場合、通常はこれらの有機顔料の粒子を、各種のバインダー樹脂で結着した分散層の形で使用する。
 電荷発生物質として無金属フタロシアニン化合物、金属含有フタロシアニン化合物を用いた場合は比較的長波長のレーザー光、例えば780nm近辺の波長を有するレーザー光に対して高感度の感光体が得られる。またモノアゾ、ジアゾ、トリスアゾ等のアゾ顔料を用いた場合には、白色光、又は660nm近辺の波長を有するレーザー光、もしくは比較的短波長のレーザー光、例えば450nm、400nm近辺の波長を有するレーザーに対して十分な感度を有する感光体を得ることができる。
 電荷発生物質として有機顔料を使用する場合、特にフタロシアニン顔料又はアゾ顔料が好ましい。フタロシアニン顔料は、比較的長波長のレーザー光に対して高感度の感光体が得られる点で、また、アゾ顔料は、白色光及び比較的短波長のレーザー光に対し十分な感度を持つ点で、それぞれ優れている。
 電荷発生物質としてフタロシアニン顔料を使用する場合、具体的には無金属フタロシアニン、銅、インジウム、ガリウム、スズ、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム、アルミニウムなどの金属又はその酸化物、ハロゲン化物、水酸化物、アルコキシドなどの配位したフタロシアニン類の各結晶型を持ったもの、酸素原子等を架橋原子として用いたフタロシアニンダイマー類などが使用される。特に、感度の高い結晶型であるX型、τ型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、バナジルフタロシアニン、クロロインジウムフタロシアニン、ヒドロキシインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型、I型等のμ-オキソ-ガリウムフタロシアニン二量体、II型等のμ-オキソ-アルミニウムフタロシアニン二量体が好適である。
 また、これらフタロシアニンの中でも、A型(別称β型)、B型(別称α型)、及び粉末X線回折の回折角2θ(±0.2゜)が27.1゜、もしくは27.3゜に明瞭なピークを示すことを特徴とするD型(Y型)チタニルフタロシアニン、II型クロロガリウムフタロシアニン、V型及び28.1゜にもっとも強いピークを有すること、また26.2゜にピークを持たず28.1゜に明瞭なピークを有し、かつ25.9゜の半値幅Wが1゜≦W≦0.4゜であることを特徴とするヒドロキシガリウムフタロシアニン、G型μ-オキソ-ガリウムフタロシアニン二量体等が特に好ましい。
 フタロシアニン化合物は単一の化合物のものを用いてもよいし、幾つかの混合又は混晶状態のものを用いてもよい。ここでのフタロシアニン化合物ないしは結晶状態における混合状態としては、それぞれの構成要素を後から混合したものを用いてもよいし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じさせたものでもよい。
 このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。混晶状態を生じさせるためには、日本国特開平10-48859号公報に記載のように、2種類の結晶を混合後に機械的に磨砕、不定形化した後に、溶剤処理によって特定の結晶状態に変換する方法が挙げられる。
 電荷発生物質としてアゾ顔料を使用する場合には、各種ビスアゾ顔料、トリスアゾ顔料が好適に用いられる。電荷発生物質として有機顔料を用いる場合には、1種を単独で用いてもよいが、2種類以上の顔料を混合して用いてもよい。この場合、可視域と近赤域の異なるスペクトル領域で分光感度特性を有する2種類以上の電荷発生物質を組み合わせて用いることが好ましく、中でもジスアゾ顔料、トリスアゾ顔料とフタロシアニン顔料とを組み合わせて用いることがより好ましい。
 電荷発生層に用いるバインダー樹脂は特に制限されないが、例としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル-酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル-酢酸ビニル共重合体、カルボキシル変性塩化ビニル-酢酸ビニル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体等の塩化ビニル-酢酸ビニル系共重合体、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、スチレン-アルキッド樹脂、シリコン-アルキッド樹脂、フェノール-ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ-N-ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマーなどが挙げられる。これらのバインダー樹脂は、何れか1種を単独で用いてもよく、2種類以上を任意の組み合わせで混合して用いてもよい。
 電荷発生層は、具体的に例えば、上述のバインダー樹脂を有機溶剤に溶解した溶液に、電荷発生物質を分散させて塗布液を調製し、これを導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布することにより形成される。
 塗布液の作製に用いられる溶剤としては、バインダー樹脂を溶解させるものであれば特に制限されないが、例えば、ペンタン、ヘキサン、オクタン、ノナン等の飽和脂肪族系溶媒、トルエン、キシレン、アニソール等の芳香族系溶媒、クロロベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族系溶媒、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン等のアミド系溶媒、メタノール、エタノール、イソプロパノール、n-ブタノール、ベンジルアルコール等のアルコール系溶媒、グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類、アセトン、シクロヘキサノン、メチルエチルケトン等の鎖状又は環状ケトン系溶媒、ギ酸メチル、酢酸エチル、酢酸n-ブチル等のエステル系溶媒、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、メチルセルソルブ、エチルセルソルブ等の鎖状又は環状エーテル系溶媒、アセトニトリル、ジメチルスルホキシド、スルフォラン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒、n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン、トリエチルアミン等の含窒素化合物、リグロイン等の鉱油、水などが挙げられる。これらは何れか1種を単独で用いてもよく、2種以上を併用して用いてもよい。なお、上述の下引き層を設ける場合には、この下引き層を溶解しないものが好ましい。
 電荷発生層において、バインダー樹脂と電荷発生物質との配合比(質量)は、バインダー樹脂100質量部に対して電荷発生物質が通常10質量部以上、好ましくは30質量部以上、また、通常1000質量部以下、好ましくは500質量部以下の範囲であり、その膜厚は通常0.1μm以上、好ましくは0.15μm以上、また、通常10μm以下、好ましくは0.6μm以下の範囲である。電荷発生物質の比率が高過ぎると、電荷発生物質の凝集等により塗布液の安定性が低下するおそれがある一方、電荷発生物質の比率が低過ぎると、感光体としての感度の低下を招くおそれがある。
 電荷発生物質を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法、ビーズミル分散等の公知の分散法を用いることができる。この際、粒子を0.5μm以下、好ましくは0.3μm以下、より好ましくは0.15μm以下の範囲の粒子サイズに微細化することが有効である。
 <電荷輸送層>
 積層型感光体の電荷輸送層は、電荷輸送物質及びフッ素樹脂粒子を含有するとともに、通常はバインダー樹脂と、必要に応じて使用されるその他の成分とを含有する。このような電荷輸送層は、具体的には、例えば電荷輸送物質等とバインダー樹脂とを溶剤に溶解又は分散して塗布液を作製し、これを順積層型感光層の場合には電荷発生層上に、また、逆積層型感光層の場合には導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布、乾燥して得ることができる。
 本発明では、密度汎関数計算B3LYP/6-31G(d,p)による構造最適化計算に基づくHOMOのエネルギーレベル(E_homo)が-4.550eV以上である化合物、式(1)で表される化合物及び/又は式(2)で表される化合物を電荷輸送物質として用い、更にその他の電荷輸送物質を混合して用いてもよい。
 混合して用いてもよいその他の電荷輸送物質としては特に限定されず、任意の物質を用いることが可能である。公知の電荷輸送物質の例としては、2,4,7-トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体及びこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖又は側鎖に有する重合体等の電子供与性物質等が挙げられる。これらの中でも、カルバゾール誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したものが好ましい。
 前記その他の電荷輸送物質の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知の電荷輸送物質を用いてもよい。これらの電荷輸送物質は、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせで併用してもよい。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 <バインダー樹脂>
 感光層は、蒸着膜であっても構わないが、通常、前記の電荷発生物質や電荷輸送物質などの原料をバインダー樹脂により結着することにより形成され、好ましくは、ポリカーボネート等をバインダー樹脂として用いられる。
 バインダー樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、及びその共重合体、ポリカーボネート、ポリエステル、ポリエステルポリカーボネート、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂などが挙げられ、またこれらの部分的架橋硬化物も使用できる。これら樹脂の中でもポリカーボネート樹脂、ポリエステル樹脂、又はポリアリレート樹脂が好ましい。これらの樹脂は単独でも、複数を混合して用いてもよい。
 前記バインダー樹脂の好適な繰り返し単位構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知のバインダー樹脂を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000023
 上記の繰り返し単位を有する樹脂の中でも、繰り返し単位が複数存在するものが好ましい。
 バインダー樹脂の粘度平均分子量は、本発明の効果を著しく損なわない限り任意であるが、好ましくは10,000以上、より好ましくは20,000以上、また、その上限は、好ましくは150,000以下、より好ましくは120,000以下、更に好ましくは100,000以下であることが望ましい。粘度平均分子量の値が小さすぎる場合、感光体の機械的強度が不足する可能性があり、大き過ぎる場合、感光層形成のための塗布液の粘度が高すぎて生産性が低下する可能性がある。
 単層型感光体の感光層の膜厚は、通常5~100μm、好ましくは10~50μmの範囲で使用され、順積層型感光体の電荷輸送層の膜厚は、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上、一方通常50μm以下、好ましくは45μm以下、より好ましくは35μm以下、更に好ましくは30μm以下、特に好ましくは25μm以下である。上記の範囲であると、電気特性、画像安定性の観点、更には高解像度の観点から好ましい。また、順積層型感光体の場合、長寿命、画像安定性の観点から好ましくは10~45μmであり、高解像度の観点からは10~30μmがより好ましい。
 なお、感光層には成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性などを向上させるために酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、染料、顔料、レベリング剤、可視光遮光剤などの添加物を含有させてもよい。
 酸化防止剤の例としては、ヒンダードフェノール化合物、ヒンダードアミン化合物、トリアルキルアミン、ジアルキルアリールアミン、ジアリールアルキルアミン等が挙げられるが、残留電位等の感光体としての特性の面からヒンダードフェノール化合物、トリアルキルアミン化合物が好ましく、より好ましくはヒンダードフェノール化合物である。
 可塑剤の例としては、炭化水素化合物、エステル化合物、エーテル化合物、チオエーテル化合物等が挙げられる。電気特性の観点から、炭化水素化合物、エステル化合物、エーテル化合物が好ましく、炭化水素化合物、エーテル化合物がより好ましい。可塑剤は、バインダー樹脂へ相溶性の観点から、芳香族基を有することが好ましい。
 可塑剤の分子量は、150以上が好ましく、170以上がより好ましく、200以上がさらに好ましく、一方、400以下が好ましく、380以下がより好ましく、350以下がさらに好ましい。上記範囲内の分子量とすることで、成膜/乾燥時における昇華を抑えつつ、バインダー樹脂と馴染むことにより耐クラック性や耐ガス性を向上させることが可能となる。
 これらの可塑剤は単独で用いてもよいし、いくつかを混合してもよい。可塑剤の好適な構造の具体例を以下に表す。
Figure JPOXMLDOC01-appb-C000024
 これらの可塑剤の中でも、好ましくはAD-2、AD-4、AD-5、AD-6、AD-8、AD-10、AD-11、AD-13であり、より好ましくは、AD-2、AD-6、AD-8、AD-10、AD-11、AD-13である。上記の可塑剤であれば、電気特性を悪化させることなく、耐ガス性や耐クラック性を向上させることができる。
 また染料、顔料の例としては、各種の色素化合物、アゾ化合物等が挙げられる。
 電荷輸送層には、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、アルミナ、シリカ等の無機粒子、フッ素樹脂粒子、シリコーン粒子、ポリエチレン粒子、架橋ポリスチレン粒子、架橋(メタ)アクリレート粒子等の有機粒子等を含有させてもよい。
 また感光層には必要に応じて塗布性を改善するためのレベリング剤や酸化防止剤、増感剤等の各種添加剤を含んでいてもよい。酸化防止剤の例としては、ヒンダードフェノール化合物、ヒンダードアミン化合物などが挙げられる。また染料、顔料の例としては、各種の色素化合物、アゾ化合物などが挙げられ、界面活性剤の例としては、シリコ-ンオイル、フッ素系オイルなどが挙げられる。
 電子吸引性化合物としては、テトラシアノキノジメタン、ジシアノキノメタン、ジシアノキノビニル基を有する芳香族エステル類等のシアノ化合物、2,4,6-トリニトロフルオレノン等のニトロ化合物、ペリレン等の縮合多環芳香族化合物、ジフェノキノン誘導体、キノン類、アルデヒド類、ケトン類、エステル類、酸無水物、フタリド類、置換及び無置換サリチル酸の金属錯体、置換及び無置換サリチル酸の金属塩、芳香族カルボン酸の金属錯体、芳香族カルボン酸の金属塩が挙げられる。好ましくは、シアン化合物、ニトロ化合物、縮合多環芳香族化合物、ジフェノキノン誘導体、置換及び無置換サリチル酸の金属錯体、置換及び無置換サリチル酸の金属塩、芳香族カルボン酸の金属錯体、芳香族カルボン酸の金属塩が用いられる。
 本発明における電子写真感光体表面の粗さ(Rz)は0.1μm以上が好ましく、また、1μm以下が好ましく、より好ましくは0.8μm以下、更に好ましくは0.6μm以下、よりさらに好ましくは0.4μm以下の範囲である。
 1μm超になると耐摩耗性が悪化する可能性がある。これはフィラーの分散状態が悪化し、フィラーと感光体内部における接触界面が少なくなり、フィラーの効果が少なくなるためと考えられる。フィラーの分散状態が悪くなれば、凝集したフィラーの量が増え粗さも大きくなる。更にRzが大きすぎると凸部と凹部(すなわち、相対的に表面層の厚いところと薄いところ)とで帯電性が異なり、帯電ムラや摩耗ムラが生じやすくなる。
 ここで、粗さ(Rz)とは、JIS-B-0601(1994)で定義される十点平均粗さをいう。即ち、感光体の断面曲線から基準長さだけ抜き取った部分において、平均線に平行、且つ断面曲線を横切らない直線から、平均線に垂直な方向に測定した最高から5番目までの山頂の標高の平均値と最深から5番目までの谷底の標高の平均値との差の値をマイクロメートル(μm)で表したものをいう。
 この粗さ(Rz)は、例えば、表面粗さ測定装置(ミツトヨ製 表面粗さ測定機 SV-548)を用いて、基準長さ0.8mm、カットオフ波長0.8mm、測定速度0.1mm/sec、カットオフ種類ガウシアンの方法で測定が行われる。粗さの測定位置は、電子写真感光体の軸方向の中央部とする。
 感光体の最表面層には、感光層の損耗を防止したり、帯電器等からの発生する放電物質等による感光層の劣化を防止・軽減する目的で保護層を設けてもよい。保護層は導電性材料を適当な結着樹脂中に含有させて形成するか、日本国特開平9-190004号公報や、日本国特開平10-252377号公報に記載のようなトリフェニルアミン骨格等の電荷輸送能を有する化合物を用いた共重合体を用いることが出来る。
 導電性材料としては、TPD(N,N’-ジフェニル-N,N’-ビス-(m-トリル)ベンジジン)等の芳香族アミノ化合物、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化錫-酸化アンチモン、酸化アルミ、酸化亜鉛等の金属酸化物などを用いることが可能であるが、これに限定されるものではない。
 保護層に用いる結着樹脂としてはポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、シロキサン樹脂等の公知の樹脂を用いることができ、また、日本国特開平9-190004号公報や、日本国特開平10-252377号公報に記載のようなトリフェニルアミン骨格等のを電荷輸送能を有する骨格と上記樹脂の共重合体を用いることも出来る。
 上記保護層は電気抵抗が10~1014Ω・cmとなるように構成することが好ましい。電気抵抗が1014Ω・cmより高くなると残留電位が上昇しカブリの多い画像となるおそれがあり、一方10Ω・cmより低くなると画像のボケ、解像度の低下が生じるおそれがある。また、保護層は像露光に照射される光の透過を実質上妨げないように構成される。
 また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、表面層にフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリスチレン樹脂等を含んでいてもよい。また、これらの樹脂からなる粒子やシリカやアルミナ等の無機化合物の粒子を含んでいてもよい。
 <層形成方法>
 感光体を構成する各層は、各層を構成する材料を含有する塗布液を、支持体上に公知の塗布方法を用い、各層ごとに塗布・乾燥工程を繰り返し、順次塗布していくことにより形成される。
 感光層の作製に用いられる溶媒又は分散媒に特に制限は無いが、具体例としては、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類、ギ酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、テトラクロロエタン、1,2-ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類、n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類、アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。また、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び種類で併用してもよい。
 溶媒又は分散媒の使用量は特に制限されないが、各層の目的や選択した溶媒・分散媒の性質を考慮して、塗布液の固形分濃度や粘度等の物性が所望の範囲となるように適宜調整するのが好ましい。
 層形成用の塗布液は、単層型感光体及び積層型感光体の電荷輸送層の場合には、塗布液の固形分濃度を通常5質量%以上、好ましくは10質量%以上、一方通常40質量%以下、好ましくは35質量%以下の範囲とする。また、該塗布液の粘度は、通常10mPa・s以上、好ましくは50mPa・s以上、一方通常1,500mPa・s以下、好ましくは1,200mPa・s、より好ましくは500mPa・s以下、更に好ましくは400mPa・s以下の範囲とする。
 積層型感光体の電荷発生層の場合には、塗布液の固形分濃度は、通常0.1質量%以上、好ましくは1質量%以上、一方通常15質量%以下、好ましくは10質量%以下の範囲とする。また、該塗布液の粘度は、通常0.01mPa・s以上、好ましくは0.1mPa・s以上、また、通常20mPa・s以下、好ましくは10mPa・s以下の範囲とする。
 塗布液の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他の公知のコーティング法を用いることも可能である。
 塗布液の乾燥は室温における指触乾燥後、30~200℃の温度範囲で、1分から2時間の間、無風、又は送風下で加熱乾燥させることが好ましい。また加熱温度は一定であっても、乾燥時に変更させながら行なってもよい。
 <電子写真感光体カートリッジ、画像形成装置>
 本発明の電子写真感光体を使用する複写機、プリンター等に用いられる電子写真感光体カートリッジ(プロセスカートリッジ、カートリッジ)、また当該カートリッジが搭載された画像形成装置は、帯電、露光、現像、転写、クリーニング等の各プロセスを含むが、どのプロセスも通常用いられる方法のいずれを用いてもよい。
 本発明の電子写真感光体カートリッジは、電子写真感光体、並びに、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、及び、前記電子写真感光体上に形成された静電潜像を現像する現像装置よりなる群から選ばれる少なくとも1の装置を備える。
 また、本発明の画像形成装置は、電子写真感光体、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、及び、前記電子写真感光体上に形成された前記静電潜像を現像する現像装置を備える。
 帯電方法(帯電機)としては、例えばコロナ放電を利用したコロトロン、スコロトロン帯電の他に、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電手段を用いてもよい。直接帯電手段としては、帯電ロールあるいはブラシ、フィルムなどによる接触帯電などいずれを用いてもよく、気中放電を伴うもの、あるいは気中放電を伴わない注入帯電いずれも可能である。
 このうち、コロナ放電を使用した帯電方法では暗部電位を一定に保つため、スコロトロン帯電が好ましい。本願に用いられる帯電ロールは導電性の軸芯体上に導電性弾性層が形成されているものが好ましい。帯電ロール等を用いた接触帯電装置の場合の帯電方式としては、直流帯電又は交流重畳直流帯電を用いることができる。
 本発明に用いられる帯電ロールの体積抵抗率は25℃、湿度50%RHにおいて、0.1MΩ・cm以上、5MΩ・cm以下であることが好ましい。上記の範囲内であると、耐リーク性が向上したり、放電開始電圧が適度になるため、同じ印加電圧に対して、ゴースト性が改善するため、好ましい。
 次に、本発明の電子写真感光体を用いたカートリッジの一例としてドラムカートリッジを挙げ、当該ドラムカートリッジと画像形成装置について、装置の一例を示す図1に基づいて説明する。
 図1に示すように、画像形成装置は、電子写真感光体1、帯電装置2、露光装置3及び現像装置4を備えて構成され、更に、必要に応じて転写装置5、クリーニング装置6及び定着装置7が設けられる。
 電子写真感光体1は、上述した本発明の電子写真感光体であれば特に制限はないが、図1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この電子写真感光体1の外周面に沿って、帯電装置2、露光装置3、現像装置4、転写装置5及びクリーニング装置6がそれぞれ配置されている。
 帯電装置2は、電子写真感光体1を帯電させるもので、電子写真感光体1の表面を所定電位に均一帯電させる。図1では帯電装置2の一例としてローラ型の帯電装置(帯電ローラ)を示しているが、他にもコロトロンやスコロトロン等のコロナ帯電装置、帯電ブラシ等の接触型帯電装置などがよく用いられる。
 なお、電子写真感光体1及び帯電装置2は、多くの場合、この両方を備えたカートリッジ(以下、感光体カートリッジということがある)として、画像形成装置の本体から取り外し可能に設計されている。そして、例えば電子写真感光体1や帯電装置2が劣化した場合に、この感光体カートリッジを画像形成装置本体から取り外し、別の新しい感光体カートリッジを画像形成装置本体に装着することができるようになっている。また、帯電装置2に加えて、又は帯電装置2に代えて、感光体1と露光装置3及び/又は現像装置4を備えたカートリッジとして、画像形成装置の本体から取り外し可能に設計されていてもよい。
 なお、後述するトナーTについても、多くの場合、トナーカートリッジ中に蓄えられて、画像形成装置本体から取り外し可能に設計され、使用しているトナーカートリッジ中のトナーが無くなった場合に、このトナーカートリッジを画像形成装置本体から取り外し、別の新しいトナーカートリッジを装着することができるようになっている。
 更に、電子写真感光体1、帯電装置2、トナーTが全て備えられたカートリッジを用いることもある。
 露光装置3は、電子写真感光体1に露光を行なって電子写真感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、ハロゲンランプ、蛍光灯、半導体レーザーやHe-Neレーザー等のレーザー、LEDなどが挙げられる。また、感光体内部露光方式によって露光を行なうようにしてもよい。露光を行なう際の光は任意であるが、例えば波長が780nmの単色光、波長600nm~700nmのやや短波長寄りの単色光、波長380nm~500nmの短波長の単色光などで露光を行なえばよい。
 現像装置4は、その種類に特に制限はなく、電子写真感光体1上に形成された静電潜像を現像することができるものであればよい。具体的には、カスケード現像、一成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や、湿式現像方式などの任意の装置を用いることができる。
 図1では、現像装置4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像装置4に付帯させてもよい。この補給装置は、ボトル、カートリッジなどの容器からトナーTを補給することが可能に構成される。
 転写装置5は、その種類に特に制限はなく、コロナ転写、ローラ転写、ベルト転写などの静電転写法、圧力転写法、粘着転写法など、任意の方式を用いた装置を使用することができる。ここでは、転写装置5が電子写真感光体1に対向して配置された転写チャージャー、転写ローラ、転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、電子写真感光体1に形成されたトナー像を記録紙(用紙、媒体)Pに転写するものである。
 クリーニング装置6について特に制限はなく、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナーなど、任意のクリーニング装置を用いることができるが、本発明では、ブレードクリーナーの場合に効果が発揮しやすい。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。
 以上のように構成された電子写真装置(画像形成装置)では、次のようにして画像の記録が行なわれる。
 図1において、ドラム状の感光体1は矢印方向に所定の周速度で回転駆動される。感光体1はその回転過程で帯電装置2により、その表面に正又は負の所定電位の均一帯電を受ける。この際、直流電圧により帯電させてもよく、直流電圧に交流電圧を重畳させて帯電させてもよい。ついで露光装置3において像露光手段により潜像形成のための露光が行われる。
 形成された静電潜像は、次に現像装置4でトナー現像され、そのトナー現像像がコロナ転写等の転写装置5により給紙部から給送された転写体である紙などの記録紙Pに順次転写されていく。図1では、現像装置4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像装置4に付帯させてもよい。この補給装置は、ボトル、カートリッジなどの容器からトナーTを補給することが可能に構成される。像転写された転写体はついで定着装置7に送られ、像定着され、機外へプリントアウトされる。
 定着装置7は、上部定着部材(定着ローラ)71及び下部定着部材(定着ローラ)72から構成され、上部または下部定着部材71又は72の内部には加熱装置73が備えられている。なお、図1では、上部定着部材71の内部に加熱装置73が備えられた例を示す。上部及び下部の各定着部材71及び72は、ステンレス、アルミニウムなどの金属素管にシリコンゴムを被覆した定着ロール、更にテフロン(登録商標)樹脂で被覆した定着ロール、定着シートなどに公知の熱定着部材を使用することができる。更に、上部及び下部の各定着部材71及び72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。
 記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。
 像転写後の感光体1の表面はクリーニング装置6により転写残りのトナーが除去され、除電手段により除電されて次の画像形成のために清浄化される。
 本発明の電子写真感光体を使用するにあたって、帯電器としては、コロトロン、スコロトロンなどのコロナ帯電器の他に、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電手段を用いてもよい。
 直接帯電手段の例としては、帯電ローラ、帯電ブラシ等の接触帯電器などが挙げられる。直接帯電手段として、気中放電を伴うもの、あるいは気中放電を伴わない注入帯電のいずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。
 露光はハロゲンランプ、蛍光灯、レーザー(半導体、He-Ne)、LED、感光体内部露光方式等が用いられるが、デジタル式電子写真方式として、レーザー、LED、光シャッターアレイ等を用いることが好ましい。波長としては780nmの単色光の他、600~700nm領域のやや短波長寄りの単色光を用いることができる。
 現像行程はカスケード現像、1成分絶縁トナー現像、1成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や湿式現像方式などが用いられる。
 トナーとしては、粉砕トナーの他に、懸濁造粒、懸濁重合、乳化重合凝集法等のケミカルトナーを用いることができる。特に、ケミカルトナーの場合には、4~8μm程度の小粒径のものが用いられ、形状も球形に近いものから、ポテト状等の球形から外れたものも使用することができる。重合トナーは、帯電均一性、転写性に優れ、高画質化には好適に用いられる。
 転写行程はコロナ転写、ローラー転写、ベルト転写などの静電転写法、圧力転写法、粘着転写法が用いられる。定着は熱ローラー定着、フラッシュ定着、オーブン定着、圧力定着、IH定着、ベルト定着、IHF定着などが用いられ、これら定着方式は単独で用いてもよく、複数の定着方式を組み合わせた形で使用してもよい。
 クリーニングにはブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラークリーナー、ブレードクリーナーなどが用いられる。
 除電工程は、省略される場合も多いが、使用される場合には、蛍光灯、LED等が使用され、強度としては露光光の3倍以上の露光エネルギーが使用される場合が多い。これらのプロセスのほかに、前露光工程、補助帯電工程のプロセスを有してもよい。
 本発明においては、上記ドラム状の感光体1、帯電装置2、現像装置4及びクリーニング装置6等の構成要素の内の複数のものをドラムカートリッジとして一体に結合して構成し、このドラムカートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。例えば、帯電装置2、現像装置4及びクリーニング装置6の内、少なくとも1つをドラム状の感光体1と共に一体に支持してカートリッジ化とすることが出来る。
 また、画像形成装置は更に変形して構成してもよく、例えば、前露光工程、補助帯電工程などの工程を行なうことができる構成としたり、オフセット印刷を行なう構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
 以下、実施例を示して本発明の実施の形態をさらに具体的に説明する。ただし、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下に示した実施例に限定されるものではなく任意に変形して実施することができる。また、以下の実施例、及び比較例中の「部」の記載は、特に指定しない限り「質量部」であることを示す。
 ≪実施例1-1~1-8及び比較例1-1~1-10≫
 <下引き層形成用塗布液の製造>
 塗布液A
 平均一次粒径40nmのルチル型酸化チタン(石原産業株式会社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、ヘンシェルミキサーにて混合した。得られた表面処理酸化チタン50質量部と、メタノール120質量部を混合してなる原料スラリー1kgを、直径約100μmのジルコニアビーズ(株式会社ニッカトー製 YTZ)を分散メディアとして、ミル容積約0.15Lの寿工業株式会社製ウルトラアペックスミル(UAM-015型)を用い、ロータ周速10m/秒、液流量10kg/時間の液循環状態で1時間分散処理し、酸化チタン分散液を作製した。
 前記酸化チタン分散液と、メタノール/1-プロパノール/トルエンの混合溶媒、及び、ε-カプロラクタム[下記式Aで表わされる化合物]/ビス(4-アミノ-3-メチルシクロヘキシル)メタン[下記式Bで表わされる化合物]/ヘキサメチレンジアミン[下記式Cで表わされる化合物]/デカメチレンジカルボン酸[下記式Dで表わされる化合物]/オクタデカメチレンジカルボン酸[下記式Eで表わされる化合物]の組成モル比率が、75%/9.5%/3%/9.5%/3%からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた。その後、出力1200Wの超音波発信器による超音波分散処理を1時間行い、更に孔径5μmのPTFE製メンブレンフィルター(アドバンテック製 マイテックス LC)により濾過し、表面処理酸化チタン/共重合ポリアミドを質量比が3/1であり、メタノール/1-プロパノール/トルエンの混合溶媒の質量比が7/1/2であって、含有する固形分の濃度が18.0質量%の下引き層形成用塗布液Aを得た。
Figure JPOXMLDOC01-appb-C000025
 <電荷発生層形成用塗布液の製造>
 電荷発生層形成用塗布液B
 電荷発生層形成用塗布液は以下のように作製した。電荷発生物質として、図2のX線回折スペクトルで示されるオキシチタニウムフタロシアニン20質量部と1,2-ジメトキシエタン280質量部を混合し、サンドグラインドミルで1時間粉砕して微粒化分散処理を行なった。続いて、この微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)10質量部を、1,2-ジメトキシエタンの255質量部と4-メトキシ-4-メチル-2-ペンタノンの85質量部の混合液に溶解させて得られたバインダー液、及び、230質量部の1,2-ジメトキシエタンを混合して電荷発生層形成用塗布液B1を調製した。
 電荷発生物質として、図3のX線回折スペクトルで示されるオキシチタニウムフタロシアニン20質量部と1,2-ジメトキシエタン280質量部を混合し、サンドグラインドミルで4時間粉砕して微粒化分散処理を行なった。続いて、この微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)10質量部を、1,2-ジメトキシエタンの255質量部と4-メトキシ-4-メチル-2-ペンタノンの85質量部の混合液に溶解させて得られたバインダー液、及び、230質量部の1,2-ジメトキシエタンを混合して電荷発生層形成用塗布液B2を調製した。
 電荷発生層形成用塗布液B1と電荷発生層形成用塗布液B2を6:4(質量比)の割合で混合し、本実施例で用いる電荷発生層形成用塗布液Bを作製した。
 <電荷輸送層形成用塗布液の製造>
 電荷輸送層形成用塗布液C1
 ポリテトラフルオロエチレン粒子(平均一次粒径=0.3μm)(喜多村化学製、KTL-500F、以下KTLと呼ぶ。)を10質量部、フッ素系グラフトポリマー(GF400、東亜合成社製)0.5質量部をテトラヒドロフラン溶媒90質量部に対して加え、1時間超音波分散を行い、一次スラリー液CA1を得た。
 次にこの一次スラリー液CA1を高圧衝突タイプの分散機(スギノマシン スターバストミニ)を用いて、100MPaまで昇圧しての分散処理を5パス回繰りし、KTL分散液CA2を得た。
 CB液として、下記の繰り返し構造で表されるポリカーボネート樹脂64質量部(樹脂X1、粘度平均分子量50,000)、電荷輸送物質として先述した(HT-17)で表される化合物を29質量部、下記式で表される化合物AD1を1質量部、レベリング剤シリコーンオイル(信越化学性KF96-10CS)0.03質量部をテトラヒドロフランとアニゾールが9:1(質量比)の混合溶媒に加熱撹拌して溶解し、固形分の濃度が18質量%のCB液を得た。
 前記CB液に前記KTL分散液CA2をフッ素樹脂粒子が6質量部となるように加え、ホモキサーを用いて7000rpmで更に1時間ほど分散し、電荷輸送層形成用塗布液C1を得た。
Figure JPOXMLDOC01-appb-C000026
 電荷輸送層形成用塗布液C2
 電荷輸送層形成用塗布液C1に用いたKTL分散液CA2のCB液の添加質量部数をフッ素樹脂粒子が11質量部となるように添加したこと以外は、C1と同様にして電荷輸送層形成用塗布液C2を調液した。
 電荷輸送層形成用塗布液C3
 電荷輸送層形成用塗布液C1に用いたKTL分散液CA2のCB液の添加質量部数をフッ素樹脂粒子が16質量部となるように添加したこと以外は、C1と同様にして電荷輸送層形成用塗布液C3を調液した。
 電荷輸送層形成用塗布液C4
 電荷輸送層形成用塗布液C1に用いたKTL分散液CA2の代わりに、超音波分散のみの一次スラリー液CA1をCB液にフッ素樹脂粒子が6質量部となるように添加したこと以外は、C1と同様にして電荷輸送層形成用塗布液C4を調液した。
 電荷輸送層形成用塗布液C5
 電荷輸送層形成用塗布液C4に用いた一次スラリー液CA1のCB液への添加質量部数をフッ素樹脂粒子が11質量部となるように添加したこと以外は、C4と同様にして電荷輸送層形成用塗布液C5を調液した。
 電荷輸送層形成用塗布液C6
 電荷輸送層形成用塗布液C4に用いた一次スラリー液CA1のCB液への添加質量部数をフッ素樹脂粒子が16質量部となるように添加したこと以外は、C4と同様にして電荷輸送層形成用塗布液C6を調液した。
 電荷輸送層形成用塗布液C7
 電荷輸送層形成用塗布液C1に用いたKTL分散液CA2をCB液に添加せずに、CB液をそのまま用いたこと以外は、C1と同様にして電荷輸送層形成用塗布液C7を調液した。
 電荷輸送層形成用塗布液C8
 電荷輸送層形成用塗布液C1に用いたKTL分散液CA2のCB液への添加質量部数をフッ素樹脂粒子が1質量部となるように添加したこと以外は、C1と同様にして電荷輸送層形成用塗布液C8を調液した。
 電荷輸送層形成用塗布液C9
 電荷輸送層形成用塗布液C1に用いたKTL分散液CA2のCB液への添加質量部数をフッ素樹脂粒子が22質量部となるように添加したこと以外は、C1と同様にして電荷輸送層形成用塗布液C9を調液した。
 電荷輸送層形成用塗布液C10
 電荷輸送層形成用塗布液C1に用いたKTL分散液CA2をCB液に添加せず、かつCB液中のCTMを(HT-17)から下記式で表されるHT-20に変更した以外はC1と同様にして電荷輸送層形成用塗布液C10を調液した。
Figure JPOXMLDOC01-appb-C000027
 電荷輸送層形成用塗布液C11
 電荷輸送層形成用塗布液C1に用いたKTL分散液CA2のCB液への添加質量部数をフッ素樹脂粒子が1質量部となるように添加し、かつCB液中のCTMを(HT-17)から上記(HT-20)に変更した以外はC1と同様にして電荷輸送層形成用塗布液C11を調液した。
 電荷輸送層形成用塗布液C12
 電荷輸送層形成用塗布液C11に用いたKTL分散液CA2のCB液への添加質量部数をフッ素樹脂粒子が6質量部となるように添加したこと以外は、C11と同様にして電荷輸送層形成用塗布液C12を調液した。
 電荷輸送層形成用塗布液C13
 電荷輸送層形成用塗布液C11に用いたKTL分散液CA2のCB液への添加質量部数をフッ素樹脂粒子が11質量部となるように添加したこと以外は、C11と同様にして電荷輸送層形成用塗布液C13を調液した。
 電荷輸送層形成用塗布液C14
 電荷輸送層形成用塗布液C11に用いたKTL分散液CA2のCB液への添加質量部数をフッ素樹脂粒子が22質量部となるように添加したこと以外は、C11と同様にして電荷輸送層形成用塗布液C14を調液した。
 電荷輸送層形成用塗布液C15
 電荷輸送層形成用塗布液C2に用いたCTMを(HT-17)から下記式で表されるHT-21に変更した以外はC2と同様にして電荷輸送層形成用塗布液C15を調液した。
Figure JPOXMLDOC01-appb-C000028
 電荷輸送層形成用塗布液C16
 電荷輸送層形成用塗布液C2に用いたCTMを(HT-17)から下記式で表されるHT-22に変更した以外はC2と同様にして電荷輸送層形成用塗布液C16を調液した。
Figure JPOXMLDOC01-appb-C000029
 電荷輸送層形成用塗布液C17
 ヘキサメチレンジシラザンで表面処理された酸化珪素(平均粒径=0.2μm)(株式会社日本触媒製、製品名 KE-S30を表面処理、以下KET30と呼ぶ)10質量部をテトラヒドロフラン溶媒90質量部に対して加え、1時間超音波分散を行い、一次スラリー液CA17を得た。
 CB17液として、CB液と同様の繰り返し構造で表されるポリカーボネート樹脂64質量部(樹脂X1、粘度平均分子量50,000)、電荷輸送物質として上記(HT-17)を29質量部、上記化合物AD1を1質量部、レベリング剤シリコーンオイル(信越化学性KF96-10CS)0.03質量部をテトラヒドロフランとアニゾールが9:1(質量比)の混合溶媒に加熱撹拌して溶解し、固形分の濃度が18質量%のCB17液を得た。
 前記CB17液に前記一次スラリー液CA17液をKET30が11質量部となるように加え、ホモキサーを用いて7000rpmで更に1時間ほど分散し、電荷輸送層形成用塗布液C17を得た。
 <感光体ドラムの製造>
 上記で得られた電荷輸送層形成用塗布液(塗布液)C1~C17を用いて、表-1に示すように実施例1-1~1-8(塗布液C1~C6、C12、C13)及び比較例1-1~1-10(塗布液C7~C11、C14~C17)に相当する感光体ドラムを以下のように製造した。
 表面が切削加工された外径30mm、長さ248mm、肉厚0.75mmのアルミニウム合金よりなるシリンダーに塗布液の製造例で作製した下引き層形成用塗布液、電荷発生層形成用塗布液、電荷輸送層形成用塗布液を浸漬塗布法により順次塗布、乾燥し、乾燥後の膜厚がそれぞれ、1.5μm、0.5μm、36μmとなるように、下引き層、電荷発生層、電荷輸送層を形成し、感光体ドラムを製造した。なお、電荷輸送層の乾燥は、125℃で24分間行なった。
 またリーク試験用には、表面が切削加工された外径24mm、長さ255mm、肉厚0.75mmのアルミニウム合金よりなるシリンダーを用いて電荷輸送層の膜厚を20μmとした以外は同様にして感光体ドラムを製造した。
 <分散性の評価>
 感光体表面のフッ素樹脂粒子の分散性を目視若しくは触診にて確認した。結果を表-1に示す。分散性のレベルは以下の通りである。
    ○:感光体表面の凝集は少なく、また手で触ってもザラザラとした凝集物を感じることはない。
    △:特に感光体表面の下端の極一部に凝集がみられる。また手で触るとザラザラとした凝集物を感じる。但し、画像域外のために実用上問題はない。
    ×:感光体全面に凝集が見られ、また手で触るとザラザラとした凝集物を感じる。画像域内のため、実用上も問題がある。
 <電気特性の評価>
 次に、これら電子写真感光体を、電子写真学会標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社(1996年)、404~405頁記載)に装着し、感光体特性測定機に装着し、以下の手順に従って、帯電(マイナス極性)、露光、電位測定、除電のサイクルによる電気特性の25℃/湿度50%RHの環境下で評価を行なった。また、感光体の初期表面電位が-800Vになるように帯電させ、ハロゲンランプの光を干渉フィルターで波長780nmの単色光としたものを照射して、該露光光を0.6μJ/cmの強度で照射したときの40ms後の露光後表面電位(VL)を測定した(-V)。測定データを表-1に示す。
 <体積抵抗率の測定>
 帯電ロールの体積抵抗率を図4に示す装置を用いて測定した。帯電ロールをアルミニウムドラムに押し当て、30rpmで回転させながら測定した。直流電圧を10V以上100V以下の範囲で印加し、各電圧での電流値を測定した。これらの測定値からオームの法則を使い抵抗値を算出した。更に帯電ロールの形状として、帯電ロールがアルミニウムドラムに接触しているニップ幅、帯電ロールの軸芯からアルミニウムドラムまでの幅(導電性弾性層の層幅)、帯電ロールの長さから、体積抵抗率を求めた。抵抗率と体積抵抗率は一般に下記式の関係にある。
  R=ρA/L
   R:抵抗率
   ρ:体積抵抗率
   A:アルミニウムドラムに接触する面積
   L:導電性弾性層の層幅
 その結果、実施例1-1~1-8、比較例1-1~1-8及び比較例1-10で使用した帯電ロールの体積抵抗率は1.3MΩ・cmであり、比較例1-9で使用した帯電ロールは10.3MΩ・cmであった。
 <画像試験>
 得られた感光体を、サムスン社製モノクロプリンター ML6510(DCローラ帯電、レーザー露光、非磁性2成分、非接触現像)の感光体カートリッジに搭載して、気温25℃、相対湿度50%下において、印字率5%で、30,000枚の連続印字を行った。30,000枚印刷後に印字前後の膜厚を測定し、感光体1,000回転換算の膜減り量を計算した。結果を表-1に示す。
 <リーク試験>
 得られた感光体を、サムスン社製カラープリンター CLP-680用のカートリッジに、帯電ロールと共に搭載した。このカートリッジを気温32℃、相対湿度80%下において、帯電ロールに-1.5kVから1分ごとに、-0.5kVごとに増加させながら印加し、リークした際の電圧を記録した。電圧の印加はドラムを毎分30回転させながら行った。結果を表-1に示す。
Figure JPOXMLDOC01-appb-T000030
 表-1の結果より、実施例1-1~1-6は総合的なバランスに優れている。フッ素樹脂粒子の添加量が多い、比較例1-3及び比較例1-6の分散性は×のレベルであり、粗さの値も大きくなっている。電気特性については、実施例1-1~1-6は、比較例1-7~1-10にと比較して良好であることが分かる。また実施例1-2、実施例1-5と比較例1-10を比較することにより、フッ素樹脂粒子の耐リーク性が良いことも分かる。実施例1-1~1-6と比較例1-1~1-3を比べると、耐摩耗、耐リーク性の観点から、フッ素樹脂粒子の添加量が3~20質量%で本願の効果が得られることが分かる。更に、実施例1-2、1-5、比較例1-8、1-9を比較することにより、体積抵抗の低い帯電ロールを用いても耐リーク性が良好なことが分かる。
 ≪実施例2-1~2-4及び比較例2-1~2-12≫
 [実施例2-1]
 <下引き層形成用塗布液の製造>
 平均一次粒径40nmのルチル型酸化チタン(石原産業株式会社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、ヘンシェルミキサーにて混合した。得られた表面処理酸化チタン50部と、メタノール120部を混合してなる原料スラリー1kgを、直径約100μmのジルコニアビーズ(株式会社ニッカトー製 YTZ)を分散メディアとして、ミル容積約0.15Lの寿工業株式会社製ウルトラアペックスミル(UAM-015型)を用い、ロータ周速10m/秒、液流量10kg/時間の液循環状態で1時間分散処理し、酸化チタン分散液を作製した。
 前記酸化チタン分散液と、メタノール/1-プロパノール/トルエンの混合溶媒、及び、ε-カプロラクタム[下記式Aで表わされる化合物]/ビス(4-アミノ-3-メチルシクロヘキシル)メタン[下記式Bで表わされる化合物]/ヘキサメチレンジアミン[下記式Cで表わされる化合物]/デカメチレンジカルボン酸[下記式Dで表わされる化合物]/オクタデカメチレンジカルボン酸[下記式Eで表わされる化合物]の組成モル比率が、75%/9.5%/3%/9.5%/3%からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた。その後、出力1200Wの超音波発信器による超音波分散処理を1時間行い、更に孔径5μmのPTFE製メンブレンフィルター(アドバンテック製 マイテックス LC)により濾過し、表面処理酸化チタン/共重合ポリアミドを質量比が3/1であり、メタノール/1-プロパノール/トルエンの混合溶媒の質量比が7/1/2であって、含有する固形分の濃度が18.0質量%の下引き層形成用塗布液を作製した。
Figure JPOXMLDOC01-appb-C000031
 <電荷発生層形成用塗布液の製造>
 電荷発生物質として、図2のCuKα特性X線によるX線回折スペクトルを示すオキシチタニウムフタロシアニン20部と1,2-ジメトキシエタン280部とを混合し、サンドグラインドミルで1時間粉砕して微粒化分散処理を行なった。続いてこの微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)10部を、1,2-ジメトキシエタンの255部と4-メトキシ-4-メチル-2-ペンタノンの85部との混合液に溶解させて得られたバインダー液、及び230部の1,2-ジメトキシエタンを混合して電荷発生層形成用塗布液を調製した。
 <電荷輸送層形成用塗布液の製造>
 ポリテトラフルオロエチレン樹脂粒子(KTL-500F (株)喜多村化学製 平均一次粒径:0.3μm)10質量部、フッ素系グラフトポリマー(GF400、東亞合成(株)製)0.5質量部をテトラヒドロフラン90質量部と共に撹拌混合後、ボール衝突チャンバーを装着した高圧ホモジナイザー((株)スギノマシン製)を用いて70MPaまで昇圧して分散処理を行うことによりポリテトラフルオロエチレン樹脂粒子懸濁液を得た。
 次に下記の繰り返し構造で表されるポリカーボネート樹脂100部(樹脂X、粘度平均分子量50,000)、下記式で表される電荷輸送物質CTM-1[E_homo=-4.349eV]を50部、下記式で表される化合物AD1を4部、AD2を1部、ジメチルポリシロキサン(信越化学社製KF96-10CS)0.05部をテトラヒドロフラン/トルエン(80/20(質量比))混合溶媒570部に溶解させ、先に得られたポリテトラフルオロエチレン樹脂粒子懸濁液と混合し、ホモジナイザーで撹拌することで電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000032
 <感光体ドラムの製造>
 表面が切削加工された外径30mm、長さ254mm、肉厚0.8mmのアルミニウム合金よりなるシリンダーに、塗布液の製造例で作製した下引き層形成用塗布液、電荷発生層形成用塗布液、電荷輸送層形成用塗布液を浸漬塗布法により順次塗布、乾燥し、乾燥後の膜厚がそれぞれ、1.5μm、0.4μm、25μmとなるように、下引き層、電荷発生層、電荷輸送層を形成し、感光体ドラムを製造した。なお、電荷輸送層の乾燥は、125℃で24分間行なった。
 [実施例2-2]
 実施例2-1における<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質CTM-1の使用量を60質量部に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
 [実施例2-3]
 実施例2-1における<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質CTM-1の使用量を40質量部に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
 [実施例2-4]
 実施例2-1における<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質CTM-1を下記式で表される電荷輸送物質CTM-2[E_homo=-4.400eV]に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
Figure JPOXMLDOC01-appb-C000033
 [比較例2-1]
 実施例2-1における<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質を下記式で表される電荷輸送物質CTM-A[E_homo=-4.576eV]に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
Figure JPOXMLDOC01-appb-C000034
 [比較例2-2]
 実施例2-1中の<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質を比較例2-1と同様に電荷輸送物質CTM-Aとし、その使用量を60質量部に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
 [比較例2-3]
 実施例2-1中の<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質を下記式で表される電荷輸送物質CTM-B[E_homo=-4.603eV]に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
Figure JPOXMLDOC01-appb-C000035
 [比較例2-4]
 実施例2-1中の<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質を比較例2-3と同様に電荷輸送物質CTM-Bとし、その使用量を60質量部に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
 [比較例2-5]
 実施例2-1中の<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質を下記式で表される電荷輸送物質CTM-C[E_homo=-4.677eV]に変更し、その使用量を60質量部に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
Figure JPOXMLDOC01-appb-C000036
 [比較例2-6]
 実施例2-1中の<電荷輸送層形成用塗布液の製造>中で用いた電荷輸送物質を下記式で表される電荷輸送物質CTM-D[E_homo=-4.687eV]に変更し、その使用量を70質量部に変更した以外は実施例2-1と同様にして感光体ドラムを作製した。
Figure JPOXMLDOC01-appb-C000037
 [比較例2-7]
 実施例2-1と同じ繰り返し構造で表されるポリカーボネート樹脂100部(樹脂X、粘度平均分子量50,000)、前記式で表される電荷輸送物質CTM-1[E_homo=-4.349eV]を50部、前記式で表される化合物AD1を4部、AD2を1部、ジメチルポリシロキサン(信越化学社製KF96-10CS)0.03部をテトラヒドロフラン/トルエン(80/20(質量比))混合溶媒620部に溶解させて電荷輸送層形成用塗布液を調製した以外は、実施例2-1と同様にして感光体ドラムを作製した。
 [比較例2-8]
 比較例2-7中で用いた電荷輸送物質を前記式で表される電荷輸送物質CTM-2[E_homo=-4.400eV]に変更した以外は比較例2-7と同様にして感光体ドラムを作製した。
 [比較例2-9]
 比較例2-7中で用いた電荷輸送物質を前記式で表される電荷輸送物質CTM-A[E_homo=-4.576eV]に変更した以外は比較例2-7と同様にして感光体ドラムを作製した。
 [比較例2-10]
 比較例2-7中で用いた電荷輸送物質を前記式で表される電荷輸送物質CTM-B[E_homo=-4.603eV]に変更した以外は比較例2-7と同様にして感光体ドラムを作製した。
 [比較例2-11]
 比較例2-7中で用いた電荷輸送物質を前記式で表される電荷輸送物質CTM-C[E_homo=-4.677eV]に変更した以外は比較例2-7と同様にして感光体ドラムを作製した。
 [比較例2-12]
 比較例2-7中で用いた電荷輸送物質を前記式で表される電荷輸送物質CTM-D[E_homo=-4.687eV]に変更した以外は比較例2-7と同様にして感光体ドラムを作製した。
 <繰り返し耐久試験>
 室温35℃、相対湿度80%の環境下、実施例及び比較例において作製した電子写真感光体を、電子写真学会標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社(1996年)、404~405頁記載)に装着し、以下の手順に従って、帯電(マイナス極性)、露光、電位測定、除電のサイクルによる電気特性の評価を行なった。
 感光体の初期表面電位が-700Vになるように帯電させ、ハロゲンランプの光を干渉フィルターで波長780nmの単色光としたものを0.8μJ/cmの強度で照射して100ms後に繰り返し耐久試験前の露光後表面電位(VL1)を測定した(-V)。
 そして、繰り返し耐久試験前の露光後表面電位を測定後、上記装置で-700Vの帯電と約15μJ/cm強度の除電のサイクルを5000回繰り返し行った後に、表面電位が-700Vになるように帯電させ、ハロゲンランプの光を干渉フィルターで波長780nmの単色光としたものを0.8μJ/cmの強度で照射して100ms後に繰り返し耐久試験後の露光後表面電位(VL2)の測定を行った。
 繰り返し耐久試験前後の変化量の小さい感光体の方が、繰り返し使用に対して特性変化が小さいことを示し、感光体の電気特性として安定性が高く、耐久性能が優れたものである。
Figure JPOXMLDOC01-appb-T000038
 表-2の結果において、繰り返し耐久試験前後の変化量の小さい感光体の方が、繰り返し使用に対して特性変化が小さいことを示し、感光体の電気特性として安定性が高く、耐久性能が優れたものである。
 比較例2-1は比較例2-9に比べて大幅にVL2-VL1の値が上昇している一方、実施例2-1は比較例2-7に比べてVL2-VL1の値の上昇が抑えられている。本発明の感光体は繰り返し耐久試験前後の露光後表面電位の変化量が小さく、本発明により繰り返し使用に対して非常に安定性が高く、耐久性能の優れた感光体の提供が可能であることが明らかとなった。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年1月27日出願の日本特許出願(特願2017-012881)及び2017年3月22日出願の日本特許出願(特願2017-056370)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明にかかる電子写真感光体、電子写真感光体カートリッジ及び画像形成装置は、複写機やプリンター等の各種画像形成装置における高品質化や、長寿命化等に著しく寄与することが期待される。
 1  感光体(電子写真感光体)
 2  帯電装置(帯電ローラ;帯電部)
 3  露光装置(露光部)
 4  現像装置(現像部)
 5  転写装置
 6  クリーニング装置
 7  定着装置
 41 現像槽
 42 アジテータ
 43 供給ローラ
 44 現像ローラ
 45 規制部材
 71 上部定着部材(定着ローラ)
 72 下部定着部材(定着ローラ)
 73 加熱装置
 T  トナー
 P  記録紙(用紙、媒体)

Claims (10)

  1.  導電性支持体と、前記導電性支持体上に電荷発生層及び電荷輸送層とを備えた積層型電子写真感光体であって、
     前記電荷輸送層が密度汎関数計算B3LYP/6-31G(d,p)による構造最適化計算に基づくHOMOのエネルギーレベル(E_homo)が-4.550eV以上である化合物とフッ素樹脂粒子とを含有し、
     前記フッ素樹脂粒子の含有量が前記電荷輸送層の総質量に対し、3重量%以上20重量%以下である電子写真感光体。
  2.  電子写真感光体表面の粗さ(Rz)が0.1μm以上0.4μm以下である請求項1に記載の電子写真感光体。
  3.  前記E_homoが-4.550eV以上である化合物の安定構造における、密度汎関数計算B3LYP/6-31G(d,p)及びHF/6-31G(d,p)計算に基づく分極率の計算値αcalが、70Å以上である請求項1又は2に記載の電子写真感光体。
  4.  前記フッ素樹脂粒子の平均一次粒径が0.05μm以上1μm以下である請求項1乃至3のいずれか一項に記載の電子写真感光体。
  5.  前記E_homoが-4.550eV以上である化合物が下記式(1)で示される化合物を含む請求項1乃至4のいずれか一項に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000001

    (上記式(1)において、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m及びnはそれぞれ独立して1以上3以下の整数を表す。)
  6.  前記E_homoが-4.550eV以上である化合物が下記式(2)で示される化合物を含む請求項1乃至4のいずれか一項に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000002

    (上記式(2)において、R、R、R及びRはそれぞれ独立して、アルキル基、アルコキシ基、アリール基又はアラルキル基を示す。m、n、p及びqはそれぞれ独立して0~3の整数を示す。但し、R及びRが同一の基であるとき、m及びnは異なる整数を示す。また、R及びRが同一の基であるとき、p及びqは異なる整数を示す。R及びRはそれぞれ独立して、水素原子又はアルキル基を示す。また、R、R、R及びRがそれぞれ複数存在する場合、複数存在する基はそれぞれ同一でも異なっていてもよく、また複数存在する基同士が結合して環を形成していてもよい。)
  7.  導電性支持体と、前記導電性支持体上に電荷発生層及び電荷輸送層とを備えた積層型電子写真感光体であって、
     前記電荷輸送層が下記式(1)で示される化合物とフッ素樹脂粒子とを含有し、
     前記フッ素樹脂粒子の含有量が前記電荷輸送層の総質量に対し、3重量%以上20重量%以下である電子写真感光体。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(1)において、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m及びnはそれぞれ独立して1以上3以下の整数を表す。)
  8.  導電性支持体と、前記導電性支持体上に電荷発生層及び電荷輸送層とを備えた積層型電子写真感光体であって、
     前記電荷輸送層が下記式(2)で示される化合物とフッ素樹脂粒子とを含有し、
     前記フッ素樹脂粒子の含有量が電荷輸送層の総質量に対し、3重量%以上20重量%以下である電子写真感光体。
    Figure JPOXMLDOC01-appb-C000004

    (上記式(2)において、R、R、R及びRはそれぞれ独立して、アルキル基、アルコキシ基、アリール基又はアラルキル基を示す。m、n、p及びqはそれぞれ独立して0~3の整数を示す。但し、R及びRが同一の基であるとき、m及びnは異なる整数を示す。また、R及びRが同一の基であるとき、p及びqは異なる整数を示す。R及びRはそれぞれ独立に、水素原子又はアルキル基を示す。また、R、R、R及びRがそれぞれ複数存在する場合、複数存在する基はそれぞれ同一でも異なっていてもよく、また複数存在する基同士が結合して環を形成していてもよい。)
  9.  請求項1乃至8のいずれか一項に記載の電子写真感光体、並びに、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、及び、前記電子写真感光体上に形成された静電潜像を現像する現像装置よりなる群から選ばれる少なくとも1の装置を備えた電子写真感光体カートリッジ。
  10.  請求項1乃至8のいずれか一項に記載の電子写真感光体、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、及び、前記電子写真感光体上に形成された前記静電潜像を現像する現像装置を備えた画像形成装置。
PCT/JP2018/002355 2017-01-27 2018-01-25 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 WO2018139555A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880008533.0A CN110226132A (zh) 2017-01-27 2018-01-25 电子照相感光体、电子照相感光体盒、及图像形成装置
JP2018564635A JP7115320B2 (ja) 2017-01-27 2018-01-25 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
US16/522,198 US11307510B2 (en) 2017-01-27 2019-07-25 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus
US17/692,927 US20220197162A1 (en) 2017-01-27 2022-03-11 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-012881 2017-01-27
JP2017012881 2017-01-27
JP2017-056370 2017-03-22
JP2017056370 2017-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/522,198 Continuation US11307510B2 (en) 2017-01-27 2019-07-25 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus

Publications (1)

Publication Number Publication Date
WO2018139555A1 true WO2018139555A1 (ja) 2018-08-02

Family

ID=62979105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002355 WO2018139555A1 (ja) 2017-01-27 2018-01-25 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Country Status (4)

Country Link
US (2) US11307510B2 (ja)
JP (1) JP7115320B2 (ja)
CN (1) CN110226132A (ja)
WO (1) WO2018139555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173297A (ja) * 2019-04-08 2020-10-22 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP7463802B2 (ja) 2020-03-26 2024-04-09 富士フイルムビジネスイノベーション株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11825854B2 (en) 2018-12-13 2023-11-28 Geunyoung YI Fixed-quantity meat slicer for chilled meat
KR102222315B1 (ko) * 2018-12-13 2021-03-03 이근영 냉장육 정량 육절기

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230590A (ja) * 1993-01-29 1994-08-19 Canon Inc 電子写真感光体及びそれを有する電子写真装置
JP2004117849A (ja) * 2002-09-26 2004-04-15 Canon Inc 電子写真感光体の製造方法
US20040151999A1 (en) * 2002-12-16 2004-08-05 Xerox Corporation Imaging members
JP2005308925A (ja) * 2004-04-20 2005-11-04 Fuji Xerox Co Ltd 画像形成方法および画像形成装置
JP2014209224A (ja) * 2013-03-25 2014-11-06 三菱化学株式会社 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2015018036A (ja) * 2013-07-09 2015-01-29 シャープ株式会社 電子写真感光体及びそれを用いた画像形成装置
JP2015052734A (ja) * 2013-09-09 2015-03-19 三菱化学株式会社 電子写真感光体及び画像形成装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250377A (en) * 1987-03-28 1993-10-05 Ricoh Company, Ltd. Aromatic diolefinic compounds, aromatic diethyl compounds and electrophotographic photoconductors comprising one aromatic diethyl compound
US7177570B2 (en) * 2003-02-28 2007-02-13 Ricoh Company, Limited Measurement of frictional resistance of photoconductor against belt in image forming apparatus, process cartridge, and image forming method
US7381511B2 (en) * 2003-06-02 2008-06-03 Ricoh Company, Ltd. Photoreceptor, image forming method and image forming apparatus using the photoreceptor, process cartridge using the photoreceptor and coating liquid for the photoreceptor
JP2005037524A (ja) * 2003-07-17 2005-02-10 Konica Minolta Business Technologies Inc 有機感光体
JP2005345686A (ja) 2004-06-02 2005-12-15 Konica Minolta Business Technologies Inc 有機感光体、プロセスカートリッジ及び画像形成装置
JP4456951B2 (ja) * 2004-07-16 2010-04-28 富士ゼロックス株式会社 画像形成装置及びプロセスカートリッジ
JP2009186969A (ja) 2008-01-10 2009-08-20 Ricoh Co Ltd 画像形成装置、プロセスカートリッジ及び画像形成方法
EP2078988B1 (en) 2008-01-10 2013-06-26 Ricoh Company, Ltd. Image forming apparatus and image forming method
JP5958011B2 (ja) 2012-03-28 2016-07-27 富士ゼロックス株式会社 電荷輸送性膜形成用組成物、電子写真感光体、プロセスカートリッジおよび画像形成装置
JP5942601B2 (ja) 2012-05-28 2016-06-29 三菱化学株式会社 電子写真感光体、電子写真カートリッジ、及び画像形成装置
US9316933B2 (en) * 2013-07-09 2016-04-19 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and image forming apparatus including the same
JP6300590B2 (ja) 2014-03-18 2018-03-28 キヤノン株式会社 電子写真感光体、プロセスカートリッジ、および電子写真装置
CN108885416A (zh) * 2016-03-29 2018-11-23 三菱化学株式会社 带正电用电子照相感光体、电子照相感光体盒以及成像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230590A (ja) * 1993-01-29 1994-08-19 Canon Inc 電子写真感光体及びそれを有する電子写真装置
JP2004117849A (ja) * 2002-09-26 2004-04-15 Canon Inc 電子写真感光体の製造方法
US20040151999A1 (en) * 2002-12-16 2004-08-05 Xerox Corporation Imaging members
JP2005308925A (ja) * 2004-04-20 2005-11-04 Fuji Xerox Co Ltd 画像形成方法および画像形成装置
JP2014209224A (ja) * 2013-03-25 2014-11-06 三菱化学株式会社 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2015018036A (ja) * 2013-07-09 2015-01-29 シャープ株式会社 電子写真感光体及びそれを用いた画像形成装置
JP2015052734A (ja) * 2013-09-09 2015-03-19 三菱化学株式会社 電子写真感光体及び画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173297A (ja) * 2019-04-08 2020-10-22 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP7275788B2 (ja) 2019-04-08 2023-05-18 富士フイルムビジネスイノベーション株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP7463802B2 (ja) 2020-03-26 2024-04-09 富士フイルムビジネスイノベーション株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Also Published As

Publication number Publication date
US20220197162A1 (en) 2022-06-23
JP7115320B2 (ja) 2022-08-09
JPWO2018139555A1 (ja) 2019-11-14
US20190346779A1 (en) 2019-11-14
CN110226132A (zh) 2019-09-10
US11307510B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
JP5577722B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
US11307510B2 (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus
CN105074578B (zh) 电子照相感光体、电子照相感光体盒及图像形成装置
JP2012123379A (ja) 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置
JP2015052734A (ja) 電子写真感光体及び画像形成装置
JP6107298B2 (ja) 電子写真感光体、電子写真プロセスカートリッジ及び画像形成装置
JP6146188B2 (ja) 電子写真感光体、電子写真プロセスカートリッジ及び画像形成装置
JP4640154B2 (ja) 電子写真感光体、該感光体を用いた画像形成装置、および該感光体を用いた電子写真カートリッジ
JP5655490B2 (ja) 電子写真感光体、該感光体を用いた画像形成装置、および電子写真カートリッジ
JP4513686B2 (ja) 電子写真感光体、電子写真用カートリッジ、画像形成装置、および画像形成方法
JP4462123B2 (ja) 電子写真感光体
JP4661617B2 (ja) 電子写真感光体、画像形成方法および画像形成装置
JP4462122B2 (ja) 電子写真感光体、電子写真カートリッジ、画像形成装置および画像形成方法
JP2013097270A (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP2011227486A (ja) 電子写真感光体、画像形成方法及び画像形成装置
JP2014167555A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP6331630B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5772264B2 (ja) 電子写真感光体、電子写真カートリッジ及び画像形成装置
JP7400588B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5239130B2 (ja) 電子写真感光体、画像形成方法、画像形成装置、及びアミン化合物
JP5374992B2 (ja) 電子写真感光体、該感光体を用いるプロセスカートリッジ、及び画像形成装置
JP5168822B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置、並びにフタロシアニン結晶
JP6387649B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2016138936A (ja) 電子写真感光体、電子写真プロセスカートリッジ、及び画像形成装置
JP2006145870A (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744089

Country of ref document: EP

Kind code of ref document: A1