WO2018137542A1 - 一种充电桩系统 - Google Patents

一种充电桩系统 Download PDF

Info

Publication number
WO2018137542A1
WO2018137542A1 PCT/CN2018/073202 CN2018073202W WO2018137542A1 WO 2018137542 A1 WO2018137542 A1 WO 2018137542A1 CN 2018073202 W CN2018073202 W CN 2018073202W WO 2018137542 A1 WO2018137542 A1 WO 2018137542A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charging pile
output
terminal
group
Prior art date
Application number
PCT/CN2018/073202
Other languages
English (en)
French (fr)
Inventor
葛静
王兴杰
林永津
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18745038.2A priority Critical patent/EP3560749B1/en
Publication of WO2018137542A1 publication Critical patent/WO2018137542A1/zh
Priority to US16/521,086 priority patent/US10919403B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of electric vehicle charging, and in particular to a charging pile system.
  • the charging pile system is used to convert the electric energy of the power grid (including the micro grid) into direct current of different voltage and current levels, and then directly charge the battery of the electric vehicle through the charging connection device.
  • a typical DC charging pile system generally includes an input bus, a system control unit, a charging module, an output DC bus, and a charging terminal.
  • the input bus is used to connect the input power to the charging module
  • the charging module is used to convert the electric energy input by the bus into the DC power of the electric vehicle, and then charge the electric vehicle battery through the output DC bus and the charging terminal.
  • the demand for battery capacity is also different, so the charging voltage of electric vehicles is not the same, and the range of charging current is also very wide.
  • the rated voltage of the passenger car is generally 150 ⁇ 500V
  • the bus is generally 400 ⁇ 700V; and with the development of battery and charging technology, the battery capacity of electric vehicles will become larger and larger, the charging rate is also increasing high.
  • the charging current or the charging voltage can be increased. Since the increase of the charging current is limited by the current carrying capacity of the charging cable, increasing the charging voltage to increase the charging rate is also an industry-recognized development direction.
  • the voltage of the electric vehicle reaches 800 to 1000V.
  • FIG. 2 is the output characteristic of the 750V/15kW charging pile module with the best output power characteristics in the current common charging module type. It can be seen from Figure 2 that even the charging pile module with the optimal output power characteristics cannot be in the full voltage range. Output constant power.
  • the charging pile is usually composed of a plurality of modules connected in parallel. For example, a charging pile rated at 750V/60kW (consisting of four modules having the output characteristics of Fig.
  • Embodiments of the present invention provide a charging pile system to realize flexible configuration of an output voltage and an output current range of a charging pile system to meet charging requirements of different loads.
  • a first aspect of the embodiments of the present invention provides a charging pile system, including: a system input bus bar, a plurality of charging pile module groups, a power distribution unit, and a plurality of charging terminals corresponding to the plurality of charging pile module groups;
  • An input bus is connected to an input end of the plurality of charging post module groups, and an output end of the plurality of charging post module groups is connected to an input end of the plurality of charging terminals through the power distribution unit;
  • the power distribution unit The first switch group, the second switch group, the third switch group, and the controller, each of the switch groups includes a plurality of switch devices; and the switch device in the first switch group is connected to the plurality of charge posts
  • the charging pile module group for arranging at least two of the plurality of charging pile module groups is configured to be outputted in series or in parallel, and one of the second switch groups will be An output end of the plurality of charging post module groups is respectively connected to an input end of a corresponding charging terminal, and a switching device in the
  • the controller is electrically connected to the first switch group, the second switch group, and the third switch group, respectively, and the power requirement of any one of the plurality of charging terminals is greater than a corresponding one.
  • controlling a plurality of switching devices in the first switch group, the second switch group, and the third switch group to pass the plurality of charging posts At least two idle charging peg modules in the module group are configured in series or parallel output to the charging terminal whose power demand is greater than the corresponding charging peg module group.
  • the charging pile system controls, by the controller, a combination of a plurality of switching devices of the first switch group, the second switch group, and the third switch group to change a combination of closing and opening, thereby causing the Forming a series, parallel or series-parallel combination connection manner between the plurality of charging pile module groups, and further providing charging current and charging voltage with different output characteristics for at least one of the plurality of charging terminals according to different connection modes.
  • the charging current and the charging voltage configuration range of the charging pile system can be effectively increased, so that the charging pile system can meet the charging requirements of various electric vehicles of different capacities, different charging rates, and different charging voltages.
  • each of the charging post module groups is respectively connected to the positive output ends of the remaining plurality of charging peg module groups through a plurality of switching devices in the first switch group, each The positive output terminal of the charging pile module group is further connected to the negative output terminals of the remaining plurality of charging pile module groups through a plurality of switching devices in the first switch group; wherein, all the charging pile module groups
  • the connection point of the switching device connected to the negative output terminal is located between the negative output terminal of the charging post module group and the corresponding switching device of the second switch group.
  • the charging pile system includes N charging pile module groups and corresponding N charging terminals, and a positive output end of any one of the N charging pile module groups passes N- One switching device is respectively connected to the positive output terminals of the remaining N-1 charging pile module groups, and the positive output terminal of any one of the N charging pile module groups also passes N-1 switching devices They are respectively connected to the negative output terminals of the remaining N-1 charging post module groups 130.
  • a negative output terminal of each of the charging post module groups is connected to a negative input terminal of a charging terminal corresponding to the charging post module group through one of the second switch groups.
  • the negative input terminal of each of the charging terminals is respectively connected to the negative input terminals of the remaining plurality of charging terminals through a plurality of switching devices in the third switch group; wherein the switching device The connection point is located between the negative input terminal of the charging terminal and the corresponding switching device of the second switch group.
  • the positive pole of the first charging pile module group participating in the series is used as the positive output terminal of the series output
  • the negative pole of the last charging pile module group participating in the series is used as the negative output terminal of the series output
  • the negative output terminal connected to the previous charging pile module group participating in the series is controlled by the controller and the latter charging pile module participating in the series connection
  • the switching device between the positive output terminals of the group is closed, and the switching device connected between the negative output terminal of the last charging pile module group participating in the series connection and the negative input terminal of the corresponding charging terminal is controlled, and the control is connected in series
  • the switching device between the output negative output and the negative input of the charging terminal requiring serial output is closed, and the remaining switching devices connected to the plurality of charging post module groups participating in series are disconnected.
  • a combination of closing and opening of the plurality of switching devices in the first switch group, the second switch group, and the third switch group is controlled by the controller, thereby
  • the charging pile module groups are connected in series to one of the charging terminals, so that the maximum charging voltage can be obtained, that is, the high voltage charging of the load is realized, which is beneficial to increase the charging speed.
  • the charging pile module group corresponding to the charging terminal that needs to be serially output is the first charging pile module group participating in the series connection.
  • the positive output terminal connected to the plurality of charging pile module groups participating in parallel is controlled by the controller.
  • the switching device is closed, and controls switching device connection between the negative output terminals of the plurality of charging pile module groups participating in the parallel connection, and controlling the negative electrode connected to the plurality of the charging pile module groups participating in the parallel connection.
  • the switching device between the output terminal and the negative input terminal of the corresponding charging terminal is closed, and the remaining switching devices connected to the plurality of charging pile module groups participating in parallel are controlled to be disconnected.
  • a combination of closing and opening of the plurality of switching devices in the first switch group, the second switch group, and the third switch group is controlled by the controller, thereby
  • the charging pile module groups are connected in parallel to one of the charging terminals, so that the maximum charging current can be obtained, that is, the large current charging of the load is realized, which is beneficial to increase the charging speed.
  • each of the negative output terminals of the charging post module group is respectively connected to the negative output terminals of the remaining plurality of charging peg module groups through a plurality of switching devices in the first switch group, each The positive output terminals of the charging pile module group are respectively connected to the negative output terminals of the remaining plurality of charging pile module groups through a plurality of switching devices in the first switch group; wherein, all of the charging pile module groups are A connection point of the switching device connected to the positive output terminal is located between a positive output terminal of the charging post module group and a corresponding switching device of the second switch group.
  • the charging pile system includes N charging pile module groups and N charging terminals, and the negative output terminals of any one of the N charging pile module groups pass N-1
  • the switching devices are respectively connected to the negative output terminals of the remaining N-1 charging pile module groups, and the positive output ends of any one of the N charging pile module groups are respectively connected to the N-1 switching devices to The remaining N-1 charging post module sets have negative output terminals.
  • the positive output terminal of each of the charging post module groups is connected to the positive input terminal of the charging terminal corresponding to the charging post module group by one of the second switch groups.
  • the positive input terminal of each of the charging terminals is respectively connected to the positive input terminals of the remaining plurality of charging terminals through a plurality of switching devices in the third switch group; wherein the switching device The connection point is located between the positive input terminal of the charging terminal and the corresponding switching device of the second switch group.
  • the positive pole of the first charging pile module group participating in the series is used as the positive output terminal of the series output
  • the negative pole of the last charging pile module group participating in the series is used as the negative output terminal of the series output
  • the negative output terminal connected to the previous charging pile module group participating in the series is controlled by the controller and the latter charging pile module participating in the series connection
  • the switching device between the positive output terminals of the group is closed, and the switching device connected between the positive output terminal of the first charging pile module group participating in the series connection and the positive input terminal of the corresponding charging terminal is controlled, and the control device is connected
  • a switching device between the positive output of the series output and the positive input of the charging terminal requiring serial output is closed, and the remaining switching devices connected to the plurality of charging post module groups participating in series are disconnected.
  • a combination of closing and opening of the plurality of switching devices in the first switch group, the second switch group, and the third switch group is controlled by the controller, thereby
  • the charging pile module groups are connected in series to one of the charging terminals, so that the maximum charging voltage can be obtained, that is, the high voltage charging of the load is realized, which is beneficial to increase the charging speed.
  • the charging pile module group corresponding to the charging terminal that needs to be serially output is the last charging pile module group participating in the series connection.
  • the positive output terminal connected to the plurality of charging pile module groups participating in parallel is controlled by the controller.
  • the switching device is closed, and controls switching device connection between the negative output terminals connected to the plurality of the charging pile module groups participating in parallel, and controlling the positive electrode connected to the plurality of the charging pile module groups participating in the parallel connection
  • the switching device between the output terminal and the positive input terminal of the corresponding charging terminal is closed, and the remaining switching devices connected to the plurality of charging pile module groups participating in parallel are controlled to be disconnected.
  • a combination of closing and opening of the plurality of switching devices in the first switch group, the second switch group, and the third switch group is controlled by the controller, thereby
  • the charging pile module groups are connected in parallel to one of the charging terminals, so that the maximum charging current can be obtained, that is, the large current charging of the load is realized, which is beneficial to increase the charging speed.
  • FIG. 1 is a schematic structural view of a typical DC charging pile system
  • Figure 2 is an output characteristic diagram of a 750V/15kW charging pile module with an optimal output power characteristic
  • FIG. 3 is a first schematic structural diagram of a charging pile system according to an embodiment of the present invention.
  • FIG. 4 is a second schematic structural diagram of a charging pile system according to an embodiment of the present invention.
  • FIG. 5 is a third schematic structural diagram of a charging post system according to an embodiment of the present invention.
  • FIG. 6 is an output characteristic diagram of a charging pile module group having an optimum output power characteristic of 750V/60 kW;
  • FIG. 7 is an output characteristic diagram of a charging post module of a charging pile system according to an embodiment of the present invention.
  • FIG. 8 is a fourth schematic structural diagram of a charging pile system according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an output characteristic of a charging pile system according to an embodiment of the present invention.
  • a charging pile system which can obtain a plurality of output characteristics of a plurality of charging terminals in the charging pile system, and output voltages and current ranges outputted to the charging terminals are large, and can satisfy different capacities and different sizes. Charge demand for various types of electric vehicles with different charging rates and different charging voltages.
  • the remaining charging pile module group can also provide output for other charging terminals, thereby improving the application flexibility of the system.
  • the charging pile system can also ensure that the charging pile module group that is put into operation always works in a state close to the rated power, thereby improving the utilization rate of the system.
  • a charging pile system 100 including a system input bus 110, a plurality of charging pile module groups 130, a power distribution unit 150, and the plurality of charging pile module groups 130. Corresponding multiple charging terminals 170.
  • the system input bus 110 is connected to the input ends of the plurality of charging post module groups 130, and the output ends of the plurality of charging post module groups 130 pass through the power distribution unit 150 and the input of the plurality of charging terminals 170 End connection.
  • the system input bus 110 is used to connect an external power source, and the external power source may be an AC power source or a DC power source.
  • Each of the charging post module sets 130 can include a plurality of charging post modules. It can be understood that the number of charging pile module groups 130 included in the charging pile system 100 and the number of charging pile modules included in each charging pile module group 130 can be any natural number.
  • the power distribution unit 150 includes a first switch group 151, a second switch group 153, a third switch group 155, and a controller 157, each of which includes a plurality of switching devices.
  • the switching device can be any kind of device capable of implementing a circuit switching function.
  • the switching device in the first switch group 151 is connected between the output ends of the plurality of charging post module groups 130 for charging at least two of the plurality of charging peg module groups 130
  • the group is configured to be connected in series or in parallel, and one of the second switch groups 153 respectively connects the output ends of the plurality of charging post module groups 130 to the input ends of the corresponding charging terminals 170, the third switch A switching device in the group 155 is connected between the input terminals of the plurality of charging terminals 170, and the second switch group 153 and the third switch group 155 are used to turn on the charging pile module of the series or parallel output.
  • a connection between the group and an input of any one of the charging terminals 170, that is, the second switch group 153 and the third switch group 155 are used to turn on the at least two idle charging pile module groups in series
  • the controller 157 is electrically connected to the first switch group 151, the second switch group 153, and the third switch group 155, respectively, for charging one of the plurality of charging terminals 170. Controlling a plurality of switching devices in the first switch group 151, the second switch group 153, and the third switch group 155 in a case where the power demand is greater than the output power of the corresponding charging post module group 130 And the charging terminal 170 having the power demand greater than the corresponding charging post module group is configured to be outputted in series or parallel by at least two idle charging post module groups 130 of the plurality of charging peg module groups 130.
  • the flexible configuration of the plurality of charging post module groups 130 in the series or parallel manner to the plurality of charging terminals 170 by the combination of the plurality of switching devices means: by changing the plurality of switching devices The combination of closing and opening, so that the plurality of charging post module groups 130 form a combined connection manner in series or in parallel, and then at least one of the plurality of charging terminals 170 according to different connection modes.
  • the charging current and the charging voltage are provided with different output characteristics, so that the charging pile system 100 can meet the charging requirements of various electric vehicles of different capacities, different charging rates, and different charging voltages.
  • the charging pile system 100 includes N charging post module sets 130 and N charging terminals 170.
  • the connection relationship of the plurality of switching devices in the first switch group 151 is: the positive output end of each of the charging post module groups 130 is respectively connected to the rest through a plurality of switching devices in the first switch group 151 A positive output terminal of a plurality of charging post modules 130.
  • the positive output ends of any one of the N charging pile module groups 130 are respectively connected to the remaining N-1 charging pile module groups 130 through N-1 switching devices.
  • the positive output terminals of each of the charging post module groups 130 are also respectively connected to the negative output terminals of the remaining plurality of charging post module groups 130 through a plurality of switching devices in the first switch group 151.
  • the positive output terminals of any one of the N charging post module groups 130 are also respectively connected to the remaining N-1 charging post module groups 130 by N-1 switching devices.
  • the connection point of all the switching devices connected to the negative output terminal of the charging post module group 130 is located between the negative output end of the charging post module group 130 and the corresponding switching device in the second switch group 153.
  • a connection relationship of the plurality of switching devices in the second switch group 153 is: a negative output terminal of each of the charging post module groups 130 is connected to the charging by one of the second switch groups 153
  • the pile module group 130 corresponds to the negative input terminal of the charging terminal 170.
  • the charging terminal 170 corresponding to the charging pile module group 130 refers to a charging terminal 170 directly connected to the positive output terminal of the charging pile module group 130, such as the charging pile module group 1 in FIG.
  • the charging terminal 1 corresponds.
  • connection relationship of the plurality of switching devices in the third switch group 155 is: the negative input terminal of each of the charging terminals 170 is respectively connected to the remaining plurality of the plurality of switching devices in the third switch group 155 The negative input terminal of the charging terminal 170.
  • the negative input terminals of any one of the N charging terminals 170 are respectively connected to the negative input terminals of the remaining N-1 charging terminals 170 through N-1 switching devices.
  • the connection point of the switching device in the third switch group 155 is located between the negative input terminal of the charging terminal 170 and the corresponding switching device of the second switch group 153.
  • the positive pole of the first charging pile module group 130 participating in the series is used as the positive output end of the series output.
  • the last negative pole of the charging pile module group 130 participating in the series is taken as the negative output terminal of the serial output, and the negative output terminal connected to the previous charging pile module group 130 participating in the series is controlled by the controller 157 to participate in the latter.
  • the switching device between the positive output terminals of the series of charging peg modules 130 is closed and controls the switch connected between the negative output of the last pair of charging peg modules 130 participating in series and the negative input of the corresponding charging terminal 170.
  • the device is closed, and the negative output terminal connected to the series output (ie, the negative input terminal of the charging terminal 170 corresponding to the last charging pile module group 130 participating in series) and the negative input terminal of the charging terminal 170 required to be serially outputted are controlled.
  • the switching device is closed and controls the remaining switching devices connected to the plurality of charging post module groups participating in series Disconnected. It can be understood that the charging pile module group 130 corresponding to the charging terminal 170 that needs to be serially output is the first charging pile module group 170 participating in the series.
  • the controller 157 controls the connection between the positive output terminals of the plurality of charging pile module groups 130 participating in the parallel connection.
  • the switching device is closed and controls switching device connection between the negative output terminals of the plurality of charging pile module groups 130 participating in the parallel connection, and controlling the negative output of the plurality of charging pile module groups 130 connected in parallel.
  • the switching device between the terminal and the negative input of the corresponding charging terminal 170 is closed, and the remaining switching devices connected to the plurality of charging post module groups participating in parallel are controlled to be disconnected.
  • the controller 157 controls the closing or opening of the plurality of switching devices in the first switch group 151, the second switch group 153, and the third switch group 155, and may
  • the N charging post module groups 130 are all connected in parallel to one of the charging terminals 170 to obtain a maximum charging current; or the N charging peg module groups 130 may all be connected in series to one of the above. Charging terminal 170 to obtain a maximum charging voltage; or, the N charging post module groups 130 may be configured in series-parallel combination to one of the charging terminals 170 to obtain charging current and charging according to load demand.
  • N charging post module groups 130 may be configured to be connected to one of the charging terminals 170 by series, parallel or series-parallel combination, and the N charging post module groups 130 will be Another part is configured to be connected to another of the charging terminals 170 by series, parallel or series-parallel combination. It can be understood that the combination manner of the N charging post module groups 130 is not limited to the above examples, and may be any combination that can be allocated by the power distribution unit 150.
  • the charging pile system 100 includes N charging post module sets 130 and N charging terminals 170.
  • the connection relationship of the plurality of switching devices in the first switch group 151 is: the negative output terminal of each of the charging post module groups 130 is respectively connected to the rest through a plurality of switching devices of the first switch group 151 The negative output of multiple charging post module sets.
  • the negative output terminals of any one of the N charging post module groups 130 are respectively connected to the remaining N-1 charging post module groups 130 through N-1 switching devices.
  • Negative output The positive output terminals of each of the charging post module groups 130 are respectively connected to the negative output terminals of the remaining plurality of charging post module groups 130 through a plurality of switching devices in the first switch group 151.
  • the positive output ends of any one of the N charging pile module groups 130 are respectively connected to the remaining N-1 charging pile module groups 130 through N-1 switching devices. Negative output.
  • the connection point of all the switching devices connected to the positive output terminal of the charging post module group 130 is located between the positive output end of the charging post module group 130 and the corresponding switching device in the second switch group 153.
  • connection relationship of the plurality of switching devices in the second switch group 153 is: the positive output terminal of each of the charging post module groups 130 is connected to the charging through one of the second switch groups 153
  • the pile module group 130 corresponds to the positive input terminal of the charging terminal 170.
  • the charging terminal 170 corresponding to the charging pile module group 130 refers to a charging terminal 170 directly connected to the negative output terminal of the charging pile module group 130, such as the charging pile module group 1 in FIG.
  • the charging terminal 1 corresponds.
  • a connection relationship of the plurality of switching devices in the third switch group 155 is: a positive input terminal of each of the charging terminals 170 is respectively connected to the remaining plurality of devices through a plurality of switching devices in the third switch group 155 The positive input terminal of the charging terminal 170.
  • the positive input terminals of any one of the N charging terminals 170 are respectively connected to the positive input terminals of the remaining N-1 charging terminals 170 through N-1 switching devices.
  • the connection point of the switching device in the third switch group 155 is located between the positive input terminal of the charging terminal 170 and the corresponding switching device of the second switch group 153.
  • the positive pole of the first charging pile module group 130 participating in the series is used as the positive output terminal of the series output.
  • the last negative pole of the charging pile module group 130 participating in the series is taken as the negative output terminal of the serial output, and the negative output terminal connected to the previous charging pile module group 130 participating in the series is controlled by the controller 157 and the latter
  • the switching device between the positive output terminals of the charging pile module group 130 participating in the series is closed, and is controlled to be connected between the positive output terminal of the first charging pile module group 130 participating in the series and the positive input terminal of the corresponding charging terminal 170.
  • the switching device is closed, and controls the positive input connected to the series output (ie, the positive input of the first charging terminal corresponding to the series of charging pile modules 130) and the positive input of the charging terminal 170 that needs to be output in series
  • the switching device between the terminals is closed, and the remaining switching devices connected to the plurality of charging peg module groups participating in the series are disconnectedIt can be understood that the charging pile module group corresponding to the charging terminal that needs to be serially output is the last charging pile module group participating in the series connection.
  • the controller 157 controls the connection between the positive output terminals of the plurality of charging pile module groups 130 participating in the parallel connection.
  • the switching device is closed and controls switching device connection between the negative output terminals of the plurality of charging pile module groups 130 participating in the parallel connection, and controlling the positive output of the plurality of charging pile module groups 130 connected in parallel.
  • the switching device between the terminal and the positive input terminal of the corresponding charging terminal 170 is closed, and the remaining switching devices connected to the plurality of charging post module groups participating in parallel are controlled to be disconnected.
  • the controller 157 controls the closing of the plurality of switching devices in the first switch group 151, the second switch group 153, and the third switch group 155 or
  • the N charging post module groups 130 can be configured in a series, parallel or series-parallel combination to at least one of the charging terminals 170.
  • the controller 157 controls the closing of the plurality of switching devices in the first switch group 151, the second switch group 153, and the third switch group 155 or
  • the N charging post module groups 130 can be configured in a series, parallel or series-parallel combination to at least one of the charging terminals 170.
  • the four 750V/15kW charging pile modules having the output characteristics shown in FIG. 2 can constitute a 750V/60 kW charging pile module group, and the output characteristics of the 750V/60 kW charging pile module group are as shown in FIG. 6.
  • the 750V/60kW charging pile module group can output a rated power of 60kW when charging an electric vehicle with a charging voltage of 600-750V, but when charging an electric vehicle with a charging voltage of 300V, the output power is linearly attenuated to 30kW.
  • the utilization rate of the charging pile power unit is too low, resulting in waste of resources.
  • the 750V/15kW charging pile module having the output characteristic shown in FIG. 2 is decomposed into three 250V/5 kW charging pile modules with a year-on-year output characteristic, the 250V/5 kW charging pile module.
  • the output characteristics are shown in Figure 7.
  • the year-on-year output characteristic means that the highest and lowest output voltage of the 250V/5kW charging pile module are 1/3 of the 750V/15kW charging pile module, and the maximum output power when outputting the highest rated voltage is 750V/15kW charging pile module 1 /3, the highest and lowest voltage for constant power operation is 1/3 of the 750V/15kW charging pile module. After the output voltage drops to the lowest constant power output voltage, the ratio of power derating to output voltage is proportional to the 750V/15kW charging pile module. the same.
  • a charging pile system 800 including a system input bus bar 810, six charging pile module groups 831-836, a power distribution unit 850, and the six charging pile modules.
  • Each charging pile module set includes two parallel 250V/5kW charging pile modules having the output characteristics shown in FIG.
  • the connection relationship between the components of the charging post system 800 and the structure of the power distribution unit 850 can be referred to the description in the embodiment shown in FIG. 4 or 5.
  • the power distribution unit 850 can flexibly configure and output the six charging post module groups 831-836 to the six charging terminals 871-876 in a series, parallel or series-parallel combination. For example, when all the charging pile module groups 831-836 are all configured to the charging terminal 1, the power distribution unit 850 can configure six charging pile module groups 831-836 in the following manner:
  • Method 1 All six charging pile module groups 831 to 836 are output in parallel to the charging terminal 871;
  • Mode 2 the charging pile module groups 831, 832, 833 are connected in parallel, the charging pile module groups 834, 835, 836 are connected in parallel, and then the two parallel subsystems are serially output to the charging terminal 871;
  • Mode 3 the charging pile module groups 831, 832 are connected in parallel, the charging pile module groups 833, 834 are connected in parallel, the charging pile module groups 835, 836 are connected in parallel, and then the three parallel subsystems are serially output to the charging terminal 871;
  • Method 4 All of the six charging post module groups 831 to 836 are serially output to the charging terminal 1.
  • the charging terminal 871 can obtain the output characteristics as shown in FIG. 9
  • Figure 9 Comparing Fig. 9 with Fig. 6, it can be seen that the output power of Fig. 9 at an output voltage of 100 to 500 V is much larger than that of Fig. 6. At the same time, Figure 9 can also increase the output voltage to 1500V, and can output at a rated power of 60kW from 1200V to 1500V.
  • the output configuration of the charging pile system 800 shown in FIG. 8 may be any one of the possible modes allocated by the power distribution unit 850 in addition to the above four configuration modes 1 to 4.
  • the charging pile module group 833 to the charging pile module group 836 can be configured to the charging terminal 873 in the form of separate output or series-parallel combined output. ⁇ Charging terminal 876.
  • the charging pile system provided by the embodiment of the invention can be configured by the power distribution unit, so that any number of charging pile module groups in the charging pile system can be configured to be connected to the charging terminal in parallel, series or series-parallel combination, thereby obtaining various types.
  • the output characteristics can effectively increase the output voltage and current range of the charging pile module group output to each charging terminal, and can meet the charging requirements of various electric vehicles of different capacities, different charging rates, and different charging voltages.
  • the remaining charging pile module group can also provide output for other charging terminals, thereby improving the application flexibility of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电桩系统,包括:系统输入母线(110)、多个充电桩模块组(130)、功率分配单元(150)以及与多个充电桩模块组(130)对应的多个充电终端(170);系统输入母线(110)与多个充电桩模块组(130)的输入端连接,多个充电桩模块组(130)的输出端通过功率分配单元(150)与多个充电终端(170)的输入端连接;功率分配单元(150)包括第一开关组(151)、第二开关组(153)、第三开关组(155)和控制器(157),每一个开关组均包括多个开关器件;控制器(157)用于对多个开关器件进行控制,以通过多个开关器件的组合将多个充电桩模块组(130)以串联或并联的方式柔性配置给功率需求大于对应的充电桩模块组(130)的充电终端(170)。该充电桩系统可以有效增大输出到各充电终端的输出电压、电流范围。

Description

一种充电桩系统
本申请要求于2017年1月25日提交中国专利局、申请号为201710056257.2发明名称为“一种充电桩系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电动汽车充电技术领域,尤其涉及一种充电桩系统。
背景技术
充电桩系统用于将电网(包含微电网)的电能转化成不同电压电流等级的直流电,进而通过充电连接装置给电动汽车的电池直接进行充电。如图1所示,典型的直流充电桩系统通常包括输入母线、系统控制单元,充电模块,输出直流母线,充电终端等组成部分。其中,输入母线用于将输入电源接入到充电模块,充电模块用于将母线输入的电能转化成电动车所需规格的直流电,再通过输出直流母线、充电终端给电动汽车电池进行充电。
由于电动车的应用场景非常繁多,对电池容量的需求也是大小不一,所以导致电动车的充电电压不尽相同,充电电流的需求范围也非常宽。目前来说,乘用车的电池额定电压一般为150~500V,大巴一般为400~700V;而随着电池及充电技术的发展,电动汽车电池容量会越来越大,充电速率也越来越高。为提高充电功率,只能提高充电电流或者充电电压,而由于充电电流的提高受限于充电电缆的载流能力,所以通过提高充电电压来提高充电速率也是业界公认的发展方向,目前已经有少数电动车的电压达到800~1000V。
图2是目前常见充电模块类型中输出功率特性最优的750V/15kW充电桩模块的输出特性图,由图2可看出,即使是最优输出功率特性的充电桩模块仍无法在全电压范围输出恒功率。充电桩通常由多个模块并联组成,例如,一个额定750V/60kW的充电桩(由4个具有图2输出特性的模块并联组成)在输出300V充电时,最大功率只有30kW,如果该充电桩要具有足够的功率为一辆充电电压300V充电电流200A的电动车充电,实际需要的充电功率为60kW,充电桩的额定功率却需要设计成120kW,才能保证系统在300V输出时能够输出200A电流,这样就会造成充电能力的浪费。因此,这种充电桩很难去适应不同充电电压、充电电流需求的电动车。
发明内容
本发明实施例提供一种充电桩系统,以实现对充电桩系统的输出电压和输出电流范围的灵活配置,满足不同负载的充电需求。
本发明实施例第一方面提供一种充电桩系统,包括:系统输入母线、多个充电桩模块组、功率分配单元以及与所述多个充电桩模块组对应的多个充电终端;所述系统输入母线与所述多个充电桩模块组的输入端连接,所述多个充电桩模块组的输出端通过所述功率分配单元与所述多个充电终端的输入端连接;所述功率分配单元包括第一开关组、第二开关组、第三开关组和控制器,每一个所述开关组均包括多个开关器件;所述第一开关组中的开关器件连接于所述多个充电桩模块组的输出端之间,用于将所述多个充电桩模块组中的 至少两个空闲的充电桩模块组配置为串联或并联输出,所述第二开关组中的一个开关器件将所述多个充电桩模块组的输出端与对应的充电终端的输入端分别连接,所述第三开关组中的开关器件连接于所述多个充电终端的输入端之间,所述第二开关组和所述第三开关组用于导通所述串联或并联输出的充电桩模块组与任意一个所述充电终端的输入端之间的连接;
所述控制器与所述第一开关组、所述第二开关组和所述第三开关组分别电性连接,用于在所述多个充电终端中任意一个充电终端的功率需求大于对应的充电桩模块组的输出功率的情形下,对所述第一开关组、所述第二开关组和所述第三开关组中的多个开关器件进行控制,以通过将所述多个充电桩模块组中的至少两个空闲的充电桩模块组以串联或并联输出的方式配置给所述功率需求大于对应的充电桩模块组的充电终端。
所述充电桩系统通过所述控制器控制所述第一开关组、所述第二开关组和所述第三开关组中的多个开关器件改变闭合与断开的组合方式,从而使得所述多个充电桩模块组之间形成串联、并联或者串并联组合的连接方式,进而根据连接方式的不同为所述多个充电终端中的至少一个终端提供具有不同输出特性的充电电流和充电电压,可以有效增大所述充电桩系统的充电电流和充电电压的配置范围,使得所述充电桩系统可以满足不同容量、不同充电倍率、不同充电电压的各类电动车的充电需求。
在一种实施方式中,每一个所述充电桩模块组的正极输出端通过所述第一开关组中的多个开关器件分别连接至其余的多个充电桩模块组的正极输出端,每一个所述充电桩模块组的正极输出端还通过所述第一开关组中的多个开关器件分别连接至其余的多个充电桩模块组的负极输出端;其中,所有与所述充电桩模块组的负极输出端连接的开关器件的连接点位于所述充电桩模块组的负极输出端与所述第二开关组中对应的开关器件之间。
在一种实施方式中,所述充电桩系统包括N个充电桩模块组和对应的N个充电终端,所述N个充电桩模块组中的任意一个充电桩模块组的正极输出端通过N-1个开关器件分别连接至其余的N-1个充电桩模块组的正极输出端,所述N个充电桩模块组中的任意一个充电桩模块组的正极输出端还通过N-1个开关器件分别连接至其余的N-1个充电桩模块组130的负极输出端。
在一种实施方式中,每一个所述充电桩模块组的负极输出端通过所述第二开关组中的一个开关器件连接至与所述充电桩模块组对应的充电终端的负极输入端。
在一种实施方式中,每一个所述充电终端的负极输入端通过所述第三开关组中的多个开关器件分别连接至其余的多个充电终端的负极输入端;其中,所述开关器件的连接点位于所述充电终端的负极输入端与所述第二开关组中对应的开关器件之间。
在一种实施方式中,若任意一个所述充电终端需要多个所述充电桩模块组串联输出,则将第一个参与串联的充电桩模块组的正极作为串联输出的正极输出端,并将最后一个参与串联的充电桩模块组的负极作为串联输出的负极输出端,并通过所述控制器控制连接于前一个参与串联的充电桩模块组的负极输出端与后一个参与串联的充电桩模块组的正极输出端之间的开关器件闭合,并控制连接于最后一个参与串联的充电桩模块组的负极输出端与对应的充电终端的负极输入端之间的开关器件闭合,以及控制连接于串联输出的负极输出端与所述需要串联输出的充电终端的负极输入端之间的开关器件闭合,并控制与所述参 与串联的多个充电桩模块组连接的其余开关器件均断开。
在本实施方式中,通过所述控制器控制所述第一开关组、所述第二开关组和所述第三开关组中的多个开关器件的闭合与断开的组合方式,从而将多个充电桩模块组串联后配置给一个所述充电终端,从而可以获得最大的充电电压,即实现对负载的高电压充电,有利于提升充电速度。
在一种实施方式中,所述需要串联输出的充电终端对应的充电桩模块组为第一个参与串联的充电桩模块组。
在一种实施方式中,若任意一个所述充电终端需要多个所述充电桩模块组并联输出,则通过所述控制器控制连接于参与并联的多个所述充电桩模块组的正极输出端之间的开关器件闭合,并控制连接于参与并联的多个所述充电桩模块组的负极输出端之间的开关器件闭合,以及控制连接于参与并联的多个所述充电桩模块组的负极输出端与对应的充电终端的负极输入端之间的开关器件闭合,并控制与所述参与并联的多个充电桩模块组连接的其余开关器件均断开。
在本实施方式中,通过所述控制器控制所述第一开关组、所述第二开关组和所述第三开关组中的多个开关器件的闭合与断开的组合方式,从而将多个充电桩模块组并联后配置给一个所述充电终端,从而可以获得最大的充电电流,即实现对负载的大电流充电,有利于提升充电速度。
在一种实施方式中,每一个所述充电桩模块组的负极输出端通过所述第一开关组中的多个开关器件分别连接至其余的多个充电桩模块组的负极输出端,每一个所述充电桩模块组的正极输出端通过所述第一开关组中的多个开关器件分别连接至其余的多个充电桩模块组的负极输出端;其中,所有与所述充电桩模块组的正极输出端连接的开关器件的连接点位于所述充电桩模块组的正极输出端与所述第二开关组中对应的开关器件之间。
在一种实施方式中,所述充电桩系统包括N个充电桩模块组和N个充电终端,所述N个充电桩模块组中的任意一个充电桩模块组的负极输出端通过N-1个开关器件分别连接至其余的N-1个充电桩模块组的负极输出端,所述N个充电桩模块组中的任意一个充电桩模块组的正极输出端通过N-1个开关器件分别连接至其余的N-1个充电桩模块组的负极输出端。
在一种实施方式中,每一个所述充电桩模块组的正极输出端通过所述第二开关组中的一个开关器件连接至与所述充电桩模块组对应的充电终端的正极输入端。
在一种实施方式中,每一个所述充电终端的正极输入端通过所述第三开关组中的多个开关器件分别连接至其余的多个充电终端的正极输入端;其中,所述开关器件的连接点位于所述充电终端的正极输入端与所述第二开关组中对应的开关器件之间。
在一种实施方式中,若任意一个所述充电终端需要多个所述充电桩模块组串联输出,则将第一个参与串联的充电桩模块组的正极作为串联输出的正极输出端,并将最后一个参与串联的充电桩模块组的负极作为串联输出的负极输出端,并通过所述控制器控制连接于前一个参与串联的充电桩模块组的负极输出端与后一个参与串联的充电桩模块组的正极输出端之间的开关器件闭合,并控制连接于第一个参与串联的充电桩模块组的正极输出端与对应的充电终端的正极输入端之间的开关器件闭合,以及控制连接于串联输出的正极输出端与所述需要串联输出的充电终端的正极输入端之间的开关器件闭合,并控制与所述参与 串联的多个充电桩模块组连接的其余开关器件均断开。
在本实施方式中,通过所述控制器控制所述第一开关组、所述第二开关组和所述第三开关组中的多个开关器件的闭合与断开的组合方式,从而将多个充电桩模块组串联后配置给一个所述充电终端,从而可以获得最大的充电电压,即实现对负载的高电压充电,有利于提升充电速度。
在一种实施方式中,所述需要串联输出的充电终端对应的充电桩模块组为最后一个参与串联的充电桩模块组。
在一种实施方式中,若任意一个所述充电终端需要多个所述充电桩模块组并联输出,则通过所述控制器控制连接于参与并联的多个所述充电桩模块组的正极输出端之间的开关器件闭合,并控制连接于参与并联的多个所述充电桩模块组的负极输出端之间的开关器件闭合,以及控制连接于参与并联的多个所述充电桩模块组的正极输出端与对应的充电终端的正极输入端之间的开关器件闭合,并控制与所述参与并联的多个充电桩模块组连接的其余开关器件均断开。
在本实施方式中,通过所述控制器控制所述第一开关组、所述第二开关组和所述第三开关组中的多个开关器件的闭合与断开的组合方式,从而将多个充电桩模块组并联后配置给一个所述充电终端,从而可以获得最大的充电电流,即实现对负载的大电流充电,有利于提升充电速度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术中以及本发明实施例描述中所需要使用的附图作简单地介绍。
图1是典型的直流充电桩系统的结构示意图;
图2是最优输出功率特性为750V/15kW充电桩模块的输出特性图;
图3是本发明实施例提供的充电桩系统的第一结构示意图;
图4是本发明实施例提供的充电桩系统的第二结构示意图;
图5是本发明实施例提供的充电桩系统的第三结构示意图;
图6是最优输出功率特性为750V/60kW充电桩模块组的输出特性图;
图7是本发明实施例提供的充电桩系统的充电桩模块的输出特性图;
图8是本发明实施例提供的充电桩系统的第四结构示意图;
图9是本发明实施例提供的充电桩系统的输出特性图。
具体实施方式
下面将结合附图,对本发明的实施例进行描述。
本发明实施例中提供一种充电桩系统,其可以使充电桩系统内的多个充电终端得到多种输出特性,输出到各充电终端的输出电压、电流范围很大,能够满足不同容量、不同充电倍率、不同充电电压的各类电动车的充电需求。当该充电桩系统中的一个充电终端只需要部分充电桩模块组投入使用时,其余的充电桩模块组还可以为其他充电终端提供输出,提高了系统的应用灵活性。同时,所述充电桩系统还能够保证投入工作的充电桩模块组始 终工作在接近额定功率的状态,提高系统的利用率。
请参阅图3,在本发明一个实施例中,提供一种充电桩系统100,包括系统输入母线110、多个充电桩模块组130、功率分配单元150以及与所述多个充电桩模块组130对应的多个充电终端170。
所述系统输入母线110与所述多个充电桩模块组130的输入端连接,所述多个充电桩模块组130的输出端通过所述功率分配单元150与所述多个充电终端170的输入端连接。其中,所述系统输入母线110用于连接外部电源,所述外部电源可以是交流电源或直流电源。每一个所述充电桩模块组130可以包括多个充电桩模块。可以理解,所述充电桩系统100包括的充电桩模块组130的数量,以及每一个充电桩模块组130包括的充电桩模块的数量可以为任意自然数。
所述功率分配单元150包括第一开关组151、第二开关组153、第三开关组155和控制器157,每一个所述开关组均包括多个开关器件。其中,所述开关器件可以为任意种类的能够实现电路通断功能的器件。
所述第一开关组151中的开关器件连接于所述多个充电桩模块组130的输出端之间,用于将所述多个充电桩模块组130中的至少两个空闲的充电桩模块组配置为串联或并联输出,所述第二开关组153中的一个开关器件将所述多个充电桩模块组130的输出端与对应的充电终端170的输入端分别连接,所述第三开关组155中的开关器件连接于所述多个充电终端170的输入端之间,所述第二开关组153和所述第三开关组155用于导通所述串联或并联输出的充电桩模块组与任意一个所述充电终端170的输入端之间的连接,即所述第二开关组153和所述第三开关组155用于导通所述至少两个空闲的充电桩模块组在串联或并联后形成的输出端与任意一个充电终端170的输入端之间的连接。
所述控制器157与所述第一开关组151、所述第二开关组153和所述第三开关组155分别电性连接,用于在所述多个充电终端170中任意一个充电终端170的功率需求大于对应的充电桩模块组130的输出功率的情形下,对所述第一开关组151、所述第二开关组153和所述第三开关组155中的多个开关器件进行控制,以通过将所述多个充电桩模块组130中的至少两个空闲的充电桩模块组130以串联或并联输出的方式配置给所述功率需求大于对应的充电桩模块组的充电终端170。
其中,所述通过所述多个开关器件的组合将所述多个充电桩模块组130以串联或并联的方式柔性配置给所述多个充电终端170是指:通过改变所述多个开关器件的闭合与断开的组合方式,从而使得所述多个充电桩模块组130之间形成串联或者并联的组合连接方式,进而根据连接方式的不同为所述多个充电终端170中的至少一个终端提供具有不同输出特性的充电电流和充电电压,以使得所述充电桩系统100可以满足不同容量、不同充电倍率、不同充电电压的各类电动车的充电需求。
请参阅图4,在一种实施方式中,所述充电桩系统100包括N个充电桩模块组130和N个充电终端170。所述第一开关组151中的多个开关器件的连接关系为:每一个所述充电桩模块组130的正极输出端通过所述第一开关组151中的多个开关器件分别连接至其余的多个充电桩模块130组的正极输出端。在本实施方式中,所述N个充电桩模块组130中的任意一个充电桩模块组130的正极输出端通过N-1个开关器件分别连接至其余的N-1个充电桩模块组 130的正极输出端。每一个所述充电桩模块组130的正极输出端还通过所述第一开关组151中的多个开关器件分别连接至其余的多个充电桩模块组130的负极输出端。在本实施方式中,所述N个充电桩模块组130中的任意一个充电桩模块组130的正极输出端还通过N-1个开关器件分别连接至其余的N-1个充电桩模块组130的负极输出端。其中,所有与所述充电桩模块组130的负极输出端连接的开关器件的连接点位于所述充电桩模块组130的负极输出端与所述第二开关组153中对应的开关器件之间。
所述第二开关组153中的多个开关器件的连接关系为:每一个所述充电桩模块组130的负极输出端通过所述第二开关组153中的一个开关器件连接至与所述充电桩模块组130对应的充电终端170的负极输入端。其中,所述充电桩模块组130对应的充电终端170是指,正极输入端与所述充电桩模块组130的正极输出端直接连接的充电终端170,如图4中的充电桩模块组1与充电终端1对应。
所述第三开关组155中的多个开关器件的连接关系为:每一个所述充电终端170的负极输入端通过所述第三开关组155中的多个开关器件分别连接至其余的多个充电终端170的负极输入端。在本实施方式中,所述N个充电终端170中的任意一个充电终端170的负极输入端通过N-1个开关器件分别连接至其余的N-1个充电终端170的负极输入端。其中,所述第三开关组155中的开关器件的连接点位于所述充电终端170的负极输入端与所述第二开关组153中对应的开关器件之间。
在本实施方式中,若任意一个所述充电终端170需要多个所述充电桩模块组130串联输出,则将第一个参与串联的充电桩模块组130的正极作为串联输出的正极输出端,并将最后一个参与串联的充电桩模块组130的负极作为串联输出的负极输出端,并通过所述控制器157控制连接于前一个参与串联的充电桩模块组130的负极输出端与后一个参与串联的充电桩模块组130的正极输出端之间的开关器件闭合,并控制连接于最后一个参与串联的充电桩模块组130的负极输出端与对应的充电终端170的负极输入端之间的开关器件闭合,以及控制连接于串联输出的负极输出端(即最后一个参与串联的充电桩模块组130对应的充电终端170的负极输入端)与所述需要串联输出的充电终端170的负极输入端之间的开关器件闭合,并控制与所述参与串联的多个充电桩模块组连接的其余开关器件均断开。可以理解,所述需要串联输出的充电终端170对应的充电桩模块组130为第一个参与串联的充电桩模块组170。
若任意一个所述充电终端170需要多个所述充电桩模块组130并联输出,则通过所述控制器157控制连接于参与并联的多个所述充电桩模块组130的正极输出端之间的开关器件闭合,并控制连接于参与并联的多个所述充电桩模块组130的负极输出端之间的开关器件闭合,以及控制连接于参与并联的多个所述充电桩模块组130的负极输出端与对应的充电终端170的负极输入端之间的开关器件闭合,并控制与所述参与并联的多个充电桩模块组连接的其余开关器件均断开。
在本实施方式中,通过所述控制器157控制所述第一开关组151、所述第二开关组153和所述第三开关组155中的多个开关器件的闭合或断开,可以将所述N个充电桩模块组130全部并联后配置给一个所述充电终端170,以获得最大的充电电流;或者,也可以将所述N个充电桩模块组130全部串联后配置给一个所述充电终端170,以获得最大的充电电压;或 者,也可以将所述N个充电桩模块组130以串并联组合的方式配置给一个所述充电终端170,以获得符合负载需求的充电电流和充电电压;或者,也可以将所述N个充电桩模块组130中的一部分通过串联、并联或串并联组合的方式配置给一个所述充电终端170,并将将所述N个充电桩模块组130中的另一部分通过串联、并联或串并联组合的方式配置给另一个所述充电终端170。可以理解,所述N个充电桩模块组130的组合方式并不限于上述举例的情况,还可以是通过所述功率分配单元150能够分配出的任意的组合方式。
请参阅图5,在一种实施方式中,所述充电桩系统100包括N个充电桩模块组130和N个充电终端170。所述第一开关组151中的多个开关器件的连接关系为:每一个所述充电桩模块组130的负极输出端通过所述第一开关组中151的多个开关器件分别连接至其余的多个充电桩模块组的负极输出端。在本实施方式中,所述N个充电桩模块组130中的任意一个充电桩模块组130的负极输出端通过N-1个开关器件分别连接至其余的N-1个充电桩模块组130的负极输出端。每一个所述充电桩模块组130的正极输出端通过所述第一开关组151中的多个开关器件分别连接至其余的多个充电桩模块组130的负极输出端。在本实施方式中,所述N个充电桩模块组130中的任意一个充电桩模块组130的正极输出端通过N-1个开关器件分别连接至其余的N-1个充电桩模块组130的负极输出端。其中,所有与所述充电桩模块组130的正极输出端连接的开关器件的连接点位于所述充电桩模块组130的正极输出端与所述第二开关组153中对应的开关器件之间。
所述第二开关组153中的多个开关器件的连接关系为:每一个所述充电桩模块组130的正极输出端通过所述第二开关组153中的一个开关器件连接至与所述充电桩模块组130对应的充电终端170的正极输入端。其中,所述充电桩模块组130对应的充电终端170是指,负极输入端与所述充电桩模块组130的负极输出端直接连接的充电终端170,如图5中的充电桩模块组1与充电终端1对应。
所述第三开关组155中的多个开关器件的连接关系为:每一个所述充电终端170的正极输入端通过所述第三开关组155中的多个开关器件分别连接至其余的多个充电终端170的正极输入端。在本实施方式中,所述N个充电终端170中的任意一个充电终端170的正极输入端通过N-1个开关器件分别连接至其余的N-1个充电终端170的正极输入端。其中,所述第三开关组155中的开关器件的连接点位于所述充电终端170的正极输入端与所述第二开关组153中对应的开关器件之间。
在本实施方式中,若任意一个所述充电终170端需要多个所述充电桩模块组130串联输出,则将第一个参与串联的充电桩模块组130的正极作为串联输出的正极输出端,并将最后一个参与串联的充电桩模块组130的负极作为串联输出的负极输出端,并通过所述控制器157控制连接于前一个参与串联的充电桩模块组130的负极输出端与后一个参与串联的充电桩模块组130的正极输出端之间的开关器件闭合,并控制连接于第一个参与串联的充电桩模块组130的正极输出端与对应的充电终端170的正极输入端之间的开关器件闭合,以及控制连接于串联输出的正极输出端(即第一个参与串联的充电桩模块组130对应的充电终端的正极输入端)与所述需要串联输出的充电终端170的正极输入端之间的开关器件闭合,并控制与所述参与串联的多个充电桩模块组连接的其余开关器件均断开。可以理解,所述需要串联输出的充电终端对应的充电桩模块组为最后一个参与串联的充电桩模块组。
若任意一个所述充电终端170需要多个所述充电桩模块组130并联输出,则通过所述控制器157控制连接于参与并联的多个所述充电桩模块组130的正极输出端之间的开关器件闭合,并控制连接于参与并联的多个所述充电桩模块组130的负极输出端之间的开关器件闭合,以及控制连接于参与并联的多个所述充电桩模块组130的正极输出端与对应的充电终端170的正极输入端之间的开关器件闭合,并控制与所述参与并联的多个充电桩模块组连接的其余开关器件均断开。
可以理解,在本实施方式中,所述通过所述控制器157控制所述第一开关组151、所述第二开关组153和所述第三开关组155中的多个开关器件的闭合或断开,同样可以实现将所述N个充电桩模块组130以串联、并联或串并联组合的方式配置给至少一个所述充电终端170,具体可以参考图4所示实施方式中的相关描述,此处不再赘述。
可以理解,具有图2所示输出特性的4个750V/15kW充电桩模块可构成一个750V/60kW充电桩模块组,该750V/60kW充电桩模块组的输出特性如图6所示。该750V/60kW充电桩模块组在给充电电压为600~750V的电动车进行充电时可输出额定功率60kW,但在给充电电压为300V的电动车充电时,输出功率就会线性衰减至30kW,导致充电桩功率单元的利用率过低,产生资源浪费。
为解决上述问题,在一种实施方式中,将具有图2所示输出特性的750V/15kW充电桩模块分解为三个同比输出特性的250V/5kW充电桩模块,所述250V/5kW充电桩模块的输出特性如图7所示。其中,同比输出特性指:250V/5kW充电桩模块的最高和最低输出电压均为750V/15kW充电桩模块的1/3,输出最高额定电压时的最大输出功率为750V/15kW充电桩模块的1/3,恒功率工作的最高最低电压为750V/15kW充电桩模块的1/3,在输出电压下降到最低恒功率输出电压之后,功率降额与输出电压的比例关系与750V/15kW充电桩模块相同。
请参阅图8,在本发明一个实施例中,提供一种充电桩系统800,包括系统输入母线810、6个充电桩模块组831~836、功率分配单元850以及与所述6个充电桩模块组831~836对应的6个充电终端871~876。每一个充电桩模块组包括2个并联的具有图7所示输出特性的250V/5kW充电桩模块。所述充电桩系统800的各组成部分之间的连接关系以及所述功率分配单元850的结构可以参考图4或图5所示实施例中的描述。
可以理解,所述功率分配单元850可以将6个充电桩模块组831~836以串联、并联或串并联组合的方式灵活配置输出至所述6个充电终端871~876。例如,当所有充电桩模块组831~836全部配置到充电终端1时,所述功率分配单元850可以采用以下方式配置6个充电桩模块组831~836:
方式1:将6个充电桩模块组831~836全部并联输出至充电终端871;
方式2:将充电桩模块组831、832、833并联,将充电桩模块组834、835、836并联,再将这两个并联子系统串联输出至充电终端871;
方式3:将充电桩模块组831、832并联,将充电桩模块组833、834并联,将充电桩模块组835、836并联,再将这三个并联子系统串联输出至充电终端871;
方式4:将6个充电桩模块组831~836全部串联输出至充电终端1。
请参阅图9,采用上述四种配置方式1~4,可以让充电终端871获得如图9所示的输出特性。
对比图9与图6,可以看到图9在输出电压为100~500V时的输出功率远远大于图6。同时,图9还可以将输出电压提升至1500V,并且在1200V~1500V能够按额定功率60kW输出。
图8所示的充电桩系统800输出配置方式除了上述四种配置方式1~4,还可以是由所述功率分配单元850分配得到的任意一种可能的方式。例如,当充电终端871只需要充电桩模块组831与充电桩模块组832投入使用时,充电桩模块组833~充电桩模块组836能够以单独输出或者串并联组合输出的形式配置到充电终端873~充电终端876。
本发明实施例提供的充电桩系统通过设置所述功率分配单元,从而可以将充电桩系统中任意数量的充电桩模块组以并联、串联或串并联组合的方式配置给充电终端,从而得到多种输出特性,可以有效增大充电桩模块组输出到各充电终端的输出电压、电流范围,能够满足不同容量、不同充电倍率、不同充电电压的各类电动车的充电需求。同时,当充电桩系统中的一个充电终端只需要部分充电桩模块组投入使用时,其余的充电桩模块组还可以为其他充电终端提供输出,提高了系统的应用灵活性。

Claims (13)

  1. 一种充电桩系统,其特征在于,包括:
    系统输入母线、多个充电桩模块组、功率分配单元以及与所述多个充电桩模块组对应的多个充电终端;
    所述系统输入母线与所述多个充电桩模块组的输入端连接,所述多个充电桩模块组的输出端通过所述功率分配单元与所述多个充电终端的输入端连接;
    所述功率分配单元包括第一开关组、第二开关组、第三开关组和控制器,每一个所述开关组均包括多个开关器件;
    所述第一开关组中的开关器件连接于所述多个充电桩模块组的输出端之间,用于将所述多个充电桩模块组中的至少两个空闲的充电桩模块组配置为串联或并联输出,所述第二开关组中的一个开关器件将所述多个充电桩模块组的输出端与对应的充电终端的输入端分别连接,所述第三开关组中的开关器件连接于所述多个充电终端的输入端之间,所述第二开关组和所述第三开关组用于导通所述串联或并联输出的充电桩模块组与任意一个所述充电终端的输入端之间的连接;
    所述控制器与所述第一开关组、所述第二开关组和所述第三开关组分别电性连接,用于在所述多个充电终端中任意一个充电终端的功率需求大于对应的充电桩模块组的输出功率的情形下,对所述第一开关组、所述第二开关组和所述第三开关组中的多个开关器件进行控制,以通过将所述多个充电桩模块组中的至少两个空闲的充电桩模块组以串联或并联输出的方式配置给所述功率需求大于对应的充电桩模块组的充电终端。
  2. 如权利要求1所述的充电桩系统,其特征在于,每一个所述充电桩模块组的正极输出端通过所述第一开关组中的多个开关器件分别连接至其余的多个充电桩模块组的正极输出端,每一个所述充电桩模块组的正极输出端还通过所述第一开关组中的多个开关器件分别连接至其余的多个充电桩模块组的负极输出端;其中,所有与所述充电桩模块组的负极输出端连接的开关器件的连接点位于所述充电桩模块组的负极输出端与所述第二开关组中对应的开关器件之间。
  3. 如权利要求1或2所述的充电桩系统,其特征在于,每一个所述充电桩模块组的负极输出端通过所述第二开关组中的一个开关器件连接至与所述充电桩模块组对应的充电终端的负极输入端。
  4. 如权利要求3所述的充电桩系统,其特征在于,每一个所述充电终端的负极输入端通过所述第三开关组中的多个开关器件分别连接至其余的多个充电终端的负极输入端;其中,所述开关器件的连接点位于所述充电终端的负极输入端与所述第二开关组中对应的开关器件之间。
  5. 如权利要求4所述的充电桩系统,其特征在于,若任意一个所述充电终端需要多个 所述充电桩模块组串联输出,则将第一个参与串联的充电桩模块组的正极作为串联输出的正极输出端,并将最后一个参与串联的充电桩模块组的负极作为串联输出的负极输出端,并通过所述控制器控制连接于前一个参与串联的充电桩模块组的负极输出端与后一个参与串联的充电桩模块组的正极输出端之间的开关器件闭合,并控制连接于最后一个参与串联的充电桩模块组的负极输出端与对应的充电终端的负极输入端之间的开关器件闭合,以及控制连接于串联输出的负极输出端与所述需要串联输出的充电终端的负极输出端之间的开关器件闭合,并控制与所述参与串联的多个充电桩模块组连接的其余开关器件均断开。
  6. 如权利要求5所述的充电桩系统,其特征在于,所述需要串联输出的充电终端对应的充电桩模块组为第一个参与串联的充电桩模块组。
  7. 如权利要求4所述的充电桩系统,其特征在于,若任意一个所述充电终端需要多个所述充电桩模块组并联输出,则通过所述控制器控制连接于参与并联的多个所述充电桩模块组的正极输出端之间的开关器件闭合,并控制连接于参与并联的多个所述充电桩模块组的负极输出端之间的开关器件闭合,以及控制连接于参与并联的多个所述充电桩模块组的负极输出端与对应的充电终端的负极输入端之间的开关器件闭合,并控制与所述参与并联的多个充电桩模块组连接的其余开关器件均断开。
  8. 如权利要求1所述的充电桩系统,其特征在于,每一个所述充电桩模块组的负极输出端通过所述第一开关组中的多个开关器件分别连接至其余的多个充电桩模块组的负极输出端,每一个所述充电桩模块组的正极输出端通过所述第一开关组中的多个开关器件分别连接至其余的多个充电桩模块组的负极输出端;其中,所有与所述充电桩模块组的正极输出端连接的开关器件的连接点位于所述充电桩模块组的正极输出端与所述第二开关组中对应的开关器件之间。
  9. 如权利要求1或8所述的充电桩系统,其特征在于,每一个所述充电桩模块组的正极输出端通过所述第二开关组中的一个开关器件连接至与所述充电桩模块组对应的充电终端的正极输入端。
  10. 如权利要求9所述的充电桩系统,其特征在于,每一个所述充电终端的正极输入端通过所述第三开关组中的多个开关器件分别连接至其余的多个充电终端的正极输入端;其中,所述开关器件的连接点位于所述充电终端的正极输入端与所述第二开关组中对应的开关器件之间。
  11. 如权利要求10所述的充电桩系统,其特征在于,若任意一个所述充电终端需要多个所述充电桩模块组串联输出,则将第一个参与串联的充电桩模块组的正极作为串联输出的正极输出端,并将最后一个参与串联的充电桩模块组的负极作为串联输出的负极输出端,并通过所述控制器控制连接于前一个参与串联的充电桩模块组的负极输出端与后一个参与 串联的充电桩模块组的正极输出端之间的开关器件闭合,并控制连接于第一个参与串联的充电桩模块组的正极输出端与对应的充电终端的正极输入端之间的开关器件闭合,以及控制连接于串联输出的正极输出端与所述需要串联输出的充电终端的正极输出端之间的开关器件闭合,并控制与所述参与串联的多个充电桩模块组连接的其余开关器件均断开。
  12. 如权利要求11所述的充电桩系统,其特征在于,所述需要串联输出的充电终端对应的充电桩模块组为最后一个参与串联的充电桩模块组。
  13. 如权利要求10所述的充电桩系统,其特征在于,若任意一个所述充电终端需要多个所述充电桩模块组并联输出,则通过所述控制器控制连接于参与并联的多个所述充电桩模块组的正极输出端之间的开关器件闭合,并控制连接于参与并联的多个所述充电桩模块组的负极输出端之间的开关器件闭合,以及控制连接于参与并联的多个所述充电桩模块组的正极输出端与对应的充电终端的正极输入端之间的开关器件闭合,并控制与所述参与并联的多个充电桩模块组连接的其余开关器件均断开。
PCT/CN2018/073202 2017-01-25 2018-01-18 一种充电桩系统 WO2018137542A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18745038.2A EP3560749B1 (en) 2017-01-25 2018-01-18 Charging pile system
US16/521,086 US10919403B2 (en) 2017-01-25 2019-07-24 Charging pile system with a plurality of charging piles switchable in series and parallel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710056257.2 2017-01-25
CN201710056257.2A CN106696748B (zh) 2017-01-25 2017-01-25 一种充电桩系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/521,086 Continuation US10919403B2 (en) 2017-01-25 2019-07-24 Charging pile system with a plurality of charging piles switchable in series and parallel

Publications (1)

Publication Number Publication Date
WO2018137542A1 true WO2018137542A1 (zh) 2018-08-02

Family

ID=58909741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073202 WO2018137542A1 (zh) 2017-01-25 2018-01-18 一种充电桩系统

Country Status (4)

Country Link
US (1) US10919403B2 (zh)
EP (1) EP3560749B1 (zh)
CN (1) CN106696748B (zh)
WO (1) WO2018137542A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867199A (zh) * 2017-11-10 2018-04-03 重庆电力高等专科学校 一种充电桩智能配电系统
US20210347273A1 (en) * 2020-05-08 2021-11-11 Rivian Ip Holdings, Llc Electric vehicle charging system and method
US11453298B2 (en) 2020-05-08 2022-09-27 Rivian Ip Holdings, Llc Electric vehicle charging dispenser and method
US11628739B2 (en) 2020-05-08 2023-04-18 Rivian Ip Holdings, Llc Electric vehicle fleet charging system and method
US11868927B2 (en) 2020-05-08 2024-01-09 Rivian Ip Holdings, Llc Electric vehicle charging system and method
US11890951B2 (en) 2020-05-08 2024-02-06 Rivian Ip Holdings, Llc Electric vehicle charging system and method utilizing a dispenser chain

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013570B2 (en) 2009-07-23 2011-09-06 Coulomb Technologies, Inc. Electrical circuit sharing for electric vehicle charging stations
US9878629B2 (en) 2009-12-17 2018-01-30 Chargepoint, Inc. Method and apparatus for electric vehicle charging station load management in a residence
US10150380B2 (en) 2016-03-23 2018-12-11 Chargepoint, Inc. Dynamic allocation of power modules for charging electric vehicles
HRP20221179T1 (hr) 2016-05-25 2022-12-09 Chargepoint, Inc. Dinamička dodjela energetskih modula za punjenje električnih vozila
CN106696748B (zh) * 2017-01-25 2019-06-28 华为技术有限公司 一种充电桩系统
CN107264310A (zh) * 2017-06-09 2017-10-20 合肥同佑电子科技有限公司 一种智能汽车充电桩
DE102017114988A1 (de) * 2017-07-05 2019-01-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hochvoltbatterieteilung für Ladesäulenanschluss
CN110832727B (zh) * 2017-08-25 2022-01-18 上海欣锐电控技术有限公司 一种直流充电设备
CN107757396B (zh) * 2017-09-13 2020-01-14 深圳市科华恒盛科技有限公司 一种柔性充电系统、柔性充电方法以及柔性充电装置
CN108394287B (zh) * 2017-11-20 2021-08-06 蔚来(安徽)控股有限公司 电动汽车柔性充电设备的控制方法和装置
CN108400627A (zh) * 2017-12-15 2018-08-14 蔚来汽车有限公司 移动充电装置、控制方法及充电车
CN108116263A (zh) * 2017-12-26 2018-06-05 深圳市科华恒盛科技有限公司 一种充电功率分配方法及系统
CN110015110B (zh) * 2017-12-29 2020-10-27 浙江万马新能源有限公司 一种链接式充电系统及动态分配功率的方法
CN108736553A (zh) * 2018-07-11 2018-11-02 南京国信能源有限公司 移动式高低压充电站
CA3052825C (en) * 2018-08-31 2023-02-21 Addenergie Technologies Inc. Dual voltage range charging station
CN110224467A (zh) * 2019-06-27 2019-09-10 宁波三星智能电气有限公司 功率分配电路及充电桩
US11424492B2 (en) 2019-10-31 2022-08-23 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery
CN112776637B (zh) * 2019-11-07 2022-05-17 国创移动能源创新中心(江苏)有限公司 一种移动式开关模块及通道选择器pdu
CN111284354A (zh) * 2020-03-16 2020-06-16 南京能瑞电力科技有限公司 一种充电系统和充电方法
IT202000011944A1 (it) * 2020-05-21 2021-11-21 Free2Move Esolutions S P A Impianto di ricarica di veicoli elettrici
CN111769610A (zh) * 2020-06-24 2020-10-13 深圳市科奥信电源技术有限公司 一种移动机器人充电站的控制方法、系统和装置
CN113922431A (zh) * 2020-07-10 2022-01-11 Oppo广东移动通信有限公司 电源提供装置及充电控制方法
US11777330B2 (en) * 2020-07-22 2023-10-03 Microsoft Technology Licensing, Llc Common charge controller for electronic devices with multiple batteries
WO2022051308A1 (en) * 2020-09-01 2022-03-10 Sion Power Corporation Multiplexed battery management system
CN112152483A (zh) * 2020-09-21 2020-12-29 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 可选择的模块化开关电源装置
CN112224081A (zh) * 2020-10-15 2021-01-15 阳光电源股份有限公司 一种多枪的充电桩及充电桩电路
CN112319298B (zh) * 2020-11-04 2022-07-15 四川光慧新能源科技有限公司 一种多个充电模块协调电流分配的方法
CN112721707B (zh) * 2020-12-07 2022-06-21 靳普 一种功率分配方法及分配系统
CN112622675A (zh) * 2020-12-10 2021-04-09 国网重庆电力公司 一种群控充电桩智能终端优化系统
CN112821527A (zh) * 2021-03-31 2021-05-18 中国长江电力股份有限公司 组合式多路单体铅酸蓄电池充电装置及充电方法
CN112918288A (zh) * 2021-04-16 2021-06-08 阳光电源股份有限公司 一种集成充电模块和充电桩及其控制方法
CN113489294A (zh) * 2021-06-08 2021-10-08 芯海科技(深圳)股份有限公司 放电电路、集成电路、电源适配器、移动电源及放电方法
MA53514B1 (fr) * 2021-06-08 2023-03-31 Univ Int Rabat Agrégateur multiport pour bornes de recharge cc et ac unidirectionnelles et bidirectionnelles
CN113580992A (zh) * 2021-07-13 2021-11-02 万帮数字能源股份有限公司 直流充电系统、充电桩和充电控制方法
DE102021209916A1 (de) * 2021-09-08 2023-03-09 Adaptive Balancing Power GmbH Booster Funktionalität fur eine Ladestation zum Laden von Elektrofahrzeugen
CN116210133A (zh) * 2021-09-30 2023-06-02 华为技术有限公司 一种充放电方法及相关装置
CN113839445B (zh) * 2021-10-14 2024-02-09 阳光电源股份有限公司 直流电源的控制方法、控制装置及直流电源
CN113895275B (zh) * 2021-11-15 2023-07-18 华为数字能源技术有限公司 功率分配设备以及充电系统
CN114290922B (zh) * 2021-11-25 2023-12-08 华为数字能源技术有限公司 一种充电模块及充电系统
CN115782667B (zh) * 2023-02-08 2023-04-28 云南丁旺科技有限公司 充电堆用电容量分配方法和系统
CN116101109B (zh) * 2023-04-12 2023-06-23 深圳市百广源科技有限公司 并联型储能充电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038976A2 (en) * 2007-07-04 2009-03-26 Satyajit Patwardhan Widely deployable charging system for vehicles
CN104092266A (zh) * 2014-07-25 2014-10-08 李晚霞 一种解决动力电池快速安全充放电的方法及装置
CN105375599A (zh) * 2015-10-10 2016-03-02 愈先梅 电动汽车直流充电桩系统
CN106541842A (zh) * 2016-09-30 2017-03-29 深圳市钜能科技有限公司 零待机功耗的充电桩
CN106696748A (zh) * 2017-01-25 2017-05-24 华为技术有限公司 一种充电桩系统

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886426A (en) * 1973-03-16 1975-05-27 Eagle Picher Ind Inc Battery switching circuit
CH617822B (fr) * 1975-12-10 Ebauches Sa Dispositif permettant de recharger un accumulateur a l'aide d'elements photosensibles.
GB1583865A (en) * 1976-07-23 1981-02-04 Post Office Battery charging apparatus
US4274043A (en) * 1978-12-21 1981-06-16 The Dow Chemical Company Efficient, high power battery module; D.C. transformers and multi-terminal D.C. power networks utilizing same
GB2261122B (en) * 1991-10-29 1996-06-05 Yang Tai Her Stepped compound voltage power supply unit
US5225761A (en) * 1992-01-15 1993-07-06 Wells Marine Technology, Inc. Battery management system
US5369351A (en) * 1992-02-18 1994-11-29 Angeion Corporation High voltage charge storage array for an impantable defibrillator
AU680210B2 (en) * 1993-01-29 1997-07-24 Canon Kabushiki Kaisha Electric power accumulating apparatus and electric power system
JPH07212980A (ja) * 1994-01-13 1995-08-11 Fujitsu Ltd バッテリの充・放電装置
US5734205A (en) * 1996-04-04 1998-03-31 Jeol Ltd. Power supply using batteries undergoing great voltage variations
US6031355A (en) * 1997-08-16 2000-02-29 Rich; Joe G. Circuit utilizing current flowing from a high-potential battery bank to a low-potential battery bank
US6034506A (en) * 1998-01-16 2000-03-07 Space Systems/Loral, Inc. Lithium ion satellite battery charge control circuit
US6430692B1 (en) * 1998-09-25 2002-08-06 International Business Machines, Corporation Series-parallel battery array conversion
US6337555B1 (en) * 1999-02-12 2002-01-08 Se Kwang Oh Manage system of rechargeable battery and a method for managing thereof
KR20000057966A (ko) * 1999-02-12 2000-09-25 오세광 충전용 배터리 관리기 및 그 관리기에 의한 충전용 배터리관리 방법
JP2001086656A (ja) * 1999-07-09 2001-03-30 Fujitsu Ltd バッテリ監視装置
US6323623B1 (en) * 1999-08-23 2001-11-27 Casio Computer Co., Ltd. Charging device and charging method thereof
JP4075260B2 (ja) * 1999-12-27 2008-04-16 ソニー株式会社 電池パック、電源装置並びに充電および放電方法
TWI241762B (en) * 2001-09-03 2005-10-11 Gpe Internat Ltd An intelligent fast battery charger
JP2003111286A (ja) * 2001-10-02 2003-04-11 Okumura Laboratory Inc 並列モニタつきバンク切り換えキャパシタ蓄電装置
US6873133B1 (en) * 2002-09-11 2005-03-29 Medtronic Physio-Control Manufacturing Corporation Defibrillator with a reconfigurable battery module
DE10330834A1 (de) * 2003-07-08 2005-02-03 Cooper Crouse-Hinds Gmbh Verfahren und Vorrichtung zur Versorgung wenigstens einer Last
EA200600880A1 (ru) * 2004-01-29 2006-10-27 Божидар Коньевич Лисач Способ и устройство питания нагрузки с восстановлением электрической энергии
JP3781124B2 (ja) * 2004-03-29 2006-05-31 東光電気株式会社 キャパシタ蓄電装置
JP4498827B2 (ja) * 2004-06-03 2010-07-07 トヨタ自動車株式会社 電力変換装置およびそれを備えた車両
JP4622645B2 (ja) * 2005-04-15 2011-02-02 トヨタ自動車株式会社 電池装置およびこれを備える内燃機関装置並びに車両
US7573238B2 (en) * 2005-08-09 2009-08-11 Panasonic Ev Energy Co., Ltd. Voltage detection device and electric vehicle including voltage detection device
DK1947752T3 (da) * 2005-10-19 2012-10-29 Ltd Company Tm Ladningslagerindretning med brug af kondensatorer og dens styringsfremgangsmåde
JP4353222B2 (ja) * 2006-09-05 2009-10-28 日産自動車株式会社 電力供給装置及びその制御方法
US7782013B2 (en) * 2007-04-17 2010-08-24 Chun-Chieh Chang Rechargeable battery assembly and method for recharging same
US7962212B2 (en) * 2007-08-02 2011-06-14 Cameron Health, Inc. Multiple battery configurations in an implantable medical device
KR101375329B1 (ko) * 2007-08-06 2014-03-20 삼성에스디아이 주식회사 다양한 전력을 공급할 수 있는 연료전지시스템
US7692404B2 (en) * 2007-09-24 2010-04-06 Harris Technology, Llc Charging control in an electric vehicle
US20090085553A1 (en) * 2007-09-28 2009-04-02 Pavan Kumar Reconfigurable battery pack
EP2110921B1 (en) * 2008-04-14 2013-06-19 Stanley Black & Decker, Inc. Battery management system for a cordless tool
US8212541B2 (en) * 2008-05-08 2012-07-03 Massachusetts Institute Of Technology Power converter with capacitive energy transfer and fast dynamic response
JP5525743B2 (ja) * 2009-03-30 2014-06-18 株式会社日本総合研究所 電池制御装置、電池制御方法、及び車両
JP5722875B2 (ja) * 2009-04-10 2015-05-27 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 大規模バッテリシステムのための動的に再構成可能な構造
US8330420B2 (en) * 2009-04-10 2012-12-11 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system
US8957610B2 (en) * 2009-07-02 2015-02-17 Chong Uk Lee Multi-port reconfigurable battery
US8816613B2 (en) * 2009-07-02 2014-08-26 Chong Uk Lee Reconfigurable battery
TW201103220A (en) * 2009-07-06 2011-01-16 Shun-Hsing Wang Apparatus and method for managing plural secondary batteries
JP4590520B1 (ja) * 2009-09-02 2010-12-01 日本蓄電器工業株式会社 交流出力可能な蓄電装置
US8643340B1 (en) * 2009-09-29 2014-02-04 Cirrus Logic, Inc. Powering a circuit by alternating power supply connections in series and parallel with a storage capacitor
JP2011076903A (ja) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd バッテリ装置および電動車両
US8889306B2 (en) * 2010-02-16 2014-11-18 The Boeing Company Modularized electrochemical cell system
US20120326671A1 (en) * 2010-03-15 2012-12-27 Brusa Elektronik Ag Balancing the states of charge of charge accumulators
KR101009485B1 (ko) * 2010-04-20 2011-01-19 (주)모던텍 유니버셜 충전 장치
JP5647057B2 (ja) * 2010-05-19 2014-12-24 株式会社日立製作所 充電装置、充電制御ユニット及び充電制御方法
US8427083B2 (en) * 2010-06-28 2013-04-23 Momentum Power, Inc. Power distribution system
EP2462680A1 (en) * 2010-08-06 2012-06-13 Sanyo Electric Co., Ltd. Battery parallel-operation circuit and battery system
US10017057B2 (en) * 2011-10-19 2018-07-10 Larry Nelson Apparatus and method for charging and discharging a dual battery system
JP5625727B2 (ja) * 2010-10-20 2014-11-19 ソニー株式会社 電池パック及びその充放電方法、並びに、電力消費機器
JP5817103B2 (ja) * 2010-11-12 2015-11-18 ソニー株式会社 直並列切替システム、電力供給装置、電力供給制御装置及び直並列切替方法
JP2014063567A (ja) * 2011-01-26 2014-04-10 Sony Corp 電池パック及び電力消費機器
FR2972304A1 (fr) * 2011-03-02 2012-09-07 Commissariat Energie Atomique Batterie avec gestion individuelle des cellules
EP2684243B1 (en) * 2011-03-17 2019-08-21 Ev Chip Energy Ltd Battery pack system
TW201242212A (en) * 2011-04-01 2012-10-16 Samya Technology Co Ltd Improved independent serial battery detecting charger
JP5099569B1 (ja) * 2011-05-13 2012-12-19 独立行政法人 宇宙航空研究開発機構 直並列切り替え式セル電圧バランス回路のスイッチをmosfetで構成した回路及びその駆動回路
KR101254867B1 (ko) * 2011-05-18 2013-04-15 삼성에스디아이 주식회사 배터리 팩
DE102011108920B4 (de) * 2011-07-29 2013-04-11 Technische Universität München Elektrisches Umrichtersystem
CN103066633B (zh) * 2011-10-18 2015-11-18 丁景信 电源管理系统
TW201330448A (zh) * 2012-01-06 2013-07-16 Hon Hai Prec Ind Co Ltd 電池充放電系統和方法
EP2814132B1 (en) * 2012-02-09 2016-10-19 Mitsubishi Electric Corporation Parallel accumulator system and method of control thereof
JP5849799B2 (ja) * 2012-03-19 2016-02-03 富士通株式会社 電源回路
US10075002B2 (en) * 2012-04-26 2018-09-11 Sekisui Chemical Co., Ltd. Electricity storage system and cartridge
US8994331B2 (en) * 2012-05-31 2015-03-31 Motorola Solutions, Inc. Method and apparatus for adapting a battery voltage
JP2014057398A (ja) * 2012-09-11 2014-03-27 Panasonic Corp 蓄電池管理装置および蓄電池管理方法
JP5672356B2 (ja) * 2012-12-21 2015-02-18 株式会社デンソー 充電ケーブル装置
JP2014135799A (ja) * 2013-01-08 2014-07-24 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
KR102201102B1 (ko) * 2013-03-15 2021-01-12 디자인 플럭스 테크놀로지스, 엘엘씨 동적으로 재구성가능한 에너지 스토리지 장치를 생성하기 위한 방법 및 장치
WO2014146721A1 (en) * 2013-03-22 2014-09-25 Abb Ab Bipolar double voltage cell and multilevel converter with such a cell
US9910471B1 (en) * 2013-04-17 2018-03-06 Amazon Technologies, Inc. Reconfigurable array of backup battery units
ITMI20131009A1 (it) * 2013-06-18 2014-12-19 Eutecne S R L Sistema per la carica di veicoli elettrici
CN104702097B (zh) * 2013-12-04 2017-11-24 台达电子企业管理(上海)有限公司 电源装置和通过电源装置产生电源的方法
US10305298B2 (en) * 2014-03-17 2019-05-28 Glx Power Systems, Inc. Method and apparatus for creating a dynamically reconfigurable energy storage device
CN105305596B (zh) * 2014-05-28 2019-03-08 华为技术有限公司 一种市电供电方法和装置
US10106110B1 (en) * 2014-07-23 2018-10-23 Ganiere Innovations, L.L.C. Direct current power management system
KR101558797B1 (ko) * 2014-08-12 2015-10-07 현대자동차주식회사 주행거리 연장을 위한 배터리 제어 시스템 및 방법
US9917460B2 (en) * 2014-12-09 2018-03-13 Briggs & Stratton Corporation Lithium ion battery pack for outdoor power equipment
US9887425B2 (en) * 2015-01-28 2018-02-06 Printed Energy Pty. Ltd. Printed battery array outputting selectable voltage and current
TWI617921B (zh) * 2015-05-15 2018-03-11 碩天科技股份有限公司 具有定址模式及偵測模式的電池感測器
JP6057394B1 (ja) * 2015-06-25 2017-01-11 ニチコン株式会社 充電システムおよび充電開始制御方法
DE102015010531A1 (de) * 2015-08-16 2017-02-16 IdeTec GmbH Elektrischer Energiespeicher und darin verwendetes Batterieverwaltungssystem
CN105119334A (zh) 2015-08-31 2015-12-02 深圳驿普乐氏科技有限公司 一种宽电压输出范围的变压电路和直流充电桩
WO2017100787A1 (en) * 2015-12-11 2017-06-15 Milwaukee Electric Tool Corporation Method and apparatus for connecting a plurality of battery cells in series or parallel
CN105946607B (zh) * 2016-05-09 2018-01-23 石家庄汉卓能源科技有限公司 以甲醇为燃料的离网式多功能充电桩
US9969273B2 (en) * 2016-07-12 2018-05-15 Hamilton Sundstrand Corporation Integrated modular electric power system for a vehicle
JP6779708B2 (ja) * 2016-08-25 2020-11-04 矢崎総業株式会社 急速充電装置
CN106374559B (zh) * 2016-09-14 2021-08-20 华为技术有限公司 串联电池组的快速充电方法及相关设备
CN106364348B (zh) * 2016-09-26 2019-08-27 华为技术有限公司 一种充电桩
US10498274B2 (en) * 2016-11-10 2019-12-03 Hamilton Sundstrand Corporation High voltage direct current system for a vehicle
DE102016123066A1 (de) * 2016-11-30 2018-05-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladevorrichtung
DE102016123924A1 (de) * 2016-12-09 2018-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modulare Leistungselektronik zum Laden eines elektrisch betriebenen Fahrzeugs
CN108312856B (zh) * 2017-01-16 2021-06-01 华为技术有限公司 一种充电桩并机的充电桩系统及方法
JP6802723B2 (ja) * 2017-01-31 2020-12-16 株式会社デンソーテン 蓄電装置および蓄電制御方法
CN106787059A (zh) * 2017-02-20 2017-05-31 山东鲁能智能技术有限公司 一种电动汽车的充电系统
KR20180133018A (ko) * 2017-06-02 2018-12-13 현대자동차주식회사 차량용 배터리 시스템 및 제어방법
JP6930306B2 (ja) * 2017-09-05 2021-09-01 トヨタ自動車株式会社 電動車両
JP2019054677A (ja) * 2017-09-19 2019-04-04 トヨタ自動車株式会社 電源装置
US10727680B2 (en) * 2017-09-22 2020-07-28 Nio Usa, Inc. Power systems and methods for electric vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038976A2 (en) * 2007-07-04 2009-03-26 Satyajit Patwardhan Widely deployable charging system for vehicles
CN104092266A (zh) * 2014-07-25 2014-10-08 李晚霞 一种解决动力电池快速安全充放电的方法及装置
CN105375599A (zh) * 2015-10-10 2016-03-02 愈先梅 电动汽车直流充电桩系统
CN106541842A (zh) * 2016-09-30 2017-03-29 深圳市钜能科技有限公司 零待机功耗的充电桩
CN106696748A (zh) * 2017-01-25 2017-05-24 华为技术有限公司 一种充电桩系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867199A (zh) * 2017-11-10 2018-04-03 重庆电力高等专科学校 一种充电桩智能配电系统
CN107867199B (zh) * 2017-11-10 2019-09-27 重庆电力高等专科学校 一种充电桩智能配电系统
US20210347273A1 (en) * 2020-05-08 2021-11-11 Rivian Ip Holdings, Llc Electric vehicle charging system and method
US11453298B2 (en) 2020-05-08 2022-09-27 Rivian Ip Holdings, Llc Electric vehicle charging dispenser and method
US11565601B2 (en) * 2020-05-08 2023-01-31 Rivian Ip Holdings, Llc Electric vehicle charging system and method
US11628739B2 (en) 2020-05-08 2023-04-18 Rivian Ip Holdings, Llc Electric vehicle fleet charging system and method
US11745604B2 (en) 2020-05-08 2023-09-05 Rivian Ip Holdings, Llc Electric vehicle charging dispenser and method
US11868927B2 (en) 2020-05-08 2024-01-09 Rivian Ip Holdings, Llc Electric vehicle charging system and method
US11890951B2 (en) 2020-05-08 2024-02-06 Rivian Ip Holdings, Llc Electric vehicle charging system and method utilizing a dispenser chain

Also Published As

Publication number Publication date
US20190344682A1 (en) 2019-11-14
CN106696748B (zh) 2019-06-28
EP3560749B1 (en) 2021-04-07
US10919403B2 (en) 2021-02-16
CN106696748A (zh) 2017-05-24
EP3560749A4 (en) 2020-01-08
EP3560749A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2018137542A1 (zh) 一种充电桩系统
US11205806B2 (en) Battery module equalization apparatus and battery pack and vehicle including the same
TWI568122B (zh) 電池系統與其控制方法
CN107968446B (zh) 分布式电池包供电系统及充放电控制方法
US9493090B2 (en) Dynamic battery system voltage control through mixed dynamic series and parallel cell connections
CN108352717B (zh) 用于车辆的储存器系统
US20190225096A1 (en) Vehicle
US9825470B2 (en) Multi-source power converter
BR102015018279A2 (pt) conversor de três portas e sistema de múltiplas fontes de energia
DE102013210293A1 (de) Dezentrale Gleichspannungssteller
US20140340047A1 (en) System and method for controlling an energy storage device
CN113270881A (zh) 一种储能系统、储能系统的均衡控制方法及光伏发电系统
Dam et al. Low-frequency selection switch based cell-to-cell battery voltage equalizer with reduced switch count
KR20190032177A (ko) 전원 장치
CN107128185A (zh) 一种电机驱动装置及电动汽车
Helling et al. Low voltage power supply in modular multilevel converter based split battery systems for electrical vehicles
WO2023093083A1 (zh) 一种充电装置及系统
JP2021132517A (ja) 切替装置、その装置を含む蓄電システム、そのシステムを含む車両、及び、切替方法
US20240092223A1 (en) Multi-Voltage Storage System for an at Least Partially Electrically Driven Vehicle
CN207518330U (zh) 一种一机双枪功率分配直流充电桩系统
JP2018114869A (ja) 電源システム
CN208112522U (zh) 单组电池多电平级联式逆变输出设备
CN115117970A (zh) 主动均衡电路、设备及车用电池
JP2019134636A (ja) 充電システム及び充電方法
JP2015133766A (ja) 電源装置及びこの電源装置を備える車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018745038

Country of ref document: EP

Effective date: 20190723

NENP Non-entry into the national phase

Ref country code: DE