WO2018131608A1 - ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池 - Google Patents

ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池 Download PDF

Info

Publication number
WO2018131608A1
WO2018131608A1 PCT/JP2018/000348 JP2018000348W WO2018131608A1 WO 2018131608 A1 WO2018131608 A1 WO 2018131608A1 JP 2018000348 W JP2018000348 W JP 2018000348W WO 2018131608 A1 WO2018131608 A1 WO 2018131608A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysilsesquioxane
silicon nanoparticles
negative electrode
coated silicon
ion battery
Prior art date
Application number
PCT/JP2018/000348
Other languages
English (en)
French (fr)
Inventor
義人 高野
哲朗 木崎
浩綱 山田
正一 近藤
彬 高橋
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to JP2018561390A priority Critical patent/JP6941302B2/ja
Priority to KR1020197015318A priority patent/KR20190069573A/ko
Priority to CN201880006431.5A priority patent/CN110191861A/zh
Priority to US16/477,201 priority patent/US11031591B2/en
Publication of WO2018131608A1 publication Critical patent/WO2018131608A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a fired product of polysilsesquioxane-coated silicon nanoparticles having a chemical bond between the surface of silicon nanoparticles and hydrogen polysilsesquioxane, and the fired product of polysilsesquioxane-coated silicon nanoparticles.
  • the present invention relates to a negative electrode active material for lithium ion battery, a negative electrode for lithium ion battery including the negative electrode active material, and a lithium ion battery including the negative electrode for lithium ion battery.
  • a lithium intercalation compound that releases lithium ions from the interlayer is used as a cathode material, and lithium ions are occluded and released during charging / discharging between layers between crystal planes (The development of rocking chair type lithium ion batteries using a carbonaceous material typified by graphite or the like, which can be intercalated, as a negative electrode material has been developed and put into practical use.
  • Non-aqueous electrolyte secondary batteries that use lithium compounds as negative electrodes have high voltage and high energy density, and among them, lithium metal has been the subject of many studies as a negative electrode active material because of its abundant battery capacity. became.
  • lithium metal when lithium metal is used as the negative electrode, a lot of dendritic lithium is deposited on the surface of the negative electrode lithium during charging, so that the charge / discharge efficiency is reduced, or the dendritic lithium grows, causing a short circuit with the positive electrode. There is a case.
  • lithium metal itself is unstable and highly reactive, and is sensitive to heat and impact, there remains a problem in commercializing a negative electrode using lithium metal. Therefore, a carbon-based negative electrode that occludes and releases lithium has been used as a negative electrode active material instead of lithium metal (Patent Document 1).
  • the carbon-based negative electrode has solved various problems of lithium metal and has greatly contributed to the spread of lithium ion batteries.
  • Lithium ion batteries using carbon-based negative electrodes have inherently low battery capacity due to the porous structure of carbon.
  • the theoretical capacity is about 372 mAh / g when the composition is LiC 6 . This is only about 10% compared with the theoretical capacity of lithium metal being 3860 mAh / g. Under such circumstances, in spite of the above-mentioned problems, studies are actively being made to improve the battery capacity by introducing a metal such as lithium into the negative electrode again.
  • the use of a material mainly composed of a metal that can be alloyed with lithium, such as Si, Sn, or Al, as the negative electrode active material has been studied.
  • substances that can be alloyed with lithium, such as Si and Sn are accompanied by volume expansion during the alloying reaction with lithium, so that the metal material particles are pulverized, so that the contact between the metal material particles decreases.
  • an electrically isolated active material is generated in the electrode.
  • the metal material particles are detached from the electrode, resulting in an increase in internal resistance and a decrease in capacity. As a result, the cycle characteristics are deteriorated, and the electrolyte decomposition reaction due to the expansion of the specific surface area becomes serious. ing.
  • Patent Document 2 includes silicon and oxygen, and a silicon oxide having a ratio of oxygen to silicon of 0 to 2 can obtain good charge / discharge cycle performance when used as a negative electrode active material of a lithium ion battery.
  • Patent Document 3 proposes a method using a fired product of hydrogen polysilsesquioxane as a silicon oxide-based negative electrode active material containing an amorphous silicon oxide having a nanoporous structure.
  • Patent Document 4 by making a structure in which a silicon-containing core and silicon nanoparticles formed on the surface of the core are arranged, the disadvantage of the volume expansion coefficient is complemented during charging and discharging, and silicon and oxygen are easily added.
  • a silicon oxide capable of adjusting the ratio of the above.
  • the silicon oxide compound of the above document is a compound that is essentially different from the polysilsesquioxane-coated silicon nanoparticles of the present invention or a fired product thereof. Furthermore, the above document does not suggest any chemical bond between the silicon nanoparticles and the silicon oxide, and the polysilsesquioxane-coated silicon nanoparticles fired product of the present invention is also used as a structure. It is judged to be heterogeneous.
  • the battery performance when used as a battery negative electrode active material is recognized to have a certain degree of improvement, but the discharge capacity, the initial charge / discharge efficiency, the capacity maintenance rate in the charge / discharge cycle, or more than two performances
  • the level has reached a level at which there is no problem, and it has not been a technology that can provide a negative electrode active material that exhibits balanced battery performance and is highly practical.
  • An object of the present invention is to provide a new silicon oxide as a negative electrode active material for a secondary battery, in which the obtained battery has excellent cycle characteristics, and has good initial discharge efficiency and high charge capacity. It is to provide a physical structure.
  • the present inventors have excellent cycle characteristics when used as a negative electrode active material for a lithium ion battery, and are excellent.
  • the present inventors have found a fired product of polysilsesquioxane-coated silicon nanoparticles that also exhibits excellent initial discharge efficiency and high charge capacity, and has led to the present invention.
  • TEM transmission electron microscope
  • the polysilsesquioxane coated silicon nanoparticles was determined by infrared spectroscopy, of the absorption band of 1000 ⁇ 1250 cm -1 derived from Si-O-Si bond, high wave number from 1100 cm -1
  • the intensity of the maximum absorption peak in the absorption band on the side is I 2-1
  • the intensity of the maximum absorption peak in the absorption band on the lower wavenumber side than 1100 cm ⁇ 1 is I 2-2
  • the intensity of the maximum absorption peak of the absorption band of 820 to 920 cm ⁇ 1 derived from the Si—H bond is I 1
  • the intensity ratio (I 1 / I 2 ) is 0.01 to 0.1 when the maximum absorption peak intensity is I 2 .
  • a negative electrode active material for a lithium ion battery comprising a fired product of the polysilsesquioxane-coated silicon nanoparticles according to any one of [1] to [3].
  • a negative electrode for a lithium ion battery comprising the negative electrode active material for a lithium ion battery according to [4].
  • a lithium ion battery comprising the lithium ion battery negative electrode according to [5].
  • the thickness of the polysilsesquioxane observed with a transmission electron microscope (TEM) is 1 nm or more and 30 nm or less.
  • the manufacturing method includes a step of hydrolyzing and condensing a silicon compound represented by the formula (1) (also referred to as polycondensation reaction) in the presence of silicon nanoparticles.
  • HSi (R) 3 (1) (Wherein R is the same or different, halogen, hydrogen, substituted or unsubstituted alkoxy having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy having 6 to 20 carbon atoms, and 7 to 30 carbon atoms) A group selected from substituted or unsubstituted arylalkoxy, provided that it is a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, and 7 carbon atoms.
  • any hydrogen may be substituted with a halogen.
  • a lithium ion battery obtained by using a negative electrode active material for a lithium ion battery including a fired product of polysilsesquioxane-coated silicon nanoparticles having a specific structure according to the present invention has excellent cycle characteristics and is excellent. Also shows initial discharge efficiency and high charge capacity.
  • FIG. 1 shows a polysilsesquioxane-coated silicon nanoparticle fired product (1) obtained in Example 1 by infrared spectroscopy (IR), and a polysilsesquioxane-coated silicon nanoparticle obtained in Example 2. It is a figure which shows IR absorption spectrum of a baked product (2) and the silicon nanoparticle mixed silicon oxide (1) obtained in Comparative Example 1.
  • FIG. 2 is a transmission electron microscope (TEM) photograph of the polysilsesquioxane-coated silicon nanoparticle fired product (1) obtained in Example 1.
  • 3 is a scanning electron microscope (SEM) photograph of the polysilsesquioxane-coated silicon nanoparticle fired product (1) obtained in Example 1.
  • FIG. FIG. 4 is a diagram illustrating a configuration example of a coin-type lithium ion battery.
  • the fired polysilsesquioxane-coated silicon nanoparticles of the present invention can be obtained by firing polysilsesquioxane-coated silicon nanoparticles (precursor of fired polysilsesquioxane-coated silicon nanoparticles). It can. First, the polysilsesquioxane-coated silicon nanoparticles will be described, and then the polysilsesquioxane-coated silicon nanoparticles fired product will be described.
  • Polysilsesquioxane-coated silicon nanoparticles are mixed in the process of synthesizing hydrogen silsesquioxane polymer (HPSQ) by hydrolyzing and condensing the silicon compound represented by formula (1).
  • HPSQ hydrogen silsesquioxane polymer
  • a manufacturing method is not specifically limited. For example, a method of hydrolyzing and condensing a mixture obtained by adding silicon nanopowder to a silicon compound represented by formula (1), or dropping a silicon compound represented by formula (1) in a solvent in which silicon nanopowder is dispersed And a method of hydrolysis and condensation reaction.
  • R is the same or different and is a group selected from halogen, hydrogen, substituted or unsubstituted alkoxy having 1 to 10 carbons, and substituted or unsubstituted aryloxy having 6 to 20 carbons It is. However, in the substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms and the substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, any hydrogen may be substituted with a halogen.
  • silicon compound represented by the formula (1) include the following compounds.
  • trihalogenated silane such as trichlorosilane, trifluorosilane, tribromosilane, dichlorosilane, dihalogenated silane, tri-n-butoxysilane, tri-t-butoxysilane, tri-n-propoxysilane, tri-i -Trialkoxysilanes such as propoxysilane, di-n-butoxyethoxysilane, triethoxysilane, trimethoxysilane, diethoxysilane, dialkoxysilanes, triaryloxysilane, diaryloxysilane, diaryloxyethoxysilane, etc.
  • Aryloxysilane or aryloxyalkoxysilane can be mentioned.
  • trihalogenated silanes or trialkoxysilanes are preferable from the viewpoints of reactivity, availability, and production costs, and trihalogenated silanes are particularly preferable.
  • These silicon compounds represented by the formula (1) may be used singly or in combination of two or more.
  • the silicon compound represented by the formula (1) has high hydrolyzability and condensation reactivity, and when it is used, polysilsesquioxane-coated silicon nanoparticles can be easily obtained. Moreover, when the silicon compound represented by Formula (1) is used, the polysilsesquioxane-coated silicon nanoparticles obtained when the obtained polysilsesquioxane-coated silicon nanoparticles are heat-treated in a non-oxidizing atmosphere. The fired product also has the advantage that it appropriately provides Si—H bonds.
  • hydrolysis can be performed by a known method, for example, in a solvent such as alcohol or DMF, in the presence of an inorganic acid such as hydrochloric acid or an organic acid such as acetic acid, and water, at room temperature or in a heated state. can do. Therefore, in addition to the hydrolyzate of the silicon compound represented by the formula (1), the reaction solution after hydrolysis may contain a solvent, an acid, water, and a substance derived therefrom.
  • the silicon compound represented by the formula (1) may not be completely hydrolyzed, and a part thereof may remain.
  • the polycondensation reaction of the hydrolyzate partially proceeds.
  • the degree to which the polycondensation reaction proceeds can be controlled by the hydrolysis temperature, hydrolysis time, acidity, and / or solvent, etc., depending on the target polysilsesquioxane-coated silicon nanoparticles. Can be set appropriately.
  • reaction conditions a silicon compound represented by the formula (1) is added to an acidic aqueous solution with stirring, and the temperature is -20 ° C to 50 ° C, preferably 0 ° C to 40 ° C, particularly preferably 10 ° C to 30 ° C.
  • the reaction is carried out at a temperature of 0.5 to 20 hours, preferably 1 to 10 hours, particularly preferably 1 to 5 hours.
  • an organic acid or an inorganic acid can be used as the acid used for the pH adjustment.
  • examples of the organic acid include formic acid, acetic acid, propionic acid, oxalic acid, and citric acid
  • examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid.
  • hydrochloric acid and acetic acid are preferred because the hydrolysis reaction and subsequent polycondensation reaction can be easily controlled, and acquisition, pH adjustment, and treatment after the reaction are also easy.
  • a halogenated silane such as trichlorosilane is used as the silicon compound represented by the formula (1)
  • an acidic aqueous solution is formed in the presence of water. This is one of the preferred embodiments of the invention.
  • Polysilsesquioxane-coated silicon nanoparticles undergo a hydrolysis and polymerization reaction of the compound of formula (1) in the presence of silicon nanoparticles. Can be obtained.
  • the silicon nanoparticles used are not particularly limited as long as the volume-based average particle diameter is more than 10 nm and less than 500 nm.
  • the lower limit of the volume-based average particle diameter is preferably more than 20 nm, and more preferably more than 30 nm.
  • the upper limit of the volume-based average particle diameter is preferably less than 400 nm, and more preferably less than 300 nm.
  • silicon nanoparticles silicon nanopowder is preferably used as the silicon nanoparticles.
  • the silicon nanoparticles used are preferably silicon nanoparticles that do not contain particles having a particle size of 1000 nm or more.
  • the silicon nanoparticles may contain other components other than silicon as long as the effects of the present invention are not impaired.
  • the silicon nanoparticles can contain carbon, metals, and the like. It is usually less than 5% by weight with respect to silicon nanoparticles.
  • volume-based average particle size means a particle size calculated based on the volume, and may be simply referred to as an average particle size in the present specification.
  • Silicon nanoparticles are blended so that the coating thickness is 1 nm or more and 30 nm or less with respect to the total amount of the polysilsesquioxane-coated silicon nanoparticles obtained.
  • the proportion of silicon nanoparticles in the total weight of the polysilsesquioxane-coated silicon nanoparticles is approximately 25% to 95% by weight, but the coating thickness varies greatly depending on the particle size, so it is limited to the above weight proportion. Is not to be done.
  • the liquid fraction After completion of the hydrolysis reaction and polycondensation reaction, the liquid fraction is separated and removed by a known method such as filtration, centrifugation, or tilting. In some cases, it is further washed with water or organic solvent and then dried. Sesquioxane-coated silicon nanoparticles can be obtained.
  • the peak intensity ratio exceeding 1 suggests that there is a chemical bond between the silicon nanoparticles present inside and the hydrogen polysilsesquioxane, and this chemical bond It is assumed that the particle collapse caused by the expansion and contraction of the silicon particles during the charge / discharge cycle is suppressed by the presence of.
  • the absorption band of 1000 to 1250 cm ⁇ 1 in the IR spectrum of hydrogen polysilsesquioxane is derived from the asymmetric stretching vibration of Si—O—Si, and in the case of a linear bond, a plurality of absorption bands at 1000 to 1250 cm ⁇ 1. In the case of a cyclic bond, one absorption is generally observed at 1000 to 1100 cm ⁇ 1 .
  • the polymerization ends are compared with each other rather than the reaction in which the polymerization ends and monomers react to form a linear siloxane. It is assumed that the reaction in which cyclic siloxane is reacted and the energy of the system is reduced, it can be easily predicted that the peak 2-2 becomes larger than the peak 2-1.
  • the hydrolysis / polymerization of the silicon compound of the formula (1) proceeds in the presence of silicon nanoparticles, the terminal portion of the chain Si—O—Si skeleton contained in the HPSQ polymer to be produced is the surface of the silicon nanoparticles.
  • the silicon nanoparticles and the polysilsesquioxane form a network via a strong chemical bond (Si—O—Si bond).
  • This network is maintained even after firing, and the polysilsesquioxane skeleton serves as a buffer layer for the expansion and contraction of the silicon nanoparticles, and as a result, suppresses the refinement of the silicon nanoparticles that occur during repeated charge and discharge. It is presumed that
  • the small primary particles relieve the stress during expansion and contraction that occurs when charging and discharging are repeated when the fired product of polysilsesquioxane-coated silicon nanoparticles is used as a negative electrode material for a lithium ion battery. Therefore, cycle deterioration is suppressed and cycle characteristics are improved. Further, having a complicated secondary aggregation structure makes the binding property with the binder good, and further exhibits excellent cycle characteristics.
  • the fired product of the polysilsesquioxane-coated silicon nanoparticles is obtained by the heat treatment of the polysilsesquioxane-coated silicon nanoparticles obtained in the above manner in a non-oxidizing atmosphere.
  • non-oxidizing means that the polysilsesquioxane-coated silicon nanoparticles are not oxidized in terms of words, but are substantially polysilsesquioxane-coated silicon nanoparticles.
  • I 1 refers to the intensity (I 1 ) of the maximum peak (peak 1) derived from the Si—H bond at 820 to 920 cm ⁇ 1 .
  • the polysilsesquioxane-coated silicon nanoparticle fired product thus obtained contains silicon (Si), oxygen (O), and hydrogen (H), and is represented by the general formula SiO x H y.
  • the polysilsesquioxane-coated silicon nanoparticle fired product has a maximum absorption peak (peak 1) in an absorption band of 820 to 920 cm ⁇ 1 derived from the Si—H bond in the spectrum measured by infrared spectroscopy.
  • the ratio (I 1 / I 2 ) of the intensity of peak 1 (I 1 ) and the intensity of peak 2 (I 2 ) (I 1 / I 2 ) of the fired product is preferably from 0.01 to 0.35, more preferably from 0.01. If it is in the range of 0.30, more preferably in the range of 0.03 to 0.20, due to the presence of an appropriate amount of Si—H bond, a high discharge capacity and good initial charge / discharge when used as a negative electrode active material of a lithium ion battery Efficiency and cycle characteristics can be developed.
  • the intensity of the maximum absorption peak (peak 2-1) in the absorption band on the several side is I 2-1
  • the intensity of the maximum absorption peak (peak 2-2) in the absorption band on the lower wave number side than 1100 cm ⁇ 1 is I 2-2.
  • the intensity ratio (I 2-1 / I 2-2 ) is preferably greater than 1.
  • the peak intensity ratio exceeds 1, it has a chemical bond between the silicon nanoparticles present in the fired product of the polysilsesquioxane-coated silicon nanoparticles and the hydrogen polysilsesquioxane. It is speculated that the presence of this chemical bond suppresses particle collapse caused by silicon particle expansion and contraction during the charge / discharge cycle.
  • the heat treatment of the polysilsesquioxane-coated silicon nanoparticles is preferably performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere may be an inert gas atmosphere or an atmosphere in which oxygen is removed by high vacuum (oxygen is removed to the extent that it does not hinder the formation of the desired polysilsesquioxane-coated silicon nanoparticle fired product.
  • examples of the inert gas include nitrogen, argon, and helium.
  • the reducing atmosphere includes an atmosphere containing a reducing gas such as hydrogen.
  • a mixed gas atmosphere of 2% by volume or more of hydrogen gas and inert gas can be used.
  • a hydrogen gas atmosphere can also be used as the reducing atmosphere.
  • the polysilsesquioxane-coated silicon nanoparticles begin to dehydrogenate Si—H bonds from around 600 ° C., and Si—Si bonds are generated.
  • Si—Si bond is appropriately grown, it becomes an excellent Li storage site and becomes a source of high charge capacity.
  • the heat treatment time is not particularly limited, but is usually 15 minutes to 10 hours, preferably 30 minutes to 5 hours.
  • a fired product of polysilsesquioxane-coated silicon nanoparticles having a coating thickness of 1 nm or more and 30 nm or less is obtained. If it is 1 nm or more, the deterioration of the battery can be suppressed. If the thickness of the coating is 30 nm or less, a battery having high capacity and initial charge / discharge efficiency can be obtained.
  • the polysilsesquioxane-coated silicon nanoparticle fired product of the present invention thus obtained has an entire surface of silicon nanoparticles of 1 nm to 30 nm, as is apparent from the transmission electron microscope (TEM) photograph shown in FIG. Is covered with a polysilsesquioxane layer of thickness. Further, as is apparent from the scanning electron microscope (SEM) photograph shown in FIG. 3, primary particles, which are spherical particles having a submicron particle size, further aggregate to form secondary aggregates having a particle size of several microns. ing.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the polysilsesquioxane-coated silicon nanoparticle fired product is combined or coated with a carbon-based material.
  • a method of dispersing the calcined product of the polysilsesquioxane-coated silicon nanoparticles and the carbon-based material by a mechanical mixing method using a mechanofusion, a ball mill, a vibration mill, or the like. Can be mentioned.
  • the carbon-based material include carbon-based materials such as graphite, carbon black, fullerene, carbon nanotube, carbon nanofoam, pitch-based carbon fiber, polyacrylonitrile-based carbon fiber, and amorphous carbon.
  • the polysilsesquioxane-coated silicon nanoparticle fired product and the carbon-based material can be combined or coated at an arbitrary ratio.
  • the negative electrode in the lithium ion secondary battery according to the present invention contains the polysilsesquioxane-coated silicon nanoparticle fired product or the polysilsesquioxane-coated silicon nanoparticle fired product obtained by combining or coating the carbon-based material.
  • a negative electrode active material examples include a negative electrode active material and a binder including a fired polysilsesquioxane-coated silicon nanoparticle or a fired polysilsesquioxane-coated silicon nanoparticle obtained by combining or coating the carbon-based material.
  • the negative electrode mixed material may be formed into a certain shape, or may be manufactured by a method in which the negative electrode mixed material is applied to a current collector such as a copper foil.
  • the method for forming the negative electrode is not particularly limited, and a known method can be used.
  • a polysilsesquioxane-coated silicon nanoparticle fired product or a negative active material containing a polysilsesquioxane-coated silicon nanoparticle fired product obtained by combining the carbon-based material, a binder, and If necessary, prepare a negative electrode material composition containing a conductive material, etc., and coat it directly on a current collector such as a rod-like body, plate-like body, foil-like body, or net-like body mainly composed of copper, nickel, stainless steel, etc.
  • a negative electrode plate can be obtained by casting the negative electrode material composition separately on a support and laminating the negative electrode active material film peeled off from the support on a current collector.
  • the negative electrode of the present invention is not limited to the above-listed forms, and forms other than the listed forms are possible.
  • binder those commonly used in the secondary battery, a Si-H bonds and interactions on the anode active material, COO - as long as having a functional group such as a group, either Can also be used, and examples include carboxymethylcellulose, polyacrylic acid, alginic acid, glucomannan, amylose, saccharose and derivatives and polymers thereof, and respective alkali metal salts, as well as polyimide resins and polyimideamide resins. These binders may be used singly or as a mixture. Further, the binder is further improved in binding property with the current collector, improved in dispersibility, and improved in conductivity of the binder itself. A component imparting a function, for example, a styrene-butadiene rubber polymer or a styrene-isoprene rubber polymer may be added and mixed.
  • the lithium ion battery using the negative electrode active material comprising the polysilsesquioxane-coated silicon nanoparticle fired product of the present invention can be produced as follows. First, a positive electrode active material composition capable of reversibly occluding and releasing lithium ions, a conductive additive, a binder, and a solvent are mixed to prepare a positive electrode active material composition. Similarly to the negative electrode, the positive electrode active material composition is directly coated on a metal current collector and dried by a known method to prepare a positive electrode plate. It is also possible to produce a positive electrode by separately casting the positive electrode active material composition on a support and then laminating the film obtained by peeling from the support on a metal current collector. The method for forming the positive electrode is not particularly limited, and a known method can be used.
  • the positive electrode active material is not particularly limited as long as it is a lithium metal composite oxide and is generally used in the field of the secondary battery.
  • lithium cobaltate, lithium nickelate, spinel structure examples thereof include lithium manganate having lithium, cobalt lithium manganate, iron phosphate having an olivine structure, so-called ternary lithium metal composite oxide, nickel lithium metal composite oxide, and the like.
  • V 2 O 5 , TiS, MoS, and the like which are compounds capable of de-insertion of lithium ions, can also be used.
  • the conductive auxiliary agent is not particularly limited as long as it is generally used in lithium ion batteries, and may be any electron conductive material that does not cause decomposition or alteration in the constituted battery. Specific examples include carbon black (acetylene black and the like), graphite fine particles, vapor grown carbon fiber, and combinations of two or more thereof.
  • the binder include vinylidene fluoride / propylene hexafluoride copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene and a mixture thereof, styrene butadiene rubber. Examples thereof include, but are not limited to, polymers.
  • the solvent examples include, but are not limited to, N-methylpyrrolidone, acetone, water and the like.
  • the content of the positive electrode active material, the conductive additive, the binder and the solvent is set to an amount that can be generally used in a lithium ion battery.
  • the separator interposed between the positive electrode and the negative electrode is not particularly limited as long as it is generally used in lithium ion batteries. Those having low resistance to ion migration of the electrolyte or excellent electrolyte solution impregnation ability are preferred. Specifically, it is a material selected from glass fiber, polyester, polyethylene, polypropylene, polytetrafluoroethylene, polyimide, or a compound thereof, and may be in the form of a nonwoven fabric or a woven fabric.
  • a rollable separator made of a material such as polyethylene or polypropylene is used, and in the case of a lithium ion polymer battery, a separator excellent in organic electrolyte solution impregnation ability. It is preferable to use
  • electrolyte examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butylene carbonate, dibutyl carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, ⁇ -butyrolactone, dioxolane, 4 -Hexafluoride in a solvent such as methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene or diethyl ether or a mixture thereof Lithium phosphate, lithium boron tetrafluoride, lithium antimony lithium, lithium arsenic hexafluoride, Lithium chlorate, lithium triflu
  • non-aqueous electrolytes and solid electrolytes can also be used.
  • various ionic liquids to which lithium ions are added can be used, pseudo solid electrolytes in which ionic liquids and fine powders are mixed, lithium ion conductive solid electrolytes, and the like can be used.
  • the above-mentioned electrolytic solution may appropriately contain a compound that promotes stable film formation on the surface of the negative electrode active material.
  • a compound that promotes stable film formation on the surface of the negative electrode active material for example, vinylene carbonate (VC), fluorobenzene, cyclic fluorinated carbonate [fluoroethylene carbonate (FEC), trifluoropropylene carbonate (TFPC), etc.], or chain fluorinated carbonate [trifluorodimethyl carbonate (TFDMC), Fluorinated carbonates such as fluorodiethyl carbonate (TFDEC) and trifluoroethyl methyl carbonate (TFEMC) are effective.
  • the cyclic fluorinated carbonate and the chain fluorinated carbonate can also be used as a solvent, such as ethylene carbonate.
  • a separator is disposed between the positive electrode plate and the negative electrode plate as described above to form a battery structure.
  • the battery structure is wound or folded and placed in a cylindrical battery case or a square battery case, and then an electrolyte is injected to complete a lithium ion battery.
  • the battery structure is laminated in a bicell structure, it is impregnated with an organic electrolyte, and the obtained product is put in a pouch and sealed to complete a lithium ion polymer battery.
  • One embodiment of a fired product of polysilsesquioxane-coated silicon nanoparticles formed by heat-treating polysilsesquioxane-coated silicon nanoparticles is derived from Si—H bonds in the spectrum measured by infrared spectroscopy.
  • the intensity of the maximum absorption peak (peak 1) out of the absorption band of 820 to 920 cm ⁇ 1 is I 1
  • the maximum absorption peak (peak 2) out of the 1000 to 1250 cm ⁇ 1 absorption band derived from the Si—O—Si bond strength of the case of a I 2 is in the range from 0.01 to 0.35, the thickness of the coating, 1 nm or more and 30nm or less, the policy Rusesquioxane-coated silicon nanoparticle fired product.
  • a lithium ion battery manufactured using a negative electrode active material containing a fired polysilsesquioxane-coated silicon nanoparticle having these characteristics has excellent cycle characteristics and good initial charge / discharge efficiency. , And high capacity.
  • One aspect of the fired product of the polysilsesquioxane-coated silicon nanoparticles of the present invention is 1100 cm out of an absorption band of 1000 to 1250 cm ⁇ 1 derived from Si—O—Si bonds in a spectrum measured by infrared spectroscopy.
  • the intensity of the maximum absorption peak (peak 2-1) in the absorption band on the higher wave number side than ⁇ 1 is the intensity of the maximum absorption peak (peak 2-2) in the absorption band on the lower wave number side than I 2-1 , 1100 cm ⁇ 1.
  • the intensity ratio (I 2-1 / I 2-2) is a polysilsesquioxane coated silicon nanoparticles baked product, characterized in that more than one.
  • the polysilsesquioxane-coated silicon nanoparticles prepared in Examples 1 to 5 and Comparative Example 1 and the fired products thereof were subjected to various analyzes and evaluations.
  • “Infrared spectroscopy measurement”, “elemental analysis measurement”, “observation / photographing by scanning microscope (SEM)”, “observation / photographing by transmission microscope (TEM)”, and coating layer in each example and comparative example The measuring device and measuring method of “thickness measurement” and “evaluation of battery characteristics” are as follows.
  • Infrared spectroscopy measurement uses Nicolet iS5 FT-IR manufactured by Thermo Fisher Scientific as an infrared spectrometer, and transmission measurement by KBr method (resolution: 4 cm ⁇ 1 , number of scans: 16 times, data interval: 1.928 cm ⁇ 1 , At the detector DTGS KBr), the intensity (I 1 ) of the peak 1 derived from the Si—H bond at 820 to 920 cm ⁇ 1 and the peak 2 derived from the Si—O—Si bond at 1000 to 1250 cm ⁇ 1. Strength (I 2 ) was measured.
  • Each peak intensity was obtained by connecting the start point and end point of the target peak with a straight line, partially correcting the baseline, and then measuring the height from the baseline to the peak top.
  • elemental analysis measurement For elemental analysis measurement, after the sample powder is hardened into a pellet, the sample is irradiated with He ions accelerated to 2.3 MeV, and the energy spectrum of backscattered particles and the energy spectrum of forward-scattered hydrogen atoms are analyzed. Thus, the RBS (Rutherford backscattering analysis) / HFS (hydrogen forward scattering analysis) method was used to obtain a highly accurate composition value including hydrogen.
  • the measurement apparatus is Pelletron 3SDH manufactured by National Electrostatics Corporation. Incident ions: 2.3 MeV He, RBS / HFS simultaneous measurement, Incident angle: 75 deg. , Scattering angle: 160 deg. Sample current: 4 nA, beam diameter: 2 mm ⁇ .
  • TEM transmission microscope
  • FEI transmission microscope
  • the sample powder was embedded in a resin and thinned with an ultramicrotome.
  • the thickness of the coating layer was determined by measuring the thickness of the coating layer for each particle photographed in a photograph taken by TEM and calculating the average value of ten particles.
  • the charge / discharge characteristics of a lithium ion secondary battery or the like using the negative electrode active material containing the fired product of the polysilsesquioxane-coated silicon nanoparticles of the present invention were measured as follows. Using BTS2005W manufactured by Nagano Co., Ltd., charged with a constant current at a current of 100 mA per 1 g weight of the polysilsesquioxane-coated silicon nanoparticle fired product until reaching 0.001 V against the Li electrode, then 0.001 V While maintaining the voltage, constant voltage charging was performed until the current reached a current value of 20 mA or less per gram of active material.
  • the charged cell was subjected to a constant current discharge until the voltage reached 1.5 V at a current of 100 mA per gram of active material after a rest period of about 30 minutes.
  • the charge capacity was calculated from the integrated current value until the constant voltage charge was completed, and the discharge capacity was calculated from the integrated current value until the battery voltage reached 1.5V.
  • the circuit was paused for 30 minutes.
  • the discharge capacity at the 500th cycle is the discharge capacity at the 500th cycle when the charge / discharge is one cycle.
  • the charge / discharge efficiency was the ratio of the discharge capacity to the initial (first charge / discharge cycle) charge capacity
  • the capacity maintenance ratio was the ratio of the discharge capacity at the 50th charge / discharge cycle to the initial discharge capacity.
  • Example 1 Preparation of polysilsesquioxane-coated silicon nanoparticle powder (1)
  • a 100 ml poly beaker put 70 g of pure water and 20.5 g of silicon nanopowder (Si-10, Si-10 average particle size, not including particles with a particle size of 1000 nm or more) and treat with an ultrasonic homogenizer for 2 minutes.
  • silicon nanopowder Si-10, Si-10 average particle size, not including particles with a particle size of 1000 nm or more
  • the obtained polysilsesquioxane-coated silicon nanoparticle fired product is pulverized and pulverized in a mortar for 5 minutes, and classified using a stainless steel sieve having an opening of 32 ⁇ m, whereby a polysil having a maximum particle size of 32 ⁇ m. 9.75 g of a sesquioxane-coated silicon nanoparticle fired product (1) was obtained.
  • the infrared spectrum of the obtained polysilsesquioxane-coated silicon nanoparticle fired product (1) is shown in FIG. 1, a photograph taken with a transmission electron microscope (TEM), and a photograph taken with a scanning electron microscope (SEM). As shown in FIG. The thickness of the coating layer was 26 nm.
  • This slurry composition was transferred to a thin film swirl type high speed mixer (Filmix 40-40 type) manufactured by Plymix, and stirred and dispersed for 30 seconds at a rotation speed of 20 m / s.
  • the slurry after the dispersion treatment was applied to a copper foil roll with a thickness of 200 ⁇ m by a doctor blade method. After coating, it was dried for 90 minutes on a hot plate at 80 ° C. After drying, the negative electrode sheet was pressed with a 2t small precision roll press (manufactured by Sank Metal). After pressing, the electrode was punched with an electrode punching punch HSNG-EP with a diameter of 14.50 mm, and dried under reduced pressure at 80 ° C. for 16 hours in a glass tube oven GTO-200 (manufactured by SIBATA) to prepare a negative electrode.
  • a 2032 type coin battery having the structure shown in FIG. 4 was produced.
  • metallic lithium as the counter electrode 3
  • a microporous polypropylene film as the separator 2
  • ethylene carbonate and diethyl carbonate in which LiPF 6 was dissolved at a ratio of 1 mol / L as the electrolyte solution 1: 1 (volume ratio) was used by adding 5% by weight of fluoroethylene carbonate to a mixed solvent.
  • evaluation of the battery characteristics of the lithium ion battery was performed by the method described above.
  • Example 2 Preparation of polysilsesquioxane-coated silicon nanoparticle powder (2)
  • a 100 ml poly beaker put 50 g of pure water and 13.58 g of silicon nanopowder (Si-10 average particle size 100 nm, excluding particles with a particle size of 1000 nm or more) and treat with an ultrasonic homogenizer for 2 minutes.
  • silicon nanopowder Si-10 average particle size 100 nm, excluding particles with a particle size of 1000 nm or more
  • a 500 ml three-necked flask was charged with this silicon fine particle dispersion, 2.22 g (21 mmol) of 35 wt% hydrochloric acid and 161 g of pure water, and stirred at room temperature for 10 minutes to disperse the silicon nanoparticles throughout. While stirring, 19.9 g (121 mmol) of triethoxysilane (Tokyo Kasei) was added dropwise at 25 ° C. After completion of the dropwise addition, a hydrolysis reaction and a condensation reaction were performed for 2 hours at 25 ° C. with stirring. After the reaction time had elapsed, the reaction product was filtered through a membrane filter (pore size 0.45 ⁇ m, hydrophilic) to recover a solid. The obtained solid was dried under reduced pressure at 80 ° C. for 10 hours to obtain 20.0 g of a polysilsesquioxane-coated silicon nanoparticle powder (2).
  • Example 3 Preparation of polysilsesquioxane-coated silicon nanoparticle powder (3)
  • a 100 ml beaker put 50 g of pure water and 17.6 g of silicon nanopowder (S-10 manufactured by Si-10 with an average particle size of 100 nm and no particles with a particle size of 1000 nm or more) and treat it with an ultrasonic homogenizer for 2 minutes. Then, a silicon nanoparticle dispersed aqueous solution was prepared.
  • a 500 ml three-necked flask is charged with this silicon fine particle dispersion, 1.67 g (28 mmol) of acetic acid (Wako special grade reagent) and 223 g of pure water, and stirred for 10 minutes at room temperature to disperse the silicon nanoparticles as a whole. 7.36 g (44.9 mmol) of triethoxysilane (Tokyo Kasei) was added dropwise at 25 ° C. After completion of the dropwise addition, a hydrolysis reaction and a condensation reaction were performed for 2 hours at 25 ° C. with stirring. After the reaction time had elapsed, the reaction product was filtered through a membrane filter (pore size 0.45 ⁇ m, hydrophilic) to recover a solid. The obtained solid was dried under reduced pressure at 80 ° C. for 10 hours to obtain 20.0 g of a polysilsesquioxane-coated silicon nanoparticle powder (3).
  • Example 4 Preparation of polysilsesquioxane-coated silicon nanoparticle powder (4)
  • a 100 ml beaker put 50 g of pure water and 15.5 g of silicon nanopowder (Nanomakers Pure Si NM Si99 average particle size of 75 nm, excluding particles with a particle size of 1000 nm or more) and treat with an ultrasonic homogenizer for 2 minutes.
  • a silicon nanoparticle-dispersed aqueous solution was prepared.
  • a 500 ml three-necked flask is charged with this silicon fine particle dispersion, 2.54 g (24 mmol) of 35 wt% hydrochloric acid and 190 g of pure water, and stirred at room temperature for 10 minutes to disperse the silicon nanoparticles throughout.
  • 13.9 g (85 mmol) of triethoxysilane (Tokyo Kasei) was added dropwise at 25 ° C.
  • a hydrolysis reaction and a condensation reaction were performed for 2 hours at 25 ° C. with stirring.
  • the reaction product was filtered through a membrane filter (pore size 0.45 ⁇ m, hydrophilic) to recover a solid.
  • the obtained solid was dried under reduced pressure at 80 ° C. for 10 hours to obtain 20.0 g of polysilsesquioxane-coated silicon nanoparticle powder (4).
  • Example 5 The same treatment as in Example 4 was performed except that the silicon nanonano powder was NM Si ⁇ C99 (average particle size 75 nm, not including particles with a particle size of 1000 nm or more) manufactured by Nanomakers, and polysilsesquioxane-coated silicon nanoparticle fired 9.84 g of product (5) was obtained.
  • Batteries that employ the results of infrared spectroscopic measurement of the fired polysilsesquioxane-coated silicon nanoparticles obtained in Examples 1 to 5 of the present invention, the results of elemental analysis, and the negative electrode produced using each negative electrode active material The evaluation results of the characteristics are as shown in Table 1.
  • Silicon monoxide powder having a maximum particle size of 20 ⁇ m was obtained by classifying commercially available silicon monoxide (under 325 mesh manufactured by Aldrich) using a 20 ⁇ m stainless steel sieve. 4.41 g of silicon monoxide of 20 ⁇ m or less was placed in a planetary ball mill for 10 minutes using 11.2 g of silicon nanopowder (Nanomakers Pure Si NM Si99 average particle size 75 nm), a zirconia container and a zirconia ball. Milling treatment was mixed to obtain silicon nanoparticle mixed silicon oxide (1).
  • a negative electrode body was produced in the same manner as in Example 2 except that the silicon nanoparticle composite silicon oxide (1) of Comparative Example 1 was used.
  • TEM transmission electron microscope
  • the negative electrode active material for a lithium ion battery produced from a fired product obtained by heat-treating polysilsesquioxane-coated silicon nanoparticles that is 1 nm or more and 30 nm or less has an initial discharge capacity and a discharge capacity at the 50th cycle.
  • the battery characteristics using a negative electrode using a negative electrode active material prepared from a silicon oxide in which the surface of the silicon nanoparticles does not have a chemical bond and does not have a Si—H bond As shown in Comparative Example 1, the battery characteristics using a negative electrode using a negative electrode active material prepared from a silicon oxide in which the surface of the silicon nanoparticles does not have a chemical bond and does not have a Si—H bond.
  • the initial charge and discharge efficiency shows a certain value, but the capacity is drastically decreased, and the lithium ion It has not reached a practical level as a battery.
  • a negative electrode active material for a lithium ion battery using a fired product of polysilsesquioxane-coated silicon nanoparticles obtained by the production method of the present invention, and a negative electrode formed using the negative electrode active material, are used in a lithium ion battery.
  • a lithium ion battery having a remarkably high capacity and practical initial charge / discharge efficiency and cycle characteristics can be obtained.
  • the present invention is particularly useful in the field of batteries. This technique is useful in the field of secondary batteries.
  • Negative electrode material 2 Separator 3: Lithium counter electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

体積基準平均粒径が10nmを超え500nm未満であり、且つ粒径が1000nm以上の粒子を含まないシリコンナノ粒子と、前記シリコンナノ粒子を被覆し、前記シリコンナノ粒子の表面に化学的に結合しているポリシルセスキオキサンとを含み、Si-H結合を有し、透過型電子顕微鏡(TEM)で観察される、前記ポリシルセスキオキサンの厚さが、1nm以上30nm以下である、ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物である。

Description

ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
 本発明は、シリコンナノ粒子表面と水素ポリシルセスキオキサンとの間に化学的な結合を有するポリシルセスキオキサン被覆シリコンナノ粒子焼成物、当該ポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含むリチウムイオン電池用負極活物質、当該負極活物質を含むリチウムイオン電池用負極、当該リチウムイオン電池用負極を備えたリチウムイオン電池に関する。
 近年、急速な電子機器、通信機器等の発展及び小型化の技術の発達に伴い、様々な携帯型の機器が普及してきている。そして、これらの携帯型の機器の電源として、経済性、機器の小型化、および軽量化の観点から、高容量及び寿命特性の優れた二次電池の開発が強く求められている。
 このような小型、軽量な高容量の二次電池としては、今日、リチウムイオンを層間から放出するリチウムインターカレーション化合物を正極物質に、リチウムイオンを結晶面間の層間に充放電時に吸蔵放出(インターカレート)できる黒鉛などに代表される炭素質材料を負極物質に用いた、ロッキングチェア型のリチウムイオン電池の開発が進み、実用化されて一般的に使用されている。
 リチウム化合物を負極として使用する非水電解質二次電池は、高電圧及び高エネルギー密度を有しており、そのなかでもリチウム金属は、豊富な電池容量により負極活物質として初期に多くの研究対象になった。しかし、リチウム金属を負極として使用する場合、充電時に負極リチウム表面に多くの樹枝状リチウムが析出するため、充放電効率が低下したり、また、樹枝状リチウムが成長し、正極と短絡を起こしたりする場合がある。また、リチウム金属自体は、不安定で高い反応性を有し、熱や衝撃に敏感であるので、リチウム金属を用いた負極の商用化は課題が残されていた。
 そこで、リチウム金属に代わる負極活物質として、リチウムを吸蔵、放出する炭素系負極が用いられるようになった(特許文献1)。
 炭素系負極は、リチウム金属が有する各種問題点を解決し、リチウムイオン電池が普及するのに大きく寄与をした。しかし、次第に各種携帯用機器が小型化、軽量化及び高性能化されるにつれて、リチウムイオン電池の高容量化が重要な問題として浮び上がってきた。
 炭素系負極を使用するリチウムイオン電池は、炭素の多孔性構造のため、本質的に低い電池容量を有する。例えば、使用されている炭素として最も結晶性の高い黒鉛の場合でも、理論容量は、LiCの組成であるとき、372mAh/gほどである。これは、リチウム金属の理論容量が3860mAh/gであることに比べれば、僅か10%ほどに過ぎない。このような状況から、前記したような問題点があるにもかかわらず、再びリチウムのような金属を負極に導入し、電池の容量を向上させようという研究が活発に試みられている。
 代表的なものとして、Si、Sn、Alのような、リチウムと合金化可能な金属を主成分とする材料を負極活物質として使うことが検討されている。しかし、Si、Snのような、リチウムとの合金化が可能な物質は、リチウムとの合金化反応時に体積膨張を伴って、金属材料粒子が微粉化し、そのため金属材料粒子間の接触が低下して電極内で電気的に孤立する活物質が発生する場合がある。さらに、金属材料粒子が電極から脱離して、内部抵抗の増加および容量の低下が生じ、結果としてサイクル特性を低下させ、また、比表面積拡大による電解質分解反応を深刻化させるなどの問題点を抱えている。
 係る金属材料の使用による問題点を解決するために、金属に比べて体積膨張率が相対的に低い金属酸化物を負極活物質の材料として使用する検討が進められた。
 例えば、特許文献2にはケイ素と酸素を含み、ケイ素に対する酸素の比が0~2であるケイ素酸化物は、リチウムイオン電池の負極活物質として使用した場合、良好な充放電サイクル性能を得ることが開示されている。
 また、特許文献3にはナノ気孔構造を含む非晶質ケイ素酸化物を含むケイ素酸化物系負極活物質として、水素ポリシルセスキオキサンの焼成物を用いる方法が提案されている。
 さらに、特許文献4にはケイ素を含むコアとコア表面に形成されたシリコンナノ粒子を配置した構造体を作ることにより、充放電の際に体積膨張率の短所を補完し、容易にケイ素と酸素の比率を調節することが可能なケイ素酸化物が提案されている。
 しかし、前記文献のいずれのケイ素酸化物系化合物も、水素を含まない化合物であり、また、Si-H結合の存在についても言及されていない。したがって、前記文献のケイ素酸化物系化合物は、本発明のポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物とは本質的に異なる化合物である。さらに、前記文献は、シリコンナノ粒子とケイ素酸化物との間の化学的な結合の存在についても何ら示唆されておらず、構造体としても本発明のポリシルセスキオキサン被覆シリコンナノ粒子焼成物とは異質なものと判断される。また、電池負極活物質として利用した際の電池性能には、それぞれ一定程度の改良が認められるものの、放電容量、初期充放電効率、充放電サイクルにおける容量維持率のいずれか、あるいはふたつ以上の性能が、問題のないレベルに達しているとは言いがたく、バランスの取れた電池性能を示し実用性の高い負極活物質を提供できる技術ではなかった。
特開昭62-90863号公報 特開2004-71542号公報 特開2008-171813号公報 特開2016-514898号公報
 従来の負極材料の有する問題点を解決し、得られた電池が優れたサイクル特性を有し、かつ、良好な初期放電効率、高充電容量をも示す負極活物質の開発が、依然として求められている。
 本発明の課題は、得られた電池が得られた電池が優れたサイクル特性を有し、かつ、良好な初期放電効率、高充電容量をも示す二次電池用負極活物質として、新しいケイ素酸化物系構造体を提供することである。
 本発明者らは、上記課題についてその解決に向けて鋭意検討した結果、リチウムイオン電池用の負極活物質として用いた際に、得られる二次電池が優れたサイクル特性を有し、かつ、良好な初期放電効率、高充電容量をも示すポリシルセスキオキサン被覆シリコンナノ粒子焼成物を見出し、本発明に至った。
すなわち、本発明は以下の態様を包含する。
[1] 体積基準平均粒径が10nmを超え500nm未満であり、且つ粒径が1000nm以上の粒子を含まないシリコンナノ粒子と、前記シリコンナノ粒子を被覆し、前記シリコンナノ粒子の表面に化学的に結合しているポリシルセスキオキサンとを含み、Si-H結合を有し、透過型電子顕微鏡(TEM)で観察される前記ポリシルセスキオキサンの厚さが、1nm以上30nm以下である、ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物。
[2] 前記ポリシルセスキオキサン被覆シリコンナノ粒子を赤外分光法により測定したスペクトルにおいて、Si-O-Si結合に由来する1000~1250cm-1の吸収帯のうち、1100cm-1より高波数側の吸収帯における最大吸収ピークの強度をI2-1、1100cm-1より低波数側の吸収帯における最大吸収ピークの強度をI2-2とした場合に、強度比(I2-1/I2-2)が、1を超える[1]に記載のポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物。
[3] 前記ポリシルセスキオキサン被覆シリコンナノ粒子を赤外分光法により測定したスペクトルにおいて、Si-H結合に由来する820~920cm-1の吸収帯のうち、最大吸収ピークの強度をI、Si-O-Si結合に由来する1000~1250cm-1吸収帯のうち、最大吸収ピークの強度をIとした場合に、強度比(I/I)が、0.01から0.35の範囲にある[1]又は[2]に記載のポリシルセスキオキサン被覆シリコンナノ粒子の焼成物。
[4] [1]から[3]のいずれか一項に記載のポリシルセスキオキサン被覆シリコンナノ粒子の焼成物を含むリチウムイオン電池用負極活物質。
[5] [4]に記載のリチウムイオン電池用負極活物質を含むリチウムイオン電池用負極。
[6] [5]に記載のリチウムイオン電池用負極を備えたリチウムイオン電池。
[7] ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物の製造方法であって、前記ポリシルセスキオキサン被覆シリコンナノ粒子は、体積基準平均粒径が10nmを超え500nm未満であり、且つ粒径が1000nm以上の粒子を含まないシリコンナノ粒子と、前記シリコンナノ粒子を被覆し、前記シリコンナノ粒子の表面に化学的に結合しているポリシルセスキオキサンとを含み、Si-H結合を有し、透過型電子顕微鏡(TEM)で観察される前記ポリシルセスキオキサンの厚さが、1nm以上30nm以下であり、
 前記製造方法は、シリコンナノ粒子の存在下で、式(1)で示されるケイ素化合物を加水分解および縮合反応(重縮合反応ともいう)させる工程を含む、製造方法。
 HSi(R)           (1)
(式中、Rは、それぞれ同一あるいは異なる、ハロゲン、水素、炭素数1~10の置換または非置換のアルコキシ、炭素数6~20の置換または非置換のアリールオキシ、および炭素数7~30の置換または非置換のアリールアルコキシから選択される基である。但し、炭素数1~10の置換または非置換のアルコキシ基、炭素数6~20の置換または非置換のアリールオキシ基、および炭素数7~30の置換または非置換のアリールアルコキシ基において、任意の水素はハロゲンで置換されていてもよい。)
[8] 加水分解及び縮合反応させる工程の後に、非酸化性雰囲気下で焼成する工程をさらに含む、[7]に記載のポリシルセスキオキサン被覆シリコンナノ粒子の焼成物の製造方法。
 本発明の特定の構造を有するポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含むリチウムイオン電池用負極活物質を用いて得られるリチウムイオン電池は、優れたサイクル特性を有し、かつ、良好な初期放電効率、高充電容量をも示す。
図1は、赤外分光法(IR)による実施例1で得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物(1)、実施例2で得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物(2)、及び比較例1で得られたシリコンナノ粒子混合ケイ素酸化物(1)のIR吸収スペクトルを示す図である。 図2は、実施例1で得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物(1)の透過型電子顕微鏡(TEM)写真である。 図3は、実施例1で得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物(1)の走査型電子顕微鏡(SEM)写真である。 図4は、コイン型のリチウムイオン電池の構成例を示す図である。
 以下、本発明についてより詳細に説明する。
 本発明のポリシルセスキオキサン被覆シリコンナノ粒子焼成物は、ポリシルセスキオキサン被覆シリコンナノ粒子(ポリシルセスキオキサン被覆シリコンナノ粒子焼成物の前駆体)を焼成することにより、得ることができる。まず、ポリシルセスキオキサン被覆シリコンナノ粒子を説明し、次に、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物について説明する。
<ポリシルセスキオキサン被覆シリコンナノ粒子の製造>
 ポリシルセスキオキサン被覆シリコンナノ粒子は、式(1)で示されるケイ素化合物を加水分解および縮合反応をさせて、水素シルセスキオキサン重合物(HPSQ)を合成する過程でシリコンナノ粒子を混合することにより得ることができるが、製造方法は特に限定されるものではない。例えば、式(1)で示されるケイ素化合物にシリコンナノパウダーを加えた混合物を加水分解および縮合反応させる方法、もしくはシリコンナノパウダーを分散させた溶媒中に式(1)で示されるケイ素化合物を滴下して加水分解および縮合反応させる方法を挙げることができる。
 HSi(R)           (1)
 式(1)において、Rは、それぞれ同一あるいは異なる、ハロゲン、水素、炭素数1~10の置換または非置換のアルコキシ、および炭素数6~20の置換または非置換のアリールオキシから選択される基である。但し、炭素数1~10の置換または非置換のアルコキシ基、および炭素数6~20の置換または非置換のアリールオキシ基において、任意の水素はハロゲンで置換されていてもよい。
 式(1)で表されるケイ素化合物としては具体的には、下記の化合物等が挙げられる。
 例えば、トリクロロシラン、トリフルオロシラン、トリブロモシラン、ジクロロシラン等のトリハロゲン化シランやジハロゲン化シラン、トリ-n-ブトキシシラン、トリ-t-ブトキシシラン、トリ-n-プロポキシシラン、トリ-i-プロポキシシラン、ジ-n-ブトキシエトキシシラン、トリエトキシシラン、トリメトキシシラン、ジエトキシシラン等のトリアルコキシシランやジアルコキシシラン、更にはトリアリールオキシシラン、ジアリールオキシシラン、ジアリールオキシエトキシシラン等のアリールオキシシランまたはアリールオキシアルコキシシランが挙げられる。
 これらのうち、反応性および入手の容易性と製造コストの観点から好ましいのはトリハロゲン化シランまたはトリアルコキシシランであり、特に好ましいのはトリハロゲン化シランである。
 これらの式(1)で表されるケイ素化合物は単独で用いてもよいし、2種類以上を混合して用いてもよい。
 また、式(1)で表されるケイ素化合物は、加水分解性および縮合反応性が高く、これを用いると、ポリシルセスキオキサン被覆シリコンナノ粒子が容易に得られる。また、式(1)で表されるケイ素化合物を用いると、得られたポリシルセスキオキサン被覆シリコンナノ粒子を非酸化性雰囲気下で熱処理した際に得られるポリシルセスキオキサン被覆シリコンナノ粒子焼成物は、適切にSi-H結合をもたらす、という利点もある。
 次に、式(1)で表されるケイ素化合物にシリコンナノ粒子を加えた混合物の加水分解および重縮合反応について説明する。
 加水分解は、公知の方法で行うことができ、例えば、アルコール又はDMF等の溶媒中、塩酸等の無機酸又は酢酸等の有機酸、および水の存在下で、常温又は加熱した状態で、実施することができる。したがって、加水分解後の反応液中には式(1)で表されるケイ素化合物の加水分解物に加えて、溶媒、酸、水及びこれらに由来する物質を含有してもよい。
 また、加水分解後の反応液中には、式(1)で表されるケイ素化合物が完全に加水分解されていなくてもよく、その一部が残存していてもよい。
 なお、加水分解反応に加えて、加水分解物の重縮合反応も部分的に進行する。
 ここで、重縮合反応が進行する程度は、加水分解温度、加水分解時間、酸性度、及び/又は、溶媒等によって制御することができ、目的とするポリシルセスキオキサン被覆シリコンナノ粒子に応じて適宜に設定することができる。
 生産性と製造コストを考慮して、加水分解と重縮合反応を一つの反応器で、同一の条件下に並行して行う方法が好ましい。
 反応条件としては、撹拌下、酸性水溶液中に式(1)で表されるケイ素化合物を添加し、-20℃~50℃、好ましくは0℃~40℃、特に好ましくは10℃~30℃の温度で0.5時間~20時間、好ましくは1時間~10時間、特に好ましくは1時間~5時間反応させる。
 加水分解溶液の酸性度としては、通常pH=7以下に調整することが好ましく、より好ましくはpH=6以下であり、さらに好ましくはpH=3以下である。このpH調整に用いる酸としては有機酸、無機酸のいずれも使用可能である。
 具体的には、有機酸としてはギ酸、酢酸、プロピオン酸、シュウ酸、クエン酸などが例示され、無機酸としては塩酸、硫酸、硝酸、リン酸などが例示される。これらの中でも加水分解反応およびその後の重縮合反応の制御が容易にでき、入手やpH調整、および反応後の処理も容易であることから塩酸及び酢酸が好ましい。
 また、式(1)で表されるケイ素化合物としてトリクロロシラン等のハロゲン化シランを用いた場合には、水の存在下で酸性水溶液が形成されるので、特に酸を別途加える必要は無く、本発明の好ましい態様の一つである。
 ポリシルセスキオキサン被覆シリコンナノ粒子(ポリシルセスキオキサン被覆シリコンナノ粒子焼成物の前駆体)は、式(1)の化合物を、シリコンナノ粒子の共存下で、加水分解及び重合反応を行うことによって得ることができる。使用されるシリコンナノ粒子は、体積基準平均粒径が10nmを超え500nm未満であれば、特に限定されるものではない。体積基準平均粒径の下限は、20nmを超えることが好ましく、30nmを超えることがさらに好ましい。体積基準平均粒径の上限は、400nm未満であることが好ましく、300nm未満であることがさらに好ましい。また、シリコンナノ粒子としては、シリコンナノパウダー等が好ましく用いられる。シリコンナノ粒子の量を多く用いる場合は、初期放電効率が高くなる一方で、得られる負極の耐久性(サイクル特性)が悪化する傾向がある。しかし、微粒子化したシリコン粒子を用いることにより、耐久性の劣化を抑制することができる。したがって、使用されるシリコンナノ粒子は、粒径が1000nm以上の粒子を含まないシリコンナノ粒子であることが好ましい。
 なお、シリコンナノ粒子は、本発明の効果を損なわない範囲で、ケイ素以外の他の成分を含有していてもよく、例えば、炭素、金属類などを含むことができるが、その含有量は、シリコンナノ粒子に対して、通常5重量%未満である。
 なお、本明細書において、体積基準平均粒径とは、体積基準によって算出される粒径であることを意味し、本明細書では、単に平均粒径と称する場合もある。
 シリコンナノ粒子は、得られるポリシルセスキオキサン被覆シリコンナノ粒子の合計量に対して、被覆の厚さが、1nm以上30nm以下となるように配合する。ポリシルセスキオキサン被覆シリコンナノ粒子の合計重量中のシリコンナノ粒子の割合は、概ね25重量%から95重量%であるが、粒径によって被覆の厚さが大きくかわるため、上記重量割合に限定されるものではない。
 加水分解反応および重縮合反応終了後、濾過分離、遠心分離或いは傾斜等の公知の方法により液体画分を分離除去し、場合によっては、さらに水洗浄あるいは有機溶剤洗浄した後、乾燥し、ポリシルセスキオキサン被覆シリコンナノ粒子を得ることができる。
<ポリシルセスキオキサン被覆シリコンナノ粒子の構造>
 ポリシルセスキオキサン被覆シリコンナノ粒子は、赤外分光法により測定したスペクトルにおいて、Si-O-Si結合に由来する1000~1250cm-1の吸収帯のうち、1100cm-1より高波数側の吸収帯における最大吸収ピーク(ピーク2-1)の強度をI2-1、1100cm-1より低波数側の吸収帯における最大吸収ピーク(ピーク2-2)の強度をI2-2とした場合に、強度比(I2-1/I2-2)が、1を超えることを特徴とすることができる。前記ピーク強度比が1を超えることは、内部に存在するシリコンナノ粒子と水素ポリシルセスキオキサンとの間に化学的な結合を有していることを示唆するものであり、この化学的結合の存在により、充放電サイクル時のシリコン粒子の膨張収縮によって引き起こされる粒子崩壊が抑制されると推察される。
 水素ポリシルセスキオキサンのIRスペクトルにおける1000~1250cm-1の吸収帯は、Si-O-Siの非対称伸縮振動に由来し、直鎖状結合である場合は1000~1250cm-1に複数の吸収、環状結合である場合は1000~1100cm-1に1本の吸収が見られるのが一般的である。ポリシルセスキオキサン被覆シリコンナノ粒子のIRスペクトルにおいては、1000~1250cm-1の吸収帯のうち、1100cm-1より高波数側の吸収帯における最大吸収ピーク(ピーク2-1)は、シロキサンの直鎖状結合に由来し、1000~1250cm-1の吸収帯のうち、1100cm-1より低波数側の吸収帯における最大吸収ピーク(ピーク2-2)は、シロキサンの直鎖状、環状の両結合に由来したものであると帰属される。シリコンナノ粒子を共存させずに、前記式(1)のケイ素化合物を単独で加水分解及び縮合反応させた場合、重合末端とモノマーが反応し直鎖状シロキサンが生成する反応よりも、重合末端同士が反応し環状シロキサンが生成する反応の方が系のエネルギーを低下させると想定されるため、ピーク2-2がピーク2-1よりも大きくなることは容易に予想できる。
 一方、シリコンナノ粒子共存下で式(1)のケイ素化合物の加水分解/重合が進める場合は、生成するHPSQ重合体に含まれる鎖状Si-O-Si骨格の末端部がシリコンナノ粒子表面のシラノール骨格と反応すると、そこで重合が停止し、鎖状Si-O-Si構造が保持されることになる。その結果として、式(1)のケイ素化合物単独で反応させた場合と比較して環状Si-O-Si骨格の生成が抑制されるものと考えられる。更に、この割合は、環状化結合の割合は熱処理後も概ね維持されるため、焼成後であっても、I2-1/I2-2>1の状態も維持される。
 この様にポリシルセスキオキサン被覆シリコンナノ粒子において、シリコンナノ粒子およびポリシルセスキオキサンは、強固な化学結合(Si-O-Si結合)を介してネットワークを形成している。焼成後もこのネットワークは保持され、ポリシルセスキオキサン骨格がシリコンナノ粒子の膨張収縮に対する緩衝層の役割を果たし、その結果充放電の繰り返しの際に発生するシリコンナノ粒子の微細化を抑制しているものと推察される。
 一次粒子が小さいことで、このポリシルセスキオキサン被覆シリコンナノ粒子の焼成物をリチウムイオン電池の負極材料として電池に用いた場合に、充放電を繰り返す際に生じる膨張収縮時の応力が緩和されることによって、サイクル劣化が抑制されサイクル特性向上に効果がある。また、複雑な2次凝集構造を持つことで結着剤との結着性が良好となり、さらに優れたサイクル特性を発現する。
 次にポリシルセスキオキサン被覆シリコンナノ粒子を焼成して得られるポリシルセスキオキサン被覆シリコンナノ粒子焼成物について説明する。
<ポリシルセスキオキサン被覆シリコンナノ粒子焼成物の製造>
 ポリシルセスキオキサン被覆シリコンナノ粒子焼成物は、上記の方法で得られポリシルセスキオキサン被覆シリコンナノ粒子を非酸化性雰囲気下で、熱処理して得られる。本明細書でいう「非酸化性」は、文言的にはポリシルセスキオキサン被覆シリコンナノ粒子を酸化させないことを意味するものであるが、実質的にはポリシルセスキオキサン被覆シリコンナノ粒子を熱処理する際に二酸化ケイ素の生成を本発明の効果に悪影響を与えない程度に抑えられていればよく(すなわちI/Iの値が本発明で規定する数値範囲内となればよく)、したがって「非酸化性」もその目的を達成できるように酸素が除去されていればよい。ここで、Iとは、820~920cm-1にあるSi-H結合に由来する最大ピーク(ピーク1)の強度(I)を言う。このようにして得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物は、ケイ素(Si)、酸素(O)及び水素(H)を含有しており、一般式SiOで表示される、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物である。
 さらに、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物は、赤外分光法により測定したスペクトルにおいて、Si-H結合に由来する820~920cm-1の吸収帯のうち、最大吸収ピーク(ピーク1)の強度をI、Si-O-Si結合に由来する1000~1250cm-1吸収帯のうち、最大吸収ピーク(ピーク2)の強度をIとした場合に、強度比(I/I)が、0.01から0.35の範囲にあることが好ましい。
 焼成物の上記のピーク1の強度(I)とピーク2の強度(I)の比(I/I)は、好ましくは0.01から0.35、より好ましくは0.01から0.30、さらに好ましくは0.03から0.20の範囲にあれば、適量のSi-H結合の存在により、リチウムイオン電池の負極活物質とした場合に高い放電容量、良好な初期充放電効率およびサイクル特性を発現させることができる。
 さらに、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物は、赤外分光法により測定したスペクトルにおいて、Si-O-Si結合に由来する1000~1250cm-1の吸収帯のうち、1100cm-1より高波数側の吸収帯における最大吸収ピーク(ピーク2-1)の強度をI2-1、1100cm-1より低波数側の吸収帯における最大吸収ピーク(ピーク2-2)の強度をI2-2とした場合に、強度比(I2-1/I2-2)が、1を超えることが好ましい。前記ピーク強度比が1を超えることは、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物内部に存在するシリコンナノ粒子と水素ポリシルセスキオキサンとの間に化学的な結合を有していることを示唆すものであり、この化学的結合の存在により、充放電サイクル時のシリコン粒子膨張収縮によって引き起こされる粒子崩壊が抑制されると推察される。
 ポリシルセスキオキサン被覆シリコンナノ粒子の熱処理は前述の通り、非酸化性雰囲気下で行うことが好ましい。酸素が存在する雰囲気下で熱処理を行うと二酸化ケイ素が生成することにより、所望の組成とSi-H結合量が得ることが難しい。
 非酸化性雰囲気は、不活性ガス雰囲気、高真空により酸素を除去した雰囲気(目的とするポリシルセスキオキサン被覆シリコンナノ粒子焼成物の生成を阻害しない程度に酸素が除去されている雰囲気であればよい)、還元性雰囲気およびこれらの雰囲気を併用した雰囲気が包含される。ここで、不活性ガスとしては、窒素、アルゴン、ヘリウムなどが挙げられる。これらの不活性ガスは、一般に使用されている高純度規格のものであれば問題なく使用できる。また、不活性気体を用いることなく、高真空により酸素を除去した雰囲気でもよい。還元性雰囲気としては、水素などの還元性ガスを含む雰囲気が包含される。例えば、2容積%以上の水素ガスと不活性ガスとの混合ガス雰囲気が挙げられる。また、還元性雰囲気として、水素ガス雰囲気も使用することができる。
 非酸化性雰囲気下で熱処理をすることにより、ポリシルセスキオキサン被覆シリコンナノ粒子は600℃近辺からSi-H結合の脱水素が始まり、Si-Si結合が生成する。Si-Si結合は適度に成長させると優良なLi吸蔵サイトとなり高充電容量の源となる。一方でSi-H結合は公知の電池材料成分である、COO基のような官能基を持った結着剤と相互に作用し、柔軟かつ強固な結合を形成するため、電池にした場合、良好なサイクル特性を発現する。
 したがって、高容量と良好なサイクル特性を共に発現させるには適量のSi-H結合を残存させることが必要となり、そのような条件を満足させる熱処理温度は通常600℃から1000℃、好ましくは750℃から900℃である。600℃未満では放電容量が十分でなく、1000℃を超えるとSi-H結合が消失してしまうため良好なサイクル特性が得られなくなる。
 熱処理時間は、特に限定されないが通常15分から10時間、好ましくは30分から5時間である。
 上記の熱処理により、被覆の厚さが1nm以上30nm以下であるポリシルセスキオキサン被覆シリコンナノ粒子焼成物が得られる。1nm以上であれば、電池の劣化を抑制することができる。被覆の厚さが、30nm以下であれば、高容量と初期充放電効率を有する電池を得ることができる。
 かくして得られた本発明のポリシルセスキオキサン被覆シリコンナノ粒子焼成物は、図2に示した透過型電子顕微鏡(TEM)写真で明らかなように、シリコンナノ粒子の表面全体が1nm以上30nm以下の厚さのポリシルセスキオキサン層で覆われている。また、図3で示した走査型電子顕微鏡(SEM)写真で明らかなように、粒径がサブミクロンの球状粒子である一次粒子がさらに凝集し粒径が数ミクロンの2次凝集体を形成している。
 一次粒子が小さいことで、リチウムイオン電池の負極材料として電池に用いた場合に、充放電を繰り返す際に生じる膨張収縮時の応力が緩和されることによって、サイクル劣化が抑制されサイクル特性向上に効果がある。また、複雑な2次凝集構造を持つことで結着剤との結着性が良好となり、さらに優れたサイクル特性を発現する。
<ポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含む負極活物質>
 次に、前記ポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含むリチウムイオン電池用負極活物質について説明する。
 電池は、高容量化のために大量の電流を充放電することが必須であることから、電極の電気抵抗が低い材料が要求されている。
 したがって、前記ポリシルセスキオキサン被覆シリコンナノ粒子焼成物に炭素系物質を複合又は被覆させることも本発明の一態様である。
 炭素系物質を複合又は被覆させるには、メカノフュージョンやボールミルあるいは振動ミル等を用いた機械的混合法等により、前記ポリシルセスキオキサン被覆シリコンナノ粒子焼成物と炭素系物質を分散させる方法が挙げられる。
 炭素系物質としては、黒鉛、カーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノフォーム、ピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維および無定形炭素などの炭素系物質が好ましく挙げられる。
 なお、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物と炭素系物質とは任意の割合で複合又は被覆できる。
<負極>
 本発明に係るリウムイオン二次電池における負極は、前記ポリシルセスキオキサン被覆シリコンナノ粒子焼成物あるいは前記炭素系物質を複合又は被覆させたポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含有する負極活物質を用いて製造される。
 負極としては、例えば、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物あるいは前記炭素系物質を複合又は被覆させたポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含む負極活物質および結着剤を含む負極混合材料を一定の形状に成形したものでもよく、該負極混合材料を銅箔などの集電体に塗布させる方法で製造されたものでもよい。負極の成形方法は、特に限定されず、公知の方法を用いることができる。
 より詳しくは、例えば、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物、あるいは前記炭素系物質を複合させたポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含有する負極活物質、結着剤、及び必要に応じて導電材料などを含む負極材料組成物を調製し、これを銅、ニッケル、ステンレスなどを主体とする棒状体、板状体、箔状体、網状体などの集電体に直接コーティングするか、または負極材料組成物を別途、支持体上にキャスティングし、その支持体から剥離させた負極活物質フィルムを集電体にラミネートすることにより負極極板を得ることができる。また、本発明の負極は、前記で列挙した形態に限定されるものではなく、列挙した形態以外の形態でも可能である。
 結着剤としては、二次電池において一般的に使われるもので、負極活物質上のSi-H結合と相互作用のある、COO基のような官能基を持ったものであれば、いずれも使用可能であり、カルボキシメチルセルロース、ポリアクリル酸、アルギン酸、グルコマンナン、アミロース、サッカロース及びその誘導体や重合物、さらに夫々のアルカリ金属塩の他、ポリイミド樹脂やポリイミドアミド樹脂が例示される。これら結着剤は単独で使用してもよいし、混合物であってもよく、更にまた集電体との結着性の向上、分散性を改善、結着剤自身の導電性の向上など別機能を付与する成分、例えば、スチレン-ブタジエン・ゴム系ポリマーやスチレン-イソプレン・ゴム系ポリマーが付加、混合されていてもよい。
<リチウムイオン電池>
 本発明のポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含んでなる負極活物質を用いたリチウムイオン電池は、次のように製造できる。
 まず、リチウムイオンを可逆的に吸蔵及び放出可能な正極活物質、導電助剤、結着剤及び溶媒を混合して正極活物質組成物を準備する。前記正極活物質組成物を負極と同様、公知の方法にて金属集電体上に直接コーティング及び乾燥し、正極極板を準備する。
 前記正極活物質組成物を別途、支持体上にキャスティングした後、この支持体から剥離して得たフィルムを金属集電体上にラミネートして正極を製造することも可能である。正極の成形方法は、特に限定されず、公知の方法を用いることができる。
 前記正極活物質としては、リチウム金属複合酸化物であって、当該二次電池の分野で一般的に使われるものであるならば特に限定されなく、例えば、コバルト酸リチウム、ニッケル酸リチウム、スピネル構造を持ったマンガン酸リチウム、コバルトマンガン酸リチウム、オリビン構造を持ったリン酸鉄、いわゆる三元系リチウム金属複合酸化物、ニッケル系リチウム金属複合酸化物などが例示できる。また、リチウムイオンの脱-挿入が可能な化合物であるV、TiS及びMoSなども使用することができる。
 導電助剤は、リチウムイオン電池で一般的に使用されるものであれば特に限定されず、構成された電池において分解又は変質を起こさない電子伝導性の材料であればよい。具体例としては、カーボンブラック(アセチレンブラック等)、黒鉛微粒子、気相成長炭素繊維、及びこれらの二種以上の組み合わせなどが挙げられる。また、結着剤としては、例えば、フッ化ビニリデン/六フッ化プロピレン共重合体、フッ化ポリビニリデン(PVDF)、ポリアクリロニトリル、ポリメチルメタクリレート、ポリ四フッ化エチレン及びその混合物、スチレンブタジエン・ゴム系ポリマーなどが挙げられるが、これらに限定されるものでない。また、溶媒としては、例えば、N-メチルピロリドン、アセトン、水などが挙げられるが、これらに限定されるものではない。
 この時、正極活物質、導電助剤、結着剤及び溶媒の含有量は、リチウムイオン電池で一般的に使用することができる量とする。
 正極と負極との間に介在するセパレータとしては、リチウムイオン電池で一般的に使われるものならば、特に限定されない。電解質のイオン移動に対して低抵抗であるか、又は電解液含浸能に優れるものが好ましい。具体的には、ガラスファイバー、ポリエステル、ポリエチレン、ポリプロピレン、ポリ四フッ化エチレン、ポリイミド、あるいはその化合物のうちから選択された材質であって、不織布または織布の形態でもよい。
 より具体的には、リチウムイオン電池の場合には、ポリエチレン、ポリプロピレンのような材料からなる巻き取り可能なセパレータを使用し、リチウムイオンポリマー電池の場合には、有機電解液含浸能に優れたセパレータを使用する事が好ましい。
 電解液としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチレンカーボネート、ジブチルカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、ジオキソラン、4-メチルジオキソラン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2-ジメトキシエタン、スルフォラン、ジクロロエタン、クロロベンゼン、ニトロベンゼンまたは、ジエチルエーテルなどの溶媒またはそれらの混合溶媒に、六フッ化リンリチウム、四フッ化ホウ素リチウム、六アンチモンリチウム、六フッ化ヒ素リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y+1SO)(ただし、xおよびyは自然数)、LiCl、LiIのようなリチウム塩からなる電解質のうち一種またはそれらを二種以上混合したものを溶解して使用できる。
 また、それ以外の種々の非水系電解質や固体電解質も使用できる。例えば、リチウムイオンを添加した各種イオン液体、イオン液体と微粉末を混合した擬似固体電解質、リチウムイオン導電性固体電解質などが使用可能である。
 更にまた、充放電サイクル特性を向上させる目的で、前記の電解液に、負極活物質表面に安定な被膜形成を促進する化合物を適宜含有させることもできる。例えば、ビニレンカーボネート(VC)、フルオロベンゼン、環状フッ素化カーボネート〔フルオロエチレンカーボネート(FEC)、トリフルオロプロピレンカーボネート(TFPC)など〕、または、鎖状フッ素化カーボネート〔トリフルオロジメチルカーボネート(TFDMC)、トリフルオロジエチルカーボネート(TFDEC)、トリフルオロエチルメチルカーボネート(TFEMC)など〕などのフッ素化カーボネートが効果的である。なお、前記環状フッ素化カーボネートおよび鎖状フッ素化カーボネートは、エチレンカーボネートなどのように、溶媒として用いることもできる。
 前述のような正極極板と負極極板との間にセパレータを配して電池構造体を形成する。係る電池構造体をワインディングするか、または折りたたんで円筒形電池ケース、または角型電池ケースに入れた後、電解液を注入すればリチウムイオン電池が完成する。
 また、前記電池構造体をバイセル構造に積層した後、これを有機電解液に含浸させ、得られた物をパウチに入れて密封すれば、リチウムイオンポリマー電池が完成する。
 ポリシルセスキオキサン被覆シリコンナノ粒子を熱処理することにより形成されるポリシルセスキオキサン被覆シリコンナノ粒子焼成物の一態様は、赤外分光法により測定したスペクトルにおいて、Si-H結合に由来する820~920cm-1の吸収帯のうち、最大吸収ピーク(ピーク1)の強度をI、Si-O-Si結合に由来する1000~1250cm-1吸収帯のうち、最大吸収ピーク(ピーク2)の強度をIとした場合に、強度比(I/I)が、0.01から0.35の範囲にあり、また、被覆の厚さは、1nm以上、30nm以下である、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物である。これらの特徴を有するポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含む負極活物質を用いて製造されたリチウムイオン電池は、優れたサイクル特性を有し、かつ良好な初期充放電効率を有し、そして高容量である。
 本発明のポリシルセスキオキサン被覆シリコンナノ粒子焼成物の一態様は、赤外分光法により測定したスペクトルにおいて、Si-O-Si結合に由来する1000~1250cm-1の吸収帯のうち、1100cm-1より高波数側の吸収帯における最大吸収ピーク(ピーク2-1)の強度をI2-1、1100cm-1より低波数側の吸収帯における最大吸収ピーク(ピーク2-2)の強度をI2-2とした場合に、強度比(I2-1/I2-2)が、1を超えることを特徴とするポリシルセスキオキサン被覆シリコンナノ粒子焼成物である。この特徴は、前駆体であるポリシルセスキオキサン被覆シリコンナノ粒子と同じである。また、熱処理によっても環状化結合の割合は概ね維持されるため、I2-1/I2-2>1の状態も維持される。
 この様なポリシルセスキオキサン被覆シリコンナノ粒子焼成物は、シリコンナノ粒子の表面と水素ポリシルセスキオキサンが強固な化学結合(Si-O-Si結合)を介してネットワークを形成している事が示唆される。焼成後もこのネットワークは保持され、水素ポリシルセスキオキサン骨格がシリコンナノ粒子の膨張収縮に対する緩衝層の役割を果たし、その結果充放電の繰り返しの際に発生するシリコンナノ粒子の微細化を抑制しているものと推察される。
 以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 本実施例においては、実施例1~実施例5、並びに比較例1において調製したポリシルセスキオキサン被覆シリコンナノ粒子及びその焼成物について、各種分析・評価を行った。
 各実施例及び比較例における「赤外分光法測定」、「元素分析測定」、「走査型顕微鏡(SEM)による観察・撮影」、「透過型顕微鏡(TEM)による観察・撮影、及び被覆層の厚さ計測」の測定装置及び測定方法並びに「電池特性の評価」は、以下のとおりである。
(赤外分光法測定)
 赤外分光法測定は、赤外分光装置として、Thermo Fisher Scientific製 Nicolet iS5 FT-IRを用いて、KBr法による透過測定(分解能4cm-1、スキャン回数16回、データ間隔 1.928cm-1、検出器 DTGS KBr)にて、820~920cm-1にあるSi-H結合に由来するピーク1の強度(I1)および、1000~1250cm-1にあるSi-O-Si結合に由来するピーク2の強度(I)を測定した。なお、各々のピーク強度は、対象のピークの始点と終点を直線で結び、部分的にベースライン補正を行った後、ベースラインからピークトップまでの高さを計測して求めた。Si-O-Si結合に由来するピークは、2箇所に存在するため、ピーク分離を行いピーク位置が1170cm-1~1230cm-1付近の大きなピークの強度をI2-1、1070cm-1付近の大きなピークの強度をI2-2とし、2つのピークのうち高強度なピークの強度をIと規定した。
(元素分析測定)
 元素分析測定については、試料粉末をペレット状に固めたのち、2.3MeVに加速したHeイオンを試料に照射し、後方散乱粒子のエネルギースペクトル、及び前方散乱された水素原子のエネルギースペクトルを解析することにより水素を含めた確度の高い組成値が得られるRBS(ラザフォード後方散乱分析)/HFS(水素前方散乱分析)法により行った。測定装置はNational Electrostatics Corporation製 Pelletron  3SDHにて、入射イオン:2.3MeV He、RBS/HFS同時測定時入射角:75deg.、散乱角:160deg.、試料電流:4nA、ビーム径:2mmφの条件で測定した。
(走査型顕微鏡(SEM)による観察・撮影)
  試料粉末を、超高分解能分析走査電子顕微鏡(Hitachi製 商品名SU-70)により観察、撮影した。
(透過型顕微鏡(TEM)による観察・撮影、及び被覆層の厚さ計測)
 試料について、装置名:電界放射型透過分析電子顕微鏡(FEI製 TecnaiG2F20)で観察・撮影した。観察条件は、加速電圧200kVであり、透過電子顕微鏡像は、明視野像であった。また、前処理として、試料粉末を樹脂に包埋し、ウルトラミクロトームにより薄片化した。
 被覆層の厚さは、TEMによる撮影した写真に撮影された粒子ごとの被覆層の厚さを計測し、10個の粒子の平均値を算出した。
(電池特性の評価)
 本発明のポリシルセスキオキサン被覆シリコンナノ粒子焼成物を含有する負極活物質を用いたリチウムイオン二次電池等の充放電特性は、次のようにして測定した。
 株式会社ナガノ製BTS2005Wを用い、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物1g重量あたり、100mAの電流で、Li電極に対して0.001Vに達するまで定電流充電し、次に0.001Vの電圧を維持しつつ、電流が活物質1g当たり20mA以下の電流値になるまで定電圧充電を実施した。
 充電が完了したセルは、約30分間の休止期間を経た後、活物質1g当たり100mAの電流で電圧が1.5Vに達するまで定電流放電を行った。
 また、充電容量は、定電圧充電が終了するまで積算電流値から計算し、放電容量は、電池電圧が1.5Vに到達するまでの積算電流値から計算した。各充放電の切り替え時には、30分間、開回路で休止した。
 充放電サイクル特性についても同様の条件で行った。なお、表1中の「500Cycle目の放電容量」とは、上記充電・放電を1サイクルとして、500サイクル目の放電容量である。また、充放電効率は、初回(充放電の第1サイクル目)の充電容量に対する放電容量の比率とし、容量維持率は初回の放電容量に対する、充放電50サイクル目の放電容量の比率とした。
[実施例1]
(ポリシルセスキオキサン被覆シリコンナノ粒子紛体(1)の調製)
 100mlポリビーカーに純水70gとシリコンナノパウダー(S’tile社製 Si-10 平均粒径100nm、粒径1000nm以上の粒子は含まない)20.5gを入れ、超音波ホモジナイザーにて2分間処理して、シリコンナノ粒子分散水溶液を作製した。1000mlの三つ口フラスコに、このシリコン微粒子分散液と35重量%濃度の塩酸3.24g(31mmol)及び純水247gを仕込み、室温にて10分攪拌してシリコンナノ粒子を全体に分散させ、撹拌下にトリエトキシシラン(東京化成)60.0g(366mmol)を25℃にて滴下した。滴下終了後、撹拌しながら25℃にて加水分解反応および縮合反応を2時間行った。
 反応時間経過後、反応物をメンブランフィルター(孔径0.45μm、親水性)にてろ過し、固体を回収した。得られた固体を80℃にて10時間、減圧乾燥し、ポリシルセスキオキサン被覆シリコンナノ粒子紛体(1)39.2gを得た。
(ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(1)の調製)
 前記ポリシルセスキオキサン被覆シリコンナノ粒子紛体(1)10.0gをSSA-Sグレードのアルミナ製ボートにのせた後、該ボートを真空パージ式チューブ炉 KTF43N1-VPS(光洋サーモシステム社製)にセットし、熱処理条件として、アルゴンガス雰囲気下(高純度アルゴンガス99.999%)にて、アルゴンガスを250ml/分の流量で供給しつつ、4℃/分の割合で昇温し、900℃で1時間焼成することで、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物を得た。
 次いで、得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物を乳鉢にて5分間解砕粉砕し、目開き32μmのステンレス製篩を用いて分級することにより最大粒子径が32μmであるポリシルセスキオキサン被覆シリコンナノ粒子焼成物(1)、9.75gを得た。
 得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物(1)の赤外分光スペクトルを図1に、透過型電子顕微鏡(TEM)による写真を図2、走査型電子顕微鏡(SEM)による写真を図3に示す。被覆層の厚さは、26nmであった。
(負極の作製)
 カルボキシメチルセルロースの2重量%水溶液20g中に、前記ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(1)3.0gと0.4gのデンカ株式会社製アセチレンブラック、及び0.2gの昭和電工株式会社製の気相法炭素繊維(気相成長炭素繊維)VGCF-Hを加え、フラスコ内で攪拌子を用いて15分間混合した後、固形分濃度が15重量%となるよう蒸留水を加え、さらに15分間撹拌してスラリー状組成物を調製した。このスラリー状組成物をプライミックス社製の薄膜旋回型高速ミキサー(フィルミックス40-40型)に移し、回転数20m/sで30秒間、撹拌分散を行った。分散処理後のスラリーを、ドクターブレード法により、銅箔ロール上にスラリーを200μmの厚さにて塗工した。
 塗工後、80℃のホットプレートにて90分間乾燥した。乾燥後、負極シートを2t小型精密ロールプレス(サンクメタル社製)にてプレスした。プレス後、φ14.50mmの電極打ち抜きパンチHSNG-EPにて電極を打ち抜き、ガラスチューブオーブンGTO―200(SIBATA社製)にて、80℃で、16時間減圧乾燥を行い、負極を作製した。
(リチウムイオン電池の作製及び評価)
 図4に示す構造の2032型コイン電池を作製した。負極1として上記負極体、対極3として金属リチウム、セパレータ2として微多孔性のポリプロピレン製フィルムを使用し、電解液としてLiPFを1モル/Lの割合で溶解させたエチレンカーボネートとジエチルカーボネート1:1(体積比)混合溶媒にフルオロエチレンカーボネートを5重量%添加したものを使用した。
 次いで、リチウムイオン電池の電池特性の評価を既述の方法で実施した。
[実施例2]
(ポリシルセスキオキサン被覆シリコンナノ粒子紛体(2)の調製)
 100mlポリビーカーに純水50gとシリコンナノパウダー(S’tile社製 Si-10 平均粒径100nm、粒径1000nm以上の粒子は含まない)13.58gを入れ、超音波ホモジナイザーにて2分間処理して、シリコンナノ粒子分散水溶液を作製した。500mlの三つ口フラスコに、このシリコン微粒子分散液と35重量%濃度の塩酸2.22g(21mmol)及び純水161gを仕込み、室温にて10分攪拌してシリコンナノ粒子を全体に分散させ、撹拌下にトリエトキシシラン(東京化成)19.9g(121mmol)を25℃にて滴下した。滴下終了後、撹拌しながら25℃にて加水分解反応および縮合反応を2時間行った。
 反応時間経過後、反応物をメンブランフィルター(孔径0.45μm、親水性)にてろ過し、固体を回収した。得られた固体を80℃にて10時間、減圧乾燥し、ポリシルセスキオキサン被覆シリコンナノ粒子紛体(2)20.0gを得た。
(ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(2)の調製)
 ポリシルセスキオキサン被覆シリコンナノ粒子粉体(2)10.0gを用い、実施例1と同様の方法で焼成物の調製を行い、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(2)9.82gを得た。得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物(2)の赤外分光スペクトルを図1に示す。透過型電子顕微鏡によって撮影したポリシルセスキオキサン被覆シリコンナノ粒子焼成物(2)の被覆層の厚さは、10nmであった。
(負極の作製、リチウムイオン電池の作製及び評価)
 ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(2)について、実施例1と同様に負極体を作製し、リチウムイオン電池の電池特性を評価した。
[実施例3]
(ポリシルセスキオキサン被覆シリコンナノ粒子紛体(3)の調製)
 100mlビーカーに純水50gとシリコンナノパウダー(S’tile社製 Si-10 平均粒径100nm、粒径1000nm以上の粒子は含まない)17.6gを入れ、超音波ホモジナイザーにて2分間処理して、シリコンナノ粒子分散水溶液を作製した。500ml三つ口フラスコに、このシリコン微粒子分散液と酢酸(和光特級試薬)1.67g(28mmol)及び純水223gを仕込み、室温にて10分攪拌してシリコンナノ粒子を全体に分散させ、撹拌下にトリエトキシシラン(東京化成)7.36g(44.9mmol)を25℃にて滴下した。滴下終了後、撹拌しながら25℃にて加水分解反応および縮合反応を2時間行った。
 反応時間経過後、反応物をメンブランフィルター(孔径0.45μm、親水性)にてろ過し、固体を回収した。得られた固体を80℃にて10時間、減圧乾燥し、ポリシルセスキオキサン被覆シリコンナノ粒子紛体(3)20.0gを得た。
(ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(3)の調製)
 ポリシルセスキオキサン被覆シリコンナノ粒子紛体(3)10.0gを用い、実施例1と同様の方法で焼成物の調製を行い、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(3)9.88gを得た。透過型電子顕微鏡によって撮影したポリシルセスキオキサン被覆シリコンナノ粒子焼成物(3)の被覆層の厚さは、3nmであった。
(負極の作製、リチウムイオン電池の作製及び評価)
 ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(3)について、実施例1と同様に負極体を作製し、リチウムイオン電池の電池特性を評価した。
[実施例4]
(ポリシルセスキオキサン被覆シリコンナノ粒子紛体(4)の調製)
 100mlビーカーに純水50gとシリコンナノパウダー(Nanomakers社製 Pure Si NM Si99 平均粒径75nm、粒径1000nm以上の粒子は含まない)15.5gを入れ、超音波ホモジナイザーにて2分間処理して、シリコンナノ粒子分散水溶液を作製した。500mlの三つ口フラスコに、このシリコン微粒子分散液と35重量%濃度の塩酸2.54g(24 mmol)及び純水190gを仕込み、室温にて10分攪拌してシリコンナノ粒子を全体に分散させ、撹拌下にトリエトキシシラン(東京化成)13.9g(85mmol)を25℃にて滴下した。滴下終了後、撹拌しながら25℃にて加水分解反応および縮合反応を2時間行った。
 反応時間経過後、反応物をメンブランフィルター(孔径0.45μm、親水性)にてろ過し、固体を回収した。得られた固体を80℃にて10時間、減圧乾燥し、ポリシルセスキオキサン被覆シリコンナノ粒子粉体(4)20.0gを得た。
(ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(4)の調製)
 ポリシルセスキオキサン被覆シリコンナノ粒子粉体(4)10.0gを用い、実施例1と同様の方法で焼成物の調製を行い、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(4)9.81gを得た。透過型電子顕微鏡によって撮影したポリシルセスキオキサン被覆シリコンナノ粒子焼成物(4)の被覆層の厚さは、5nmであった。
(負極の作製、リチウムイオン電池の作製及び評価)
 ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(4)について、実施例1と同様に負極体を作製し、リチウムイオン電池の電池特性を評価した。
[実施例5]
 前記シリコンナノナノパウダーをNanomakers社製NM SiΩC99(平均粒径75nm、粒径1000nm以上の粒子は含まない)にした以外は実施例4と同様に処理を行い、ポリシルセスキオキサン被覆シリコンナノ粒子焼成物(5)9.84gを得た。透過型電子顕微鏡によって撮影したポリシルセスキオキサン被覆シリコンナノ粒子焼成物(5)の被覆層の厚さは、5nmであった。
(負極の作製、リチウムイオン電池の作製及び評価)
 得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物(5)を用い、実施例1と同様の方法で負極体の作製を行い、リチウムイオン二次電池の電池特性を評価した。
 本発明の実施例1~5で得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物の赤外分光測定の結果、元素分析の結果及び各負極活物質を用いて作製した負極を採用した電池特性の評価結果は、表1に示すとおりである。
[比較例1]
 市販の一酸化珪素(アルドリッチ社製 under325mesh)を20μmのステンレス製篩を用いて分級することにより最大粒子径が20μmである一酸化ケイ素粉末を得た。該20μm以下の一酸化珪素4.41gを、シリコンナノパウダー(Nanomakers社製 Pure Si NM Si99 平均粒径75nm)11.2gとジルコニア製の容器とジルコニア製ボールを用いて遊星ボールミルにて10分間ボールミリング処理混合し、シリコンナノ粒子混合ケイ素酸化物(1)を得た。該シリコンナノ粒子混合ケイ素酸化物(1)にカルボキシメチルセルロースの2重量%水溶液5gを加え、ジルコニア製の容器とジルコニア製ボールを用いて遊星ボールミルにて2時間ボールミリング処理を行い、真空乾燥機にて100℃で8時間乾燥して水分を除去してシリコンナノ粒子複合ケイ素酸化物(1)15.6gを得た。得られたシリコンナノ粒子混合ケイ素酸化物(1)の赤外分光スペクトルを図1に示す。
(負極の作製)
 比較例1のシリコンナノ粒子複合ケイ素酸化物(1)を用いた以外は、実施例2と同様に行い負極体を作製した。
(リチウムイオン電池の作製及び評価)
 負極体として、前記シリコンナノ粒子複合ケイ素酸化物(1)から作製された負極を用いた以外は、実施例1のポリシルセスキオキサン被覆シリコンナノ粒子焼成物(1)を用いたときと同様にしてリチウムイオン電池を作製し、それを備えた電池特性を評価した。
Figure JPOXMLDOC01-appb-T000001
 上記各実施例の結果によると、体積基準平均粒径が10nmを超え500nm未満であり、且つ粒径が1000nm以上の粒子を含まないシリコンナノ粒子と、前記シリコンナノ粒子を被覆し、前記シリコンナノ粒子の表面に化学的に結合しているポリシルセスキオキサンとを含み、Si-H結合を有し、透過型電子顕微鏡(TEM)で観察される、前記ポリシルセスキオキサンの厚さが、1nm以上30nm以下である、ポリシルセスキオキサン被覆シリコンナノ粒子を熱処理し得られた焼成物から作製されるリチウムイオン電池用負極活物質は、何れも初期放電容量と50サイクル目の放電容量ともに従来の炭素系負極活物質よりも格段に放電容量が高く、良好な初期充放電効率を有し、しかも、充放電サイクルによる容量低下が少なく、高い容量維持率を有するものであった。したがって、特定のポリシルセスキオキサン被覆シリコンナノ粒子は熱処理加工することによりリチウムイオン電池負極活物質として十分に実用に耐え、高容量を求められる最新電池の負極材料として利用可能な物質となり得る有用な化合物であると評価できる。
 比較例1で示されるように、シリコンナノ粒子表面が化学的な結合を持たず、Si-H結合を有していないケイ素酸化物から作製された負極活物質を用いた負極を採用した電池特性は、本発明の負極活物質を採用した負極と同じ条件下で作製した電池特性と比較したとき、初期充放電効率は一定程度の値を示すものの、急激に容量が低下しており、リチウムイオン電池として実用的なレベルに達していない。
 本発明の製造方法で得られたポリシルセスキオキサン被覆シリコンナノ粒子焼成物を用いたリチウムイオン電池用負極活物質及びそれを用いて負極を形成し、リチウムイオン電池に用いることにより、従来の炭素系負極材と比べ、格段に高い容量を有し、実用性のある初期充放電効率とサイクル特性を有するリチウムイオン電池を得ることができ、例えば、本発明は、電池の分野に、特に、二次電池の分野において有用な技術である。
 1:負極材
 2:セパレータ
 3:リチウム対極
 

 

Claims (8)

  1.  体積基準平均粒径が10nmを超え500nm未満であり、且つ粒径が1000nm以上の粒子を含まないシリコンナノ粒子と、前記シリコンナノ粒子を被覆し、前記シリコンナノ粒子の表面に化学的に結合しているポリシルセスキオキサンとを含み、
     Si-H結合を有し、
     透過型電子顕微鏡(TEM)で観察される前記ポリシルセスキオキサンの厚さが、1nm以上30nm以下である、ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物。
  2.  前記ポリシルセスキオキサン被覆シリコンナノ粒子を赤外分光法により測定したスペクトルにおいて、Si-O-Si結合に由来する1000~1250cm-1の吸収帯のうち、1100cm-1より高波数側の吸収帯における最大吸収ピークの強度をI2-1、1100cm-1より低波数側の吸収帯における最大吸収ピークの強度をI2-2とした場合に、強度比(I2-1/I2-2)が、1を超える請求項1に記載のポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物。
  3.  前記ポリシルセスキオキサン被覆シリコンナノ粒子を赤外分光法により測定したスペクトルにおいて、Si-H結合に由来する820~920cm-1の吸収帯のうち、最大吸収ピークの強度をI、Si-O-Si結合に由来する1000~1250cm-1吸収帯のうち、最大吸収ピークの強度をIとした場合に、強度比(I/I)が、0.01から0.35の範囲にある請求項1又は2に記載のポリシルセスキオキサン被覆シリコンナノ粒子の焼成物。
  4.  請求項1から3のいずれか一項に記載のポリシルセスキオキサン被覆シリコンナノ粒子の焼成物を含むリチウムイオン電池用負極活物質。
  5.  請求項4に記載のリチウムイオン電池用負極活物質を含むリチウムイオン電池用負極。
  6.  請求項5に記載のリチウムイオン電池用負極を備えたリチウムイオン電池。
  7.  ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物の製造方法であって、
     前記ポリシルセスキオキサン被覆シリコンナノ粒子は、体積基準平均粒径が10nmを超え500nm未満であり、且つ粒径が1000nm以上の粒子を含まないシリコンナノ粒子と、前記シリコンナノ粒子を被覆し、前記シリコンナノ粒子の表面に化学的に結合しているポリシルセスキオキサンとを含み、
      Si-H結合を有し、
      透過型電子顕微鏡(TEM)で観察される前記ポリシルセスキオキサンの厚さが、1nm以上30nm以下であり、
     前記製造方法は、シリコンナノ粒子の存在下で、式(1)で示されるケイ素化合物を加水分解および縮合反応させる工程を含む、製造方法。
     HSi(R)           (1)
    (式中、Rは、それぞれ同一あるいは異なる、ハロゲン、水素、炭素数1~10の置換または非置換のアルコキシ、炭素数6~20の置換または非置換のアリールオキシ、および炭素数7~30の置換または非置換のアリールアルコキシから選択される基である。但し、炭素数1~10の置換または非置換のアルコキシ基、炭素数6~20の置換または非置換のアリールオキシ基、および炭素数7~30の置換または非置換のアリールアルコキシ基において、任意の水素はハロゲンで置換されていてもよい。)
  8.  加水分解及び縮合反応させる工程の後に、非酸化性雰囲気下で焼成する工程をさらに含む、請求項7に記載のポリシルセスキオキサン被覆シリコンナノ粒子の焼成物の製造方法。
PCT/JP2018/000348 2017-01-11 2018-01-10 ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池 WO2018131608A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018561390A JP6941302B2 (ja) 2017-01-11 2018-01-10 ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
KR1020197015318A KR20190069573A (ko) 2017-01-11 2018-01-10 폴리실세스퀴옥산 피복 실리콘 나노 입자 또는 그의 소성물 및 그의 제조 방법, 리튬 이온 전지용 음극 활물질, 리튬 이온 전지용 음극, 및 리튬 이온 전지
CN201880006431.5A CN110191861A (zh) 2017-01-11 2018-01-10 聚倍半硅氧烷被覆硅纳米粒子或其烧结体及其制造方法、锂离子电池用负极活性物质、锂离子电池用负极以及锂离子电池
US16/477,201 US11031591B2 (en) 2017-01-11 2018-01-10 Polysilsesquioxane covered silicon nanoparticles or calcined product thereof and production method thereof, negative electrode active material for lithium ion battery, negative electrode for lithium ion battery and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-002955 2017-01-11
JP2017002955 2017-01-11

Publications (1)

Publication Number Publication Date
WO2018131608A1 true WO2018131608A1 (ja) 2018-07-19

Family

ID=62840410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000348 WO2018131608A1 (ja) 2017-01-11 2018-01-10 ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池

Country Status (5)

Country Link
US (1) US11031591B2 (ja)
JP (1) JP6941302B2 (ja)
KR (1) KR20190069573A (ja)
CN (1) CN110191861A (ja)
WO (1) WO2018131608A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059632A (ja) * 2018-10-11 2020-04-16 学校法人東京電機大学 表面孔を有するシリコン微粒子の製造方法、及びシリコン微粒子
JP2020059631A (ja) * 2018-10-11 2020-04-16 学校法人東京電機大学 微細突起を有するシリコン微粒子の製造方法、及びシリコン微粒子
WO2020129467A1 (ja) * 2018-12-19 2020-06-25 Dic株式会社 シリコンナノ粒子及びそれを用いた非水二次電池負極用活物質並びに二次電池
JP2020138895A (ja) * 2019-03-01 2020-09-03 Jnc株式会社 シリコン系微粒子/シリコン含有ポリマー複合体、SiOC構造体、並びにSiOC構造体を用いた負極用組成物、負極及び二次電池
WO2020179409A1 (ja) * 2019-03-01 2020-09-10 Jnc株式会社 SiOC構造体並びにこれを用いた負極用組成物、負極及び二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847784B2 (en) * 2015-07-10 2020-11-24 Jnc Corporation Negative electrode active material for lithium ion secondary battery and method for producing same
TW201826600A (zh) * 2017-01-11 2018-07-16 日商捷恩智股份有限公司 含有矽奈米粒子的氫聚倍半矽氧烷燒結體、鋰離子電池用負極活性物質、鋰離子電池用負極以及鋰離子電池
TW201826598A (zh) * 2017-01-11 2018-07-16 日商捷恩智股份有限公司 含有矽奈米粒子的氫聚倍半矽氧烷燒結體-金屬氧化物複合體及其製造方法、鋰離子電池用負極活性物質、鋰離子電池用負極以及鋰離子電池
CN112289984A (zh) * 2020-09-22 2021-01-29 合肥国轩高科动力能源有限公司 一种改性硅负极材料及其制备方法、应用
KR20230029425A (ko) * 2021-08-24 2023-03-03 에스케이온 주식회사 이차 전지용 전해액 및 이를 포함하는 이차 전지
CN115084494A (zh) * 2022-06-08 2022-09-20 江苏鑫华半导体科技股份有限公司 纳米硅及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064778A (ko) * 2008-06-10 2008-07-09 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
JP2008171813A (ja) * 2007-01-05 2008-07-24 Samsung Sdi Co Ltd アノード活物質、その製造方法及びこれを採用したアノードとリチウム電池
JP2016514898A (ja) * 2013-05-07 2016-05-23 エルジー・ケム・リミテッド リチウム二次電池用負極活物質、この製造方法、及びこれを含むリチウム二次電池
WO2016208314A1 (ja) * 2015-06-22 2016-12-29 株式会社日立製作所 リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
WO2018003150A1 (ja) * 2016-06-30 2018-01-04 Jnc株式会社 シリコンナノ粒子含有水素ポリシルセスキオキサン、その焼成物、及びそれらの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290863A (ja) 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd 二次電池
JP2004071542A (ja) 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法
KR101502897B1 (ko) * 2007-12-28 2015-03-17 삼성에스디아이 주식회사 음극 활물질용 복합물, 이를 포함하는 음극 활물질 및 리튬전지
CN101777651B (zh) * 2009-01-12 2012-06-20 比亚迪股份有限公司 一种硅负极材料及其制备方法以及使用该材料的锂电池
JP2011144238A (ja) * 2010-01-13 2011-07-28 Tdk Corp 被覆粒子の製造方法
JP6183362B2 (ja) * 2012-06-27 2017-08-23 Jnc株式会社 二次電池用負極活物質及びその製造方法、それを用いた負極並びにリチウムイオン電池
CN103236517A (zh) * 2013-04-26 2013-08-07 中国东方电气集团有限公司 一种锂离子电池硅基负极材料及其制备方法
JPWO2015002297A1 (ja) * 2013-07-05 2017-02-23 古河電気工業株式会社 正極活物質、非水電解質二次電池用正極、非水電解質二次電池及び正極活物質の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171813A (ja) * 2007-01-05 2008-07-24 Samsung Sdi Co Ltd アノード活物質、その製造方法及びこれを採用したアノードとリチウム電池
KR20080064778A (ko) * 2008-06-10 2008-07-09 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
JP2016514898A (ja) * 2013-05-07 2016-05-23 エルジー・ケム・リミテッド リチウム二次電池用負極活物質、この製造方法、及びこれを含むリチウム二次電池
WO2016208314A1 (ja) * 2015-06-22 2016-12-29 株式会社日立製作所 リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
WO2018003150A1 (ja) * 2016-06-30 2018-01-04 Jnc株式会社 シリコンナノ粒子含有水素ポリシルセスキオキサン、その焼成物、及びそれらの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059632A (ja) * 2018-10-11 2020-04-16 学校法人東京電機大学 表面孔を有するシリコン微粒子の製造方法、及びシリコン微粒子
JP2020059631A (ja) * 2018-10-11 2020-04-16 学校法人東京電機大学 微細突起を有するシリコン微粒子の製造方法、及びシリコン微粒子
JP7224593B2 (ja) 2018-10-11 2023-02-20 学校法人東京電機大学 微細突起を有するシリコン微粒子の製造方法、及びシリコン微粒子
JP7224594B2 (ja) 2018-10-11 2023-02-20 学校法人東京電機大学 表面孔を有するシリコン微粒子の製造方法、及びシリコン微粒子
WO2020129467A1 (ja) * 2018-12-19 2020-06-25 Dic株式会社 シリコンナノ粒子及びそれを用いた非水二次電池負極用活物質並びに二次電池
JPWO2020129467A1 (ja) * 2018-12-19 2021-02-15 Dic株式会社 シリコンナノ粒子及びそれを用いた非水二次電池負極用活物質並びに二次電池
JP2020138895A (ja) * 2019-03-01 2020-09-03 Jnc株式会社 シリコン系微粒子/シリコン含有ポリマー複合体、SiOC構造体、並びにSiOC構造体を用いた負極用組成物、負極及び二次電池
WO2020179409A1 (ja) * 2019-03-01 2020-09-10 Jnc株式会社 SiOC構造体並びにこれを用いた負極用組成物、負極及び二次電池

Also Published As

Publication number Publication date
JP6941302B2 (ja) 2021-09-29
JPWO2018131608A1 (ja) 2019-11-07
CN110191861A (zh) 2019-08-30
US20190363354A1 (en) 2019-11-28
US11031591B2 (en) 2021-06-08
KR20190069573A (ko) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2018131608A1 (ja) ポリシルセスキオキサン被覆シリコンナノ粒子又はその焼成物及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
WO2018003150A1 (ja) シリコンナノ粒子含有水素ポリシルセスキオキサン、その焼成物、及びそれらの製造方法
WO2018131606A1 (ja) シリコンナノ粒子含有水素ポリシルセスキオキサン焼成物-金属酸化物複合体及びその製造方法、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
US10770717B2 (en) Composition for secondary battery negative electrode and negative electrode for secondary battery using the same and secondary battery
JP6645514B2 (ja) リチウムイオン二次電池用負極活物質の製造方法
JP6620812B2 (ja) リチウムイオン二次電池用負極活物質およびその製造方法
JP6727558B2 (ja) シリコンナノ粒子含有水素ポリシルセスキオキサン焼成物、リチウムイオン電池用負極活物質、リチウムイオン電池用負極、及びリチウムイオン電池
JP2019178038A (ja) 球状水素ポリシルセスキオキサン微粒子及び球状ケイ素酸化物微粒子並びにこれらの製造方法
CN116979038A (zh) 正电极活性物质、制备其的方法和可再充电锂电池
JP6986201B2 (ja) シリコン系ナノ粒子含有水素ポリシルセスキオキサン、ケイ素酸化物構造体及びそれらの製造方法
JP2019040806A (ja) リチウムイオン電池用負極活物質、リチウムイオン電池用負極活物質の製造方法、リチウムイオン電池用負極、およびリチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015318

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018561390

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18738686

Country of ref document: EP

Kind code of ref document: A1