WO2018131269A1 - 情報処理装置、放射線撮像装置、情報処理方法およびプログラム - Google Patents

情報処理装置、放射線撮像装置、情報処理方法およびプログラム Download PDF

Info

Publication number
WO2018131269A1
WO2018131269A1 PCT/JP2017/039922 JP2017039922W WO2018131269A1 WO 2018131269 A1 WO2018131269 A1 WO 2018131269A1 JP 2017039922 W JP2017039922 W JP 2017039922W WO 2018131269 A1 WO2018131269 A1 WO 2018131269A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
average value
pixel
subject
atomic number
Prior art date
Application number
PCT/JP2017/039922
Other languages
English (en)
French (fr)
Inventor
野田 剛司
貴司 岩下
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018131269A1 publication Critical patent/WO2018131269A1/ja
Priority to US16/460,083 priority Critical patent/US20190320993A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/601Specific applications or type of materials density profile

Definitions

  • the present invention relates to an information processing apparatus, a radiation imaging apparatus, an information processing method, and a program.
  • FPD flat panel detector
  • Patent Document 1 proposes, as one application technique, a method for acquiring an effective atomic number using images taken with two types of energy radiation.
  • Effective atomic number refers to a compound (compound) as a single element with a radiation attenuation coefficient of the same degree, and even if it is unknown what kind of material the subject is made of, the effective atomic number is acquired. By doing so, it is possible to know about its constituent materials.
  • Patent Document 1 describes a method of calculating an effective atomic number from an image captured by multiple times of radiography (radiation of two types of energy), but the subject moves during multiple times of radiography. As a result, when motion artifacts occur, the measurement accuracy decreases, and the exposure dose of the subject may increase.
  • the present invention has been made in view of the above problems, and acquires the effective atomic number or surface density of a substance constituting a subject from an average value and a dispersion value in a radiographic image acquired by one radiography.
  • the purpose is to provide a technology that can do this.
  • An information processing apparatus is an information processing apparatus that processes information based on a radiation image obtained by photographing a subject, Average value acquisition means for acquiring an average value of pixel values of the radiation image; Dispersion value acquisition means for acquiring a dispersion value of pixel values of the radiation image; Computational processing means for calculating an effective atomic number or surface density of a substance constituting the subject based on the average value and the variance value is provided.
  • the present invention it is possible to acquire the effective atomic number and surface density of the substance constituting the subject from the average value and the dispersion value in the radiographic image.
  • the accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
  • the figure which illustrates the function structure of an arithmetic processing part. The figure explaining the flow of a process in the image process part of 1st Embodiment.
  • the figure explaining the table of a 2nd embodiment typically.
  • FIG. 1 is a diagram illustrating a configuration example of a radiation imaging system 100 according to the first embodiment of the present invention.
  • the radiation imaging system 100 includes a radiation generator 104, a radiation tube 101, an FPD 102, and an information processing device 120.
  • the configuration of the radiation imaging system 100 is also simply referred to as a radiation imaging apparatus.
  • the information processing device 120 processes information based on a radiographic image obtained by photographing a subject.
  • the radiation generator 104 applies a high voltage pulse to the radiation tube 101 by pressing the exposure switch to generate radiation, and the radiation tube 101 irradiates the subject 103 with radiation.
  • the FPD 102 When the subject 103 is irradiated with radiation from the radiation tube 101, the FPD 102 accumulates charges based on the image signal and acquires a radiation image.
  • the FPD 102 may transfer the radiation image to the information processing apparatus 120 for each imaging, or store the captured image in the image storage unit inside the FPD 102 without transferring the imaging image for each imaging.
  • the images can be transferred collectively from the FPD 102 to the information processing apparatus 120.
  • Communication between the FPD 102 and the information processing apparatus 120 may be wired communication or wireless communication.
  • the FPD 102 has a radiation detection unit (not shown) including a pixel array for generating a signal corresponding to radiation.
  • the radiation detection unit detects radiation transmitted through the subject 103 as an image signal.
  • pixels that output signals according to incident light are arranged in an array (two-dimensional region).
  • the photoelectric conversion element of each pixel converts the light converted by the phosphor into an image signal which is an electric signal, and the capacitor of each pixel performs accumulation.
  • the radiation detection unit is configured to detect radiation transmitted through the subject 103 and acquire an image signal (radiation image).
  • a drive unit (not shown) of the FPD 102 outputs an image signal (radiation image) read in accordance with an instruction from the control unit 105 to the control unit 105 via an analog / digital (A / D) conversion unit.
  • the control unit 105 includes an image processing unit 109 that processes a radiation image acquired from the FPD 102, and a storage unit 108 that stores a result of the image processing and various programs.
  • the storage unit 108 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the storage unit 108 associates an image output from the control unit 105, an image processed by the image processing unit 109, a calculation result (for example, effective atomic number or surface density) in the image processing unit 109, an effective atomic number and a substance. It is possible to store the attached database (FIG. 8).
  • the image processing unit 109 includes a distributed value acquisition unit 110, an average value acquisition unit 111, and an arithmetic processing unit 112 as functional configurations. These functional configurations include, for example, one or more CPUs (central processing units). ), The function of each unit is configured using a program read from the storage unit 108. The components of the image processing unit 109 may be configured by an integrated circuit or the like as long as the same function is achieved.
  • the internal configuration of the information processing apparatus 120 includes a graphic control unit such as a GPU (Graphics Processing Unit), a communication unit such as a network card, and an input / output control unit that controls an input / output unit such as a keyboard, display, or touch panel. It is also possible to configure as described above.
  • the monitor 106 displays the radiation image (digital image) received by the control unit 105 from the FPD 102 and the image processed by the image processing unit 109.
  • the display control unit 116 can control the display of the monitor 106 (display unit).
  • the operation unit 107 can input an instruction to the image processing unit 109 and the FPD 102, and receives an instruction input to the FPD 102 via a user interface (not shown).
  • the image processing unit 109 includes a variance value acquisition unit 110, an average value acquisition unit 111, and an arithmetic processing unit 112 as functional configurations.
  • the image processing unit 109 calculates an average value image from the radiographic image captured by the FPD 102. And a variance value image is generated.
  • the arithmetic processing unit 112 calculates the effective atomic number or the surface density of the substance constituting the subject based on the average value and the variance value.
  • the arithmetic processing unit 112 includes an integration processing unit 211, an update processing unit 212, and a determination unit 213 that perform integration processing in the effective atomic number calculation processing, as illustrated in FIG. 2.
  • the control unit 105 stores the radiation image captured by the FPD 102 in the storage unit 108 and transfers the radiation image to the image processing unit 109.
  • step S301 the average value acquisition unit 111 acquires an average value image indicating an average value (average information) of pixel values obtained by dividing a pixel value of a radiographic image having a subject by a pixel value of a radiographic image having no subject. Specifically, the average value acquisition unit 111 obtains a radiographic image M (x, y, t) having a subject and a radiographic image M 0 (x, y, t) having no subject, which are captured by the FPD 102.
  • the average value image A (x, y) is acquired (generated) by using (Equation (1)).
  • x and y are pixel coordinates of the image
  • t is an integer representing the frame number of the image taken in time series.
  • the bracket “ ⁇ > t” represents a time average.
  • the time average of the radiographic image M 0 is not subject (average information) by dividing the time average of the radiation image M having a subject (average information), it is possible to correct the variation in the gain characteristic of FPD 102.
  • the radiographic image M 0 (x, y, t) having no subject is captured in advance and stored in the storage unit 108.
  • the average value acquisition unit 111 acquires the average value image
  • the average value acquisition unit 111 reads out the radiation image M 0 (x, y, t) without the subject from the storage unit 108 and performs the calculation process of the equation (1).
  • step S302 the dispersion value acquisition unit 110 acquires a dispersion value image indicating a dispersion value (dispersion information) of a pixel value obtained by dividing a pixel value of a radiation image having a subject by a pixel value of a radiation image having no subject.
  • the variance value acquisition unit 110 captures a plurality of radiation images M (x, y, t) having a subject and a radiation image M 0 (x, y, t) having no subject, which are captured by the FPD 102.
  • the dispersion value image V (x, y) is acquired (generated) using, (Equation (2)).
  • x and y are pixel coordinates of the image, and t is an integer representing the frame number of the image taken in time series.
  • the bracket “ ⁇ > t” represents a time average.
  • the radiographic image M 0 (x, y, t) having no subject is captured in advance and stored in the storage unit 108.
  • the variance value acquisition unit 110 reads out a radiation image M 0 (x, y, t) without a subject from the storage unit 108, and performs the calculation process of equation (2).
  • step S ⁇ b> 303 the arithmetic processing unit 112 calculates parameters used for the arithmetic processing for acquiring the effective atomic number and the surface density of the substance constituting the subject.
  • the integration processing unit 211 of the arithmetic processing unit 112 configures the subject in terms of the surface density ( ⁇ eff ) [g / cm 2 ], the attenuation coefficient ( ⁇ ) [cm 2 / g] of the substance constituting the subject.
  • the effective atomic number (Z eff ), radiation energy (E), and radiation energy spectrum (N (E) the following six integral values (integration information) are generated ((3) to ( 8) Formula).
  • the parameter Ac in the equation (3) is a theoretically calculated pixel value of the radiation image and corresponds to an average value (average information).
  • the parameter Vc in the equation (4) is a theoretically calculated pixel value of the radiation image and corresponds to a dispersion value (dispersion information). That is, the parameter Ac (average information) is the first moment of energy, and the parameter Vc (dispersion information) is the second moment of energy.
  • the parameters of the equations (5) to (8) are the derivatives of the parameters Ac and Vc obtained by the equations (3) and (4).
  • the parameters acquired in step S303 are used in the calculation process (update calculation) in the next step. These parameters are used in the iterative calculation in the update operation in step S304.
  • ⁇ eff used in the arithmetic processing of the expressions (3) to (8) by the integration processing unit 211 is the surface density [g / cm 2 ] of the substance constituting the subject, ⁇ is the attenuation coefficient [cm 2 / g], Z eff is the substance constituting the subject, E is the energy of the radiation, and N (E) is the energy spectrum of the radiation.
  • the integration processing unit 211 of the arithmetic processing unit 112 obtains the energy of radiation, the atomic number of a known element, and the attenuation coefficient corresponding to the atomic number in obtaining the rate of change of the pixel average value or the rate of change of the pixel dispersion value. And generating interpolation information for interpolating the attenuation coefficient. Further, the integration processing unit 211 of the arithmetic processing unit 112 acquires the change rate per unit atomic number of the attenuation coefficient interpolated based on the interpolation information in acquiring the change rate of the pixel average value or the change rate of the pixel variance value. To do.
  • the rate of change per unit atomic number of the interpolation information and the interpolated attenuation coefficient is obtained by using the energy (E) of radiation, the atomic number (Z) of the known element, and the attenuation coefficient corresponding to the atomic number (Z). These can be expressed as in the following equations (9) and (10).
  • the integration processing unit 211 stores the atomic number and attenuation coefficient of the known element in, for example, the storage unit 108, and the atomic number and attenuation coefficient of the known element are set to the attenuation coefficient ⁇ by referring to the storage unit 108. It can be used for interpolation. Further, the integration processing unit 211 generates change rate information (derivative function) indicating the change rate of the attenuation coefficient ⁇ with respect to the change of the unit effective atomic number (Equation (10)).
  • the notation ([x]) indicates a floor function that outputs the maximum integer less than or equal to x with respect to the real number x.
  • step S304 the update processing unit 212 of the arithmetic processing unit 112 acquires the effective atomic number and the surface density based on the equation (11). For the effective atomic number, the arithmetic processing unit 112 calculates the change rate of the pixel average value of the radiation image acquired based on the energy spectrum and attenuation coefficient of the radiation irradiated to the subject with respect to the effective atomic number, and the pixel average for the surface density. The effective atomic number is calculated based on the change rate of the value and the difference between the average value and the pixel average value.
  • the update processing unit 212 of the arithmetic processing unit 112 has a rate of change of a pixel dispersion value of a radiographic image acquired based on an energy spectrum and an attenuation coefficient of radiation irradiated to a subject with respect to an effective atomic number.
  • the surface density is calculated based on the change rate of the pixel dispersion value with respect to the surface density and the difference between the dispersion value and the pixel dispersion value.
  • the update processing unit 212 of the arithmetic processing unit 112 includes a change rate of the pixel average value, an effective atomic number based on the difference between the average value and the pixel average value, a change rate of the pixel variance value, a variance value, and a pixel variance.
  • the surface density based on the difference between the values and the value is analyzed as a simultaneous equation, and the effective atomic number and the surface density are updated by an iterative operation based on the result of the analysis.
  • the update processing unit 212 of the calculation processing unit 112 updates the effective atomic number (Z eff ) and the surface density ( ⁇ eff ) of the substance by iterative calculation by calculating the following equation (11).
  • the notation “()” represents a matrix
  • “ ⁇ 1” represents an inverse matrix
  • the subscript n indicates the number of iterations.
  • the derivatives of the parameters Ac and Vc are parameters obtained by the calculations of the equations (5) to (8).
  • A is the information on the average value image (average information of the pixel values in the radiation image) acquired by the calculation of the expression (1)
  • Ac is the pixel value of the radiation image based on the theoretical calculation of the expression (3).
  • V is information on the dispersion value image (dispersion information on the pixel values in the radiation image) acquired by the operation of the equation (2)
  • Vc is based on the theoretical calculation of the equation (4). It is the dispersion
  • the update processing unit 212 for example, by repeatedly performing the calculation process of the equation (11) by iterative calculation using the Newton-Raphson method, the effective atomic number (Z eff ) and the surface density ( ⁇ eff ). At this time, an arbitrary value such as a zero value can be set as the initial value of the calculation.
  • Step S305 Convergence determination
  • the determination unit 213 of the arithmetic processing unit 112 determines convergence of the effective atomic number and the surface density updated by the update processing unit 212.
  • the determination unit 213 determines whether the effective atomic number (Z eff ) and the surface density ( ⁇ eff ) of the substance updated by the iterative calculation in step S304 have converged.
  • the convergence determination method can be determined by various methods. For example, when the difference between the nth update calculation result and the (n + 1) th update calculation result is equal to or less than a predetermined threshold, the determination unit 213 assumes that a predetermined calculation accuracy is obtained. It can be determined that the (n + 1) th update operation result has converged. Alternatively, the determination unit 213 can acquire the update operation iteration number by the update processing unit 212 and determine that the update operation result has converged when the update operation is executed a predetermined number of iterations.
  • step S305 If it is determined in step S305 that the determination unit 213 has not converged (No in step S305), the process returns to step S303, and the integral value generation process (calculation of parameters used in the calculation process) is executed again. To do.
  • the arithmetic processing unit 112 uses the converged effective atomic number or surface density as the effective of the substance constituting the subject. The atomic number or the surface density is output, and the processing in the image processing unit 109 ends.
  • the effective atomic number and the surface density of the substance constituting the subject can be acquired from the average value (average information) and the dispersion value (dispersion information) in the radiation image.
  • the image processing unit 109 can generate an image (combined image) in which the image processing result (at least one of the effective atomic number and the surface density) is associated with the image.
  • the display control unit 116 can display the effective atomic number or the surface density on the monitor 106 (display unit) in association (combination) with the radiation image.
  • the effective atomic number of the substance constituting the subject (the atomic number of the element having an attenuation coefficient equivalent to that substance) and the correspondence between the radiographic image can be visualized and displayed.
  • the storage unit 108 stores a database in which effective atomic numbers and substances as shown in FIG. 8 are associated with each other, and the elements constituting each part of the subject of the radiographic image from the calculated effective atomic numbers. Can be displayed on the monitor 106.
  • the effective atomic number is based on a reference to a table (two-dimensional table of effective atomic numbers) indicating the relationship between the dispersion value and the average value of the pixel values of the radiation image and the effective atomic number of the substance constituting the subject.
  • a configuration for acquiring the will be described.
  • a configuration for acquiring the surface density based on a reference to a table (a two-dimensional table of surface density) indicating the relationship between the dispersion value and the average value of the pixel values of the radiation image and the surface density of the substance constituting the subject. explain.
  • the configuration of the present embodiment can be accelerated in mounting compared to a configuration in which an average value image and a variance value image are acquired from a radiation image and an effective atomic number and surface density are analytically acquired.
  • the configuration of the form is useful when calculating the effective atomic number and the surface density in moving image shooting.
  • FIG. 4 is a diagram illustrating a configuration example of the radiation imaging system 100 according to the second embodiment of the present invention. This embodiment is different from the first embodiment in that the image processing unit 400 includes a table holding unit 401 and a data application unit 402.
  • the control unit 105 stores the radiographic image captured by the FPD 102 in the storage unit 108 and transfers the radiographic image to the image processing unit 400.
  • step S501 in the present embodiment, the integration processing unit 211 of the arithmetic processing unit 112 generates an average two-dimensional table before actual shooting is started.
  • the average value two-dimensional table is generated as a two-dimensional matrix table in which the X-axis (horizontal axis) is the variance value and the Y-axis (vertical axis) is the average value, for example, as in 7a in FIG.
  • the integration processing unit 211 sets the average value two-dimensional table in the range of 0.0 to 1.0 that the average value Ac (theoretical value) in the equation (3) can take, and the variance value Vc (theoretical value) in the equation (4).
  • the average value Ac is embedded in the matrix element of the average value two-dimensional table 7a in FIG. 7 in the Y-axis (vertical axis) direction from 0.0 to 1.0, and in the X-axis (horizontal axis) direction.
  • Vc a constant dispersion value
  • the integration processing unit 211 can also generate the average value two-dimensional table as a one-dimensional average value table that associates the variance value Vc with the average value Ac.
  • the integration processing unit 211 may appropriately associate a one-dimensional average value table with each matrix element of a two-dimensional effective atomic number table and a two-dimensional surface density table, which will be described later.
  • step S502 the integration processing unit 211 generates a variance value two-dimensional table.
  • the variance value two-dimensional table is generated, for example, as a two-dimensional matrix table in which the X axis (horizontal axis) is the variance value and the Y axis (vertical axis) is the average value, as in 7b of FIG.
  • the integration processing unit 211 sets the variance value two-dimensional table in the range of 0.0 to 1.0 that the average value Ac (theoretical value) in the equation (3) can take, and the variance value Vc (theoretical value) in the equation (4). In the range of 0.0 to 1.0 that can be taken.
  • the dispersion value Vc is embedded in the matrix element of the dispersion value two-dimensional table 7b in FIG. 7 in the X axis (horizontal axis) direction from 0.0 to 1.0, and in the Y axis (vertical axis) direction.
  • the integration processing unit 211 can also generate the two-dimensional variance value table as a one-dimensional variance value table that associates the variance value Vc with the average value Ac.
  • the integration processing unit 211 may appropriately associate a one-dimensional dispersion value table with each matrix element of a two-dimensional effective atomic number table and a two-dimensional surface density table, which will be described later.
  • step S503 corresponds to a parameter calculation (integral value generation) process used in the calculation process in step S303.
  • the processing in step S503 corresponds to the effective atomic number and surface density update calculation processing in step S304.
  • the process in step S505 corresponds to the convergence determination process in step S305.
  • the information of the average value image A indicating the average information of the pixel values in the radiation image uses the information of the average value two-dimensional table (7a in FIG. 7) generated in step S501. Further, the information of the dispersion value image V indicating the dispersion information of the pixel values in the radiation image uses the information of the dispersion value two-dimensional table (7b in FIG. 7) generated in step S502.
  • step S506 the update processing unit 212 repeatedly performs the calculation process of the expression (11) by iterative calculation to thereby determine the effective atomic number (Z eff ) and the surface density ( ⁇ eff ) of the substance constituting the subject. To get.
  • the update processing unit 212 obtains the effective atomic number (Z eff ) as a two-dimensional table of effective atomic numbers (7c in FIG. 7) in which the effective atomic number (Z eff ) is associated with the variance value ( ⁇ eff ) and the average value as a result of the iterative calculation.
  • the update processing unit 212 obtains a surface density as a two-dimensional table (7d in FIG. 7) in which the surface density is associated with the variance value and the average value as a result of the iterative calculation.
  • the two-dimensional table of effective atomic numbers (7c in FIG. 7) is generated as a two-dimensional matrix table in which the X axis (horizontal axis) is the variance value and the Y axis (vertical axis) is the average value. If the value and average value are obtained, the corresponding effective atomic number can be obtained.
  • a two-dimensional table of surface density (7d in FIG. 7) is generated as a two-dimensional matrix table in which the X axis (horizontal axis) is the variance value and the Y axis (vertical axis) is the average value. If the dispersion value and the average value are obtained, the corresponding surface density can be obtained.
  • the table holding unit 401 stores a generated two-dimensional table of effective atomic numbers (7c in FIG. 7) and a two-dimensional table of surface density (7d in FIG. 7).
  • step S601 the average value acquisition unit 111 acquires an average value image indicating an average value (average information) of pixel values of the radiation image. This process is the same as the process of step S301 in FIG. 3, and the average value acquisition unit 111 captures the radiation image M (x, y, t) having a subject and the radiation having no subject, which is captured by the FPD 102.
  • An average value image A (x, y) is acquired (generated) using the image M 0 (x, y, t) (Equation (1)).
  • step S602 the variance value acquisition unit 110 acquires a variance value image indicating a variance value (dispersion information) of pixel values of the radiation image.
  • This process is the same as the process of step S302 in FIG. 3, and the variance value acquisition unit 110 captures a plurality of radiographic images M (x, y, t) having a subject captured by the FPD 102 and the subject.
  • the dispersion value image V (x, y) is acquired (generated) using the radiation image M 0 (x, y, t) that does not exist (formula (2)).
  • Step S603 Reference to 2D table
  • the arithmetic processing unit 112 refers to the two-dimensional table of effective atomic numbers (7c in FIG. 7) and the two-dimensional table of surface density (7d in FIG. 7) stored in the table holding unit 401.
  • An effective atomic number image showing the distribution of effective atomic numbers corresponding to the pixel value (average information) of the value image A (x, y) and the pixel value (dispersion information) of the dispersion value image V (x, y);
  • a surface density image indicating a surface density distribution is generated.
  • the pixel value of the effective atomic number image indicates the effective atomic number
  • the pixel value of the surface density image indicates the surface density.
  • the arithmetic processing unit 112 refers to the two-dimensional table of effective atomic numbers (7c in FIG. 7) and the two-dimensional table of surface density (7d in FIG. 7), the corresponding average value and variance value are two-dimensional. It does not necessarily exist on the table axis. In such a case, the arithmetic processing unit 112 can acquire and output the effective atomic number and the surface density by interpolation using the known average value and variance value stored in the two-dimensional table. Is possible.
  • the arithmetic processing unit 112 may refer to the table using bilinear interpolation (Equations (12) and (13)) as shown below. Note that the interpolation calculation method is not limited to bilinear interpolation, and for example, nearest neighbor interpolation (nearest neighbor), spline interpolation, bicubic interpolation, or the like can be used.
  • Z OUT is a pixel value (effective atomic number) of an effective atomic number image indicating a distribution of effective atomic numbers obtained by interpolation processing
  • D OUT indicates a surface density distribution obtained by interpolation processing.
  • This is the pixel value (surface density) of the surface density image.
  • A is the value of the corresponding average value two-dimensional table
  • V is the value of the corresponding variance two-dimensional table
  • the notation of ([x]) is a real number x
  • x is the floor function that outputs the largest integer less than or equal to x.
  • the effective atomic number and the surface density of the substance constituting the subject can be acquired from the average information and the dispersion information in the radiation image. According to the processing of the present embodiment, there is no need to perform integration operations as in the equations (3) to (8) of the first embodiment and iterative operations as in the equation (11) for each pixel of the captured image. Based on the reference to the two-dimensional table (7a in FIG. 7 to 7d in FIG. 7), an effective atomic number image indicating the distribution of effective atomic numbers and an area density image indicating the distribution of surface density can be generated.
  • the effective atomic number is faster than the processing of the first embodiment. It is possible to generate an effective atomic number image indicating the distribution of the surface density and an area density image indicating the distribution of the surface density. In particular, this is an extremely useful embodiment when processing is performed in real time such as fluoroscopic imaging (moving image imaging) using radiation.
  • An information processing apparatus that processes information based on a radiographic image obtained by photographing a subject includes an acquisition unit that acquires a plurality of pieces of statistical information having different pixel values of the radiographic image, and an effective substance that constitutes the subject based on the plurality of pieces of statistical information. And an arithmetic processing unit for calculating an atomic number or surface density.
  • the present invention is not limited to the above-described embodiment, and can be implemented by being appropriately modified within a range not changing the gist.
  • the present invention can also take the form of, for example, a system, apparatus, method, program, or storage medium. Specifically, the present invention may be applied to a system composed of a plurality of devices, or may be applied to an apparatus composed of a single device.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC
  • 100 radiation imaging system
  • 101 radiation tube
  • 102 FPD
  • 104 Radiation generator
  • 105 Control unit
  • 106 Monitor
  • 107 operation unit
  • 108 storage unit
  • 109 image processing unit
  • 110 variance value acquisition unit
  • 111 average value acquisition unit
  • 112 arithmetic processing unit
  • 211 Integration processing unit
  • 212 Update processing unit
  • 213 Determination unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mathematical Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

被写体を撮影した放射線画像に基づく情報を処理する情報処理装置、放射線画像の画素値の平均値を取得する平均値取得手段と、放射線画像の画素値の分散値を取得する分散値取得手段と、平均値と分散値とに基づいて、被写体を構成する物質の実効原子番号、または面密度を算出する演算処理手段とを備える。

Description

情報処理装置、放射線撮像装置、情報処理方法およびプログラム
 本発明は、情報処理装置、放射線撮像装置、情報処理方法およびプログラムに関するものである。
 放射線による医療画像診断に用いる撮影装置として、平面検出器(Flat Panel Detector、以下「FPD」と略す)を用いた放射線撮像装置が普及している。FPDは、撮影画像をデジタル画像処理することができるため、様々なアプリケーションの開発が行われ実用化されている。
 特許文献1には、一つのアプリケーション技術として、2種類のエネルギーの放射線で撮影した画像を用いて、実効原子番号を取得する方法が提案されている。実効原子番号とはコンパウンド(化合物)を同程度の放射線減弱係数をもつ単一の元素として見立てたものであり、被写体がどのような物質で構成されているかが不明でも、実効原子番号を取得することで、凡その構成物質を知ることができる。
特開平08-178873号公報
 特許文献1には複数回の放射線撮影(2種類のエネルギーの放射線による撮影)で撮影した画像から実効原子番号を算出する方法が記載されているが、複数回の放射線撮影の間に被写体が動くことによりモーションアーティファクトが発生すると測定精度が低下し、被検体の被曝量が増加し得る。
 本発明は、上記の課題に鑑みてなされたものであり、1回の放射線撮影で取得した放射線画像における平均値と分散値とから、被写体を構成する物質の実効原子番号または面密度を取得することが可能な技術を提供することを目的とする。
 本発明の一態様による情報処理装置は、被写体を撮影した放射線画像に基づく情報を処理する情報処理装置であって、
 前記放射線画像の画素値の平均値を取得する平均値取得手段と、
 前記放射線画像の画素値の分散値を取得する分散値取得手段と、
 前記平均値と分散値とに基づいて、前記被写体を構成する物質の実効原子番号、または面密度を算出する演算処理手段とを備えることを特徴とする。
 本発明によれば、放射線画像における平均値と分散値とから、被写体を構成する物質の実効原子番号および面密度を取得することが可能になる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
第1実施形態に係る放射線撮影システムの構成例を示す図。 演算処理部の機能構成を例示する図。 第1実施形態の画像処理部における処理の流れを説明する図。 第2実施形態に係る放射線撮影システムの構成例を示す図。 第2実施形態の画像処理部における処理の流れを説明する図。 第2実施形態の画像処理部における処理の流れを説明する図。 第2実施形態のテーブルを模式的に説明する図。 実効原子番号を例示する図。
 以下、図面を参照して、本発明の実施形態を例示的に詳しく説明する。ただし、この実施形態に記載されている構成要素はあくまで例示であり、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る放射線撮影システム100の構成例を示す図である。放射線撮影システム100は、放射線発生装置104、放射線管101、FPD102、情報処理装置120を有する。尚、放射線撮影システム100の構成を単に放射線撮影装置ともいう。情報処理装置120は、被写体を撮影した放射線画像に基づく情報を処理する。
 放射線発生装置104は曝射スイッチの押下により放射線管101に高電圧パルスを与え放射線を発生させ、放射線管101は被写体103に放射線を照射する。
 放射線管101から放射線が被写体103に照射されると、FPD102は画像信号に基づく電荷の蓄積を行って放射線画像を取得する。FPD102は、撮影毎に放射線画像を情報処理装置120に転送してもよいし、撮影した画像を、撮影毎に転送せずに、FPD102の内部の画像記憶部に記憶しておき、所定のタイミングでFPD102から情報処理装置120に画像を、まとめて転送することが可能である。FPD102と情報処理装置120との間の通信は、有線通信でもよいし、無線通信でもよい。
 FPD102は、放射線に応じた信号を生成するための画素アレイを備えた放射線検出部(不図示)を有する。放射線検出部は、被写体103を透過した放射線を画像信号として検出する。放射線検出部には、入射光に応じた信号を出力する画素がアレイ状(二次元の領域)に配置されている。各画素の光電変換素子は蛍光体により変換された光を電気信号である画像信号に変換し、各画素のキャパシタが蓄積を行う。このように、放射線検出部は被写体103を透過した放射線を検出して、画像信号(放射線画像)を取得するように構成されている。FPD102の駆動部(不図示)は、制御部105からの指示に従って読み出した画像信号(放射線画像)を、アナログ/デジタル(A/D)変換部を介して、制御部105に出力する。
 制御部105は、FPD102から取得した放射線画像を処理する画像処理部109と、画像処理の結果や各種プログラムを記憶する記憶部108とを有する。記憶部108は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成される。記憶部108は制御部105から出力された画像や画像処理部109で画像処理された画像、画像処理部109における計算結果(例えば、実効原子番号や面密度)、実効原子番号と物質とを対応付けたデータベース(図8)を記憶することが可能である。
 画像処理部109は、機能構成として、分散値取得部110、平均値取得部111、演算処理部112を有しており、これらの機能構成は、例えば、一つ又は複数のCPU(central processing unit)、記憶部108から読み込んだプログラムを用いて、各部の機能が構成される。画像処理部109の各部の構成は、同様の機能を果たすのであれば、それらは集積回路などで構成してもよい。また、情報処理装置120の内部構成として、GPU(Graphics Processing Unit)等のグラフィック制御部、ネットワークカード等の通信部、キーボード、ディスプレイ又はタッチパネル等の入出力部を制御する入出力制御部等を含むように構成することも可能である。
 モニタ106(表示部)は、制御部105がFPD102から受信した放射線画像(デジタル画像)や画像処理部109で画像処理された画像を表示する。表示制御部116は、モニタ106(表示部)の表示を制御することが可能である。操作部107は、画像処理部109やFPD102に対する指示を入力することができ、不図示のユーザーインターフェイスを介してFPD102に対する指示の入力を受け付ける。
 画像処理部109は、機能構成として、分散値取得部110、平均値取得部111、演算処理部112を有しており、画像処理部109は、FPD102で撮影された放射線画像から、平均値画像及び分散値画像を生成する。また、演算処理部112は、平均値と分散値とに基づいて、被写体を構成する物質の実効原子番号、または面密度を算出する。演算処理部112は、機能構成として、図2に示すように、実効原子番号の算出処理における積分処理を実行する積分処理部211、更新処理部212、および判定部213を有する。
 次に、第1実施形態の画像処理部109における処理を、図3に示すフローチャートを用いて詳細に説明する。制御部105は、FPD102で撮影された放射線画像を記憶部108に記憶するとともに、画像処理部109に放射線画像を転送する。
 (S301:平均情報(平均値画像)の生成)
 ステップS301において、平均値取得部111は、被写体を有する放射線画像の画素値を、被写体が無い放射線画像の画素値で除算した画素値の平均値(平均情報)を示す平均値画像を取得する。具体的には、平均値取得部111は、FPD102で撮影された、被写体を有する放射線画像M(x,y,t)と、被写体が無い放射線画像M0(x,y,t)と、を用いて平均値画像A(x,y)を取得(生成)する((1)式)。ここで、xとyは画像の画素の座標、tは整数で時系列に撮影された画像のフレーム番号を表す。また、ブラケット「< >t」は時間平均を表す。被写体が無い放射線画像M0の時間平均(平均情報)により、被写体を有する放射線画像Mの時間平均(平均情報)を除算することにより、FPD102のゲイン特性のばらつきを補正することができる。被写体が無い放射線画像M0(x,y,t)は、予め撮影されて記憶部108に記憶されている。平均値取得部111は、平均値画像を取得する際に、記憶部108から被写体が無い放射線画像M0(x,y,t)を読出して、(1)式の演算処理を行う。
Figure JPOXMLDOC01-appb-M000001
 (S302:分散情報(分散値画像)の生成)
 ステップS302において、分散値取得部110は、被写体を有する放射線画像の画素値を、被写体が無い放射線画像の画素値で除算した画素値の分散値(分散情報)を示す分散値画像を取得する。具体的には、分散値取得部110は、FPD102で撮影された、被写体を有する複数の放射線画像M(x,y,t)と、被写体が無い放射線画像M0(x,y,t)と、を用いて分散値画像V(x,y)を取得(生成)する((2)式)。xとyは画像の画素の座標、tは整数で時系列に撮影された画像のフレーム番号を表す。また、ブラケット「< >t」は時間平均を表す。被写体が無い放射線画像M0(x,y,t)は、予め撮影されて記憶部108に記憶されている。分散値取得部110は、分散値画像を取得する際に、記憶部108から被写体が無い放射線画像M0(x,y,t)を読出して、(2)式の演算処理を行う。
Figure JPOXMLDOC01-appb-M000002
 (S303:演算処理に用いるパラメータの算出)
 ステップS303において、演算処理部112は、被写体を構成する物質の実効原子番号および面密度を取得するための演算処理に用いるパラメータを算出する。演算処理部112の積分処理部211は、本ステップにおいて、被写体を構成する物質の面密度(σeff)[g/cm2]、減弱係数(μ)[cm2/g]、被写体を構成する物質の実効原子番号(Zeff)、放射線のエネルギー(E)、放射線のエネルギースペクトル(N(E))を用いて、以下の6つの積分値(積分情報)を生成する((3)~(8)式)。
 ここで、(3)式のパラメータAcは理論的に計算される放射線画像の画素値であり平均値(平均情報)に相当する。(4)式のパラメータVcは理論的に計算される放射線画像の画素値であり分散値(分散情報)に相当する。すなわち、パラメータAc(平均情報)はエネルギーの一次モーメント、パラメータVc(分散情報)はエネルギーの二次のモーメントとなる。
 (5)~(8)式のパラメータは、(3)および(4)式により取得したパラメータAc、Vcの導関数である。ステップS303で取得したパラメータは、次のステップにおける演算処理(更新演算)で使用される。これらのパラメータは、ステップS304における更新演算における反復計算で使用される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 積分処理部211が(3)式~(8)式の演算処理で使用するσeffは、被写体を構成する物質の面密度[g/cm2]、μは減弱係数[cm2/g]、Zeffは被写体を構成する物質の、Eは放射線のエネルギー、N(E)は放射線のエネルギースペクトルを示す。
 演算処理部112の積分処理部211は、画素平均値の変化率または画素分散値の変化率の取得において、放射線のエネルギーと、既知の元素の原子番号と当該原子番号に対応する減弱係数とを用いて、減弱係数を補間する補間情報を生成する。また、演算処理部112の積分処理部211は、画素平均値の変化率または画素分散値の変化率の取得において、補間情報に基づいて補間された減弱係数の単位原子番号あたりの変化率を取得する。
 補間情報および補間された減弱係数の単位原子番号あたりの変化率は、放射線のエネルギー(E)と、既知の元素の原子番号(Z)と原子番号(Z)に対応する減弱係数とを用いて、以下の(9)、(10)式のように表現することができる。
 積分処理部211は、既知の元素の原子番号と減弱係数を、例えば、記憶部108に記憶しておき、記憶部108の参照により、既知の元素の原子番号と減弱係数とを減弱係数μの補間に使用することが可能である。また、積分処理部211は、単位実効原子番号の変化に対する減弱係数μの変化率を示す変化率情報(導関数)を生成する((10)式)。ここで、(9)式、(10)式において、([x])の表記は、実数xに対してx以下の最大の整数を出力する床関数を示す。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 (S304:実効原子番号および面密度の更新演算)
 ステップS304では、演算処理部112の更新処理部212は、(11)式に基づいて実効原子番号、面密度を取得する。実効原子番号について、演算処理部112は、実効原子番号に対する、被写体に照射した放射線のエネルギースペクトルと減弱係数とに基づいて取得される放射線画像の画素平均値の変化率と、面密度に対する画素平均値の変化率と、平均値と画素平均値との差分と、に基づいて、実効原子番号を算出する。
 また、面密度について、演算処理部112の更新処理部212は、実効原子番号に対する、被写体に照射した放射線のエネルギースペクトルと減弱係数とに基づいて取得される放射線画像の画素分散値の変化率と、面密度に対する画素分散値の変化率と、分散値と画素分散値との差分と、に基づいて、面密度を算出する。
 演算処理部112の更新処理部212は、画素平均値の変化率と、平均値と画素平均値との差分と、に基づく実効原子番号と、画素分散値の変化率と、分散値と画素分散値との差分と、に基づく面密度とを、連立方程式として解析し、解析の結果に基づく反復演算により実効原子番号および面密度を更新する。
 具体的には、演算処理部112の更新処理部212は、以下の(11)式の計算により物質の実効原子番号(Zeff)と物質の面密度(σeff)を、反復演算により更新する。ここで、「( )」の表記は行列を表し、「-1」は逆行列を示す。また、添え字のnは反復演算の回数を示している。
 (11)式の連立方程式において、パラメータAc、Vcの導関数は(5)式~(8)式の演算により取得したパラメータである。また、Aは(1)式の演算により取得した平均値画像の情報(放射線画像における画素値の平均情報)であり、Acは、(3)式の理論的計算に基づく放射線画像の画素値の平均情報である。また、(11)式において、Vは(2)式の演算により取得した分散値画像の情報(放射線画像における画素値の分散情報)であり、Vcは、(4)式の理論的計算に基づく放射線画像の画素値の分散情報である。
 更新処理部212は、例えば、ニュートンラプソン法による反復計算により、(11)式の演算処理を反復して実行することにより、被写体を構成する物質の実効原子番号(Zeff)と面密度(σeff)を取得する。このとき、演算の初期値として、0値等、任意の値を設定することができる。
Figure JPOXMLDOC01-appb-M000011
 (ステップS305:収束判定)
 ステップS305において、演算処理部112の判定部213は、更新処理部212により更新された実効原子番号および面密度の収束を判定する。判定部213は、ステップS304の反復演算により更新された物質の実効原子番号(Zeff)および物質の面密度(σeff)が収束したか判定する。収束判定方法としては種々の方法により判定することが可能である。判定部213は、例えば、n回目の更新演算結果と、n+1回目の更新演算結果との比較により、両者の差分が所定の閾値以下となった場合、所定の計算精度が得られたものとして、n+1回目の更新演算結果は収束したと判定することが可能である。あるいは、判定部213は、更新処理部212による更新演算の反復回数を取得して、所定の反復回数の更新演算が実行された場合に更新演算結果は収束したと判定することも可能である。
 ステップS305の収束判定で、判定部213が収束していないと判定した場合(S305-No)、処理はステップS303に戻され、積分値の生成処理(演算処理に用いるパラメータの算出)を再び実行する。一方、ステップS305の収束判定で、判定部213が収束していると判定した場合(S305-Yes)、演算処理部112は、収束した実効原子番号または面密度を、被写体を構成する物質の実効原子番号または面密度として出力し、画像処理部109における処理は終了する。
 本実施形態によれば、放射線画像における平均値(平均情報)と分散値(分散情報)とから、被写体を構成する物質の実効原子番号および面密度を取得することができる。
 画像処理部109は、画像処理の結果(実効原子番号および面密度のうち少なくともいずれか一方の計算結果)と画像とを関連付けた画像(組み合わせた画像)を生成することが可能である。表示制御部116は、例えば、画像処理の結果として、実効原子番号または面密度と、放射線画像とを関連付けて(組み合わせて)モニタ106(表示部)に表示させることが可能である。
 このような表示制御を行うことにより、放射線画像において、被写体を構成する物質の実効原子番号(その物質同等の減弱係数を有する元素の原子番号)と、放射線画像との対応関係を可視化表示することが可能になる。例えば、記憶部108には、図8に示すような実効原子番号と物質とを対応付けたデータベースが記憶しておき、算出された実効原子番号から、放射線画像の被写体の各部位を構成する要素をモニタ106に表示することができる。これにより、手術後の器具の置忘れの確認や病変の組織、造影剤の視認性の向上を図り、医師の診断や放射線技師の撮影を支援に資することができる。
 (第2実施形態)
 本実施形態では、放射線画像の画素値の分散値および平均値と、被写体を構成する物質の実効原子番号との関係を示すテーブル(実効原子番号の2次元テーブル)の参照に基づいて実効原子番号を取得する構成を説明する。また、放射線画像の画素値の分散値および平均値と、被写体を構成する物質の面密度との関係を示すテーブル(面密度の2次元テーブル)の参照に基づいて、面密度を取得する構成を説明する。
 以下の説明では、第1実施形態と同様の部分は説明を省略し、第2実施形態に特有な構成部分についてのみ説明を行う。本実施形態の構成は、放射線画像から平均値画像および分散値画像を取得して、解析的に実効原子番号および面密度を取得する構成に比べて、実装上高速化が可能であり、本実施形態の構成は、動画撮影において実効原子番号や面密度を算出する際に有用である。
 図4は、本発明の第2実施形態に係る放射線撮影システム100の構成例を示す図である。本実施形態では、画像処理部400がテーブル保持部401とデータ適用部402を有するところが、第1実施形態と異なる。
 次に、第2実施形態の画像処理部400における処理を、図5に示すフローチャートを用いて詳細に説明する。制御部105は、FPD102で撮影された放射線画像を記憶部108に記憶するとともに、画像処理部400に放射線画像を転送する。
 (S501:平均値2次元テーブルの生成)
 ステップS501において、本実施形態では実際の撮影を開始する前に、演算処理部112の積分処理部211は、平均値2次元テーブルを生成する。平均値2次元テーブルは、例えば、図7の7aのように、X軸(横軸)が分散値であり、Y軸(縦軸)が平均値である2次元のマトリクス状のテーブルとして生成される。積分処理部211は、平均値2次元テーブルを、(3)式の平均値Ac(理論値)が取りうる0.0~1.0の範囲と、(4)式の分散値Vc(理論値)が取りうる0.0~1.0の範囲とで生成する。すなわち、図7の7aの平均値2次元テーブルのマトリクス要素には、Y軸(縦軸)方向において、平均値Acが0.0~1.0まで埋め込まれ、X軸(横軸)方向には、平均値Acに対応して一定の分散値Vcの値を取るテーブルが生成される。例えば、分散値Vc=0.0に対応して、平均値Ac(理論値)が取りうる0.0~1.0がマトリクス要素として配置される。同様に、分散値Vc=1.0に対応して、平均値Ac(理論値)が取りうる0.0~1.0がマトリクス要素として配置される。
 尚、積分処理部211は、平均値2次元テーブルを、分散値Vcと平均値Acとを対応付ける1次元の平均値テーブルとして生成することも可能である。この場合、積分処理部211は、後述する、2次元の実効原子番号テーブルおよび2次元の面密度テーブルの各行列要素に合わせて、1次元の平均値テーブルを適宜対応付ければよい。
 (S502:分散値2次元テーブルの生成)
 ステップS502において、積分処理部211は、分散値2次元テーブルを生成する。分散値2次元テーブルは、例えば、図7の7bのように、X軸(横軸)が分散値であり、Y軸(縦軸)が平均値である2次元のマトリクス状のテーブルとして生成される。積分処理部211は、分散値2次元テーブルを、(3)式の平均値Ac(理論値)が取りうる0.0~1.0の範囲と、(4)式の分散値Vc(理論値)が取りうる0.0~1.0の範囲とで生成する。すなわち、図7の7bの分散値2次元テーブルのマトリクス要素には、X軸(横軸)方向において、分散値Vcが0.0~1.0まで埋め込まれ、Y軸(縦軸)方向には、分散値Vcに対応して一定の平均値Acの値を取るテーブルが生成される。例えば、平均値Ac=0.0に対応して、分散値Vc(理論値)が取りうる0.0~1.0がマトリクス要素として配置される。同様に、平均値Ac=1.0に対応して、分散値Vc(理論値)が取りうる0.0~1.0がマトリクス要素として配置される。
 尚、積分処理部211は、分散値2次元テーブルを、分散値Vcと平均値Acとを対応付ける1次元の分散値テーブルとして生成することも可能である。この場合、積分処理部211は、後述する、2次元の実効原子番号テーブルおよび2次元の面密度テーブルの各行列要素に合わせて、1次元の分散値テーブルを適宜対応付ければよい。
 (S503~S505:積分値の生成、更新演算、収束判定)
 ステップS503の処理は、ステップS303における演算処理に用いるパラメータの算出(積分値の生成)処理に対応する。また、ステップS503の処理は、ステップS304における実効原子番号および面密度の更新演算処理に対応する。そして、ステップS505の処理は、ステップS305における収束判定処理に対応する。
 ここで、(11)式の演算において、放射線画像における画素値の平均情報を示す平均値画像Aの情報は、ステップS501生成した平均値2次元テーブル(図7の7a)の情報を使用する。また、放射線画像における画素値の分散情報を示す分散値画像Vの情報は、ステップS502で生成した分散値2次元テーブル(図7の7b)の情報を使用する。
 (S506:2次元テーブルの取得)
 ステップS506において、更新処理部212は、反復計算により、(11)式の演算処理を反復して実行することにより、被写体を構成する物質の実効原子番号(Zeff)と面密度(σeff)を取得する。更新処理部212は、反復演算の結果、実効原子番号(Zeff)を分散値(σeff)および平均値に対応付けた、実効原子番号の2次元テーブル(図7の7c)として取得する。また、更新処理部212は、反復演算の結果、面密度を分散値および平均値に対応付けた、面密度の2次元テーブル(図7の7d)として取得する。
 実効原子番号の2次元テーブル(図7の7c)は、X軸(横軸)が分散値であり、Y軸(縦軸)が平均値である2次元のマトリクス状のテーブルとして生成され、分散値および平均値が求まれば、対応する実効原子番号を取得することができる。同様に、面密度の2次元テーブル(図7の7d)は、X軸(横軸)が分散値であり、Y軸(縦軸)が平均値である2次元のマトリクス状のテーブルとして生成され、分散値および平均値が求まれば、対応する面密度を取得することができる。テーブル保持部401は、生成された実効原子番号の2次元テーブル(図7の7c)および面密度の2次元テーブル(図7の7d)を保存する。
 ここまでが、実際の撮影を開始するための前準備となる。次に実際の撮影における処理の流れを図6に示すフローチャートを用いて説明する。
 (S601:平均情報(平均値画像)の生成)
 ステップS601において、平均値取得部111は、放射線画像の画素値の平均値(平均情報)を示す平均値画像を取得する。この処理は、図3のステップS301の処理と同様の処理であり、平均値取得部111は、FPD102で撮影された、被写体を有する放射線画像M(x,y,t)と、被写体が無い放射線画像M0(x,y,t)と、を用いて平均値画像A(x,y)を取得(生成)する((1)式)。
 (S602:分散情報(分散値画像)の生成)
 ステップS602において、分散値取得部110は、放射線画像の画素値の分散値(分散情報)を示す分散値画像を取得する。この処理は、図3のステップS302の処理と同様の処理であり、分散値取得部110は、FPD102で撮影された、被写体を有する複数の放射線画像M(x,y,t)と、被写体が無い放射線画像M0(x,y,t)と、を用いて分散値画像V(x,y)を取得(生成)する((2)式)。
 (ステップS603:2次元テーブルの参照)
 ステップS603において、演算処理部112は、テーブル保持部401に保存された実効原子番号の2次元テーブル(図7の7c)および面密度の2次元テーブル(図7の7d)を参照して、平均値画像A(x,y)の画素値(平均情報)、および分散値画像V(x,y)の画素値(分散情報)に対応する、実効原子番号の分布を示す実効原子番号画像と、面密度の分布を示す面密度画像を生成する。実効原子番号画像の画素値は実効原子番号を示し、面密度画像の画素値は面密度を示す。尚、演算処理部112が、実効原子番号の2次元テーブル(図7の7c)および面密度の2次元テーブル(図7の7d)を参照する際に、対応する平均値と分散値が2次元テーブル軸上に存在するとは限らない。このような場合、演算処理部112は、2次元テーブルに保存されている既知の平均値と分散値の値を用いた補間演算により、実効原子番号および面密度を取得して、出力することが可能である。例えば、演算処理部112は、以下に示すようなバイリニア補間((12)、(13)式)を用いて、テーブルを参照すれば良い。尚、補間演算の手法は、バイリニア補間に限定されるものではなく、例えば、最近傍補間(ニアレストネイバー)、スプライン補間、バイキュービック補間等を用いることが可能である。
 ZOUT=wAPZ([A]+1,[V])
    +wZ([A],[V])
    +wVPZ([A],[V]+1)
    +wAPVPZ([A]+1,[V]+1)・・・(12)
 DOUT=wAPD([A]+1,[V])
    +wD([A],[V])
    +wVPD([A],[V]+1)
    +wAPVPD([A]+1,[V]+1)・・・(13)
 ここで、(12)式、および(13)式において、補間処理における重み係数は以下のとおりである。 
 wAP=A-[A]
 w =1-wAP
 wVP=V-[V]
 w =1-wVP
 (12)式のZOUTは、補間処理により求められる実効原子番号の分布を示す実効原子番号画像の画素値(実効原子番号)であり、DOUTは補間処理により求められる面密度の分布を示す面密度画像の画素値(面密度)である。Aは対応する平均値2次元テーブルの値であり、Vは対応する分散値2次元テーブルの値であり、(12)式および(13)式において、([x])の表記は、実数xに対してx以下の最大の整数を出力する床関数を示す。
 本実施形態によれば、放射線画像における平均情報と分散情報とから、被写体を構成する物質の実効原子番号および面密度を取得することができる。本実施形態の処理によれば、第1実施形態の(3)式~(8)式のような積分演算と、(11)式のような反復演算を撮影画像の画素毎に行う必要が無く、2次元テーブル(図7の7a~図7の7d)の参照に基づいて、実効原子番号の分布を示す実効原子番号画像と、面密度の分布を示す面密度画像を生成することができる。(3)式~(8)式のような積分演算および(11)式のような反復演算に要する演算負荷を低減することができるため、第1実施形態の処理に比べて高速に実効原子番号の分布を示す実効原子番号画像と、面密度の分布を示す面密度画像を生成することが可能になる。特に放射線による透視撮影(動画像撮影)等リアルタイムに処理を行う場合に極めて有用な実施形態である。
 第1実施形態および第2実施形態では、統計情報として、平均値および分散値を用いる構成を説明したが、この例に限定されず、3次モーメントや4次モーメントに関する統計情報を用いることが可能である。例えば、平均値まわりの3次モーメントを標準偏差で正規化した統計情報(歪度)や、平均値まわりの4次モーメントを標準偏差で正規化した統計情報(尖度)を用いることが可能である。被写体を撮影した放射線画像に基づく情報を処理する情報処理装置は、放射線画像の画素値の異なる複数の統計情報を取得する取得部と、複数の統計情報に基づいて、被写体を構成する物質の実効原子番号、または面密度を算出する演算処理部とを備える。
 尚、本発明は、上記の実施形態に限定することなく、要旨を変更しない範囲内で適宜変形して実施できるものである。本発明は、例えば、システム、装置、方法、プログラム若しくは記憶媒体等としての実施態様を採ることもできる。具体的には、複数の機器から構成されるシステムに適用してもよいし、また、一つの機器からなる装置に適用してもよい。
 (その他の実施形態)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2017年1月13日提出の日本国特許出願特願2017-004609を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
 100:放射線撮影システム、101:放射線管、102:FPD、
 104:放射線発生装置、105:制御部、106:モニタ、
 107:操作部、108:記憶部、109:画像処理部、
 110:分散値取得部、111:平均値取得部、112:演算処理部、
 211:積分処理部、212:更新処理部、213:判定部

Claims (16)

  1.  被写体を撮影した放射線画像に基づく情報を処理する情報処理装置であって、
     前記放射線画像の画素値の平均値を取得する平均値取得手段と、
     前記放射線画像の画素値の分散値を取得する分散値取得手段と、
     前記平均値と分散値とに基づいて、前記被写体を構成する物質の実効原子番号、または面密度を算出する演算処理手段と
     を備えることを特徴とする情報処理装置。
  2.  前記演算処理手段は、
     実効原子番号に対する、前記被写体に照射した放射線のエネルギースペクトルと減弱係数とに基づいて取得される放射線画像の画素平均値の変化率と、面密度に対する前記画素平均値の変化率と、前記平均値と前記画素平均値との差分と、に基づいて、前記実効原子番号を算出することを特徴とする請求項1に記載の情報処理装置。
  3.  前記演算処理手段は、
     実効原子番号に対する、前記被写体に照射した放射線のエネルギースペクトルと減弱係数とに基づいて取得される放射線画像の画素分散値の変化率と、面密度に対する前記画素分散値の変化率と、前記分散値と前記画素分散値との差分と、に基づいて、前記面密度を算出することを特徴とする請求項2に記載の情報処理装置。
  4.  前記演算処理手段は、前記画素平均値の変化率または前記画素分散値の変化率の取得において、前記放射線のエネルギーと、既知の元素の原子番号と当該原子番号に対応する減弱係数とを用いて、前記減弱係数を補間する補間情報を生成することを特徴とする請求項3に記載の情報処理装置。
  5.  前記演算処理手段は、前記画素平均値の変化率または前記画素分散値の変化率の取得において、前記補間情報に基づいて補間された減弱係数の単位原子番号あたりの変化率を取得することを特徴とする請求項4に記載の情報処理装置。
  6.  前記演算処理手段は、
     前記画素平均値の変化率と、前記平均値と前記画素平均値との差分と、に基づく前記実効原子番号と、
     前記画素分散値の変化率と、前記分散値と前記画素分散値との差分と、に基づく前記面密度とを、連立方程式として解析し、前記解析の結果に基づく反復演算により前記実効原子番号および前記面密度を更新することを特徴とする請求項4または5に記載の情報処理装置。
  7.  前記更新された実効原子番号および面密度の収束を判定する判定手段を更に備え、
     前記演算処理手段は、前記収束した実効原子番号または面密度を、前記被写体を構成する物質の実効原子番号または面密度として出力することを特徴とする請求項6に記載の情報処理装置。
  8.  被写体を撮影した放射線画像に基づく情報を処理する情報処理装置であって、
     前記放射線画像の画素値の分散値および平均値と、前記被写体を構成する物質の実効原子番号との関係を示すテーブルを記憶する記憶手段と、
     前記放射線画像の画素値の平均値を取得する平均値取得手段と、
     前記放射線画像の画素値の分散値を取得する分散値取得手段と、
     前記平均値と分散値とに基づいて、前記実効原子番号を前記テーブルから取得する演算処理手段と、
     を備えることを特徴とする情報処理装置。
  9.  被写体を撮影した放射線画像に基づく情報を処理する情報処理装置であって、
     前記放射線画像の画素値の分散値および平均値と、前記被写体を構成する物質の面密度との関係を示すテーブルを記憶する記憶手段と、
     前記放射線画像の画素値の平均値を取得する平均値取得手段と、
     前記放射線画像の画素値の分散値を取得する分散値取得手段と、
     前記平均値と分散値とに基づいて、前記面密度を前記テーブルから取得する演算処理手段と、
     を備えることを特徴とする情報処理装置。
  10.  前記平均値取得手段は、前記被写体を有する放射線画像の画素値を、前記被写体が無い放射線画像の画素値で除算した画素値の平均情報を示す平均値画像を取得することを特徴とする請求項1乃至9のいずれか1項に記載の情報処理装置。
  11.  前記分散値取得手段は、前記被写体を有する放射線画像の画素値を、前記被写体が無い放射線画像の画素値で除算した画素値の分散情報を示す分散値画像を取得することを特徴とする請求項1乃至9のいずれか1項に記載の情報処理装置。
  12.  前記実効原子番号または面密度と、前記放射線画像とを関連付けて表示手段に表示させる表示制御手段を更に備えることを特徴とする請求項1乃至8のいずれか1項に記載の情報処理装置。
  13.  被写体を撮影した放射線画像に基づく情報を処理する情報処理装置であって、
     前記放射線画像の画素値の異なる複数の統計情報を取得する手段と、
     前記複数の統計情報に基づいて、前記被写体を構成する物質の実効原子番号、または面密度を算出する演算処理手段と
     を備えることを特徴とする情報処理装置。
  14.  放射線画像を撮影する撮影手段と、
     前記撮影手段により被写体を撮影した放射線画像に基づく情報を処理する情報処理装置と、を有する放射線撮影装置であって、
     前記情報処理装置が、
     前記放射線画像の画素値の平均値を取得する平均値取得手段と、
     前記放射線画像の画素値の分散値を取得する分散値取得手段と、
     前記平均値と分散値とに基づいて、前記被写体を構成する物質の実効原子番号、または面密度を算出する演算処理手段と
     を備えることを特徴とする放射線撮影装置。
  15.  被写体を撮影した放射線画像に基づく情報を処理する情報処理装置の情報処理方法であって、
     平均値取得手段が、前記放射線画像の画素値の平均値を取得する工程と、
     分散値取得手段が、前記放射線画像の画素値の分散値を取得する工程と、
     演算処理手段が、前記平均値と分散値とに基づいて、前記被写体を構成する物質の実効原子番号、または面密度を算出する工程と
     を有することを特徴とする情報処理方法。
  16.  コンピュータを、請求項1乃至13のいずれか1項に記載の情報処理装置の各手段として機能させるためのプログラム。
PCT/JP2017/039922 2017-01-13 2017-11-06 情報処理装置、放射線撮像装置、情報処理方法およびプログラム WO2018131269A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/460,083 US20190320993A1 (en) 2017-01-13 2019-07-02 Information processing apparatus, radiation imaging apparatus, information processing method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017004609A JP2018110794A (ja) 2017-01-13 2017-01-13 情報処理装置、放射線撮像装置、情報処理方法およびプログラム
JP2017-004609 2017-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/460,083 Continuation US20190320993A1 (en) 2017-01-13 2019-07-02 Information processing apparatus, radiation imaging apparatus, information processing method, and storage medium

Publications (1)

Publication Number Publication Date
WO2018131269A1 true WO2018131269A1 (ja) 2018-07-19

Family

ID=62839306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039922 WO2018131269A1 (ja) 2017-01-13 2017-11-06 情報処理装置、放射線撮像装置、情報処理方法およびプログラム

Country Status (3)

Country Link
US (1) US20190320993A1 (ja)
JP (1) JP2018110794A (ja)
WO (1) WO2018131269A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012846A1 (ja) 2017-07-10 2019-01-17 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6934769B2 (ja) 2017-07-28 2021-09-15 キヤノン株式会社 放射線撮像装置および放射線撮像方法
JP6912965B2 (ja) 2017-08-04 2021-08-04 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法
JP7038506B2 (ja) 2017-08-25 2022-03-18 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法
JP7080025B2 (ja) 2017-09-01 2022-06-03 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム
JP6882135B2 (ja) 2017-10-06 2021-06-02 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP7245001B2 (ja) 2018-05-29 2023-03-23 キヤノン株式会社 放射線撮像装置および撮像システム
JP7093233B2 (ja) 2018-06-07 2022-06-29 キヤノン株式会社 放射線撮影装置、放射線撮影方法およびプログラム
WO2020003744A1 (ja) 2018-06-27 2020-01-02 キヤノン株式会社 放射線撮影装置、放射線撮影方法およびプログラム
JP7169853B2 (ja) 2018-11-09 2022-11-11 キヤノン株式会社 画像処理装置、放射線撮影装置、および画像処理方法
JP7378245B2 (ja) 2019-08-29 2023-11-13 キヤノン株式会社 放射線検出装置、その制御方法及び放射線撮像システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501684A (ja) * 2001-09-03 2005-01-20 シーメンス アクチエンゲゼルシヤフト X線撮影検査法における密度および原子番号の分布を求める方法
US20050084063A1 (en) * 2003-10-15 2005-04-21 Bjoern Heismann Method and device for determining the type of fluid in a fluid mass in an object
JP2011217805A (ja) * 2010-04-05 2011-11-04 Sumitomo Heavy Ind Ltd 実効原子番号及び電子密度を求める方法、その方法を実行させるためのプログラム、そのプログラムを記録したコンピュータ読み取り可能な記録媒体及びct装置
WO2016028654A1 (en) * 2014-08-16 2016-02-25 Fei Company Tomographic reconstruction for material characterization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285356A (ja) * 2008-05-30 2009-12-10 Institute Of National Colleges Of Technology Japan 医療用撮影システム、画像処理装置、画像処理方法、およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501684A (ja) * 2001-09-03 2005-01-20 シーメンス アクチエンゲゼルシヤフト X線撮影検査法における密度および原子番号の分布を求める方法
US20050084063A1 (en) * 2003-10-15 2005-04-21 Bjoern Heismann Method and device for determining the type of fluid in a fluid mass in an object
JP2011217805A (ja) * 2010-04-05 2011-11-04 Sumitomo Heavy Ind Ltd 実効原子番号及び電子密度を求める方法、その方法を実行させるためのプログラム、そのプログラムを記録したコンピュータ読み取り可能な記録媒体及びct装置
WO2016028654A1 (en) * 2014-08-16 2016-02-25 Fei Company Tomographic reconstruction for material characterization

Also Published As

Publication number Publication date
JP2018110794A (ja) 2018-07-19
US20190320993A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018131269A1 (ja) 情報処理装置、放射線撮像装置、情報処理方法およびプログラム
JP5738510B2 (ja) 可搬型フラット・パネル検出器を用いた二重エネルギ放射線撮像法の画像取得及び処理連鎖
JP4792463B2 (ja) 断層撮影画像における時間的アーチファクトの訂正のためのシステム及び方法
US7940892B2 (en) Energy substraction method and apparatus
JP6525772B2 (ja) 画像処理装置、画像処理方法、放射線撮影システムおよび画像処理プログラム
JP6225690B2 (ja) 断層画像生成システム
EP2508133B1 (en) X-ray computed tomographic imaging apparatus and method for same
JP7054329B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6676338B2 (ja) 放射線撮像システム、放射線画像の情報処理装置、放射線画像の情報処理方法、及び、そのプログラム
KR101665513B1 (ko) 컴퓨터 단층 촬영 장치 및 그에 따른 ct 영상 복원 방법
US20040105528A1 (en) Method and system for tomosynthesis image enhancement using transverse filtering
KR20190038574A (ko) 시공간적으로 오버랩하는 x선들로부터 3d 영상을 재구성하는 방법과 장치
JP2014236810A (ja) 画像処理装置、断層撮影装置、画像処理方法およびプログラム
WO2019069523A1 (ja) 画像処理装置、画像処理方法及びプログラム
JP6789661B2 (ja) 画像処理装置、画像処理方法、画像処理システム及びプログラム。
WO2019235087A1 (ja) 放射線撮影装置、放射線撮影方法およびプログラム
JP5185708B2 (ja) エネルギーサブトラクション処理装置、方法、およびプログラム、並びに、放射線画像診断システム
JP6676337B2 (ja) 放射線撮像システム、放射線画像の情報処理装置、放射線画像の情報処理方法、及び、そのプログラム
JP6643038B2 (ja) 放射線撮影システム、画像処理装置及び画像処理方法
EP1903787A2 (en) Image processing device and image processing method
JPWO2020183733A1 (ja) X線撮影装置
JP7246281B2 (ja) 画像処理装置およびその制御方法、放射線撮影装置、プログラム
JP5635389B2 (ja) 画像処理装置、画像処理プログラム、及びx線画像診断装置
JP2009078034A (ja) エネルギーサブトラクション用画像生成装置および方法
JP2009171990A (ja) X線検出器を較正するシステム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891522

Country of ref document: EP

Kind code of ref document: A1