WO2018128062A1 - 転動装置の診断方法 - Google Patents

転動装置の診断方法 Download PDF

Info

Publication number
WO2018128062A1
WO2018128062A1 PCT/JP2017/044745 JP2017044745W WO2018128062A1 WO 2018128062 A1 WO2018128062 A1 WO 2018128062A1 JP 2017044745 W JP2017044745 W JP 2017044745W WO 2018128062 A1 WO2018128062 A1 WO 2018128062A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal contact
film thickness
rolling
rolling device
rolling element
Prior art date
Application number
PCT/JP2017/044745
Other languages
English (en)
French (fr)
Inventor
成志 前田
泰右 丸山
健 中野
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2018526263A priority Critical patent/JP6380720B1/ja
Priority to CN201780082387.1A priority patent/CN110168341B/zh
Priority to EP17890050.2A priority patent/EP3567358B1/en
Priority to US16/089,869 priority patent/US10429373B2/en
Publication of WO2018128062A1 publication Critical patent/WO2018128062A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Definitions

  • the present invention relates to a rolling device diagnosis method.
  • Rolling devices such as bearings are used in a wide range of industrial fields such as automobiles and various industrial machines. Understanding the lubrication condition inside the rolling device is extremely important from the viewpoint of smooth operation of the machine and ensuring the life of the rolling device, and various lubricants (oil Maintenance such as supply of grease, replacement of rolling devices, etc. can be performed at an optimal time without excess or deficiency.
  • various lubricants oil Maintenance such as supply of grease, replacement of rolling devices, etc. can be performed at an optimal time without excess or deficiency.
  • a method for monitoring vibration, sound, and oil film state has been proposed as a diagnostic method for the rolling device.
  • Patent Document 1 can estimate an oil film state of a bearing by applying an AC voltage to a rotating wheel of a rolling device in a non-contact state and using the measured capacitance. That is, the oil film is regarded as a capacitor, an electrical equivalent circuit is modeled, an AC voltage is applied in a non-contact state to the rotating wheel of the rolling device, and the capacitance of the oil film is measured. Since the capacitance and the oil film thickness (lubricating film thickness) have a correlation, the state of the oil film is estimated from this correlation.
  • Patent Document 1 it is possible to measure the oil film thickness. However, with this method, only the oil film thickness can be calculated, and it is difficult to grasp other factors that affect the lubrication state.
  • the present invention provides a diagnostic method for a rolling device that makes it possible to grasp the lubrication state of the rolling device in consideration of not only the lubricating film thickness but also the metal contact ratio.
  • the diagnostic method of the present invention is a diagnostic method for a rolling device including an outer member, an inner member, and a rolling element, and includes the outer member, the rolling element, and the inner member.
  • An AC voltage is applied to the electric circuit, the impedance and phase angle of the electric circuit when the AC voltage is applied are measured, and the outer member and the rolling element are measured based on the measured impedance and phase angle.
  • a lubricating film thickness and a metal contact ratio in at least one between the inner member and the rolling element are calculated.
  • the present invention it is possible to grasp not only the lubricating film thickness in the rolling device but also the metal contact ratio, and it is possible to diagnose the lubricating state of the rolling device in more detail and more accurately. Become.
  • FIG. 1 is a conceptual diagram showing a contact area between an outer ring or an inner ring and a rolling element, wherein (a) shows a model diagram modeling the structure of the contact area, and (b) shows an electrical diagram corresponding to the model of (a).
  • a circuit (equivalent circuit) is shown.
  • FIG. 2 is a conceptual diagram showing unevenness on the surface in the contact area between the outer ring or the inner ring and the rolling element.
  • FIG. 3 shows a diagram of an electric circuit (equivalent circuit) in the diagnosis of the bearing device.
  • FIG. 4 is a schematic diagram of the test apparatus.
  • FIG. 5 is a flowchart showing the diagnosis process of the bearing device.
  • FIG. 6 is a graph showing the change over time in the lubricating film thickness and the metal contact ratio in the examples.
  • FIG. 1 is a conceptual diagram of a bearing device as a rolling device to be diagnosed.
  • the bearing device 10 is formed on a fixed outer ring (outer member) 1, an inner ring (inner member) 3 which is a rotating side wheel fitted to a rotation shaft (not shown), and an inner peripheral surface of the outer ring 1.
  • a plurality of rolling elements 5 interposed between the raceway surface and the raceway surface formed on the outer peripheral surface of the inner ring 3 are provided.
  • an oil film (lubricating film) 9 made of a lubricant such as oil or grease supplied for lubrication exists between the outer ring 1 and the rolling element 5 and between the inner ring 3 and the rolling element 5.
  • the bearing device 10 is applied to a moving body such as an automobile, a two-wheeled vehicle, and a railway vehicle, an industrial machine, a machine tool, and the like, but the applied device is not particularly limited. Further, in this drawing, a so-called inner ring rotating type bearing device 10 having a rotating shaft on the inner ring side is shown, but the present invention is not limited to this, and a so-called outer ring rotating type in which a rotating shaft exists on the outer ring side. It can also be applied to other bearing devices.
  • the inventor of the present invention examines a model diagram in which the structure of the contact area as shown in FIG. 1A is modeled, particularly in the contact area between the outer ring 1 and the rolling element 5 or between the inner ring 3 and the rolling element 5. It came to. That is, in such a contact region, not only a portion where each member such as the outer ring 1, the inner ring 3, and the rolling element 5 is covered with an oil film (lubricant) but also a metal, that is, the outer ring 1, the inner ring 3, and the rolling element. There are metal contact portions where the metals constituting each member such as 5 are in contact with each other.
  • the entire area of the contact region in the specific range is S
  • the ratio of the area covered with the oil film in the contact region of the metal part to the area where the metal contact occurs is assumed to be 1 ⁇ : ⁇ . did.
  • the area of the metal contact portion 7 with which the metal contacts is ⁇ S. h represents a lubricating film thickness (oil film thickness) which is the thickness of the oil film 9.
  • the oil film 9 is a capacitor. to form a C 1.
  • Oil film 9 also has a resistor R 1 at the same time.
  • the oil film (lubricating film) 9 has a resistance component, and it is appropriate that the oil film (lubricating film) 9 not only acts as a capacitor but also acts as a resistance.
  • the metal contact portion 7 where the metal is mutually contact has a resistance R 2.
  • an electric circuit (equivalent circuit) E1 (a circuit formed by the outer ring 1 or the inner ring 3 and the rolling element 5) corresponding to the model of FIG. 1A as shown in FIG. Oil film 9, the capacitor C 1 form a parallel circuit of (capacitance C 1) and resistor R 1 (the resistance value R 1), and the parallel circuit, the resistor R 2 (the resistance value R of the metal contact portion 7 is formed 2 ) are connected in parallel.
  • the present invention uses this electric circuit to calculate not only the lubricating film thickness but also the metal contact ratio ⁇ , which is the ratio of the area occupied by the metal contact portion 7 to the total area of the contact region. It is possible to diagnose the lubrication state of the rolling device.
  • FIG. 2 shows an enlarged view of a contact area formed by the outer ring 1 or the inner ring 3 and the rolling element 5.
  • the surfaces of the outer ring 1, the inner ring 3, and the rolling element 5 are smoothly polished, but when viewed microscopically, fine irregularities are generated as shown in this figure.
  • An oil film 9 is formed in a space generated by such unevenness, and as shown by a broken line, a metal contact portion 7 is formed by a portion where the outer ring 1 or the inner ring 3 and the rolling element 5 are in direct contact.
  • the lubricating film thickness h is obtained from the average thickness of the oil film 9 in the contact area within a predetermined range.
  • FIG. 3 shows a diagram of an electric circuit (equivalent circuit) of one embodiment in the diagnosis of the bearing device 10.
  • an electric circuit (equivalent circuit) E1 as shown in FIG. 1B is formed between each rolling element 5 and the outer ring 1 or the inner ring 3. Since each rolling element 5 is in contact with both outer ring 1 and inner ring 3, as shown in FIG. 3, two electric circuits E1 (between outer ring 1 and rolling element 5 and inner ring 3- An electric circuit (equivalent circuit) E2 in which the rolling elements 5) are connected in series is formed.
  • the bearing device 10 including all the n rolling elements 5 forms an electric circuit (equivalent circuit) E3.
  • an AC voltage is applied from the power source between the outer ring 1 and the inner ring 3 of the bearing device 10 with the coil inductance L and the resistance R being connected in series to the bearing device 10. Therefore, the entire electric circuit (equivalent circuit) E4 shown in FIG. 3 is formed.
  • the connection of the inductance L and the resistance R of the coil is only one embodiment, and the adoption of the electric circuit (equivalent circuit) E4 is not essential.
  • the frequency of the AC voltage is preferably 1 Hz or more and less than 1 GHz.
  • the frequency is less than 1 Hz or 1 GHz or more, information outside the contact area (noise) is included in the measured impedance and phase angle (described later), and thus there is a possibility that information in the contact area cannot be obtained accurately.
  • the voltage of the AC voltage is preferably 1 ⁇ V or more and less than 100 V. If the voltage is less than 1 ⁇ V, no current flows through the bearing device 10 and monitoring is impossible. If the voltage is 100 V or more, there is a risk that the bearing device 10 will cause electrolytic corrosion.
  • the diagnosis method for the bearing device 10 applies an AC voltage to the bearing device 10 to obtain the lubricating film thickness h and the metal contact ratio ⁇ . Diagnose the condition.
  • the electric circuit E4 of FIG. 3 is used, the lubricating film thickness h and the metal contact ratio ⁇ are derived by the following equations (1) and (2).
  • Frequency of AC voltage
  • ⁇ 1 Dielectric constant of lubricant
  • S Average value of area of each contact ellipse when each contact region is approximated to contact ellipse
  • n Number of rolling elements 5 of bearing device 10 (number of balls)
  • Z impedance of the entire electric circuit
  • E4 ⁇ phase angle R 20 : resistance of the metal contact portion 7 in a state where the oil film 9 is completely absent
  • ⁇ 1 state where the oil film 9 is completely present (state where there is no contact area of the metal portion)
  • Phase angle L Inductance L connected in series to the bearing device 10
  • R resistance R connected in series to the bearing device 10
  • the lubricating film thickness h is an average thickness of the oil film 9 in the entire contact region between the outer ring 1 or the inner ring 3 and the rolling element 5 of the bearing device 10.
  • the metal contact ratio ⁇ is a ratio of the area of the metal contact portion 7 to the total contact area.
  • FIG. 4 is a schematic diagram of an example of a test apparatus.
  • One end of the drive shaft passing through the bearing device 10 is connected to a general LCR meter 20 (also serving as an AC voltage) via a rotary connector 12, and the other end of the drive shaft is connected to a drive motor 14.
  • the rotary connector 12 can be configured by attaching a carbon brush to a rotating wheel at one end of the drive shaft or by attaching a slip ring to the drive shaft, but is not particularly limited.
  • FIG. 5 is a flowchart showing the steps of the method for diagnosing the state of the bearing device 10 using the test apparatus of FIG.
  • the operator inputs the frequency ⁇ of the alternating voltage and the voltage V of the alternating voltage to the LCR meter 20 while driving the motor 14 and rotating the drive shaft (step S1).
  • the LCR meter 20 outputs the impedance Z and the phase angle ⁇ (step S2).
  • a computer (not shown) or the like calculates the lubricating film thickness h and the metal contact ratio ⁇ from the equations (1) and (2) (step S3).
  • step S2 and the calculation of step S3 are performed in a time series, for example, a plurality of times at predetermined time intervals (such as 1 second intervals). Further, the computer or the operator diagnoses the bearing device 10 from the lubricating film thickness h and the metal contact ratio ⁇ (step S4).
  • the lubricant film thickness h and the metal contact ratio ⁇ change from moment to moment depending on various factors such as the lubricant, operation conditions, and operation time. The following cases can be considered for the temporal change in the lubricating film thickness h and the metal contact ratio ⁇ .
  • the lubricating film thickness h increases and the metal contact ratio ⁇ decreases.
  • the lubricating film thickness h decreases and the metal contact ratio ⁇ increases.
  • the lubricating film thickness h increases and the metal contact ratio ⁇ also increases.
  • the lubrication film thickness h decreases and the metal contact ratio ⁇ also decreases.
  • the state of (1) is considered to indicate a process in which the surface roughness of the inner and outer rings is reduced (so-called mild familiarity) due to metal contact.
  • the state (2) is considered to indicate a process in which the rolling element 5 and the outer ring 1 and / or the inner ring 3 are in contact with each other.
  • the conductive powder generated by wear penetrates between the two surfaces (between the outer ring 1 and the rolling element 5 or between the inner ring 3 and the rolling element 5), so that the gap between the two surfaces increases.
  • the lubricating film thickness (exactly, the gap between the two surfaces) h increases and the metal contact ratio ⁇ also increases. That is, the state (3) is considered to indicate a process in which wear powder that is conducted by wear enters the contact region.
  • the state of (4) In the state of (4), the conductive wear powder generated by wear is excluded from between the two surfaces, the lubricating film thickness (exactly the gap between the two surfaces) h is reduced, and the metal contact ratio is also reduced. it is conceivable that. That is, the state (4) is considered to indicate a process in which wear powder that is conducted by wear is removed from the contact area.
  • an electric circuit is constituted by the outer ring 1 that is an outer member, the rolling element 5, and the inner ring 3 that is an inner member, and an AC voltage is applied to the electric circuit. It is said.
  • the LCR meter 20 measures and outputs the impedance Z and the phase angle ⁇ of the electric circuit when the AC voltage is applied. Based on the measured impedance Z and phase angle ⁇ , the lubricating film thickness h and at least one between the outer ring 1 and the rolling element 5 or between the inner ring 3 and the rolling element 5 are calculated using an arithmetic unit such as a computer.
  • the metal contact ratio ⁇ is calculated.
  • the impedance Z and the phase angle ⁇ are measured a plurality of times in a time series, and the lubricating film thickness h and the metal contact ratio are calculated a plurality of times in a time series.
  • Lubricating film thickness using a single row deep groove ball bearing (brand number: 608) having an inner diameter of 8 mm, an outer diameter of 22 mm, and a height of 7 mm encapsulating polyalphaolefin as a lubricant, PAO (17 mm 2 / s, 40 ° C.)
  • the thickness h and the metal contact ratio ⁇ were measured.
  • the test conditions were an axial load of 19.6 N, a rotation speed of 500 rpm, a temperature of room temperature, and an amount of lubricant filled of 0.04 g, which were measured using the test apparatus shown in FIG.
  • FIG. 6 is a graph showing changes over time in the lubricating film thickness h and the metal contact ratio ⁇ from the stop state until one hour after the start of rotation.
  • Z before is the impedance of the entire electric circuit E4 when the bearing is stationary
  • cos ⁇ before is the cos component of the phase angle when the bearing is stationary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

外方部材と、内方部材と、転動体とを備える転動装置の診断方法であって、外方部材と、転動体と、内方部材とから構成される電気回路に交流電圧を印加し、交流電圧の印加時の電気回路のインピーダンスおよび位相角を測定し、測定したインピーダンスおよび位相角に基づき、外方部材と転動体の間または内方部材と転動体の間の少なくとも一つにおける潤滑膜厚さおよび金属接触割合を算出する。

Description

転動装置の診断方法
 本発明は、転動装置の診断方法に関する。
 軸受の如き転動装置は、自動車、各種産業機械など幅広い産業分野にて利用されている。転動装置の内部の潤滑状態を把握することは、機械の円滑な動作、転動装置の寿命の確保などの観点から極めて重要な事項であり、適切に把握することにより、各種潤滑剤(油、グリースなど)の供給や転動装置の交換等のメンテナンスを、過不足無く最適な時期に行うことができる。しかしながら、潤滑状態を直接目視により観察することは困難であるため、転動装置の診断方法として、振動、音、油膜状態をモニタリングする方法が提案されている。
 特許文献1は、交流電圧を転動装置の回転輪に対して非接触な状態で印加し、測定した静電容量を用いて軸受の油膜状態の推定ができる。すなわち、油膜をコンデンサーとみなして電気的な等価回路をモデル化し、転動装置の回転輪に対して非接触な状態で交流電圧を印加し、油膜の静電容量を測定する。静電容量と油膜厚さ(潤滑膜厚さ)は相関関係があるため、この相関関係から油膜の状態を推定するものである。
日本国特許第4942496号公報
 特許文献1に開示の技術によれば、油膜厚さを測定することは可能である。しかしながら、この方法では油膜厚さのみの算出が可能であり、その他の潤滑状態に影響を与える要素について把握することは困難である。
 本発明は、潤滑膜厚さだけでなく金属接触割合をも考慮して転動装置の潤滑状態を把握することを可能とする転動装置の診断方法を提供する。
 本発明の上記目的は、下記の構成により達成される。
 本発明の診断方法は、外方部材と、内方部材と、転動体とを備える転動装置の診断方法であって、前記外方部材と、前記転動体と、前記内方部材とから構成される電気回路に交流電圧を印加し、前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を測定し、測定した前記インピーダンスおよび前記位相角に基づき、前記外方部材と前記転動体の間または前記内方部材と前記転動体の間の少なくとも一つにおける潤滑膜厚さおよび金属接触割合を算出する。
 本発明によれば、転動装置における潤滑膜厚さだけでなく金属接触割合をも把握することが可能であり、より詳細にかつより正確に転動装置の潤滑状態を診断することが可能となる。
図1は、外輪または内輪と転動体の接触領域を示す概念図であり、(a)は接触領域の構造をモデル化したモデル図を示し、(b)は(a)のモデルに対応した電気回路(等価回路)を示す。 図2は、外輪または内輪と転動体の接触領域における表面における凹凸を示す概念図である。 図3は、軸受装置の診断における電気回路(等価回路)の図を示す。 図4は、試験装置の概略図である。 図5は、軸受装置の診断の工程を示すフローチャート図である。 図6は、実施例における潤滑膜厚さおよび金属接触割合の経時変化を示すグラフである。
 以下、本発明に係る転動装置の診断方法の実施形態を図面に基づいて詳細に説明する。
 図1は、診断対象となる転動装置としての軸受装置の概念図である。軸受装置10は、固定された外輪(外方部材)1と、図示せぬ回転軸に嵌合する回転側輪である内輪(内方部材)3と、外輪1の内周面に形成された軌道面と内輪3の外周面に形成された軌道面との間に介在する複数個の転動体5を備える。さらに外輪1と転動体5の間、および内輪3と転動体5の間には、潤滑のために供給された油、グリース等の潤滑剤からなる油膜(潤滑膜)9が存在する。軸受装置10は、自動車、二輪車、鉄道車両などの如き移動体や、産業機械、工作機械などに適用されるが、適用される装置は特に限定されない。また、本図では、内輪側に回転軸が存在するいわゆる内輪回転型の軸受装置10を示しているが、本願発明はこれには限定されず、外輪側に回転軸が存在するいわゆる外輪回転型の軸受装置にも適用可能である。
 本発明の発明者は、特に、外輪1と転動体5の間または内輪3と転動体5の接触領域において、図1(a)のような接触領域の構造をモデル化したモデル図を検討するに至った。すなわち、このような接触領域においては、外輪1、内輪3、転動体5などの各部材が油膜(潤滑剤)に覆われている部分のみならず、金属、すなわち外輪1、内輪3、転動体5などの各部材を構成する金属が接触し合う金属接触部が存在する。そこで、特定範囲の接触領域の全体面積をSと仮定し、この金属部分の接触領域中の油膜で覆われている面積と金属の接触が生じている面積の割合を1-α:αと仮定した。このとき、金属が接触し合う金属接触部7の面積はαSとなる。hは油膜9の厚さである潤滑膜厚さ(油膜厚さ)を示す。
 ここで、図1(a)における外輪1と転動体5の接触領域の拡大図に示すように、油膜9を誘電体と捉え、外輪1と転動体5を電極と考えると、油膜9はコンデンサCを形成する。油膜9は同時に抵抗Rをも有している。油膜(潤滑膜)9も電流が流れる際には、油膜(潤滑膜)9は抵抗成分を有しており、コンデンサとして作用するのみならず、抵抗としても作用するのが妥当である。
 一方、金属が接触し合う金属接触部7は抵抗Rを有している。この結果、図1(b)に示すような、図1(a)のモデルに対応した電気回路(等価回路)E1(外輪1または内輪3と転動体5により形成される回路)が導かれる。油膜9は、コンデンサC(静電容量C)と抵抗R(抵抗値R)の並列回路を形成し、当該並列回路と、金属接触部7が形成する抵抗R(抵抗値R)が並列に接続される。後述するように、本発明は、この電気回路を用いて、潤滑膜厚さのみならず、接触領域の全体面積に対して金属接触部7が占める面積の割合である金属接触割合αを算出し、転動装置の潤滑状態を診断することが可能である。
 図2は、外輪1または内輪3と転動体5がなす接触領域の拡大図を示す。外輪1、内輪3、転動体5の表面は滑らかに研磨されているが、ミクロ的に見ると、本図のように細かい凹凸が生じている。このような凹凸により生ずる空間に油膜9が形成されており、また、破線で示すように、外輪1または内輪3と転動体5が直接接触する部分により金属接触部7が形成される。また、潤滑膜厚さhは、所定の範囲の接触領域における油膜9の平均的な厚さより得られる。
 図3は、軸受装置10の診断における一実施形態の電気回路(等価回路)の図を示す。上述した様に、各転動体5について、外輪1または内輪3との間に図1(b)に示す様な電気回路(等価回路)E1が形成されている。各転動体5は、外輪1および内輪3の双方に接触しているため、図3に示すように、各転動体5について、二つの電気回路E1(外輪1-転動体5間および内輪3-転動体5間)が直列接続された電気回路(等価回路)E2が形成される。
 さらに、軸受装置10にn個の転動体5が設けられている場合、電気回路E2がn個並列に接続されることになる。よって、図3に示すように、n個全ての転動体5を含む軸受装置10は電気回路(等価回路)E3を形成することになる。本実施形態の軸受装置10の診断に際しては、軸受装置10に、コイルのインダクタンスL、抵抗Rを直列接続した状態で軸受装置10の外輪1と内輪3の間に、電源から交流電圧を印加するため、図3に示す全体の電気回路(等価回路)E4が形成される。ただし、コイルのインダクタンスL、抵抗Rの接続はあくまで一実施形態であり、電気回路(等価回路)E4の採用は必須ではない。
 交流電圧の周波数は、1Hz以上であり、かつ、1GHz未満であることが望ましい。周波数が1Hz未満または1GHz以上であると、測定されるインピーダンスおよび位相角(後述)に接触域外の情報(ノイズ)が多く含まれるため、接触域内の情報が正確に得られなくなるおそれがある。また、交流電圧の電圧については、1μV以上であり、かつ、100V未満であることが望ましい。電圧が1μV未満であると、軸受装置10に電流が流れないためモニタリングできず、また、100V以上であると、軸受装置10が電食を起こす危険性がある。
 以下、具体的な方法について説明する。本実施形態における軸受装置10の診断方法は、図3にも示したように、軸受装置10に交流電圧を印加し、潤滑膜厚さhと金属接触割合αを求めることにより、軸受装置10の状態診断を行う。図3の電気回路E4を用いた場合、潤滑膜厚さhと金属接触割合αは、次式(1)、(2)により導かれる。
Figure JPOXMLDOC01-appb-M000001
 各記号は以下の意味である。
ω:交流電圧の周波数
ε:潤滑剤の誘電率
S:各接触領域を接触楕円に近似した場合の各接触楕円の面積の平均値
n:軸受装置10の転動体5の数(玉数)
Z:電気回路E4全体のインピーダンス
θ:位相角
20:完全に油膜9がない状態における金属接触部7の抵抗
θ:完全に油膜9がある状態(金属部分の接触領域がない状態)における位相角
L:軸受装置10に直列接続されているインダクタンスL
R:軸受装置10に直列接続されている抵抗R
 上述した様に、潤滑膜厚さhは、軸受装置10の外輪1または内輪3と転動体5との全接触領域における油膜9の平均的な厚さである。金属接触割合αは、この全接触領域に対する金属接触部7の面積の割合である。
 図4は、試験装置の一例の概略図である。軸受装置10を貫通する駆動軸の一端が回転コネクタ12を介して、一般的なLCRメーター20(交流電圧も兼ねる)に接続されるとともに、駆動軸の他端が駆動用のモーター14に接続されている。回転コネクタ12は、駆動軸の一端の回転輪に対してカーボンブラシを取り付けて構成したり、駆動軸にスリップリングを取り付けたりして構成することができるが、特に限定はされない。
 軸受装置10の状態診断は、式(1)、(2)から求められる潤滑膜厚さhと金属接触割合αを用いて行う。図5は、図4の試験装置を用いた、軸受装置10の状態診断方法の工程を示すフローチャート図である。まず、モーター14を駆動して駆動軸を回転させた状態で、オペレータは、LCRメーター20に交流電圧の周波数ω、交流電圧の電圧Vを入力する(ステップS1)。入力を受けて、LCRメーター20がインピーダンスZ、位相角θを出力する(ステップS2)。この出力を受けて、図示せぬコンピュータ等が、(1)、(2)式より、潤滑膜厚さh、金属接触割合αを算出する(ステップS3)。ステップS2の出力、ステップS3の算出は、時系列的に、例えば所定の時間毎に(1秒間隔など)複数回行われる。更にコンピュータ、またはオペレータが、潤滑膜厚さh、金属接触割合αより、軸受装置10を診断する(ステップS4)。
 外輪1、内輪3、転動体5の表面粗さに対して潤滑膜厚さhが十分な大きさを有し、金属接触部7が発生しない場合はh>0、α=0であり、軸受装置10として理想的な状態である。しかし、実際には潤滑剤、運転条件、運転時間など様々な要因によって、潤滑膜厚さh、金属接触割合αは刻々と変化する。潤滑膜厚さhと金属接触割合αの時間的な変化については、以下のようなケースが考えられる。
(1)潤滑膜厚さhが増加し、金属接触割合αが減少する。
(2)潤滑膜厚さhが減少し、金属接触割合αが増加する。
(3)潤滑膜厚さhが増加し、金属接触割合αも増加する。
(4)潤滑膜厚さhが減少し、金属接触割合αも減少する。
 (1)の状態は、金属接触が生じることによって、内外輪の表面粗さが小さくなる(いわゆるマイルドななじみ)過程を示していると考えられる。
 (2)の状態は、転動体5と外輪1および/または内輪3が接触していく過程を示していると考えられる。
 (3)の状態は、摩耗によって生じた導通する摩耗粉が二面間(外輪1-転動体5間または内輪3-転動体5間)に侵入することで、二面の隙間が大きくなり、その結果、潤滑膜厚さ(正確には二面間の隙間)hが増加し、金属接触割合αも増加する現象を示すと考えられる。つまり、(3)の状態は、摩耗によって導通する摩耗粉が接触領域に侵入する過程を示していると考えられる。
 (4)の状態は、摩耗によって生じた導通する摩耗粉が二面間から排除されることで潤滑膜厚さ(正確には二面間の隙間)hが減少し、金属接触割合も減少したと考えられる。つまり、(4)の状態は、摩耗によって導通する摩耗粉が接触領域から排除される過程を示していると考えられる。
 このように、本実施形態では、外方部材である外輪1と、転動体5と、内方部材である内輪3とから電気回路が構成され、この電気回路に交流電圧を印加することを前提としている。そして、LCRメーター20が、交流電圧の印加時の電気回路のインピーダンスZおよび位相角θを測定して出力する。この測定したインピーダンスZおよび位相角θに基づき、例えばコンピュータ等の演算装置を用いて、外輪1と転動体5の間または内輪3と転動体5の間の少なくとも一つにおける潤滑膜厚さhおよび金属接触割合αを算出する。このような値の算出により、簡易にかつ正確に転動装置である軸受装置10の状態、特に潤滑状態を診断することが可能となる。
 特に本実施形態では、インピーダンスZおよび位相角θを時系列的に複数回測定するとともに、潤滑膜厚さhおよび金属接触割合を時系列的に複数回算出する。この結果、上記(1)~(4)に挙げたように、潤滑膜厚さhおよび金属接触割合αの時間的な変化を把握することができ、この時間的な変化から転動装置の潤滑状態に関する診断を行うことが可能となる。
 以下、具体的な実施例について説明する。
 潤滑剤としてのポリアルファオレフィン、PAO(17mm/s、40℃)を封入した内径8mm、外径22mm、高さ7mmの単列深溝玉軸受(銘番:608)を用いて、潤滑膜厚さhおよび金属接触割合αの測定を行った。試験条件は、アキシアル荷重を19.6N、回転数を500rpm、温度は常温、潤滑剤の封入量は0.04gであり、図4に示す試験装置を用いて測定した。
 図6は、停止状態から回転を開始して1時間後までの、潤滑膜厚さhおよび金属接触割合αの経時変化を示すグラフである。本試験条件では、潤滑膜厚さhよりも表面粗さの方が大きいため、回転試験開始直後から金属接触が生じていることがわかる。図6より、試験開始前(停止時)は潤滑膜厚さが0nm、金属接触割合が100%であったのに対して、回転試験を開始すると潤滑膜厚さhが増加し、金属接触割合αが減少していくことがわかる。これは、金属接触が生じることによって内外輪の表面粗さが小さくなる(マイルドななじみ)過程を示していると考えられる。尚、本実施例での各値は以下である。Zbeforeは、軸受の静止時の電気回路E4全体のインピーダンスであり、cosθbeforeは、軸受の静止時の位相角のcos成分である。
V:1.0V
ω:1MHz
ε:1.98
n:7個
20=(n/2)(Zbefore×cosθbefore-R)
before:43.4Ω
cosθbefore≒0.99
θ:-89度
L:0
R:0
S:2.92577×10-8
 尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
 本出願は、2017年1月6日に日本国特許庁に出願した特願2017-001019号に基づく優先権を主張するものであり、特願2017-001019号の全内容を本出願に援用する。
1  外輪(外方部材)
3  内輪(内方部材)
5  転動体
7  金属接触部
9  油膜(潤滑膜)
10 軸受装置(転動装置)
12 回転コネクタ
14 モーター
20 LCRメーター

Claims (4)

  1.  外方部材と、内方部材と、転動体とを備える転動装置の診断方法であって、
     前記外方部材と、前記転動体と、前記内方部材とから構成される電気回路に交流電圧を印加し、
     前記交流電圧の印加時の前記電気回路のインピーダンスおよび位相角を測定し、
     測定した前記インピーダンスおよび前記位相角に基づき、前記外方部材と前記転動体の間または前記内方部材と前記転動体の間の少なくとも一つにおける潤滑膜厚さおよび金属接触割合を算出する、転動装置の診断方法。
  2.  請求項1に記載の転動装置の診断方法であって、
     前記電気回路のインピーダンスおよび位相角を時系列的に測定するとともに、前記潤滑膜厚さおよび前記金属接触割合を時系列的に算出し、
     前記潤滑膜厚さおよび前記金属接触割合の時間的な変化に基づき、転動装置の潤滑状態に関する診断を行う、転動装置の診断方法。
  3.  請求項1に記載の転動装置の診断方法であって、
     前記交流電圧の周波数は1Hz以上であり、かつ1GHz未満である、転動装置の診断方法。
  4.  請求項1に記載の転動装置の診断方法であって、
     前記交流電圧は1μV以上であり、かつ100V未満である、転動装置の診断方法。
PCT/JP2017/044745 2017-01-06 2017-12-13 転動装置の診断方法 WO2018128062A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018526263A JP6380720B1 (ja) 2017-01-06 2017-12-13 転動装置の診断方法
CN201780082387.1A CN110168341B (zh) 2017-01-06 2017-12-13 转动装置的诊断方法
EP17890050.2A EP3567358B1 (en) 2017-01-06 2017-12-13 Method for diagnosing rolling device
US16/089,869 US10429373B2 (en) 2017-01-06 2017-12-13 Method for diagnosing rolling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017001019 2017-01-06
JP2017-001019 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018128062A1 true WO2018128062A1 (ja) 2018-07-12

Family

ID=62789441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044745 WO2018128062A1 (ja) 2017-01-06 2017-12-13 転動装置の診断方法

Country Status (5)

Country Link
US (1) US10429373B2 (ja)
EP (1) EP3567358B1 (ja)
JP (2) JP6380720B1 (ja)
CN (1) CN110168341B (ja)
WO (1) WO2018128062A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302411A (zh) * 2019-01-15 2021-08-24 日本精工株式会社 滚动装置的诊断方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380720B1 (ja) * 2017-01-06 2018-08-29 日本精工株式会社 転動装置の診断方法
JP7200789B2 (ja) * 2019-03-25 2023-01-10 日本精工株式会社 転動装置の予圧診断方法
JP7484410B2 (ja) 2019-05-22 2024-05-16 日本精工株式会社 転動装置の診断方法
CN116113772A (zh) * 2020-09-14 2023-05-12 日本精工株式会社 轴承装置的状态的检测方法、检测装置以及程序
WO2022071164A1 (ja) * 2020-09-29 2022-04-07 日本精工株式会社 油膜の状態検出方法、状態検出装置、およびプログラム
JP7168139B1 (ja) * 2021-05-28 2022-11-09 日本精工株式会社 軸受装置の状態の検出方法、検出装置、およびプログラム
JP7367898B1 (ja) 2022-03-14 2023-10-24 日本精工株式会社 測定方法、測定装置、およびプログラム
WO2024071272A1 (ja) * 2022-09-30 2024-04-04 日本精工株式会社 転動装置の診断方法、診断装置、およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290936A (ja) * 1987-04-27 1988-11-28 ハネウエル・インコーポレーテツド 潤滑皮膜の厚さ測定装置および方法
JPH0496617U (ja) * 1991-01-29 1992-08-21
JP2002131187A (ja) * 2000-10-20 2002-05-09 Sankyo Seiki Mfg Co Ltd 軸受検査方法および軸受検査装置
JP4942496B2 (ja) 2007-01-26 2012-05-30 Ntn株式会社 軸受状態検査装置および軸受状態検査方法
JP2012163101A (ja) * 2011-02-08 2012-08-30 Siemens Ag 風車の少なくとも1つのブレードピッチ軸受を潤滑する方法
JP2017001019A (ja) 2016-05-24 2017-01-05 三菱重工冷熱株式会社 破砕装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7905026A (nl) * 1979-06-28 1980-12-30 Skf Ind Trading & Dev Inrichting voor het meten van de smering van door een smeermiddel gesmeerde, ten opzichte van elkaar rollende of glijdende oppervlakken.
US5927865A (en) * 1996-08-28 1999-07-27 Nsk Ltd. Rolling apparatus
US6967586B2 (en) * 2000-10-20 2005-11-22 Sankyo Seiki Mfg. Co., Ltd. Bearing test method, bearing test device, bearing monitoring device and storage device
CN1260484C (zh) * 2001-11-06 2006-06-21 日本精工株式会社 径向滚子轴承
JP2006022935A (ja) * 2004-07-05 2006-01-26 Ntn Corp 円すいころ軸受
JP2006220240A (ja) * 2005-02-14 2006-08-24 Ishikawajima Harima Heavy Ind Co Ltd 極低温超高速転がり軸受
US7665372B2 (en) * 2005-04-27 2010-02-23 Jtekt Corporation Rolling bearing device with sensor and strain sensor
EP1950436B1 (en) * 2005-10-27 2017-10-11 NSK Ltd. Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device
CN102721503B (zh) * 2012-05-16 2014-08-06 上海交通大学 一种滑动轴承动态油膜压力分布实时测量方法
CN203298717U (zh) * 2013-05-14 2013-11-20 武汉理工大学 基于电涡流的柴油机缸套与活塞环之间油膜厚度检测装置
JP6380720B1 (ja) * 2017-01-06 2018-08-29 日本精工株式会社 転動装置の診断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290936A (ja) * 1987-04-27 1988-11-28 ハネウエル・インコーポレーテツド 潤滑皮膜の厚さ測定装置および方法
JPH0496617U (ja) * 1991-01-29 1992-08-21
JP2002131187A (ja) * 2000-10-20 2002-05-09 Sankyo Seiki Mfg Co Ltd 軸受検査方法および軸受検査装置
JP4942496B2 (ja) 2007-01-26 2012-05-30 Ntn株式会社 軸受状態検査装置および軸受状態検査方法
JP2012163101A (ja) * 2011-02-08 2012-08-30 Siemens Ag 風車の少なくとも1つのブレードピッチ軸受を潤滑する方法
JP2017001019A (ja) 2016-05-24 2017-01-05 三菱重工冷熱株式会社 破砕装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. SCHNABEL ET AL.: "Monitoring of Running-in of an EHL Contact Using Contact Impedance", TRIBOLOGY LETTERS, vol. 63, no. 35, 29 July 2016 (2016-07-29), pages 1 - 10, XP036049013, DOI: 10.1007/s11249-016-0727-2 *
See also references of EP3567358A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302411A (zh) * 2019-01-15 2021-08-24 日本精工株式会社 滚动装置的诊断方法
EP3913245A4 (en) * 2019-01-15 2022-03-16 NSK Ltd. METHOD FOR DIAGNOSTIZING A BEARING DEVICE
US12013307B2 (en) 2019-01-15 2024-06-18 Nsk Ltd. Method for diagnosing rolling device

Also Published As

Publication number Publication date
JP6380720B1 (ja) 2018-08-29
EP3567358B1 (en) 2022-09-07
CN110168341A (zh) 2019-08-23
US10429373B2 (en) 2019-10-01
JPWO2018128062A1 (ja) 2019-01-10
EP3567358A1 (en) 2019-11-13
EP3567358A4 (en) 2020-01-15
CN110168341B (zh) 2021-05-28
US20190128866A1 (en) 2019-05-02
JP2018180004A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6380720B1 (ja) 転動装置の診断方法
JP6729633B2 (ja) 転動装置の診断方法
JP7200789B2 (ja) 転動装置の予圧診断方法
JP7484410B2 (ja) 転動装置の診断方法
JP4912255B2 (ja) 軸受状態検査装置および軸受状態検査方法
JP7099551B2 (ja) 転動装置の診断方法
JP2007239779A (ja) 軸受状態検査装置
WO2024071272A1 (ja) 転動装置の診断方法、診断装置、およびプログラム
WO2024071271A1 (ja) 転動装置の診断方法、診断装置、およびプログラム
JP7168139B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2022250060A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
JP2007240491A (ja) 軸受状態検査装置
WO2024101321A1 (ja) 膜状態測定方法、膜状態測定装置、およびプログラム
JP7347721B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2023199655A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2023176602A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
JP7347720B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2024101322A1 (ja) 状態測定方法、状態測定装置、およびプログラム
JP7364135B1 (ja) 状態診断方法、状態診断装置、およびプログラム
JPH07333200A (ja) 軸受の電食評価試験装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526263

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017890050

Country of ref document: EP

Effective date: 20190806