WO2024101321A1 - 膜状態測定方法、膜状態測定装置、およびプログラム - Google Patents

膜状態測定方法、膜状態測定装置、およびプログラム Download PDF

Info

Publication number
WO2024101321A1
WO2024101321A1 PCT/JP2023/039929 JP2023039929W WO2024101321A1 WO 2024101321 A1 WO2024101321 A1 WO 2024101321A1 JP 2023039929 W JP2023039929 W JP 2023039929W WO 2024101321 A1 WO2024101321 A1 WO 2024101321A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
impedance
lubricant
film
state
Prior art date
Application number
PCT/JP2023/039929
Other languages
English (en)
French (fr)
Inventor
大智 小杉
駿介 岩瀬
文明 相川
泰右 丸山
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2024101321A1 publication Critical patent/WO2024101321A1/ja

Links

Images

Definitions

  • the present invention relates to a membrane condition measurement method, a membrane condition measurement device, and a program.
  • a configuration has been widely used in which a desired coating is applied to the contact surfaces between parts using a lubricant (e.g., lubricating oil or grease) to lubricate operation.
  • a lubricant e.g., lubricating oil or grease
  • Configurations have also been used in which the surfaces of parts are coated in advance to protect the contact areas between the parts.
  • the condition of the coating is regularly monitored to detect damage or wear at an early stage and prevent the occurrence of failures of rotating parts.
  • Patent Document 1 shows a configuration for determining the condition of the film on a rolling bearing without contacting the rotating ring or rolling elements, for a device configured to support a rotating shaft with two rolling bearings.
  • the film state changes depending on the course of the rotation. More specifically, between parts, lubricant and a coating formed on the surface of the component are included, and these states change as the rotation progresses. Between such components, the multiple layer structures formed around the lubricant can be regarded as the film state.
  • the method of Patent Document 1 is unable to grasp such changes in the film state.
  • the present invention aims to provide a method that makes it possible to measure changes in the state of multiple films between lubricated components.
  • a method for measuring a film state between a first member and a second member lubricated by a lubricant comprising: a measuring step of measuring impedance by applying a predetermined voltage to the first member and the second member; a deriving step of deriving an impedance of each of the plurality of layers between the first member and the second member by fitting the impedance measured in the measuring step based on an equivalent circuit corresponding to each of the plurality of layers formed between the first member and the second member; a measuring step of measuring a film state between the first member and the second member based on the impedance derived in the deriving step;
  • a method for measuring a film state comprising:
  • a film state measuring device between a first member and a second member lubricated by a lubricant comprising: a measuring means for measuring impedance by applying a predetermined voltage to the first member and the second member; a deriving means for deriving an impedance of each of the plurality of layers between the first member and the second member by fitting the impedance measured by the measuring means based on an equivalent circuit corresponding to each of the plurality of layers formed between the first member and the second member; a measuring means for measuring a film state between the first member and the second member based on the impedance derived by the deriving means;
  • a film state measuring device comprising:
  • a program comprising: On the computer, a measuring step of measuring impedance by applying a predetermined voltage to a first member and a second member lubricated with the lubricant; a deriving step of fitting the impedance measured in the measuring step based on an equivalent circuit corresponding to each of a plurality of layers formed between the first member and the second member, thereby deriving an impedance of each of the plurality of layers between the first member and the second member; a measuring step of measuring a film state between the first member and the second member based on the impedance derived in the deriving step; A program for executing the above.
  • the present invention makes it possible to measure changes in the state of multiple films between lubricated parts.
  • FIG. 2 is a schematic diagram for explaining the lubricant and its surroundings in the rolling bearing according to one embodiment of the present invention.
  • FIG. 2 is a conceptual diagram for explaining an equivalent circuit around a lubricant in a rolling bearing according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining an equivalent circuit of the rolling bearing according to one embodiment of the present invention.
  • 1 is a schematic diagram showing an example of the configuration of a measurement device according to an embodiment of the present invention
  • 4 is a flowchart of a film state measuring process according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining a change in state around a lubricant in a rolling bearing according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining a change in state around a lubricant in a rolling bearing according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining a change in state around a lubricant in a rolling bearing according to an embodiment of the present invention.
  • FIG. FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • a rolling bearing that performs rolling behavior while being lubricated by a lubricant will be described as an example.
  • types of rolling bearings to which the diagnosis method according to the present invention can be applied include deep groove ball bearings, angular contact ball bearings, tapered roller bearings, cylindrical roller bearings, and spherical roller bearings.
  • the present embodiment is not limited to these, and can be applied to any mechanical device that operates by lubricating the contact positions between members with a lubricant.
  • the lubricant in this embodiment includes, but is not limited to, lubricating oil and grease.
  • a coating is formed on the surface of a member with the rotational operation of a rolling bearing, but the coating is not limited to that caused by the main component of the lubricant.
  • it can be applied to a transfer film of a thickener or a resin cage component, an oxide film, a boundary film by adding an oil formulation, an iron phosphate film by adding an extreme pressure agent, and the like.
  • Figure 1 shows the conceptual configuration of the position (around the contact area between components) where lubrication is performed by a lubricant in a rolling bearing 100 to be measured.
  • the rolling bearing 100 is composed of a rolling element 101 such as a ball, and an outer ring and an inner ring that form the rolling surface.
  • the outer ring 102 is used as an example for explanation.
  • a lubricant 103 is filled between the rolling element 101 and the outer ring 102, and lubrication is performed between the components.
  • a coating 104 is formed on the surface of each component.
  • Coating 104a indicates the film formed on the surface of the rolling element 101
  • coating 104b indicates the film formed on the surface (rolling surface) of the outer ring 102.
  • the state of the coating 104 changes depending on the operation of the rolling bearing 100.
  • an equivalent circuit for these is defined, and the change in the lubrication state, that is, the state of the film composed of multiple layers between the members, is measured.
  • the power source used for the measurement is an AC power source.
  • the electric circuit E has a configuration in which a capacitor C constituted by the lubricant 103 and a resistance R resulting from the surrounding elements are connected in parallel.
  • the surrounding elements here include the rolling elements (rollers, balls, etc.) that constitute the rolling bearing 100, the inner ring, the outer ring, etc.
  • the impedance of the electric circuit E is indicated by Z.
  • the AC voltage V applied to the electric circuit E, the current I flowing through the electric circuit E, and the complex impedance Z of the entire electric circuit E are expressed by the following equations (1) to (3).
  • V
  • Electrochemical impedance spectroscopy is a well-known technique and will not be described in detail here, but it is a technique for distinguishing and capturing the impedance behavior of the solution and the electrode/solution interface.
  • the lubricant 103 and the coating 104 have a multi-layer structure around the contact area, which can be considered as a circuit in which the lubricant 103 and the coating 104 are connected in series.
  • FIG. 2B shows an electrically equivalent electrical circuit for the lubricant 103 and the coating 104.
  • a CPE Constant Phase Element; pseudocapacitance
  • the resistance around the lubricant 103 is R1
  • the CPE is CPE1.
  • the resistance around the coating 104 is R2
  • the CPE is CPE2.
  • CPE is a circuit element that has both a capacitor and a resistor due to the unevenness and non-uniformity of the electrode surface.
  • the time constant of CPE is not fixed to one.
  • electrochemical impedance spectroscopy (EIS) is applied based on the equivalent circuit shown in FIG. 2B to determine the film state in the contact area of the rolling bearing 100, i.e., the lubricant and the coating are separated.
  • FIG. 3 is a schematic diagram showing an example of the overall configuration of a system 1 to which the film condition measuring method according to the present embodiment can be applied.
  • the system 1 using the film condition measuring method according to the present embodiment shows a measuring device 10, an LCR meter 20, and a bearing device 30 that is the object of measurement.
  • the configuration shown in Fig. 3 is only an example, and a different configuration may be used depending on the object of measurement, etc.
  • the bearing device 30 is configured to include two rolling bearings.
  • two ball bearings 31a, 31b are shown.
  • the ball bearings 31a, 31b are provided around the rotating shaft 40 and are configured to be able to rotate the rotating shaft 40.
  • Inside the ball bearings 31a, 31b friction within each rolling bearing is reduced by a predetermined lubrication method.
  • the lubrication method is not particularly limited, but for example, grease lubrication or oil lubrication is used and is supplied inside each rolling bearing. There is also no particular limit to the type of lubricant.
  • Each of the ball bearings 31a and 31b is configured to include an outer ring, a number of balls which are rolling elements, and an inner ring.
  • the ball bearings 31a and 31b will be described as having the same configuration.
  • the inner ring of each rolling bearing is described as a rolling ring and the outer ring is described as a fixed ring, but the configuration may be reversed.
  • the bearing device 30 is configured to include two ball bearings is shown in this embodiment, the present invention is also applicable to a bearing device composed of one rolling bearing.
  • the bearing device 30 is configured to receive a load in a specified direction (radial load, axial load).
  • the motor 50 is a drive motor that supplies rotational power to the rotating shaft 40 via a rotating belt or the like.
  • the heater 60 is used to maintain a predetermined temperature around the bearing device 30, which is the measurement target.
  • the LCR meter 20 is electrically connected to the bearing device 30 and the rotating shaft 40, and at this time, the LCR meter 20 also functions as an AC power source for the bearing device 30.
  • the measuring device 10 operates as a measuring device capable of executing the film condition measuring method according to this embodiment.
  • the measuring device 10 instructs the LCR meter 20 to input the angular frequency ⁇ of the AC power supply and the AC voltage V, and obtains the impedance
  • the measuring device 10 then uses these values to monitor the film condition of the lubricant in the bearing device 30.
  • the film condition measuring method will be described in detail later.
  • the measuring device 10 may be realized, for example, by an information processing device including a control device, a storage device, and an output device (not shown).
  • the control device may be composed of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Single Processor), or a dedicated circuit.
  • the storage device is composed of volatile and non-volatile storage media such as a HDD (Hard Disk Drive), a ROM (Read Only Memory), or a RAM (Random Access Memory), and is capable of inputting and outputting various information in response to instructions from the control device.
  • the output device is composed of a speaker, a light, or a display device such as a liquid crystal display, and outputs to the operator in response to instructions from the control device.
  • the output method by the output device is not particularly limited, but may be, for example, a visual output by a screen output, or an audible output by voice.
  • the output device may also be a network interface equipped with a communication function, and may perform output operations by transmitting data to an external device (not shown) via a network (not shown).
  • the output content here is not limited to an output when an abnormality is detected when the membrane condition is measured based on the measurement results, but may also include an output indicating that the bearing device 30 is normal.
  • [Processing flow] 3 is a flowchart of the film state measurement process according to the present embodiment. This process is executed by the measurement device 10, and may be realized, for example, by a control device (not shown) included in the measurement device 10 reading out a program for implementing the process according to the present embodiment from a storage device (not shown) and executing it. Note that fitting and parameter derivation in the following process may be configured to be partially implemented using the functions of general-purpose software.
  • the measuring device 10 controls the LCR meter 20 to apply power of an AC voltage V with an angular frequency ⁇ to the bearing device 30 (i.e., ball bearings 31a, 31b) using an AC power source (not shown) provided in the LCR meter 20.
  • an AC voltage V with an angular frequency ⁇ is applied to the lubricant in each rolling bearing.
  • the measuring device 10 obtains the impedance
  • the LCR meter 20 outputs the impedance
  • the measuring device 10 performs fitting to the equation based on the equivalent circuit shown in FIG. 2B based on the impedance
  • the measuring device 10 can identify each parameter in the formula (4) corresponding to the equivalent circuit shown in Fig. 2B from the fitting result in S403.
  • the parameters identified here are R, T CPE (CPE constant), and p (CPE index).
  • the measuring device 10 uses the parameters derived in S404 to derive the frequency dependence of the impedance Z corresponding to the lubricant 103 and the coating 104. Examples of the frequency dependence of the impedance Z will be described later with reference to Figures 7A to 7D, etc.
  • the measuring device 10 measures the film state of the lubricant 103 and the coating 104 based on the frequency dependency of the impedance Z derived in S405.
  • the measurement content here is not particularly limited, but may be, for example, the presence or absence of the formation of the above-mentioned coating and its state.
  • the lubricant oil film thickness h and the metal contact ratio ⁇ may be derived by a method such as that described in Patent No. 6729633 by the present patent applicant.
  • a configuration may be used in which a predetermined threshold value is set for the lubricant oil film thickness h and the metal contact ratio ⁇ , and a normality or abnormality is diagnosed by comparing with the threshold value.
  • a configuration may also be used in which a plurality of threshold values according to the urgency of the abnormality are set, and the urgency is diagnosed by comparing with the threshold value.
  • a configuration may also be used in which a threshold value or evaluation standard is set in advance for each state of the lubricant 103 and the coating 104, and a diagnosis based on the film state is made by comparing with the threshold value.
  • the measuring device 10 outputs the measurement results obtained in S406 to the user.
  • the output method here is not particularly limited, but may be, for example, a configuration in which parameters or items determined to be abnormal are displayed on the screen or notified by voice. Then, this processing flow ends.
  • test The results of the test carried out using the above-mentioned film condition measuring method will be described below.
  • the test conditions are as follows.
  • Bearings used Deep groove ball bearings (serial number: 608) Temperature (outer ring): 150 [°C] Rotation speed: 6000 [min -1 ] Axial load: 32N Radial load: 0 [N] Maximum contact pressure: 1.0 [GPa] AC frequency: 20 to 1,000,000 [Hz] AC voltage: 0.2 V (Lubricant used) Base oil: polyalphaolefin oil (PAO) Amount of filling: 1 mg Dynamic viscosity: 130 [ mm2 /s] (at 40°C) Dielectric constant: 2.1
  • FIG. 5 shows the test results obtained under the above test conditions. Three graphs are shown in correspondence with each other. In each graph, the horizontal axis indicates time [min], which indicates the time elapsed from the start of rotation of the bearing device.
  • the upper graph shows the temperature (line 501) and torque (line 502) values during the test.
  • the middle graph shows the oil film thickness h around the lubricant derived based on the derived impedance results.
  • the lower graph shows the metal contact ratio ⁇ (0 ⁇ 1), which indicates the contact ratio between the components, derived based on the derived impedance results. Note that the oil film thickness and metal contact ratio are shown here without considering the effect of the coating, and the impedance Z obtained by the measurement is entirely due to the oil film.
  • the dashed line 521 indicates the timing when the impedance
  • the dashed line 523 indicates the theoretical oil film thickness h theory .
  • the theoretical oil film thickness h theory is, for example, a value calculated using the known Hamrock & Dowson equation.
  • Figures 6A to 6C are schematic diagrams showing the conceptual configuration of three film states around the lubricant.
  • Figure 6A shows a state in which no film is formed on the surfaces of rolling element 601 and outer ring 602 in rolling bearing 600 (hereinafter referred to as "state A").
  • state A lubricant 603 is present between rolling element 601 and outer ring 602.
  • irregularities roughness
  • the irregularities are shown collectively on the surface of rolling element 101.
  • Figure 6B shows a state where coatings 604a, 604b are formed on the surfaces of rolling element 601 and outer ring 602 in rolling bearing 600 (hereinafter referred to as “State B").
  • Figure 6C shows a state where coatings 604a, 604b are formed on the surfaces of rolling element 601 and outer ring 602 in rolling bearing 600, and coatings 604a and 604b are in contact with each other (hereinafter referred to as "State C").
  • Figure 7A is a semi-log graph in which the horizontal axis indicates the logarithm of frequency [Hz] and the vertical axis indicates phase angle ⁇ [°].
  • Plot 511 is located before the timing (dashed line 521) at which the bearing device starts to rotate and impedance
  • plot 701 shows the actual measurement results.
  • Line 702 shows the estimated results obtained by fitting only the circuit configuration caused by the lubricant layer (i.e., the parallel circuit composed of resistors R1 and CPE1 in FIG. 2B) based on the results obtained as plot 701.
  • Line 703 shows the estimated results obtained by fitting only the circuit configuration caused by the coating layer (i.e., the parallel circuit composed of resistors R2 and CPE2 in FIG. 2B) based on the results obtained as plot 701.
  • Lines 703 and 704 are obtained as the results of S404 and S405 shown in FIG. 4.
  • plot 701 showing the measurement results almost coincides with line 702, and only one peak resulting from one parallel circuit is obtained. From this, it is estimated that at the time of plot 511 in FIG. 5, there is almost no effect of the circuit configuration resulting from the coating layer (i.e., the parallel circuit consisting of resistors R2 and CPE2 in FIG. 2B), and the state around the lubricant corresponds to state A shown in FIG. 6A, which contains only the circuit configuration resulting from the lubricant layer (i.e., the parallel circuit consisting of resistors R1 and CPE1 in FIG. 2B). In other words, the coating 604 is not formed.
  • FIG. 7B is a semi-logarithmic graph in which the horizontal axis indicates the logarithm of frequency [Hz] and the vertical axis indicates phase angle ⁇ [°].
  • Plot 512 is located after the timing (dashed line 521) at which the impedance
  • plot 711 shows the actual measurement results.
  • Line 712 shows the estimated results obtained by fitting only the circuit configuration caused by the lubricant layer (i.e., the parallel circuit composed of resistors R1 and CPE1 in FIG. 2B) based on the results obtained as plot 711.
  • Line 713 shows the estimated results obtained by fitting only the circuit configuration caused by the coating layer (i.e., the parallel circuit composed of resistors R2 and CPE2 in FIG. 2B) based on the results obtained as plot 711.
  • Lines 712 and 713 are obtained as the results of S404 and S405 shown in FIG. 4.
  • the peak has shifted to the left compared to the measurement results shown in FIG. 7A, but just as in FIG. 7A, only one peak is obtained, and at the time of plot 512 in FIG. 5, there is almost no effect of the circuit configuration caused by the coating layer (i.e., the parallel circuit composed of resistors R2 and CPE2 in FIG. 2B).
  • the state around the lubricant is presumed to correspond to state A shown in FIG. 6A, which contains only the circuit configuration caused by the lubricant layer (i.e., the parallel circuit composed of resistors R1 and CPE1 in FIG. 2B).
  • the state is one in which coating 604 has not been formed.
  • FIG. 7C is a semi-log graph in which the horizontal axis indicates the logarithm of frequency [Hz] and the vertical axis indicates phase angle ⁇ [°].
  • Plot 513 is a timing that is a certain amount of time after the bearing device starts to rotate and impedance
  • plot 721 shows the actual measurement results.
  • Line 722 shows the estimated results obtained by fitting only the circuit configuration caused by the lubricant layer (i.e., the parallel circuit composed of resistors R1 and CPE1 in FIG. 2B) based on the results obtained as plot 721.
  • Line 723 shows the estimated results obtained by fitting only the circuit configuration caused by the coating layer (i.e., the parallel circuit composed of resistors R2 and CPE2 in FIG. 2B) based on the results obtained as plot 721.
  • Lines 722 and 723 are obtained as a result of S404 and S405 shown in FIG. 4.
  • plot 721 shows a curve with two peaks resulting from the two parallel circuits. From this, it can be seen that at the time of plot 513 in FIG. 5, the effects of both the circuit configuration resulting from the coating layer (i.e., the parallel circuit consisting of resistors R2 and CPE2 in FIG. 2B) and the circuit configuration resulting from the lubricant layer (i.e., the parallel circuit consisting of resistors R1 and CPE1 in FIG. 2B) are occurring. Therefore, it is presumed to correspond to state B shown in FIG. 6B. In other words, it is state B in which coating 604 has been formed.
  • FIG. 7D is a semi-logarithmic graph in which the horizontal axis indicates the logarithm of frequency [Hz] and the vertical axis indicates phase angle ⁇ [°].
  • Plot 514 is located after the timing (dashed line 522) at which the bearing device stops rotating.
  • plot 721 shows the actual measurement results.
  • Line 722 shows the estimated results obtained by performing fitting based only on the circuit configuration due to the lubricant layer (i.e., the parallel circuit consisting of resistors R1 and CPE1 in FIG. 2B).
  • Line 723 shows the estimated results obtained by performing fitting based only on the circuit configuration due to the coating layer (i.e., the parallel circuit consisting of resistors R2 and CPE2 in FIG. 2B).
  • plot 721 showing the measurement results coincides with line 723, and only one peak due to one parallel circuit is obtained. From this, it is estimated that the time of plot 514 in FIG. 5 corresponds to state C shown in FIG. 6C, where the circuit configuration due to the lubricant layer (i.e., the parallel circuit composed of resistors R1 and CPE1 in FIG. 2B) and the circuit configuration due to the coating layer (i.e., the parallel circuit composed of resistors R2 and CPE2 in FIG. 2B) are in contact.
  • state C since the bearing device is not rotating, the coatings formed on the surfaces of the members are in contact with each other, and no peak due to the coating alone can exist. In other words, when metals are in contact with each other without a coating, impedance
  • the configuration according to this embodiment makes it possible to determine the film state around the lubricant, more specifically, the presence or absence of a coating. Furthermore, it is possible to estimate the thickness of the lubricant or coating based on the above detection results. As described above, the thickness of the lubricant or coating can be derived by applying known methods using the measurement parameters ( ⁇ , V, Z, ⁇ ) obtained by the spectroscopic impedance method.
  • a rolling bearing is taken as an example, but the present invention is not limited to this, and the present invention can be similarly applied to other devices in which a layer structure is formed by a lubricant.
  • an AC voltage was used as an example of the voltage applied to the bearing device.
  • the voltage may be, for example, a predetermined pulse or rectangular voltage.
  • the present invention can also be realized by supplying a program or application for realizing the functions of one or more of the above-mentioned embodiments to a system or device via a network or storage medium, etc., and having one or more processors in the computer of the system or device read and execute the program.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the present invention is not limited to the above-described embodiment, and the invention also contemplates the mutual combination of the various components of the embodiment, as well as modifications and applications by those skilled in the art based on the descriptions in the specification and well-known technology, and these are included in the scope of the protection sought.
  • a measuring step (e.g., S406) of measuring a film state between the first member and the second member based on the impedance derived in the derivation step;
  • a method for measuring a film state comprising: This configuration makes it possible to measure changes in the state of multiple films between lubricated members.
  • the equivalent circuit is a circuit in which two parallel circuits of a resistor circuit and a CPE circuit are connected in series (for example, FIG. 2B ),
  • the film condition measuring method described in (1) characterized in that one of the two parallel circuits corresponds to the lubricant (e.g., 103) between the first member and the second member, and the other corresponds to a coating (e.g., 104a, 104b) formed on at least one of the first member and the second member as the first member and the second member operate.
  • the lubricant e.g. 103
  • a coating e.g., 104a, 104b
  • the first member and the second member are provided in a bearing device (e.g., 30), the first member is a rolling element,
  • the film condition measuring method described in (1) characterized in that the second member is an inner ring or an outer ring. According to this configuration, it is possible to measure the film state between the internal rolling elements and the inner and outer rings of a rolling device.
  • a film state measuring device (e.g., 10) between a first member (e.g., 101) and a second member (e.g., 102) lubricated by a lubricant (e.g., 103),
  • a measuring means (e.g., 20) for measuring impedance by applying a predetermined voltage to the first member and the second member;
  • a derivation means (e.g., 10) that performs fitting of the impedance measured by the measurement means based on an equivalent circuit corresponding to each of a plurality of layers (e.g., 103, 104) formed between the first member and the second member, thereby deriving the impedance of each of the plurality of layers between the first member and the second member;
  • a measuring means (e.g., 10) for measuring a film state between the first member and the second member based on the impedance derived by the deriving means;
  • a film state measuring device comprising: This configuration makes it possible to measure changes in the state of multiple films
  • a computer e.g., 10
  • a measurement step e.g., S401, S402 of measuring impedance by applying a predetermined voltage to a first member (e.g., 101) and a second member (e.g., 102) lubricated with a lubricant (e.g., 103); a derivation step (e.g., S403, S404, S405) of fitting the impedance measured in the measurement step based on an equivalent circuit corresponding to each of a plurality of layers (e.g., 103, 104) formed between the first member and the second member to derive the impedance of each of the plurality of layers between the first member and the second member; A measuring step (e.g., S406) of measuring a film state between the first member and the second member based on the impedance derived in the derivation step; A program for executing the above. This configuration makes it possible to measure changes in the state of multiple films between lubricated members.

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

潤滑剤により潤滑される第1の部材と第2の部材との間の膜状態測定方法は、第1の部材と前記第2の部材とに所定の電圧を印加させることによりインピーダンスを測定し、測定したインピーダンスを第1の部材と第2の部材との間に形成される複数の層それぞれに対応する等価回路に基づいてフィッティングを行うことで、第1の部材と第2の部材との間における複数の層それぞれのインピーダンスを導出し、導出したインピーダンスに基づいて、第1の部材と第2の部材との間における膜状態を測定する。

Description

膜状態測定方法、膜状態測定装置、およびプログラム
 本発明は、膜状態測定方法、膜状態測定装置、およびプログラムに関する。
 従来、軸受装置や摺動装置などの機械装置では、潤滑剤(例えば、潤滑油やグリース)を用いて部材間の接触面に所望の被膜を設けて動作を潤滑する構成が広く普及している。また、部材の表面に予め被膜を行うことで、部材間の接触域を保護するといった構成も用いられている。このような機械装置に対しては、定期的に膜状態の監視を行うことで、損傷や摩耗を早期に検知して回転部品の故障などの発生を抑制することが行われている。
 潤滑剤を用いた機械装置では、その膜状態を診断するために、内部の状態を適切に検知することが求められる。例えば、特許文献1では、2個の転がり軸受にて回転軸を支持した構成の装置を対象として、回転輪や転動体に対して非接触の状態で、転がり軸受の被膜の状態を判定する構成が示されている。
日本国特開2007-239779号公報
 例えば、軸受装置において回転動作が行われた場合、その回転の過程に応じて、膜状態が変化する。より具体的には、部品間において、潤滑剤と、部材表面に形成される被膜とが含まれ、これらの状態が回転の経過によって変化する。このような部材間においては、潤滑剤周りに構成される複数の層構造を膜状態として捉えることができる。そして、それらを測定することで、複数の膜の状態変化を適切に測定する方法が求められている。しかしながら、特許文献1の方法では、このような膜状態の変化を把握することはできない。
 上記課題を鑑み、本発明は、潤滑される部材間の複数の膜の状態変化を測定可能とする手法を提供することを目的とする。
 上記課題を解決するために本発明は以下の構成を有する。すなわち、潤滑剤により潤滑される第1の部材と第2の部材との間の膜状態測定方法であって、
 前記第1の部材と前記第2の部材とに所定の電圧を印加させることによりインピーダンスを測定する測定工程と、
 前記測定工程にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層それぞれに対応する等価回路に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出工程と、
 前記導出工程にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定工程と、
を有することを特徴とする膜状態測定方法。
 また、本発明の別の形態は以下の構成を有する。すなわち、潤滑剤により潤滑される第1の部材と第2の部材との間の膜状態測定装置であって、
 前記第1の部材と前記第2の部材とに所定の電圧を印加させることによりインピーダンスを測定する測定手段と、
 前記測定手段にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層それぞれに対応する等価回路に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出手段と、
 前記導出手段にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定手段と、
を有することを特徴とする膜状態測定装置。
 また、本発明の別の形態は以下の構成を有する。すなわち、プログラムであって、
 コンピュータに、
 潤滑剤により潤滑される第1の部材と第2の部材とに所定の電圧を印加させることによりインピーダンスを測定する測定工程と、
 前記測定工程にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層それぞれに対応する等価回路に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出工程と、
 前記導出工程にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定工程と、
を実行させるためのプログラム。
 本発明により、潤滑される部材間の複数の膜の状態変化を測定することが可能となる。
本発明の一実施形態に係る転がり軸受内の潤滑剤周りを説明するための概略図。 本発明の一実施形態に係る転がり軸受内の潤滑剤周りの等価回路を説明するための概念図。 本発明の一実施形態に係る転がり軸受の等価回路を説明するための概略図。 本発明の一実施形態に係る測定装置の構成例を示す概略図。 本発明の一実施形態に係る膜状態測定処理のフローチャート。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る転がり軸受内の潤滑剤周りの状態変化を説明するための概略図。 本発明の一実施形態に係る転がり軸受内の潤滑剤周りの状態変化を説明するための概略図。 本発明の一実施形態に係る転がり軸受内の潤滑剤周りの状態変化を説明するための概略図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。
 以下、本発明を実施するための形態について図面などを参照して説明する。なお、以下に説明する実施形態は、本発明を説明するための一実施形態であり、本発明を限定して解釈されることを意図するものではなく、また、各実施形態で説明されている全ての構成が本発明の課題を解決するために必須の構成であるとは限らない。また、各図面において、同じ構成要素については、同じ参照番号を付すことにより対応関係を示す。
 <第1の実施形態>
 以下、本発明の第1の実施形態について説明を行う。なお、本実施形態では、潤滑剤により潤滑されながら転がり挙動を行う転がり軸受を例に挙げて説明する。例えば、本発明に係る診断方法が適用可能な転がり軸受の種類としては、深溝玉軸受、アンギュラ玉軸受、円錐ころ軸受、円筒ころ軸受、自動調心ころ軸受などが挙げられる。しかし、これらに限定するものではなく、潤滑剤により部材間の接触位置の潤滑を行って動作する機械装置であれば、本実施形態は適用可能である。
 [潤滑状態]
 まず、本実施形態に係る潤滑剤による潤滑状態について説明する。本実施形態における潤滑剤としては、潤滑油やグリースなどが含まれるが、特に限定するものではない。また、本実施形態では、転がり軸受の回転動作に伴って、部材表面に被膜が形成される例を示すが、被膜は、潤滑剤の主成分に起因するものに限定されない。例えば、増ちょう剤や樹脂保持器成分の移着膜、酸化被膜、油製剤添加による境界被膜、極圧剤添加によるリン酸鉄被膜などにも応用可能である。
 図1は、測定対象である転がり軸受100において、潤滑剤にて潤滑が行われる位置(部材間の接触域周り)の概念構成を示す図である。転がり軸受100は、玉などの転動体101と、転動面を形成する外輪および内輪とを含んで構成される。ここでは外輪102を例に挙げて説明する。転動体101と外輪102との間には潤滑剤103が充填され、部材間の潤滑が行われる。また、転がり軸受100にて回転が行われることで、被膜104が各部材の表面に形成される。被膜104aは、転動体101の表面に形成された膜を示し、被膜104bは、外輪102の表面(転動面)に形成された膜を示す。
 実際には、転動体101の表面および外輪102の表面のそれぞれに凹凸(粗さ)が存在するが、ここでは、転動体101の表面にまとめて、合成表面粗さとして凹凸を示している。
 被膜104は、転がり軸受100の動作に応じて状態が変化する。本実施形態では、これらに対する等価回路を規定し、潤滑状態、すなわち部材間における複数の層として構成される膜状態の変化を測定する。なお、以下の説明では、測定に用いる電源を交流電源として説明する。
 図2は、転がり軸受100内の潤滑剤103周りの電気的に等価な電気回路を示す図である。電気回路Eは、潤滑剤103から構成されるコンデンサCと、その周辺の要素に起因する抵抗Rが並列に接続された構成を有する。ここでの周辺の要素とは、転がり軸受100を構成する転動体(ころや玉など)、内輪、外輪などが挙げられる。また、電気回路EのインピーダンスをZにて示す。ここで、電気回路Eに印加される交流電圧V、電気回路Eを流れる電流I、および、電気回路E全体の複素数インピーダンスZは以下の式(1)~(3)にて示される。
 V=|V|exp(jωt) …(1)
 I=|I|exp(j(ωt-θ)) …(2)
 Z=V/I=|V/I|exp(jθ)=|Z|exp(jθ) …(3)
 j:虚数
 ω:電圧の角周波数
 t:時間
 θ:位相角(電圧と電流の位相のずれ)
 本実施形態では、電気化学インピーダンス分光法(EIS)を応用して測定を行う。電気化学インピーダンス分光法は、公知の手法であるため、ここでの詳細な説明は省略するが、溶液・電極/溶液界面のインピーダンス挙動を区別して捉える手法である。
 図1に示すように、接触域周りにおいて、潤滑剤103と被膜104(被膜104a、104b含む)は複数の層構造であり、これは潤滑剤103と被膜104とが直列接続された回路とみなすことができる。図2Bは、潤滑剤103と被膜104に対して、電気的に等価な電気回路を示す。本実施形態では、転動体および外輪の表面粗さを想定し、図2Aに示したコンデンサCに代えて、CPE(Constant Phase Element;疑似容量)を用いる。ここでは、潤滑剤103周りの抵抗をR1とし、CPEをCPE1として示す。同様に、被膜104周りの抵抗をR2とし、CPEをCPE2として示す。
 CPEは、電極表面の凹凸や不均一性に起因したキャパシタと抵抗の要素を併せて有する回路素子である。CPEにおいて時定数は1つに定まらない。CPEのインピーダンスは、以下の式(4)にて表される。CPEは、p=1の場合に、CPE定数TCPEに基づくキャパシタとなり、p=0の場合に、抵抗値が1/TCPEの抵抗となる。なお、R-CPE並列回路はつぶれた半円を示し、そのつぶれ具合はpに依存する。
Figure JPOXMLDOC01-appb-M000001
CPE:インピーダンス
j:虚数
π:円周率
f:周波数
CPE:CPE定数
p:CPE指数
 本実施形態では、図2Bに示す等価回路に基づいて、電気化学インピーダンス分光法(EIS)を適用することで、転がり軸受100の接触域における膜状態、すなわち、潤滑剤と被膜とを分離して判定する。
 [装置構成]
 図3は、本実施形態に係る膜状態測定方法を適用可能なシステム1の全体構成の一例を示す概略構成図である。図3では、本実施形態に係る膜状態測定方法を用いるシステム1は、測定装置10、LCRメータ20、および測定対象である軸受装置30を示している。なお、図3に示す構成は一例であり、測定対象などに応じて異なる構成が用いられてよい。
 軸受装置30は、2つの転がり軸受を含んで構成される。図3の例では、2つの玉軸受31a、31bの例を示している。玉軸受31a、31bは、回転軸40の周囲に設けられ、回転軸40を回転可能に構成される。玉軸受31a、31bの内部において、所定の潤滑方式により、各転がり軸受内の摩擦が軽減される。潤滑方式は特に限定するものではないが、例えば、グリース潤滑や油潤滑などが用いられ、各転がり軸受内部に供給されている。潤滑剤の種類についても特に限定するものではない。
 玉軸受31a、31bはそれぞれ、外輪、転動体である複数の玉、および内輪を含んで構成される。玉軸受31a、31bは同じ構成であるものとして説明する。図3の例では、各転がり軸受の内輪を転動輪とし、外輪を固定輪として説明するが、逆の構成であってもよい。なお、本実施形態では、軸受装置30に2つの玉軸受を含んで構成された例を示したが、1つの転がり軸受から構成される軸受装置であっても同様に適用可能である。また、軸受装置30に対しては、所定方向の荷重(ラジアル荷重、アキシアル荷重)が負荷されるように構成される。
 モータ50は、駆動用のモータであり、回転軸40に対して、回転ベルト等を介して回転による動力を供給する。ヒータ60は、測定対象である軸受装置30の周囲の温度を所定の温度に保つために用いられる。LCRメータ20は、軸受装置30や回転軸40と電気的に接続され、このとき、LCRメータ20は、軸受装置30に対する交流電源としても機能する。
 測定装置10は、本実施形態に係る膜状態測定方法を実行可能な測定装置として動作する。測定装置10は、測定の際に、LCRメータ20に対して交流電源の角周波数ω、および交流電圧Vを入力として指示し、それに対する出力としてLCRメータ20から軸受装置30のインピーダンス|Z|(|Z|は、Zの絶対値を示す)、および位相角θを取得する。そして、測定装置10はこれらの値を用いて軸受装置30における潤滑剤の膜状態のモニタリングを行う。膜状態測定方法の詳細については、後述する。
 測定装置10は、例えば、不図示の制御装置、記憶装置、および出力装置を含んで構成される情報処理装置にて実現されてよい。制御装置は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Single Processor)、または専用回路などから構成されてよい。記憶装置は、HDD(Hard Disk Drive)、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性および不揮発性の記憶媒体により構成され、制御装置からの指示により各種情報の入出力が可能である。出力装置は、スピーカやライト、或いは液晶ディスプレイ等の表示デバイス等から構成され、制御装置からの指示により、作業者への出力を行う。出力装置による出力方法は特に限定するものではないが、例えば、画面出力による視覚的な出力であってもよいし、音声による聴覚的な出力であってもよい。また、出力装置は、通信機能を備えたネットワークインターフェースであってもよく、ネットワーク(不図示)を介した外部装置(不図示)へのデータ送信により出力動作を行ってもよい。ここでの出力内容は、例えば、測定結果に基づいて、膜状態の測定を行った場合、異常が検出された際の出力に限定するものではなく、軸受装置30が正常である旨の出力を含んでもよい。
 [処理フロー]
 図3は、本実施形態に係る膜状態測定処理のフローチャートである。本処理は、測定装置10により実行され、例えば、測定装置10が備える制御装置(不図示)が本実施形態に係る処理を実現するためのプログラムを記憶装置(不図示)から読み出して実行することにより実現されてよい。なお、以下の処理におけるフィッティングやパラメータの導出は、汎用のソフトウェアの機能を用いてその一部が実現されるように構成されてよい。
 S401にて、測定装置10は、LCRメータ20に対し、LCRメータ20が備える交流電源(不図示)を用いて角周波数ωの交流電圧Vの電力を軸受装置30(すなわち、玉軸受31a、31b)に与えるように制御する。これにより、各転がり軸受内の潤滑剤には、角周波数ωの交流電圧Vが印加される。
 S402にて、測定装置10は、S401にて指示した入力に対する出力として、LCRメータ20からインピーダンス|Z|および位相角θを取得する。つまり、LCRメータ20は、入力である角周波数ωの交流電圧Vに対する軸受装置30の測定結果として、インピーダンス|Z|および位相角θを測定装置10に出力する。
 S403にて、測定装置10は、S402にて取得したインピーダンス|Z|および位相角θ、S401にて指示した角周波数ωの交流電圧Vの情報に基づいて、図2Bにて示した等価回路に基づく式へのフィッティング(当てはめ)を行う。
 S404にて、測定装置10は、S403のフィッティングの結果から、図2Bにて示した等価回路に対応する式(4)における各パラメータを特定することができる。ここで特定されるパラメータは、R、TCPE(CPE定数)、p(CPE指数)となる。このとき、直列接続されたものとみなすことができる、潤滑剤103および被膜104それぞれに対応する上記パラメータが導出される。
 S405にて、測定装置10は、S404にて導出された各パラメータを用いて、潤滑剤103、および被膜104それぞれに対応するインピーダンスZの周波数依存性を導出する。インピーダンスZの周波数依存性の例については、図7A~図7Dなどを用いて後述する。
 S406にて、測定装置10は、S405にて導出したインピーダンスZの周波数依存性の結果に基づいて、潤滑剤103および被膜104に対する膜状態の測定を行う。ここでの測定内容は特に限定するものでは無いが、例えば、上述する被膜の形成の有無や、その状態を特定してもよい。更には、本特許出願人による特許第6729633号公報に記載されているような手法により、潤滑油膜厚さhや金属接触割合αを導出してもよい。そして、潤滑油膜厚さhや金属接触割合αに対して、所定の閾値を設定しておき、その閾値との比較により正常または異常を診断するような構成であってもよい。また、異常の緊急度に応じた複数の閾値を設定しておき、それらの閾値との比較により、緊急度を診断するような構成であってもよい。また、潤滑剤103や被膜104それぞれの状態に対して閾値や評価基準を予め設定しておき、それらとの比較により、膜状態に基づく診断を行うような構成であってもよい。
 S407にて、測定装置10は、S406にて得られた測定結果をユーザに対して出力する。ここでの出力方法は特に限定するものでは無いが、例えば、異常と判断したパラメータや項目を画面上で表示したり、音声にて通知したりするような構成であってよい。そして、本処理フローを終了する。
 [試験]
 以下、上記の膜状態測定方法を用いて行った試験の結果について説明する。試験の条件は以下の通りである。
 (試験条件)
 使用軸受:深溝玉軸受(銘番:608)
 温度(外輪):150[℃]
 回転速度:6000[min-1
 アキシアル荷重:32[N]
 ラジアル荷重:0[N]
 最大接触圧:1.0[GPa]
 交流周波数:20~1000000[Hz]
 交番電圧:0.2[V]
 (使用潤滑剤)
 基油;ポリアルファオレフィン油(PAO)
 封入量:1[mg]
 動粘性率:130[mm/s](40℃下)
 比誘電率:2.1
 (試験結果)
 図5は、上記試験条件下にて得られた試験結果を示す。ここでは3つのグラフを対応付けて示す。各グラフにおいて横軸は時間[分]を示し、軸受装置の回転開始からの時間経過を示す。上のグラフは、試験中における温度(線501)、およびトルク(線502)の値を示している。真ん中のグラフは、導出したインピーダンスの結果に基づいて導出された潤滑剤周りの潤滑油膜厚さhを示す。また、下のグラフは導出したインピーダンスの結果に基づいて導出された、部材間の接触割合を示す金属接触割合α(0≦α≦1)を示す。なお、ここでは、被膜の影響を考慮しておらず、測定にて得られたインピーダンスZがすべて油膜に起因するものとした潤滑油膜厚さおよび金属接触割合を示す。
 また、破線521は、インピーダンス|Z|が増加したタイミングを示し、破線522は、軸受装置の回転が停止したタイミングを示す。また、破線523は、理論油膜厚さhtheoryを示す。理論油膜厚さhtheoryは、一例として、公知のHamrock&Dowsonの式を用いて算出した値を示す。
 本実施形態では、潤滑剤周りの状態変化として、3つの状態を例に挙げて説明する。図6A~図6Cは、潤滑剤周りの3つの膜状態の概念構成を示す概略図である。図6Aは、転がり軸受600内の転動体601および外輪602の表面に被膜が形成されていない状態を示す(以下、「状態A」と称する)。この状態Aでは、転動体601および外輪602の間には潤滑剤603が存在する。転動体601の表面および外輪602の表面のそれぞれに凹凸(粗さ)が存在するが、図1と同様、ここでは、転動体101の表面にまとめて凹凸を示す。
 図6Bは、転がり軸受600内の転動体601および外輪602それぞれの表面に被膜604a、604bが形成されている状態を示す(以下、「状態B」と称する)。図6Cは、転がり軸受600内の転動体601および外輪602それぞれの表面に被膜604a、604bが形成され、被膜604aと被膜604bが接触している状態を示す(以下、「状態C」と称する)。
 図5のプロット511に対応する測定結果を図7Aに示す。図7Aは、横軸は周波数[Hz]の対数を示し、縦軸は位相角θ[°]を示す片対数グラフである。プロット511は、軸受装置が回転を開始して、インピーダンス|Z|が増加するタイミング(破線521)よりも前に位置する。なお、以下に示す図7A~図7Dにおけるプロット701、711、721、731の情報は、上記の図4に示したフローチャートのS401、S402の工程の動作にて特定される。
 図7Aにおいて、プロット701は、実際の測定結果を示す。線702は、プロット701として得られた結果に基づいて、潤滑剤の層に起因する回路構成(すなわち、図2Bの抵抗R1とCPE1から構成される並列回路)のみにフィッティングすることにより得られた推定結果を示す。線703は、プロット701として得られた結果に基づいて、被膜の層に起因する回路構成(すなわち、図2Bの抵抗R2とCPE2から構成される並列回路)のみにフィッティングすることにより得られた推定結果を示す。線703、704は、図4に示すS404、S405の結果として得られる。
 図7Aを参照すると、測定結果を示すプロット701は、ほぼ線702に一致し、1つの並列回路に起因する1つのピークのみが得られる。このことから、図5のプロット511の時点では、被膜の層に起因する回路構成(すなわち、図2Bの抵抗R2とCPE2から構成される並列回路)の影響はほぼ無く、潤滑剤周りの状態は、潤滑剤の層に起因する回路構成(すなわち、図2Bの抵抗R1とCPE1から構成される並列回路)のみの図6Aに示す状態Aに相当すると推定される。つまり、被膜604が形成されていない状態となる。
 図5のプロット512に対応する測定結果を図7Bに示す。図7Bは、横軸は周波数[Hz]の対数を示し、縦軸は位相角θ[°]を示す片対数グラフである。プロット512は、軸受装置が回転を開始して、インピーダンス|Z|が増加するタイミング(破線521)よりも後に位置する。
 図7Bにおいて、プロット711は、実際の測定結果を示す。線712は、プロット711として得られた結果に基づいて、潤滑剤の層に起因する回路構成(すなわち、図2Bの抵抗R1とCPE1から構成される並列回路)のみにフィッティングすることにより得られた推定結果を示す。線713は、プロット711として得られた結果に基づいて、被膜の層に起因する回路構成(すなわち、図2Bの抵抗R2とCPE2から構成される並列回路)のみにフィッティングすることによって得られた推定結果を示す。線712、713は、図4に示すS404、S405の結果として得られる。
 図7Bを参照すると、図7Aに示す測定結果と比較して、左側にピークが移動しているが、図7Aと同様に、1つのピークのみが得られており、図5のプロット512の時点では、被膜の層に起因する回路構成(すなわち、図2Bの抵抗R2とCPE2から構成される並列回路)の影響はほぼ無い。すなわち、潤滑剤周りの状態は、潤滑剤の層に起因する回路構成(すなわち、図2Bの抵抗R1とCPE1から構成される並列回路)のみの図6Aに示す状態Aに相当すると推定される。つまり、プロット511と同様、被膜604が形成されていない状態となる。
 図5のプロット513に対応する測定結果を図7Cに示す。図7Cは、横軸は周波数[Hz]の対数を示し、縦軸は位相角θ[°]を示す片対数グラフである。プロット513は、軸受装置が回転を開始して、インピーダンス|Z|が増加するタイミング(破線521)から一定の時間が経過したタイミングであり、プロット512よりも後に位置する。
 図7Cにおいて、プロット721は、実際の測定結果を示す。線722は、プロット721として得られた結果に基づいて、潤滑剤の層に起因する回路構成(すなわち、図2Bの抵抗R1とCPE1から構成される並列回路)のみにフィッティングすることにより得られた推定結果を示す。線723は、プロット721として得られた結果に基づいて、被膜の層に起因する回路構成(すなわち、図2Bの抵抗R2とCPE2から構成される並列回路)のみにフィッティングすることによって得られた推定結果を示す。線722、723は、図4に示すS404、S405の結果として得られる。
 図7Cを参照すると、プロット721は、2つの並列回路に起因する2つのピークを有する曲線を示している。このことから、図5のプロット513の時点では、被膜の層に起因する回路構成(すなわち、図2Bの抵抗R2とCPE2から構成される並列回路)と、潤滑剤の層に起因する回路構成(すなわち、図2Bの抵抗R1とCPE1から構成される並列回路)の両方の影響が生じていることが読み取れる。そのため、図6Bに示す状態Bに相当すると推定される。つまり、被膜604が形成された状態Bとなる。
 図5のプロット514に対応する測定結果を図7Dに示す。図7Dは、横軸は周波数[Hz]の対数を示し、縦軸は位相角θ[°]を示す片対数グラフである。プロット514は、軸受装置が回転を停止したタイミング(破線522)よりも後に位置する。
 図7Dにおいて、プロット721は、実際の測定結果を示す。線722は、潤滑剤の層に起因する回路構成(すなわち、図2Bの抵抗R1とCPE1から構成される並列回路)のみに基づいてフィッティングを行って得られた推定結果を示す。線723は、被膜の層に起因する回路構成(すなわち、図2Bの抵抗R2とCPE2から構成される並列回路)のみに基づいてフィッティングを行って得られた推定結果を示す。
 図7Dを参照すると、測定結果を示すプロット721は、線723に一致し、1つの並列回路に起因する1つのピークのみが得られている。このことから、図5のプロット514の時点では、潤滑剤の層に起因する回路構成(すなわち、図2Bの抵抗R1とCPE1から構成される並列回路)と、被膜の層に起因する回路構成(すなわち、図2Bの抵抗R2とCPE2から構成される並列回路)とが接触した図6Cに示す状態Cに相当すると推定される。なお、状態Cは、軸受装置の回転が停止しているため、部材の表面に形成された被膜同士が接触し、被膜のみのピークが存在しえないこととなる。つまり、被膜が無い状態で金属同士が接触した場合にはインピーダンス|Z|はほぼ0になるが、被膜が形成された場合には、回転停止した場合もR-CPEの並列回路としての挙動を示すこととなる。
 上記のことから、本実施形態に係る構成により、潤滑剤周りの膜状態、より具体的には、被膜の有無を判定することができる。更には、上記の検出結果に基づいて、潤滑剤や被膜の厚さを推定することが可能となる。潤滑剤や被膜の厚さについては、上述したように、分光インピーダンス法による測定パラメータ(ω、V、Z、θ)を用いて、公知の手法に適用することで、導出することが可能である。
 <その他の実施形態>
 上記の実施形態では、転がり軸受を例に挙げたが、これに限定するものではなく、潤滑剤により層構造が形成される他の装置についても同様に適用可能である。
 また、上記の実施形態では、軸受装置に印加する電圧として、交流電圧を例に挙げて説明した。しかし、これに限定するものではなく、例えば、所定のパルスや矩形電圧であってもよい。
 また、本発明において、上述した1以上の実施形態の機能を実現するためのプログラムやアプリケーションを、ネットワーク又は記憶媒体等を用いてシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。
 また、1以上の機能を実現する回路(例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array))によって実現してもよい。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
 (1) 潤滑剤(例えば、103)により潤滑される第1の部材(例えば、101)と第2の部材(例えば、102)との間の膜状態測定方法であって、
 前記第1の部材と前記第2の部材とに所定の電圧を印加させることによりインピーダンスを測定する測定工程(例えば、S401、S402)と、
 前記測定工程にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層(例えば、103、104)それぞれに対応する等価回路(例えば、図2B)に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出工程(例えば、S403、S404、S405)と、
 前記導出工程にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定工程(例えば、S406)と、
を有することを特徴とする膜状態測定方法。
 この構成によれば、潤滑される部材間の複数の膜の状態変化を測定することが可能となる。
 (2) 前記等価回路は、前記第1の部材と第2の部材との間における、前記潤滑剤と、前記第1の部材および第2の部材の少なくとも一方に形成される被膜とのそれぞれに対応する疑似容量(例えば、CPE1、CPE2)により構成される、ことを特徴とする(1)に記載の膜状態測定方法。
 この構成によれば、部材間における潤滑剤と、部材表面の被膜を対象とし、部材表面の表面粗さを考慮して膜状態を測定することが可能となる。
 (3) 前記等価回路は、抵抗回路とCPE回路の並列回路を2つ直列に接続した回路(例えば、図2B)であり、
 2つの前記並列回路のうちの一方が、前記第1の部材と第2の部材との間における前記潤滑剤(例えば、103)に対応し、他方が、前記第1の部材と前記第2の部材とが動作することに伴って前記第1の部材および第2の部材の少なくとも一方に形成される被膜(例えば、104a、104b)に対応する、ことを特徴とする(1)に記載の膜状態測定方法。
 この構成によれば、部材間における潤滑剤と、部材の動作に伴って形成される被膜を対象として膜状態を測定することが可能となる。
 (4) 前記測定工程において、前記第1の部材および前記第2の部材の少なくとも一方の表面に形成される被膜の有無が前記膜状態として診断される、ことを特徴とする(3)に記載の膜状態測定方法。
 この構成によれば、部材間における、部材の動作に伴って形成される被膜の有無を膜状態として測定することが可能となる。
 (5) 前記第1の部材と前記第2の部材は軸受装置(例えば、30)に備えられ、
 前記第1の部材は、転動体であり、
 前記第2の部材は、内輪または外輪である、ことを特徴とする(1)に記載の膜状態測定方法。
 この構成によれば、転動装置を対象として、その内部の転動体と内外輪の間の膜状態を測定することが可能となる。
 (6) 潤滑剤(例えば、103)により潤滑される第1の部材(例えば、101)と第2の部材(例えば、102)との間の膜状態測定装置(例えば、10)であって、
 前記第1の部材と前記第2の部材とに所定の電圧を印加させることによりインピーダンスを測定する測定手段(例えば、20)と、
 前記測定手段にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層(例えば、103、104)それぞれに対応する等価回路に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出手段(例えば、10)と、
 前記導出手段にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定手段(例えば、10)と、
を有することを特徴とする膜状態測定装置。
 この構成によれば、潤滑される部材間の複数の膜の状態変化を測定することが可能となる。
 (7) コンピュータ(例えば、10)に、
 潤滑剤(例えば、103)により潤滑される第1の部材(例えば、101)と第2の部材(例えば、102)とに所定の電圧を印加させることによりインピーダンスを測定する測定工程(例えば、S401、S402)と、
 前記測定工程にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層(例えば、103、104)それぞれに対応する等価回路に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出工程(例えば、S403、S404、S405)と、
 前記導出工程にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定工程(例えば、S406)と、
を実行させるためのプログラム。
 この構成によれば、潤滑される部材間の複数の膜の状態変化を測定することが可能となる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年11月7日出願の日本特許出願(特願2022-178452)に基づくものであり、その内容は本出願の中に参照として援用される。
1 システム
10 測定装置
20 LCRメータ
30 軸受装置
40 回転軸
50 モータ
60 ヒータ

Claims (7)

  1.  潤滑剤により潤滑される第1の部材と第2の部材との間の膜状態測定方法であって、
     前記第1の部材と前記第2の部材とに所定の電圧を印加させることによりインピーダンスを測定する測定工程と、
     前記測定工程にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層それぞれに対応する等価回路に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出工程と、
     前記導出工程にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定工程と、
    を有することを特徴とする膜状態測定方法。
  2.  前記等価回路は、前記第1の部材と第2の部材との間における、前記潤滑剤と、前記第1の部材および第2の部材の少なくとも一方に形成される被膜とのそれぞれに対応する疑似容量により構成される、ことを特徴とする請求項1に記載の膜状態測定方法。
  3.  前記等価回路は、抵抗回路とCPE回路の並列回路を2つ直列に接続した回路であり、
     2つの前記並列回路のうちの一方が、前記第1の部材と第2の部材との間における前記潤滑剤に対応し、他方が、前記第1の部材と前記第2の部材とが動作することに伴って前記第1の部材および第2の部材の少なくとも一方に形成される被膜に対応する、ことを特徴とする請求項1に記載の膜状態測定方法。
  4.  前記測定工程において、前記第1の部材および前記第2の部材の少なくとも一方の表面に形成される被膜の有無が前記膜状態として診断される、ことを特徴とする請求項3に記載の膜状態測定方法。
  5.  前記第1の部材と前記第2の部材は軸受装置に備えられ、
     前記第1の部材は、転動体であり、
     前記第2の部材は、内輪または外輪である、ことを特徴とする請求項1に記載の膜状態測定方法。
  6.  潤滑剤により潤滑される第1の部材と第2の部材との間の膜状態測定装置であって、
     前記第1の部材と前記第2の部材とに所定の電圧を印加させることによりインピーダンスを測定する測定手段と、
     前記測定手段にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層それぞれに対応する等価回路に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出手段と、
     前記導出手段にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定手段と、
    を有することを特徴とする膜状態測定装置。
  7.  コンピュータに、
     潤滑剤により潤滑される第1の部材と第2の部材とに所定の電圧を印加させることによりインピーダンスを測定する測定工程と、
     前記測定工程にて測定したインピーダンスを前記第1の部材と前記第2の部材との間に形成される複数の層それぞれに対応する等価回路に基づいてフィッティングを行うことで、前記第1の部材と前記第2の部材との間における前記複数の層それぞれのインピーダンスを導出する導出工程と、
     前記導出工程にて導出したインピーダンスに基づいて、前記第1の部材と前記第2の部材との間における膜状態を測定する測定工程と、
    を実行させるためのプログラム。
PCT/JP2023/039929 2022-11-07 2023-11-06 膜状態測定方法、膜状態測定装置、およびプログラム WO2024101321A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-178452 2022-11-07
JP2022178452 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024101321A1 true WO2024101321A1 (ja) 2024-05-16

Family

ID=91032532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039929 WO2024101321A1 (ja) 2022-11-07 2023-11-06 膜状態測定方法、膜状態測定装置、およびプログラム

Country Status (1)

Country Link
WO (1) WO2024101321A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210353A (ja) * 1983-04-08 1984-11-29 Toyota Central Res & Dev Lab Inc 潤滑油の性能測定装置
JP2009527211A (ja) * 2006-02-17 2009-07-23 シーメンス アクチエンゲゼルシヤフト 軸受電流を防止する装置を有する電気機械および方法
JP2009257460A (ja) * 2008-04-16 2009-11-05 Ntn Corp 軸受装置
WO2022071164A1 (ja) * 2020-09-29 2022-04-07 日本精工株式会社 油膜の状態検出方法、状態検出装置、およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210353A (ja) * 1983-04-08 1984-11-29 Toyota Central Res & Dev Lab Inc 潤滑油の性能測定装置
JP2009527211A (ja) * 2006-02-17 2009-07-23 シーメンス アクチエンゲゼルシヤフト 軸受電流を防止する装置を有する電気機械および方法
JP2009257460A (ja) * 2008-04-16 2009-11-05 Ntn Corp 軸受装置
WO2022071164A1 (ja) * 2020-09-29 2022-04-07 日本精工株式会社 油膜の状態検出方法、状態検出装置、およびプログラム

Similar Documents

Publication Publication Date Title
JP7200789B2 (ja) 転動装置の予圧診断方法
EP3567358B1 (en) Method for diagnosing rolling device
JP7057868B1 (ja) 油膜の状態検出方法、状態検出装置、およびプログラム
KR102611596B1 (ko) 전동 장치의 진단 방법
JP2023081983A (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2024101321A1 (ja) 膜状態測定方法、膜状態測定装置、およびプログラム
WO2024101322A1 (ja) 状態測定方法、状態測定装置、およびプログラム
WO2023176603A1 (ja) 状態診断方法、状態診断装置、およびプログラム
JP7347721B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2024071272A1 (ja) 転動装置の診断方法、診断装置、およびプログラム
WO2023176602A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2022250060A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
JP7168139B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2023199655A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
JP7347720B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2024071271A1 (ja) 転動装置の診断方法、診断装置、およびプログラム
JP7367898B1 (ja) 測定方法、測定装置、およびプログラム
WO2024019022A1 (ja) 潤滑剤を用いる装置の水侵入検出方法、水侵入検出装置、およびプログラム
WO2022071163A1 (ja) 油膜の温度導出方法、温度導出装置、およびプログラム
CN116507814A (zh) 油膜的状态检测方法、状态检测装置以及程序
CN116547516A (zh) 油膜的温度导出方法、温度导出装置以及程序