WO2024101322A1 - 状態測定方法、状態測定装置、およびプログラム - Google Patents

状態測定方法、状態測定装置、およびプログラム Download PDF

Info

Publication number
WO2024101322A1
WO2024101322A1 PCT/JP2023/039931 JP2023039931W WO2024101322A1 WO 2024101322 A1 WO2024101322 A1 WO 2024101322A1 JP 2023039931 W JP2023039931 W JP 2023039931W WO 2024101322 A1 WO2024101322 A1 WO 2024101322A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
measuring
voltage
ratio
fitting
Prior art date
Application number
PCT/JP2023/039931
Other languages
English (en)
French (fr)
Inventor
大智 小杉
文明 相川
駿介 岩瀬
泰右 丸山
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2024101322A1 publication Critical patent/WO2024101322A1/ja

Links

Images

Definitions

  • the present invention relates to a condition measurement method, a condition measurement device, and a program.
  • a lubricant e.g., lubricating oil or grease
  • the surface roughness of the parts and the oil film thickness are regularly monitored to detect damage and wear early and prevent the occurrence of failures of rotating parts.
  • Patent Document 1 discloses a method for detecting the dielectric breakdown of an oil film between two objects by applying a voltage.
  • Dielectric breakdown can be affected by the surface roughness and oil film thickness of the member lubricated with the lubricant. In other words, it is believed that by properly capturing the occurrence of dielectric breakdown, it is possible to estimate parameters related to the lubricant, such as the surface roughness of the member and the oil film thickness.
  • the method of Patent Document 1 does not take into consideration such points and does not consider a method of monitoring the surface roughness and oil film thickness of the member lubricated with the lubricant.
  • the present invention aims to provide a method for monitoring the conditions around a lubricant, such as the surface roughness and oil film thickness of a component that is lubricated by a lubricant, in a mechanical device.
  • the present invention has the following configuration. That is, a method for measuring a state between a first member and a second member lubricated by a lubricant, comprising: a measuring step of measuring impedance by applying an AC voltage to the first member and the second member while sweeping the AC voltage; a fitting step of fitting the measurement result from the measuring step based on an equivalent circuit defined in correspondence with configurations of the first member and the second member; a derivation step of deriving the state by using a result obtained in the fitting step and a predetermined mathematical expression including a parameter indicating a state between the first member and the second member; having the predetermined formula uses a ratio of an area where a dielectric breakdown occurs between the first member and the second member, the ratio being specified based on a relationship between the surface roughness of the first member and the second member, the oil film thickness of the lubricant, and an applied voltage;
  • a condition measuring method characterized in that the equivalent circuit defines a capacitance and a resistance caused by the
  • a state measuring device for a gap between a first member and a second member lubricated by a lubricant comprising: a measuring means for measuring impedance by applying an AC voltage to the first member and the second member while sweeping the AC voltage; a fitting means for fitting the measurement result by the measuring means based on an equivalent circuit defined in correspondence with the configurations of the first member and the second member; a derivation means for deriving the state by using a result obtained by the fitting means and a predetermined mathematical expression including a parameter indicating a state between the first member and the second member; having the predetermined formula uses a ratio of an area where a dielectric breakdown occurs between the first member and the second member, the ratio being specified based on a relationship between the surface roughness of the first member and the second member, the oil film thickness of the lubricant, and an applied voltage;
  • a condition measuring device characterized in that the equivalent circuit defines a capacitance and a resistance caused by the lubricant based on
  • a program comprising: On the computer, a measuring step of measuring impedance by applying an AC voltage while sweeping it to a first member and a second member lubricated with the lubricant; a fitting step of fitting the measurement result from the measuring step based on an equivalent circuit defined in correspondence with configurations of the first member and the second member; a derivation step of deriving the state by using a result obtained in the fitting step and a predetermined mathematical expression including a parameter indicating a state between the first member and the second member; Run the command, the predetermined formula uses a ratio of an area where a dielectric breakdown occurs between the first member and the second member, the ratio being specified based on a relationship between the surface roughness of the first member and the second member, the oil film thickness of the lubricant, and an applied voltage;
  • the equivalent circuit defines a capacitance and a resistance attributable to the lubricant based on the ratio.
  • the present invention makes it possible to monitor the surface roughness and oil film thickness of components lubricated with a lubricant.
  • FIG. 4 is a diagram for explaining dielectric breakdown around a lubricant according to the present invention.
  • FIG. 4 is a diagram for explaining dielectric breakdown around a lubricant according to the present invention.
  • 1 is a schematic diagram showing an example of the configuration of a measurement device according to an embodiment of the present invention;
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram for explaining the distribution of surface roughness according to one embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a measurement device according to an embodiment of the present invention
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of
  • FIG. 4 is a conceptual diagram for explaining the voltage dependency of dielectric breakdown according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing an equivalent circuit around a lubricant according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram for explaining the voltage dependency of dielectric breakdown according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing an equivalent circuit of the entire bearing device according to the embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • FIG. 4 is a graph showing an example of a measurement result according to an embodiment of the present invention.
  • a rolling bearing that performs rolling behavior while being lubricated by a lubricant will be described as an example.
  • types of rolling bearings to which the condition measurement method according to the present invention can be applied include deep groove ball bearings, angular contact ball bearings, tapered roller bearings, cylindrical roller bearings, and spherical roller bearings.
  • the present invention is not limited to these, and can be applied to any mechanical device that operates by lubricating the contact positions between members with a lubricant.
  • the lubricant in the present embodiment includes, but is not limited to, lubricating oil and grease.
  • FIG. 1 shows a schematic configuration of a rolling bearing 100 in which lubricant 103 is filled between the rolling element 101 and outer ring 102, and its equivalent circuit.
  • an example of the outer ring 102 is shown, but the same applies to an inner ring having a rolling surface.
  • Surface roughness is formed on the surfaces of the rolling element 101 and the outer ring 102 due to unevenness.
  • it is shown collectively on the rolling element 101 side as a composite surface roughness.
  • the area lubricated by the lubricant as shown in FIG. 1(a) can be defined as an equivalent circuit of a parallel circuit in which a capacitor 111 and a resistor 112 are connected in parallel.
  • impedance measurements are performed, for example, using known methods such as EIM and EIS. If no dielectric breakdown occurs when a predetermined voltage is applied for measurement, current flows to the capacitor 111 side and almost no current flows to the resistor side, as shown in FIG. 1(b). When no dielectric breakdown occurs, for example, impedance
  • FIG. 2 shows the case where breakdown occurs when a specific voltage is applied inside the rolling bearing 100 for measurement.
  • a current 104 is generated between the components (here, between the rolling element 101 and the outer ring 102).
  • a current flows to the resistor 112 side of the lubricant 103.
  • decreases and the phase angle ⁇ approaches 0°.
  • the degree of dielectric breakdown as described above is assumed to be due to the surface roughness of the components as well as the applied voltage. In other words, even with the same applied voltage, dielectric breakdown is likely to occur more easily if there are locations where the surface roughness is rough and the components are close to each other.
  • Fig. 3 is a schematic diagram showing an example of the overall configuration of a system 1 to which the condition measuring method according to this embodiment can be applied.
  • the system 1 using the condition measuring method according to this embodiment includes a measuring device 10, an LCR meter 20, and a bearing device 30 that is the object of measurement.
  • the configuration shown in Fig. 3 is only an example, and a different configuration may be used depending on the object of measurement, etc.
  • the bearing device 30 is configured to include two rolling bearings.
  • two ball bearings 31a, 31b are shown.
  • the ball bearings 31a, 31b are provided around the rotating shaft 40 and are configured to be able to rotate the rotating shaft 40.
  • Inside the ball bearings 31a, 31b friction within each rolling bearing is reduced by a predetermined lubrication method.
  • the lubrication method is not particularly limited, but for example, grease lubrication or oil lubrication is used and is supplied inside each rolling bearing. There is also no particular limit to the type of lubricant.
  • Each of the ball bearings 31a and 31b is configured to include an outer ring, a number of balls which are rolling elements, and an inner ring.
  • the ball bearings 31a and 31b will be described as having the same configuration.
  • the inner ring of each rolling bearing is described as a rolling ring and the outer ring is described as a fixed ring, but the configuration may be reversed.
  • the bearing device 30 is configured to include two ball bearings is shown in this embodiment, the present invention is also applicable to a bearing device composed of one rolling bearing.
  • the bearing device 30 is configured to receive a load in a specified direction (radial load, axial load).
  • the motor 50 is a drive motor that supplies rotational power to the rotating shaft 40 via a rotating belt or the like.
  • the heater 60 is used to maintain a predetermined temperature around the bearing device 30, which is the measurement target.
  • the LCR meter 20 is electrically connected to the bearing device 30 and the rotating shaft 40, and at this time, the LCR meter 20 also functions as an AC power source for the bearing device 30.
  • the measuring device 10 operates as a measuring device capable of executing the condition measuring method according to this embodiment.
  • the measuring device 10 instructs the LCR meter 20 to input the angular frequency ⁇ of the AC power supply and the AC voltage V, and obtains the impedance
  • the measuring device 10 then uses these values to monitor the condition of the bearing device 30. Details of the condition measuring method will be described later.
  • the measuring device 10 may be realized, for example, by an information processing device including a control device, a storage device, and an output device (not shown).
  • the control device may be composed of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Single Processor), or a dedicated circuit.
  • the storage device is composed of volatile and non-volatile storage media such as a HDD (Hard Disk Drive), a ROM (Read Only Memory), or a RAM (Random Access Memory), and is capable of inputting and outputting various information in response to instructions from the control device.
  • the output device is composed of a speaker, a light, or a display device such as a liquid crystal display, and outputs to the operator in response to instructions from the control device.
  • the output method by the output device is not particularly limited, but may be, for example, a visual output by a screen output, or an audible output by voice.
  • the output device may also be a network interface equipped with a communication function, and may perform output operations by transmitting data to an external device (not shown) via a network (not shown).
  • the output content here is not limited to, for example, an output when a condition measurement is performed based on the measurement results and an abnormality is detected, but may also include an output indicating that the bearing device 30 is normal.
  • Pre-verification 4A to 4C show examples of measurement results obtained when a voltage was applied to a rolling bearing while sweeping it using the device configuration shown in Fig. 3.
  • the conditions for the measurement here are as follows.
  • the horizontal axis indicates the applied voltage V [V]
  • the vertical axis indicates the magnitude of impedance
  • the horizontal axis indicates the applied voltage V [V]
  • the vertical axis indicates the phase angle ⁇ [°].
  • the horizontal axis indicates the real number of impedance Z re [ ⁇ ]
  • the vertical axis indicates the imaginary number of impedance Z im [ ⁇ ].
  • the impedance changes (decreases) around 1.6 V.
  • the phase angle ⁇ changes (increases) around 1.6 V.
  • the result is that the lubricant transitions from a state in which it behaves as a capacitor (the state in Figure 1) to a state in which it behaves as a resistor (the state in Figure 2) as the voltage increases.
  • the state in Figure 1 corresponds to the plot in Figure 4C where the value of -Z im is high
  • the state in Figure 2 corresponds to the plot in Figure 4C where the value of -Z im is close to 0.
  • modeling is performed corresponding to the conditions under which dielectric breakdown occurs in order to derive the surface roughness of the member and the oil film thickness.
  • Figure 5 is a conceptual diagram for explaining the surface roughness of a component.
  • a rolling element and an outer ring are used as examples of components lubricated with a lubricant.
  • the surface of the rolling element has irregularities (composite surface roughness) and the surface of the outer ring is shown as a flat surface.
  • the dashed line in Figure 5 indicates the center line of the composite surface roughness.
  • the unevenness of the surface of the rolling element follows a normal distribution, as shown in FIG. 5(a).
  • a formula assuming a normal distribution but this is not limited to a normal distribution. Any probability density may be used as long as h, which will be described later, can be expressed as a probability density function.
  • the surface roughness (height) of the rolling element can be defined by the following formula (1).
  • PDF Probability density function
  • equation (1) is transformed as shown in Figure 5(b), it can be expressed as the following equation (2).
  • the horizontal axis represents the cumulative distribution probability F
  • the vertical axis represents the spacing h between the members.
  • F(h) Cumulative distribution function (CDF), the probability that the interplanar spacing is less than or equal to h.
  • F Cumulative distribution probability
  • a breakdown voltage E limit indicates the voltage at which breakdown occurs in the lubricant.
  • the critical oil film thickness h limit indicates the oil film thickness as the limit value at which breakdown does not occur.
  • the breakdown area ratio ⁇ limit indicates the ratio of the area in the contact area where breakdown occurs.
  • Fig. 6 is a diagram for explaining the relationship between the cumulative distribution function shown in Fig. 5(b) and the breakdown voltage E limit , the breakdown critical oil film thickness h limit , and the breakdown region ratio ⁇ limit .
  • the breakdown region ratio ⁇ limit is specified for the applied voltage V by the above formulas (3) to (5). With the breakdown region ratio ⁇ limit as the boundary, in the range where the cumulative distribution probability F is below the breakdown region ratio ⁇ limit , breakdown occurs and the oil film acts as a resistor. On the other hand, in the range where the cumulative distribution probability F is above the breakdown region ratio ⁇ limit , no breakdown occurs and the oil film acts as a capacitor.
  • the dielectric breakdown area ratio ⁇ limit changes depending on the change in the applied voltage.
  • the contact area between members lubricated by the lubricant is regarded as a parallel circuit of a set of minute resistors and a set of minute capacitors.
  • an equivalent circuit is defined by defining the range lower than the dielectric breakdown area ratio ⁇ limit shown in FIG. 6 as resistance R and the range higher than the dielectric breakdown area ratio ⁇ limit as capacitor C.
  • the equivalent circuit 700 has a configuration in which a plurality of resistors 701 and a plurality of capacitors 702 are connected in parallel.
  • the number of resistors 701 corresponding to the range in which the cumulative distribution probability F is below the dielectric breakdown region proportion ⁇ limit and the number of capacitors 703 corresponding to the range in which the cumulative distribution probability F is above the dielectric breakdown region proportion ⁇ limit are treated to change according to the dielectric breakdown region proportion ⁇ limit .
  • the equivalent circuit 700 can be defined by the following formulas (6) to (13).
  • Fig. 8 shows the relationship between the equivalent circuit 700 and the cumulative distribution functions shown in Fig. 6 and other figures.
  • a graph 801 shown in Fig. 8 corresponds to a resistance ⁇ R in a minute region corresponding to one resistor 701 included in a range where the cumulative distribution probability F is below the dielectric breakdown region proportion ⁇ limit .
  • a graph 802 shown in Fig. 8 corresponds to a capacitor ⁇ C in a minute region corresponding to one capacitor 702 included in a range where the cumulative distribution probability F is above the dielectric breakdown region proportion ⁇ limit .
  • R1 Resistance caused by the lubricant in the contact area
  • ⁇ R Resistance of the micro area
  • C1 Capacitance caused by the lubricant in the contact area
  • C Capacitance of the micro area
  • Dielectric constant of the lubricant
  • Volume resistivity of the lubricant
  • S Area of the contact area
  • the impedance Z1 of the contact area can be defined by the following equation (14).
  • FIG. 9 is a diagram showing an equivalent circuit of a bearing assembly including a rolling bearing according to this embodiment.
  • Z1 Impedance of one contact area
  • R E External resistance
  • C2 Capacitance between the rolling element and raceway surface near the contact point
  • C3 Capacitance between the rolling element and groove shoulder
  • C4 Capacitance between the rolling element and raceway surface in the non-load zone
  • C5 Capacitance between the inner and outer rings
  • E1 Equivalent circuit in the contact area between the outer ring (or inner ring) and rolling element
  • E2 Equivalent circuit in the contact area around one rolling element
  • the impedance Z of a rolling bearing having n rolling elements can be defined by the following formula (15).
  • a method for measuring EIM under radial load there is International Publication No. 2022/054352 by the applicant of the present application, and based on such a method, formulas (16) and (17) can be defined.
  • Z bearing Impedance of rolling bearing n : Number of rolling elements
  • R tx Equivalent radius of curvature in the rolling direction averaged over the inner and outer rings
  • R ty Equivalent radius of curvature in the direction perpendicular to the rolling direction averaged over the inner and outer rings
  • R b Rolling element radius h t1 : Sum of oil film thickness generated on the inner and outer rings
  • Groove angle
  • Average inner ring contact angle
  • C 5 Capacitance between the inner and outer rings (actual measurement value)
  • the impedance Z of the entire bearing device can be defined by the following equation (18).
  • the relationship between the impedance Z and voltage V of the bearing device can be determined based on the above formula, various parameters at the time of measurement, the lubricant specifications, and the rolling bearing specifications. Then, by fitting to match the actual measured values, it becomes possible to estimate unknown parameters to be treated as variables, such as oil film thickness and surface roughness.
  • An example of a fitting method here is the method described in International Publication No. 2022/054352 by the applicant of the present application. In this embodiment, an example using such a method is shown.
  • [Application example] 10A to 10C show the results of fitting based on the above-mentioned equivalent circuit using the results of measurement using the measurement device shown in Fig. 3.
  • fitting was performed using the following fixed values, and an example of estimation was performed using the dielectric breakdown voltage E limit , composite surface roughness ⁇ , and volume resistivity ⁇ of the lubricant as variables is shown.
  • plot 1001 indicates the measurement results
  • plot 1002 indicates the fitting results.
  • the horizontal axis indicates voltage V [V]
  • the vertical axis indicates absolute impedance value
  • Plot 1011 indicates the measurement results
  • plot 1012 indicates the fitting results.
  • the horizontal axis represents the real number of impedance ⁇ Z re [ ⁇ ]
  • the vertical axis represents the imaginary number of impedance ⁇ Z im [ ⁇ ].
  • Plot 1021 shows the measurement results
  • plot 1022 shows the fitting results.
  • [Processing flow] 11 is a flowchart of the state measurement process according to the present embodiment using the above method. This process is executed by the measurement device 10, and may be realized, for example, by a control device (not shown) included in the measurement device 10 reading out a program for implementing the process according to the present embodiment from a storage device (not shown) and executing it. Note that the fitting and derivation of parameters in the following process may be configured to be partially implemented using the functions of general-purpose software.
  • the measuring device 10 controls the LCR meter 20 to provide power of an AC voltage V with an angular frequency ⁇ to the bearing device 30 using an AC power source (not shown) provided in the LCR meter 20.
  • an AC power source not shown
  • the AC voltage V with an angular frequency ⁇ is applied to the lubricant in each rolling bearing.
  • the measuring device 10 acquires the impedance
  • the LCR meter 20 outputs the impedance Z and phase angle ⁇ to the measuring device 10 as the measurement results of the bearing device 30 for the input AC voltage V with angular frequency ⁇ .
  • the measuring device 10 sets the values of the various parameters in the above formula based on the specifications of the lubricant, the specifications of the bearing device, the measurement conditions, etc. Note that the formula based on the equivalent circuit corresponding to the measurement target is predefined and registered so that it can be used by the measuring device 10.
  • the measuring device 10 performs fitting to the equation based on the equivalent circuit shown in FIG. 9 based on the information on the impedance Z and phase angle ⁇ acquired in S1102, and the AC voltage V of the angular frequency ⁇ specified in S1101.
  • the method described in International Publication No. WO 2022/054352 by the applicant of the present application can be used.
  • the measuring device 10 estimates the variable parameters using the fitting result in S1104 and the formula in which the parameters are set in S1103.
  • the variable parameters here may be, for example, the dielectric breakdown voltage E limit, the composite surface roughness ⁇ , and the volume resistivity ⁇ of the lubricant, as described with reference to Figures 10A to 10C.
  • the average oil film thickness ⁇ may be estimated as the variable parameter.
  • the measuring device 10 performs a condition diagnosis based on the result estimated in S1105.
  • the diagnosis content here is not particularly limited, but for example, a configuration may be made in which a predetermined threshold is set for the estimated result, and a diagnosis of normality or abnormality is made by comparing with the threshold. Also, a configuration may be made in which multiple thresholds according to the urgency of the abnormality are set, and the urgency is diagnosed by comparing with the thresholds.
  • the measuring device 10 outputs the values estimated in S1106 and the diagnosis results obtained in S1106 to the user.
  • the output method here is not particularly limited, but may be, for example, a configuration in which parameters or items determined to be abnormal are displayed on a screen or notified by voice. Then, this processing flow ends.
  • this embodiment makes it possible to monitor the surface roughness and oil film thickness of a member that is lubricated by a lubricant. For example, this can be applied to a bearing device equipped with a rolling bearing as the measurement target.
  • the present invention can also be realized by supplying a program or application for realizing the functions of one or more of the above-mentioned embodiments to a system or device via a network or storage medium, etc., and having one or more processors in the computer of the system or device read and execute the program.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the present invention is not limited to the above-described embodiment, and the invention also contemplates the mutual combination of the various components of the embodiment, as well as modifications and applications by those skilled in the art based on the descriptions in the specification and well-known technology, and these are included in the scope of the protection sought.
  • E limit Breakdown voltage h limit : Critical oil film thickness for breakdown
  • ⁇ limit Ratio of breakdown area (0 ⁇ limit ⁇ 1)
  • V applied voltage
  • R1 resistance due to the lubricant in the contact area
  • C1 electrostatic capacitance due to the lubricant in the contact area
  • Z1 impedance in the contact area
  • dielectric constant of the lubricant
  • volume resistivity of the lubricant
  • S area of the contact area
  • j imaginary number
  • angular frequency of the voltage.
  • the first member and the second member are included in a rolling device (e.g., 30);
  • a rolling device e.g., 30
  • a state measuring device for a gap between a first member and a second member lubricated by a lubricant, comprising: A measuring means (e.g., 20) for measuring impedance by applying an AC voltage to the first member and the second member while sweeping the AC voltage; a fitting means (e.g., 10) that performs fitting on the measurement result by the measuring means based on an equivalent circuit defined in correspondence with the configurations of the first member and the second member; A derivation means (e.g., 10) that derives the state by using a result obtained by the fitting means and a predetermined mathematical formula including a parameter indicating a state between the first member and the second member; having the predetermined formula uses a ratio of an area where a dielectric breakdown occurs between the first member and the second member, the ratio being specified based on a relationship between the surface roughness of the first member and the second member, the oil film thickness of the lubricant, and an applied voltage;
  • a condition measuring device characterized in that the
  • a computer e.g., 10
  • a measurement step e.g., S1101, S1102 of measuring impedance by applying an AC voltage while sweeping it to a first member (e.g., 101) and a second member (e.g., 102) lubricated with a lubricant (e.g., 103);
  • a fitting step e.g., S1103, S1104 of fitting the measurement result from the measuring step based on an equivalent circuit defined corresponding to the configurations of the first member and the second member;
  • a derivation step e.g., S1105 of deriving the state by using a result obtained in the fitting step and a predetermined mathematical formula including a parameter indicating a state between the first member and the second member; Run the command, the predetermined formula uses a ratio of an area where a dielectric breakdown occurs between the first member and the second member, the ratio being specified based on a relationship between the surface roughness of the first member and the second member, the oil film thickness of the

Abstract

潤滑剤により潤滑される第1の部材と第2の部材との間に対する状態測定方法は、第1の部材と前記第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定し、測定結果を、第1の部材と第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行い、フィッティング結果と、第1の部材と第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、状態を導出する。

Description

状態測定方法、状態測定装置、およびプログラム
 本発明は、状態測定方法、状態測定装置、およびプログラムに関する。
 従来、軸受装置や摺動装置などの機械装置では、潤滑剤(例えば、潤滑油やグリース)を用いて、部材間の接触面を潤滑する構成が広く普及している。このような機械装置に対しては、定期的に、部材の表面粗さや油膜厚さなどの状態の監視を行うことで、損傷や摩耗を早期に検知して回転部品の故障などの発生を抑制することが行われている。
 潤滑剤を用いた機械装置において、部材間の油膜状態を診断する際に油膜の絶縁破壊を測定することが行われている。例えば、特許文献1では、2つの物体間の油膜の絶縁破壊を、電圧を印加することで検出する方法が開示されている。
日本国特開2008-241383号公報
 絶縁破壊は、潤滑剤にて潤滑される部材の表面粗さや油膜厚さに影響されうる。言い換えると、絶縁破壊の発生を適切に捉えることで、部材の表面粗さや油膜厚さなどの潤滑剤周りのパラメータを推定することができると考えられる。特許文献1の方法では、このような点に着目して潤滑剤にて潤滑される部材の表面粗さや油膜厚さなどをモニタリングする方法については考慮されていない。
 上記課題を鑑み、本発明は、機械装置において、潤滑剤による潤滑が行われる部材の表面粗さや油膜厚さなどの潤滑剤周りの状態をモニタリングすることが可能な手法を提供することを目的とする。
 上記課題を解決するために本発明は以下の構成を有する。すなわち、潤滑剤により潤滑される第1の部材と第2の部材との間に対する状態測定方法であって、
 前記第1の部材と前記第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定工程と、
 前記測定工程による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング工程と、
 前記フィッティング工程にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出工程と、
を有し、
 前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
 前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、ことを特徴とする状態測定方法。
 また、本発明の別の形態は以下の構成を有する。すなわち、潤滑剤により潤滑される第1の部材と第2の部材との間に対する状態測定装置であって、
 前記第1の部材と前記第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定手段と、
 前記測定手段による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング手段と、
 前記フィッティング手段にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出手段と、
を有し、
 前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
 前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、ことを特徴とする状態測定装置。
 また、本発明の別の形態は以下の構成を有する。すなわち、プログラムであって、
 コンピュータに、
 潤滑剤により潤滑される第1の部材と第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定工程と、
 前記測定工程による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング工程と、
 前記フィッティング工程にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出工程と、
を実行させ、
 前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
 前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、プログラム。
 本発明により、潤滑剤による潤滑が行われる部材の表面粗さや油膜厚さをモニタリングすることが可能となる。
本発明に係る潤滑剤周りの絶縁破壊を説明するための図。 本発明に係る潤滑剤周りの絶縁破壊を説明するための図。 本発明の一実施形態に係る測定装置の構成例を示す概略図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る表面粗さの分布を説明するための概念図。 本発明の一実施形態に係る絶縁破壊の電圧依存性を説明するための概念図。 本発明の一実施形態に係る潤滑剤周りの等価回路を示す図。 本発明の一実施形態に係る絶縁破壊の電圧依存性を説明するための概念図。 本発明の一実施形態に係る軸受装置全体の等価回路を示す図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る測定結果の例を示すグラフ図。 本発明の一実施形態に係る測定処理のフローチャート。
 以下、本発明を実施するための形態について図面などを参照して説明する。なお、以下に説明する実施形態は、本発明を説明するための一実施形態であり、本発明を限定して解釈されることを意図するものではなく、また、各実施形態で説明されている全ての構成が本発明の課題を解決するために必須の構成であるとは限らない。また、各図面において、同じ構成要素については、同じ参照番号を付すことにより対応関係を示す。
 <第1の実施形態>
 以下、本発明の第1の実施形態について説明を行う。なお、本実施形態では、潤滑剤により潤滑されながら転がり挙動を行う転がり軸受を例に挙げて説明する。例えば、本発明に係る状態測定方法が適用可能な転がり軸受の種類としては、深溝玉軸受、アンギュラ玉軸受、円錐ころ軸受、円筒ころ軸受、自動調心ころ軸受などが挙げられる。しかし、これらに限定するものではなく、潤滑剤により部材間の接触位置の潤滑を行って動作する機械装置であれば、本発明は適用可能である。
 [絶縁破壊]
 まず、本実施形態に係る、潤滑剤により潤滑される部材間における絶縁破壊について説明する。本実施形態における潤滑剤としては、潤滑油やグリースなどが含まれるが、特に限定するものではない。
 図1は、転がり軸受100を構成する転動体101と外輪102との間に潤滑剤103が充填されている概略構成と、その等価回路を示す。ここでは、外輪102の例を示すが、転動面を有する内輪であっても同様である。転動体101の表面および外輪102の表面には、凹凸による表面粗さが形成される。ここでは、説明を簡略化するために、合成表面粗さとして、転動体101側にまとめて示す。
 図1(a)に示すような潤滑剤にて潤滑される領域は、コンデンサ111と、抵抗112が並列に接続された並列回路を等価回路として規定することができる。本実施形態では、転がり軸受の状態を測定するために、例えば、公知の手法であるEIMやEISによるインピーダンスによる測定を行う。測定のために所定の電圧を印加した際に、絶縁破壊が発生していない場合には、図1(b)に示すように、コンデンサ111側に電流が流れ、抵抗側にはほぼ流れない。このような絶縁破壊が生じていないときには、例えば、インピーダンス|Z|=10kΩ、位相角θ=-90°が得られるものとする。
 図2は、転がり軸受100内部において、測定のために所定の電圧を印加した際に、絶縁破壊が発生した場合を示す。図2(a)に示すように、絶縁破壊が発生した場合、部材間(ここでは、転動体101と外輪102の間)にて通電104が生じている。この状態は、図2(b)に示すように、潤滑剤103による抵抗112側に電流が流れる。その結果、インピーダンス|Z|が下がり、位相角θが0°に近づくこととなる。例えば、インピーダンス|Z|=100Ω、位相角=0°となる。
 上記のような絶縁破壊の発生の程度は、印加する電圧値の他、部材の表面粗さに起因すると想定される。つまり、同じ印加電圧であっても、表面粗さが荒く、部材間の距離が近くなっている位置が存在する場合には、絶縁破壊が発生しやすくなると考えられる。
 [装置構成]
 ここで、本実施形態に係る装置構成の例について説明する。図3は、本実施形態に係る状態測定方法を適用可能なシステム1の全体構成の一例を示す概略構成図である。図3では、本実施形態に係る状態測定方法を用いるシステム1は、測定装置10、LCRメータ20、および測定対象である軸受装置30を示している。なお、図3に示す構成は一例であり、測定対象などに応じて異なる構成が用いられてよい。
 軸受装置30は、2つの転がり軸受を含んで構成される。図3の例では、2つの玉軸受31a、31bの例を示している。玉軸受31a、31bは、回転軸40の周囲に設けられ、回転軸40を回転可能に構成される。玉軸受31a、31bの内部において、所定の潤滑方式により、各転がり軸受内の摩擦が軽減される。潤滑方式は特に限定するものではないが、例えば、グリース潤滑や油潤滑などが用いられ、各転がり軸受内部に供給されている。潤滑剤の種類についても特に限定するものではない。
 玉軸受31a、31bはそれぞれ、外輪、転動体である複数の玉、および内輪を含んで構成される。玉軸受31a、31bは同じ構成であるものとして説明する。図3の例では、各転がり軸受の内輪を転動輪とし、外輪を固定輪として説明するが、逆の構成であってもよい。なお、本実施形態では、軸受装置30に2つの玉軸受を含んで構成された例を示したが、1つの転がり軸受から構成される軸受装置であっても同様に適用可能である。また、軸受装置30に対しては、所定方向の荷重(ラジアル荷重、アキシアル荷重)が負荷されるように構成される。
 モータ50は、駆動用のモータであり、回転軸40に対して、回転ベルト等を介して回転による動力を供給する。ヒータ60は、測定対象である軸受装置30の周囲の温度を所定の温度に保つために用いられる。LCRメータ20は、軸受装置30や回転軸40と電気的に接続され、このとき、LCRメータ20は、軸受装置30に対する交流電源としても機能する。
 測定装置10は、本実施形態に係る状態測定方法を実行可能な測定装置として動作する。測定装置10は、測定の際に、LCRメータ20に対して交流電源の角周波数ω、および交流電圧Vを入力として指示し、それに対する出力としてLCRメータ20から軸受装置30のインピーダンス|Z|(|Z|は、Zの絶対値を示す)、および位相角θを取得する。そして、測定装置10はこれらの値を用いて軸受装置30における状態のモニタリングを行う。状態測定方法の詳細については、後述する。
 測定装置10は、例えば、不図示の制御装置、記憶装置、および出力装置を含んで構成される情報処理装置にて実現されてよい。制御装置は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Single Processor)、または専用回路などから構成されてよい。記憶装置は、HDD(Hard Disk Drive)、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性および不揮発性の記憶媒体により構成され、制御装置からの指示により各種情報の入出力が可能である。出力装置は、スピーカやライト、或いは液晶ディスプレイ等の表示デバイス等から構成され、制御装置からの指示により、作業者への出力を行う。出力装置による出力方法は特に限定するものではないが、例えば、画面出力による視覚的な出力であってもよいし、音声による聴覚的な出力であってもよい。また、出力装置は、通信機能を備えたネットワークインターフェースであってもよく、ネットワーク(不図示)を介した外部装置(不図示)へのデータ送信により出力動作を行ってもよい。ここでの出力内容は、例えば、測定結果に基づいて状態測定を行い、異常が検出された際の出力に限定するものではなく、軸受装置30が正常である旨の出力を含んでもよい。
 [事前検証]
 図4A~図4Cは、図3に示す装置構成を用い、電圧を掃引しながら転がり軸受に印加した際に得られた測定結果の例を示す。ここでの測定における条件は以下の通りである。
 (測定条件)
 使用軸受:深溝玉軸受(銘番:608)
 温度(外輪):27[℃]
 回転速度:1000[min-1
 アキシアル荷重:32[N]
 ラジアル荷重:0[N]
 最大接触圧:1.0[GPa]
 交流周波数:1000000[Hz]
 交番電圧:0.5→3.5→0.5[V]
 走査速度:5/60[mV/s]
 (使用潤滑剤)
 基油;ポリアルファオレフィン油(PAO)
 封入量:40[mg]
 動粘性率:17[mm/s](40℃下)
 比誘電率:2.1
 (測定結果)
 図4Aにおいて、横軸は印加電圧V[V]を示し、縦軸はインピーダンスの大きさ|Z|[Ω]を示す。図4Bにおいて、横軸は印加電圧V[V]を示し、縦軸は位相角θ[°]を示す。図4Cにおいて、横軸はインピーダンスの実数Zre[Ω]を示し、縦軸はインピーダンスの虚数Zim[Ω]を示す。ここでは、印加電圧を徐々に増加(昇圧)した場合の結果を示す。
 図4A~図4Cの例では、印加電圧を昇圧した結果、1.6V付近でインピーダンスが変化(低下)している。また、1.6V付近で位相角θが変化(上昇)している。また、図4Cを参照して説明すると、電圧の増加に伴って、潤滑剤がキャパシタとしてふるまう状態(図1の状態)から抵抗としてふるまう状態(図2の状態)へと遷移している結果が得られている。このとき図1の状態は、図4Cにおいて-Zimの値が高い値のプロットに相当し、図2の状態は図4Cにおいて-Zimの値が0に近い値のプロットに相当している。
 上記の測定結果を踏まえると、図1および図2に示したように、印加電圧の昇圧に伴って、絶縁破壊が生じ、潤滑剤がキャパシタとしてふるまう状態から、抵抗としてふるまう状態へ遷移したと考えられる。また、本願発明者は、図4A~図4Cに示したような測定を観察することで、図4Cに示すようなプロットのカーブ形状が部材間の表面粗さに依存し、また、遷移電圧や絶縁破壊による潤滑剤起因の抵抗が油膜厚さに起因していることを捉えた。
 [モデル化]
 本実施形態では、上記の測定結果を考慮し、部材の表面粗さと油膜厚さを導出するために、絶縁破壊が生じる条件に対応したモデル化を行う。
 図5は、部材の表面粗さを説明するための概念図である。図1と同様に、潤滑剤により潤滑を行う部材として、転動体および外輪を例に挙げて説明する。また、転動体の表面および外輪の表面のそれぞれには凹凸(粗さ)が存在するが、転動体の表面に凹凸があり(合成表面粗さ)、外輪の表面は平面として示す。図5において一点鎖線は、合成表面粗さの中心線を示す。
 本実施形態において、転動体の表面の凹凸は、図5(a)に示すように、正規分布に従うものとする。以下、正規分布と仮定した数式を用いて説明するが、正規分布に限定するものではない。後述するhが確率密度関数で表現できれば、任意の確率密度を用いてよい。この場合、転動体の表面の粗さ(高さ)は以下の式(1)にて定義できる。
Figure JPOXMLDOC01-appb-M000006
f(h):二面間間隔hの分布の確率密度関数(PDF)
h:二面間間隔
μ:粗さの中心線と平滑面の間の距離
σ:合成表面粗さ
 式(1)を図5(b)に示すように変形すると、以下の式(2)のように表すことができる。図5(b)において、横軸は累積分布確率Fを示し、縦軸は部材間の間隔hを示す。
Figure JPOXMLDOC01-appb-M000007
F(h):累積分布関数(CDF),二面間間隔がh以下である確率
F:累積分布確率
 更に、本実施形態では、絶縁破壊電圧Elimit、絶縁破壊臨界油膜厚さhlimit、絶縁破壊領域割合αlimitを用いる。絶縁破壊電圧Elimitは、潤滑剤において絶縁破壊が生じる電圧を示す。絶縁破壊臨界油膜厚さhlimitは、絶縁破壊が生じない限界値としての油膜厚さを示す。絶縁破壊領域割合αlimitは、接触域において絶縁破壊が生じている領域の割合を示す。絶縁破壊電圧Elimit、絶縁破壊臨界油膜厚さhlimit、絶縁破壊領域割合αlimitはそれぞれ以下のように定義される。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
limit:絶縁破壊電圧
limit:絶縁破壊臨界油膜厚さ
αlimit:絶縁破壊領域割合(0≦αlimit≦1)
V:電圧
 図6は、図5(b)に示した累積分布関数と、絶縁破壊電圧Elimit、絶縁破壊臨界油膜厚さhlimit、絶縁破壊領域割合αlimitの関係を説明するための図である。まず、印加電圧Vに対し、上記の式(3)~式(5)により、絶縁破壊領域割合αlimitが特定される。絶縁破壊領域割合αlimitを境界として、累積分布確率Fが絶縁破壊領域割合αlimitを下回る範囲では、絶縁破壊が生じ、油膜が抵抗として作用することを示す。一方、累積分布確率Fが絶縁破壊領域割合αlimitを上回る範囲では、絶縁破壊が生じず、油膜がキャパシタとして作用することを示す。
 ここで、式(3)~式(5)に示すように、絶縁破壊領域割合αlimitは、印加電圧の変化に依存して変化する。本実施形態では、潤滑剤により潤滑される部材間の接触域内を微小な抵抗の集合と微小なキャパシタの集合の並列回路として捉える。つまり、図6に示す絶縁破壊領域割合αlimitよりも低い範囲を抵抗Rとし、絶縁破壊領域割合αlimitよりも高い範囲をキャパシタCとして等価回路を規定する。
 図7は、本実施形態に係る等価回路の概念図である。等価回路700は、複数の抵抗701と、複数のキャパシタ702とが並列に接続された構成を有する。このとき、累積分布確率Fが絶縁破壊領域割合αlimitを下回る範囲に対応する抵抗701の数と、累積分布確率Fが絶縁破壊領域割合αlimitを上回る範囲に対応するキャパシタ703の数は、絶縁破壊領域割合αlimitに応じて変化するように扱う。
 等価回路700は、以下の式(6)~式(13)にて定義できる。また、図8は、等価回路700と、図6等に示した累積分布関数との関係を示す。図8に示すグラフ801は、累積分布確率Fが絶縁破壊領域割合αlimitを下回る範囲に含まれる1つの抵抗701に対応する微小領域の抵抗ΔRに相当する。また、図8に示すグラフ802は、累積分布確率Fが絶縁破壊領域割合αlimitを上回る範囲に含まれる1つのキャパシタ702に対応する微小領域のキャパシタΔCに相当する。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
:接触域内の潤滑剤に起因する抵抗
ΔR:微小領域の抵抗
:接触域内の潤滑剤に起因する静電容量
ΔC:微小領域の静電容量
ε:潤滑剤の誘電率
ρ:潤滑剤の体積抵抗率
S:接触域面積
 つまり、式(6)~式(13)に示すように累積分布関数において、絶縁破壊領域割合αlimitに基づいて規定される範囲の微小な抵抗ΔRとキャパシタΔCの値を積分することで、接触域における潤滑剤に起因する抵抗RとキャパシタCを特定することができる。
 更に、上記にて求めた抵抗RとキャパシタCに基づいて、以下の式(14)により、接触域のインピーダンスZを定義することができる。
Figure JPOXMLDOC01-appb-M000019
ω:交流電圧の角周波数
:接触域内のインピーダンス
 [転がり軸受への適用]
 上記のモデル化に基づいて、更に、転がり軸受への適用について説明する。上記のモデル化では、1つの接触域、すなわち、潤滑剤により潤滑される1つの領域に対応したものである。一方、例えば、1つの転がり軸受内部では、複数の転動体が含まれ、複数の転動体はそれぞれ外輪および内輪との接触面を有する。そのため、転がり軸受の場合、上記のモデル化を接触域の数に対応して拡張する必要がある。
 図9は、本実施形態に係る転がり軸受を含む軸受装置の等価回路を示す図である。各記号は以下の通りとする。
:1つの接触域のインピーダンス
:外部抵抗
:接触点近傍の転動体と軌道面間の静電容量
:転動体と溝肩間の静電容量
:非負荷圏の転動体と軌道面間の静電容量
:内外輪間の静電容量
:外輪(または、内輪)と転動体の接触域における等価回路
:1つの転動体周りの接触域における等価回路
 ここでは、アキシアル荷重のみを負荷させるものとし、C=0とする。また、ZとCは、1つの転動体において内輪側と外輪側で生じるため、2つのEが直列に接続された構成となる。また、アキシアル荷重による負荷圏に位置する転動体の数の分だけ、Eが並列に接続される。Cは、転動体の数だけ設定され、これらが並列に接続される。これらの転がり軸受と外部抵抗Rを含む軸受装置全体の等価回路に対して、電圧Vが印加され、インピーダンスZが測定される。
 図9の等価回路に基づくと、転動体の数がnの転がり軸受のインピーダンスZbearingは以下の式(15)にて定義できる。ここで、ラジアル荷重下におけるEIMの測定手法として本願出願人による国際公開第2022/054352号があり、このような手法に基づき、式(16)、式(17)が定義できる。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
bearing:転がり軸受のインピーダンス
n:転動体の数
tx:内外輪を平均した転がり方向の等価曲率半径
ty:内外輪を平均した転がり方向と直交する方向の等価曲率半径
:転動体半径
t1:内外輪に生じる油膜厚さの和
γ:溝角度
φ:平均内輪接触角
:内外輪間の静電容量(実測値)
 そして、軸受装置全体のインピーダンスZは、以下の式(18)にて定義できる。
Figure JPOXMLDOC01-appb-M000023
Z:軸受装置のインピーダンス
 上記の式と、測定時の各種パラメータ、潤滑剤の諸元、および転がり軸受の諸元に基づき、軸受装置のインピーダンスZと電圧Vの関係を特定することができる。そして、実測値と一致するようにフィッティングを行うことで、変数として扱う未知のパラメータ、例えば、油膜厚さおよび表面粗さを推定することが可能となる。ここでのフィッティングの際の方法としては、本願出願人による国際公開第2022/054352号に記載の方法が挙げられる。本実施形態では、このような方法を用いた例を示す。
 [適用例]
 図10A~図10Cは、図3に示す測定装置を用いて測定した結果を用いて、上記の等価回路に基づいてフィッティングを行った結果を示す。本例では、以下の固定値を用いてフィッティングを行い、絶縁破壊電圧Elimit、合成表面粗さσ、潤滑剤の体積抵抗率ρを変数として推定を行った例を示す。
 (設定パラメータ)
 接触楕円面積S=2.4e-8[m](固定)
 潤滑剤の誘電率ε=2.1[-](固定)
 平均油膜厚さμ=37[nm](固定,hH-D=44nm,hEIM=37nm)
 図10Aにおいて、横軸は電圧V[V]を示し、縦軸は位相角θ[°]を示す。プロット1001は測定結果を示し、プロット1002はフィッティング結果を示す。
 図10Bにおいて、横軸は電圧V[V]を示し、縦軸はインピーダンスの絶対値|Z|[Ω]を示す。プロット1011は測定結果を示し、プロット1012はフィッティング結果を示す。
 図10Cにおいて、横軸はインピーダンスの実数-Zre[Ω]を示し、縦軸はインピーダンスの虚数-Zim[Ω]を示す。プロット1021は測定結果を示し、プロット1022はフィッティング結果を示す。
 そして、フィッティングの結果と、上記の各種式にて推定された値は以下の通りである。
 絶縁破壊電圧Elimit=45[kV/mm](一般的な油の物性値30~40[kV/mm],同等程度)
 合成表面粗さσ=1[nm](試験前Ra12nm)
 絶縁破壊が生じた際の潤滑剤の体積抵抗率ρ=200[Ωm](一般的な低周波での油の物性値1×1010[Ωm])hH-D:Hamrock-Dowsonの式による計算油膜厚さhEIM:EIMにより測定した油膜厚さ
 なお、電気回路Eに印加される交流電圧V、電気回路Eを流れる電流I、および、電気回路E全体の複素数インピーダンスZは以下の式(19)~(21)にて示される。
 V=|V|exp(jωt) …(19)
 I=|I|exp(j(ωt-θ)) …(20)
 Z=V/I=|V/I|exp(jθ)=|Z|exp(jθ) …(21)
 j:虚数
 ω:電圧の角周波数
 t:時間
 θ:位相角(電圧と電流の位相のずれ)
 [処理フロー]
 図11は、上記の手法を用いた、本実施形態に係る状態測定処理のフローチャートである。本処理は、測定装置10により実行され、例えば、測定装置10が備える制御装置(不図示)が本実施形態に係る処理を実現するためのプログラムを記憶装置(不図示)から読み出して実行することにより実現されてよい。なお、以下の処理におけるフィッティングやパラメータの導出は、汎用のソフトウェアの機能を用いてその一部が実現されるように構成されてよい。
 S1101にて、測定装置10は、LCRメータ20に対し、LCRメータ20が備える交流電源(不図示)を用いて角周波数ωの交流電圧Vの電力を軸受装置30に与えるように制御する。これにより、各転がり軸受内の潤滑剤には、角周波数ωの交流電圧Vが印加されることとなる。
 S1102にて、測定装置10は、S1101にて指示した入力に対する出力として、LCRメータ20からインピーダンス|Z|および位相角θを取得する。つまり、LCRメータ20は、入力である角周波数ωの交流電圧Vに対する軸受装置30の測定結果として、インピーダンスZおよび位相角θを測定装置10に出力する。
 S1103にて、測定装置10は、潤滑剤の諸元、軸受装置の諸元、測定条件等に基づいて、上記の式における各種パラメータの値を設定する。なお、測定対象に対応する等価回路に基づく数式は予め定義され、測定装置10にて利用可能に登録されているものとする。
 S1104にて、測定装置10は、S1102にて取得したインピーダンスZおよび位相角θ、S1101にて指示した角周波数ωの交流電圧Vの情報に基づいて、図9にて示した等価回路に基づく式へのフィッティング(当てはめ)を行う。例えば、本願出願人による国際公開第2022/054352号に記載の方法を用いることが可能である。
 S1105にて、測定装置10は、S1104におけるフィッティング結果と、S1103にてパラメータを設定した数式を用いて、変数パラメータの推定を行う。ここでの変数パラメータは、例えば、図10A~図10Cを用いて説明したように、絶縁破壊電圧Elimit、合成表面粗さσ、潤滑剤の体積抵抗率ρであってよい。または、平均油膜厚さμを変数パラメータとして推定してもよい。
 S1106にて、測定装置10は、S1105にて推定した結果に基づいて状態診断を行う。ここでの診断内容は特に限定するものでは無いが、例えば、推定した結果に対して、所定の閾値を設定しておき、その閾値との比較により正常または異常を診断するような構成であってもよい。また、異常の緊急度に応じた複数の閾値を設定しておき、それらの閾値との比較により、緊急度を診断するような構成であってもよい。
 S1107にて、測定装置10は、S1106にて推定した値や、S1106にて得られた診断結果をユーザに対して出力する。ここでの出力方法は特に限定するものでは無いが、例えば、異常と判断したパラメータや項目を画面上で表示したり、音声にて通知したりするような構成であってよい。そして、本処理フローを終了する。
 以上、本実施形態により、潤滑剤による潤滑が行われる部材の表面粗さや油膜厚さをモニタリングすることが可能となる。例えば、測定対象として、転がり軸受を備える軸受装置に適用可能である。
 <その他の実施形態>
 なお、上述したように、hについて正規分布以外のパラメータを用いることも可能である。このような場合には、上記の式(5)に代えて、そのパラメータに応じた他の式が用いられる。また、式(4)は、hlimit=h(αlimit)として用いられる。
 また、本発明において、上述した1以上の実施形態の機能を実現するためのプログラムやアプリケーションを、ネットワーク又は記憶媒体等を用いてシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。
 また、1以上の機能を実現する回路(例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array))によって実現してもよい。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
 (1) 潤滑剤(例えば、103)により潤滑される第1の部材(例えば、101)と第2の部材(例えば、102)との間に対する状態測定方法であって、
 前記第1の部材と前記第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定工程(例えば、S1101、S1102)と、
 前記測定工程による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング工程(例えば、S1103、S1104)と、
 前記フィッティング工程にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出工程(例えば、S1105)と、
を有し、
 前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
 前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、ことを特徴とする状態測定方法。
 この構成によれば、潤滑剤による潤滑が行われる部材の表面粗さや油膜厚さをモニタリングすることが可能となる。特に、潤滑剤における絶縁破壊の発生確率に基づいて、潤滑剤周りの状態をモニタリングすることが可能となる。
 (2) 前記所定の数式は、
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
limit:絶縁破壊電圧
limit:絶縁破壊臨界油膜厚さ
αlimit:絶縁破壊領域割合(0≦αlimit≦1)
V:印加電圧
:接触域内の潤滑剤に起因する抵抗
:接触域内の潤滑剤に起因する静電容量
:接触域内のインピーダンス
ε:潤滑剤の誘電率
ρ:潤滑剤の体積抵抗率
S:接触域面積
j:虚数
ω:電圧の角周波数
にて規定される、ことを特徴とする(1)に記載の状態測定方法。
 この構成によれば、潤滑剤の絶縁破壊の発生確率に基づいて定義される絶縁破壊が生じている領域を規定することで、潤滑剤周りの各種パラメータを推定することが可能となる。例えば、部材の表面粗さや油膜厚さを推定することが可能となる。
 (3) 前記第1の部材と前記第2の部材は転動装置(例えば、30)に含まれ、
 前記等価回路は、前記転動装置の構成に応じて規定される、ことを特徴とする(1)に記載の状態測定方法。
 この構成によれば、転動装置を対象として、潤滑剤周りの状態、特に部材の表面粗さや油膜厚さを推定することが可能となる。
 (4) 潤滑剤により潤滑される第1の部材と第2の部材との間に対する状態測定装置(例えば、1)であって、
 前記第1の部材と前記第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定手段(例えば、20)と、
 前記測定手段による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング手段(例えば、10)と、
 前記フィッティング手段にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出手段(例えば、10)と、
を有し、
 前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
 前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、ことを特徴とする状態測定装置。
 この構成によれば、潤滑剤による潤滑が行われる部材の表面粗さや油膜厚さをモニタリングすることが可能となる。特に、潤滑剤における絶縁破壊の発生確率に基づいて、潤滑剤周りの状態をモニタリングすることが可能となる。
 (5) コンピュータ(例えば、10)に、
 潤滑剤(例えば、103)により潤滑される第1の部材(例えば、101)と第2の部材(例えば、102)とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定工程(例えば、S1101、S1102)と、
 前記測定工程による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング工程(例えば、S1103、S1104)と、
 前記フィッティング工程にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出工程(例えば、S1105)と、
を実行させ、
 前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
 前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、プログラム。
 この構成によれば、潤滑剤による潤滑が行われる部材の表面粗さや油膜厚さをモニタリングすることが可能となる。特に、潤滑剤における絶縁破壊の発生確率に基づいて、潤滑剤周りの状態をモニタリングすることが可能となる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年11月7日出願の日本特許出願(特願2022-178453)に基づくものであり、その内容は本出願の中に参照として援用される。
1 システム
10 測定装置
20 LCRメータ
30 軸受装置
31(31a,31b) 転がり軸受(玉軸受)
40 回転軸
50 モータ
60 ヒータ

Claims (5)

  1.  潤滑剤により潤滑される第1の部材と第2の部材との間に対する状態測定方法であって、
     前記第1の部材と前記第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定工程と、
     前記測定工程による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング工程と、
     前記フィッティング工程にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出工程と、
    を有し、
     前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
     前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、ことを特徴とする状態測定方法。
  2.  前記所定の数式は、
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-M000002

    Figure JPOXMLDOC01-appb-M000003

    Figure JPOXMLDOC01-appb-M000004

    Figure JPOXMLDOC01-appb-M000005

    limit:絶縁破壊電圧
    limit:絶縁破壊臨界油膜厚さ
    αlimit:絶縁破壊領域割合(0≦αlimit≦1)
    V:印加電圧
    :接触域内の潤滑剤に起因する抵抗
    :接触域内の潤滑剤に起因する静電容量
    :接触域内のインピーダンス
    ε:潤滑剤の誘電率
    ρ:潤滑剤の体積抵抗率
    S:接触域面積
    j:虚数
    ω:電圧の角周波数
    にて規定される、ことを特徴とする請求項1に記載の状態測定方法。
  3.  前記第1の部材と前記第2の部材は転動装置に含まれ、
     前記等価回路は、前記転動装置の構成に応じて規定される、ことを特徴とする請求項1に記載の状態測定方法。
  4.  潤滑剤により潤滑される第1の部材と第2の部材との間に対する状態測定装置であって、
     前記第1の部材と前記第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定手段と、
     前記測定手段による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング手段と、
     前記フィッティング手段にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出手段と、
    を有し、
     前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
     前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、ことを特徴とする状態測定装置。
  5.  コンピュータに、
     潤滑剤により潤滑される第1の部材と第2の部材とに交流電圧を掃引させながら印加させることによりインピーダンスを測定する測定工程と、
     前記測定工程による測定結果を、前記第1の部材と前記第2の部材の構成に対応して規定される等価回路に基づいてフィッティングを行うフィッティング工程と、
     前記フィッティング工程にて得られた結果と、前記第1の部材と前記第2の部材との間における状態を示すパラメータを含む所定の数式とを用いて、前記状態を導出する導出工程と、
    を実行させ、
     前記所定の数式は、前記第1の部材および前記第2の部材の表面粗さ、前記潤滑剤の油膜厚さ、および印加電圧の関係に基づいて特定される、前記第1の部材および前記第2の部材の間にて絶縁破壊が生じる領域の割合を用い、
     前記等価回路は、前記割合に基づいて、前記潤滑剤に起因するコンデンサと抵抗が規定される、プログラム。
PCT/JP2023/039931 2022-11-07 2023-11-06 状態測定方法、状態測定装置、およびプログラム WO2024101322A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-178453 2022-11-07
JP2022178453 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024101322A1 true WO2024101322A1 (ja) 2024-05-16

Family

ID=91032387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039931 WO2024101322A1 (ja) 2022-11-07 2023-11-06 状態測定方法、状態測定装置、およびプログラム

Country Status (1)

Country Link
WO (1) WO2024101322A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241383A (ja) * 2007-03-27 2008-10-09 Yaskawa Electric Corp 油膜絶縁破壊評価装置
US20120319636A1 (en) * 2010-02-24 2012-12-20 Siemens Aktiengesellschaft Method and device for assessing the damage to rolling bearings, in particular in inverter-fed electric machines
JP2014228378A (ja) * 2013-05-22 2014-12-08 ファナック株式会社 モータ軸受の電食の度合いを推定するモータ制御装置、およびその方法
JP2020193968A (ja) * 2019-05-22 2020-12-03 日本精工株式会社 転動装置の診断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241383A (ja) * 2007-03-27 2008-10-09 Yaskawa Electric Corp 油膜絶縁破壊評価装置
US20120319636A1 (en) * 2010-02-24 2012-12-20 Siemens Aktiengesellschaft Method and device for assessing the damage to rolling bearings, in particular in inverter-fed electric machines
JP2014228378A (ja) * 2013-05-22 2014-12-08 ファナック株式会社 モータ軸受の電食の度合いを推定するモータ制御装置、およびその方法
JP2020193968A (ja) * 2019-05-22 2020-12-03 日本精工株式会社 転動装置の診断方法

Similar Documents

Publication Publication Date Title
EP3567358B1 (en) Method for diagnosing rolling device
JP7057868B1 (ja) 油膜の状態検出方法、状態検出装置、およびプログラム
JP7200789B2 (ja) 転動装置の予圧診断方法
KR102611596B1 (ko) 전동 장치의 진단 방법
WO2024101322A1 (ja) 状態測定方法、状態測定装置、およびプログラム
JP2023081983A (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2024101321A1 (ja) 膜状態測定方法、膜状態測定装置、およびプログラム
WO2023176603A1 (ja) 状態診断方法、状態診断装置、およびプログラム
JP7347720B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2023199655A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
JP7347721B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
JP7168139B1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2023176602A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
WO2022250060A1 (ja) 軸受装置の状態の検出方法、検出装置、およびプログラム
JP7115658B1 (ja) 油膜の温度導出方法、温度導出装置、およびプログラム
WO2024071272A1 (ja) 転動装置の診断方法、診断装置、およびプログラム
JP7367898B1 (ja) 測定方法、測定装置、およびプログラム
CN116507814A (zh) 油膜的状态检测方法、状态检测装置以及程序
WO2024019022A1 (ja) 潤滑剤を用いる装置の水侵入検出方法、水侵入検出装置、およびプログラム
WO2024071271A1 (ja) 転動装置の診断方法、診断装置、およびプログラム
CN116547516A (zh) 油膜的温度导出方法、温度导出装置以及程序