WO2018124803A1 - 결정화 기술을 이용한 l-메티오닌 결정의 제조방법 - Google Patents

결정화 기술을 이용한 l-메티오닌 결정의 제조방법 Download PDF

Info

Publication number
WO2018124803A1
WO2018124803A1 PCT/KR2017/015709 KR2017015709W WO2018124803A1 WO 2018124803 A1 WO2018124803 A1 WO 2018124803A1 KR 2017015709 W KR2017015709 W KR 2017015709W WO 2018124803 A1 WO2018124803 A1 WO 2018124803A1
Authority
WO
WIPO (PCT)
Prior art keywords
methionine
crystals
methionine crystals
aqueous solution
producing
Prior art date
Application number
PCT/KR2017/015709
Other languages
English (en)
French (fr)
Inventor
김준우
이인성
구기갑
김왕수
에스. 마이어슨앨런
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CN201780081676.XA priority Critical patent/CN110114341B/zh
Priority to EP17886142.3A priority patent/EP3564213B1/en
Priority to US16/469,852 priority patent/US10870619B2/en
Priority to JP2019531394A priority patent/JP6893987B2/ja
Priority to ES17886142T priority patent/ES2925653T3/es
Publication of WO2018124803A1 publication Critical patent/WO2018124803A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • B01D9/0054Use of anti-solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • B01D2009/009Separation of organic compounds by selective or extractive crystallisation with the aid of auxiliary substances forming complex or molecular compounds, e.g. with ureum, thioureum or metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present application relates to a method for preparing L-methionine crystals that increase the bulk density of L-methionine, and more particularly, crystallization techniques such as adjusting the pH of an aqueous solution of L-methionine, or heating and cooling them. It relates to a method for producing L-methionine crystals to increase the apparent density using.
  • the crystallization process is variously applied to obtain amino acid crystals having high purity by a separation technique for obtaining a desired solute in solution in a solid state.
  • a separation technique for obtaining a desired solute in solution in a solid state.
  • the present inventors earnestly tried to develop a method for preparing L-methionine crystals that increase the apparent density of L-methionine crystals, and as a result, crystallization such as pH control, warming, flocculant addition, pH re-regulation and / or cooling of L-methionine aqueous solution
  • crystallization such as pH control, warming, flocculant addition, pH re-regulation and / or cooling of L-methionine aqueous solution
  • the present application was completed by confirming that L-methionine crystals were significantly improved by using a process.
  • Another object of the present application is to provide an L-methionine crystal, which is prepared according to the method for preparing the L-methionine crystal.
  • the apparent density of L-methionine can be significantly improved as compared to other methods for preparing L-methionine crystals known in the art.
  • FIG. 1 is an SEM image of L-methionine crystals
  • a and b of FIG. 1 are SEM images of L-methionine crystals obtained according to Examples 1 and 2 of the present application
  • FIG. 2 is an SEM image of L-methionine crystals
  • a to g of FIG. 2 are SEM images of L-methionine crystals obtained according to Examples 3 to 9 of the present application in order
  • FIG. 3 is an SEM image of L-methionine crystals.
  • the left photograph of FIG. 3 is an SEM photograph of L-methionine crystals obtained according to an example, and the right photograph of FIG. 3 is all obtained L-methionine according to a comparative example.
  • a, c, e, g and i in Figure 3 is an SEM image of the L-methionine crystals obtained in accordance with Examples 10 to 14 of the present application in sequence
  • b, d, f, h and j is a SEM photograph of the L-methionine crystals obtained according to Comparative Examples 3-7.
  • FIG. 4 is an SEM image of L-methionine crystals
  • a and c of FIG. 4 are SEM images of L-methionine crystals obtained according to Examples 15 and 16 of the present application
  • b and d of FIG. SEM photographs of L-methionine crystals obtained according to Comparative Examples 8 and 9.
  • FIG. 5 is an SEM image of L-methionine crystals
  • a to e of FIG. 5 are SEM images of L-methionine crystals obtained according to Examples 17 to 21 of the present application in order
  • f and g of FIG. SEM photographs of L-methionine crystals obtained according to Comparative Examples 10 and 11 of the application.
  • FIG. 6 is an SEM photograph of L-methionine crystals.
  • FIG. 6A is an SEM photograph of L-methionine crystals obtained according to Example 22 of the present application
  • b and c of FIG. 6 are comparative examples 12 and SEM image of L-methionine crystals obtained according to 13.
  • FIG. 7 is a block diagram showing the configuration of an apparatus capable of performing the method for producing L-methionine crystals of the present application.
  • the apparatus comprises a jacketed crystallizer 1, a thermostat 2, an impeller 3, an agitator 4, a thermometer 5, a pH adjuster injector 6 and a pH meter 7. .
  • the present inventors have developed a method of using a pH adjuster in the crystallization process of L-methionine to prepare L-methionine crystals with improved apparent density.
  • the method for preparing L-methionine crystals of the present application can significantly improve the apparent density of L-methionine as compared to other methods for preparing L-methionine crystals known in the art.
  • One aspect of the present application for achieving the above object is (a) adding a pH adjuster to an aqueous solution containing L-methionine to increase or decrease the pH (pH adjustment step); (b) warming the aqueous solution comprising L-methionine (warming step); And (c) depositing L-methionine crystals from the aqueous solution containing the pH-controlled and warmed L-methionine (crystallization step).
  • L-methionine may be obtained by chemically synthesizing or biologically synthesized through microbial fermentation, but is not limited thereto.
  • the method for preparing L-methionine crystals of the present application includes (a) a pH adjusting step, (b) a warming step, and (c) a crystal precipitation step, through which a uniform size L having a large bulk density is obtained.
  • -Methionine crystals can be prepared in high yield.
  • the term “apparent density” refers to a density measured on the basis of a volume including voids generated between particles when the powder is filled into a container. At this time, the cylinder filled with the powder is pounded with a constant force to densely process the powder in the cylinder, and the measured density is referred to as Tapped bulk density (hereinafter referred to as 'BD').
  • the apparent density identified in the examples of the present application is compaction apparent density, but it is apparent to those skilled in the art that the apparent density and compaction apparent density are proportional to one of ordinary skill in the present application.
  • each step of the production method of the L-methionine crystals will be described in detail.
  • the step (a) is a step of raising or lowering the pH by adding a pH adjuster to an aqueous solution containing L-methionine, which is referred to as "pH control step" in the present application.
  • the aqueous solution containing L-methionine may be an aqueous solution in which L-methionine is dissolved in water, and may be a fermentation broth, an enzyme reaction solution, or a chemical reaction solution of a microorganism including L-methionine, but is not limited thereto. It doesn't work.
  • the aqueous solution containing L-methionine may include materials other than L-methionine, but is not limited thereto.
  • the aqueous solution containing L-methionine may include 20 to 60 parts by weight, more specifically 35 to 50 parts by weight of L-methionine, based on 300 parts by weight of water, but is not limited thereto. It may be included in an appropriate amount by those skilled in the art depending on the pH adjusting agent and subsequent processing.
  • the L-methionine in the aqueous solution containing the L-methionine may be in a dissolved state or all of the dissolved state.
  • the term "pH regulator” refers to a substance added to the solution to adjust the pH, and may include both a pH reducing agent for reducing pH and a pH increasing agent for increasing pH.
  • the apparent density of the prepared L-methionine crystals was increased only by including the step of adding a pH adjusting agent to the aqueous solution containing L-methionine during the preparation of the L-methionine crystals. That is, the technical feature of the method for producing L-methionine crystal of the present application is to include a pH adjusting step.
  • the technical feature is not limited to either decreasing the pH or increasing the pH, but the pH is changed as the pH adjusting agent is added to the aqueous solution containing L-methionine, that is, the pH is decreased or increased.
  • the solubility of L-methionine increases, the recovery rate is increased by increasing the input amount of initial methionine, and the apparent density of the final product L-methionine crystal is increased.
  • the pH reducing agent is not limited as long as it can lower the pH of the aqueous solution to be added.
  • the pH reducing agent may be a hydrogen ion donor (H + donor), or a hydroxide ion acceptor (OH - acceptor).
  • the hydrogen ion donor includes all materials capable of giving hydrogen ions to other materials, and specifically, may be a strong acid material such as sulfuric acid and hydrochloric acid, but is not limited thereto.
  • the hydroxide ion acceptor includes all materials capable of receiving hydroxide ions of other materials, and specifically, may be an aqueous ammonium salt solution, but is not limited thereto.
  • the pH increasing agent in the present application is not limited as long as it can increase the pH of the aqueous solution is added, specifically, may be a hydrogen ion acceptor (H + acceptor) or a hydroxide ion donor (OH - donor).
  • the hydrogen ion acceptor includes all materials capable of receiving hydrogen ions of other materials, and specifically, may be an aqueous acetate salt solution, but is not limited thereto.
  • the hydroxide ion donor includes all materials that can give the hydroxide ion to other materials, and specifically, may be a basic material such as ammonia water, sodium hydroxide, lithium hydroxide, potassium hydroxide, but is not limited thereto.
  • a strong ion material such as a hydrogen ion donor such as sulfuric acid or hydrochloric acid may be used.
  • a basic material such as hydroxide ion donor, for example, ammonia water, sodium hydroxide, lithium hydroxide, potassium hydroxide and the like can be used.
  • a hydrogen ion acceptor for example, an aqueous salt solution (for example, an aqueous acetate salt solution) containing a counterbase of a weak acid, may be used.
  • the pH can be increased by decreasing the ion concentration, thereby improving the recovery rate.
  • the pH in the pH control step As the increasing agent, strong base materials such as hydroxide hydroxide, for example ammonia water, sodium hydroxide, lithium hydroxide, potassium hydroxide and the like can be used. Thereafter, as a pH reducing agent in the pH re-regulation step for preparing L-methionine crystals, an acidic substance such as a hydrogen ion donor such as sulfuric acid or hydrochloric acid may be used.
  • a pH reducing agent such as a hydrogen ion donor such as sulfuric acid or hydrochloric acid may be used.
  • an aqueous hydroxide solution for example, an aqueous salt solution containing an equivalent acid of weak base (for example, an aqueous ammonium salt solution).
  • an equivalent acid of weak base for example, an aqueous ammonium salt solution.
  • the pH adjusting agent is not limited to the examples given above, and may be appropriately selected and used by those skilled in the art as long as the final crystals of L-methionine can be obtained without affecting the structure of L-methionine.
  • the aqueous solution including L-methionine may be adjusted to pH 1.0 to 3.5, specifically pH 2.0 to 3.0 by adding a pH reducing agent, or to pH 7.5 to 10.0, specifically pH 8.0 to 9.0, by adding a pH increasing agent. May be, but is not limited thereto.
  • the amount of the pH reducing agent added to the aqueous solution containing L-methionine in the present application is not limited as long as it can lower the pH, specifically 2 to 10 parts by weight, more specifically 4 to 8 parts by weight based on 300 parts by weight of water May be, but is not limited thereto.
  • the amount of the pH increasing agent added to the aqueous solution including L-methionine is not limited as long as it can increase the pH, but specifically 1 to 8 parts by weight and more specifically 2 to 6 parts by weight based on 300 parts by weight of water. However, it is not limited thereto.
  • Step (b) is a step of increasing the solubility of L-methionine by heating an aqueous solution containing L-methionine, which is referred to as a "warming step" in the present application.
  • the warming step may be specifically to warm the aqueous solution containing L-methionine to 40 to 90 °C, more specifically 50 to 70 °C, even more specifically 55 to 65 °C, but is not limited thereto.
  • Steps (a) and (b) may be performed simultaneously, sequentially, or in reverse order, and are not particularly limited in order. That is, the addition of L-methionine to an aqueous solution whose pH has already been adjusted and then warmed, or the addition of L-methionine after heating the aqueous solution whose pH has already been adjusted is also included in the scope of the present application. The timing of addition of methionine does not affect the results of the present application.
  • step (c) is to precipitate L-methionine crystals from an aqueous solution containing the pH-controlled and warmed L-methionine, which is referred to as “crystallization step” in the present application.
  • step (c) refers to a step in which crystal nuclei of L-methionine are formed, crystal nuclei of L-methionine are formed, and crystal nuclei are grown, or crystal nuclei formed in the previous step are grown. -Methionine crystals can be obtained.
  • the crystallization step may be performed by a crystallization method known in the art, such as evaporation concentration, cooling method, adiabatic evaporation method, compound addition, but is not limited thereto.
  • a regulator may further comprise the step of raising or lowering the pH (pH readjustment step).
  • the apparent density of the L-methionine crystal can be further increased by re-adjusting the pH by adding a pH adjusting agent.
  • L-methionine crystals may be formed by instantaneous pH increase and decrease by adding a pH adjuster to an aqueous solution containing L-methionine in the pH re-regulation step of the present application.
  • the pH adjusting agent of the pH re-adjusting step may be a pH reducing agent
  • the pH adjuster of the step may be a pH increasing agent
  • the pH is lowered or increased again by treating the pH adjusting agent in the pH re-adjusting step, thereby decreasing the solubility. This may result in crystallization (neutralization crystallization) of L-methionine, which may increase the apparent density of the final product, L-methionine crystals.
  • PH re-adjustment step of the present application is adjusted to pH 2.0 to 5.0, specifically pH 3.0 to 4.0 by adding a pH increasing agent to the aqueous solution of which pH is reduced in the pH adjustment step, or in an aqueous solution of increased pH in the pH adjustment step
  • the pH reducing agent may be added to adjust pH 6.0 to 9.0, specifically pH 7.0 to 8.0, but is not limited thereto.
  • the apparent density of the L-methionine crystal may be increased by adding a flocculant before the pH readjustment step to increase its efficiency.
  • the flocculant may be specifically an aromatic compound, more specifically acetylsalicylic acid, acetaminophen, benzoic acid, salicylic acid, gallic acid, L-tyrosine (L) -Tyrosine), L-Phenylalanine, or a combination thereof, but is not limited thereto.
  • the flocculant may be added in an amount of 0.1 to 50 parts by weight, specifically 0.5 to 10, more specifically 1 to 5 parts by weight, based on 300 parts by weight of L-methionine, but is not limited thereto.
  • the step of cooling the aqueous solution containing (b-3) L-methionine before (c) crystallization step or (c) crystallization step (cooling step) may further include.
  • the cooling step is to cool an aqueous solution containing warmed L-methionine, through which crystallization of L-methionine can be caused.
  • the cooling step may be performed before the crystallization step, at the same time as the crystallization step in the crystallization step, or may be performed by the crystallization process itself.
  • the cooling step in the present application may be performed after the pH readjustment step.
  • the suspension containing the L-methionine crystals produced in the pH re-regulation step can be cooled to obtain improved L-methionine crystals with a very high apparent density.
  • the cooling step may be to cool the aqueous solution containing the warmed L- methionine to a temperature of 5 to 39 °C, specifically 15 to 35 °C, 20 °C / h or less, specifically 12 °C / h or less, 9 °C Cooling at a rate of less than / h, 6 ° C / h or less, 3 ° C / h or less, 1 ° C / h or less, but is not limited thereto.
  • Another embodiment of the present application is an L-methionine crystal, prepared by the method for producing the L-methionine crystal.
  • a neutral L-methionine aqueous solution was prepared by dissolving 27 g of L-methionine at a temperature of 60 ° C. without using a pH adjuster for 300 g of water as a solvent. The solution was cooled to 30 ° C. at a rate of 6 ° C./h using a thermostat program to obtain L-methionine crystals. The BD of the obtained crystal was 190 g / L.
  • L-methionine crystals prepared in Examples 1 and 2 and Comparative Example 1 is very BD of L-methionine crystals according to the pH control of the aqueous solution of L-methionine It can be seen that the increase.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 2 g of acetaminophen was added instead of acetylsalicylic acid as the flocculant.
  • the BD of the obtained L-methionine crystal was 590 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 2 g of benzoic acid was added instead of acetylsalicylic acid as a flocculant.
  • the BD of the obtained L-methionine crystal was 590 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 2 g of salicylic acid was added instead of acetylsalicylic acid as a flocculant.
  • the BD of the obtained L-methionine crystal was 580 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 2 g of gallic acid was added instead of acetylsalicylic acid as a flocculant.
  • the BD of the obtained L-methionine crystal was 570 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 2 g of L-tyrosine was added instead of acetylsalicylic acid as a flocculant.
  • the BD of the obtained L-methionine crystal was 570 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 2 g of L-phenylalanine was added instead of acetylsalicylic acid as the flocculant.
  • the BD of the obtained L-methionine crystal was 560 g / L.
  • L-methionine crystals were prepared in the same manner as in Example 3, but L-methionine crystals were prepared without using a flocculant.
  • the BD of the L-methionine crystal obtained at this time was 520 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 15 mL of a lithium acetate 1: 1 aqueous solution (a ratio of mass ratio of lithium acetate and water) was injected instead of ammonium acetate as a pH increasing agent. At this time, the pH of the suspension increased to 3.66 and the BD of the obtained L-methionine crystals was 580 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 10, except that no flocculant was added.
  • the BD of the obtained L-methionine crystals was 500 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 15 mL of a sodium acetate 1: 1 aqueous solution (a ratio of sodium acetate to mass ratio of water) was added instead of ammonium acetate as a pH increasing agent. At this time, the pH of the suspension increased to 3.36 and the BD of the obtained L-methionine crystals was 550 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 11, except that no flocculant was added.
  • the BD of the obtained L-methionine crystals was 500 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 15 mL of a potassium acetate 1: 1 aqueous solution (a ratio of the mass ratio of potassium acetate and water) was added instead of ammonium acetate as a pH increasing agent. At this time, the pH of the suspension increased to 3.26 and the BD of the obtained L-methionine crystal was 560 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 12, except that no flocculant was added.
  • the BD of the obtained L-methionine crystal was 490 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 4.2 g of sodium hydroxide was added instead of an aqueous ammonium acetate solution as a pH increasing agent. At this time, the pH of the suspension increased to 3.43 and the BD of the obtained L-methionine crystals was 530 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 13, except that no flocculant was added.
  • the BD of the obtained L-methionine crystals was 450 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 3, except that 7 mL of ammonia water was added instead of an aqueous ammonium acetate solution as a pH increasing agent. At this time, the pH of the suspension was increased to 3.65 and the BD of the obtained L-methionine crystals was 600 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 14, except that no flocculant was added.
  • the BD of the obtained L-methionine crystal was 510 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 15, except that no flocculant was added.
  • the BD of the obtained L-methionine crystals was 450 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 15, except that 2 mL of sulfuric acid was added instead of an aqueous ammonium acetate 6: 1 solution as a pH reducing agent. At this time, the pH of the suspension was reduced to 7.46 and the BD of the obtained L-methionine crystals was 480 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 16, except that no flocculant was added.
  • the BD of the obtained L-methionine crystals was 460 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 17, except that the reaction mixture was cooled to 30 ° C. at a cooling rate of 9 ° C./h instead of 12 ° C./h.
  • the BD of the obtained L-methionine crystal was 730 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 17, except that the reaction mixture was cooled to 30 ° C. at a cooling rate of 6 ° C./h instead of a cooling rate of 12 ° C./h.
  • the BD of the obtained L-methionine crystal was 750 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 17, except that the reaction mixture was cooled to 30 ° C. at a cooling rate of 3 ° C./h instead of a cooling rate of 12 ° C./h.
  • the BD of the obtained L-methionine crystal was 760 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 17, except that the reaction mixture was cooled to 30 ° C. at a cooling rate of 1 ° C./h instead of a cooling rate of 12 ° C./h.
  • the BD of the obtained L-methionine crystal was 800 g / L.
  • L-methionine crystals were obtained in the same manner as in Example 19, except that no flocculant was added.
  • the BD of the obtained L-methionine crystal was 630 g / L.
  • the L-methionine crystals obtained by the cooling crystallization process of the present application have a much higher BD than the L-methionine crystals obtained by the general cooling crystallization process without the step of pH control and pH reregulation.
  • Example 22 and Comparative Examples 12-13 Preparation of L-methionine crystals by treatment of pH adjuster (NaOH) and pH reducer (ammonium acetate) in L-methionine aqueous solution
  • L-methionine crystals were obtained in the same manner as in Example 22, except that no flocculant was added.
  • the BD of the obtained L-methionine crystals was 660 g / L.
  • the L-methionine crystals obtained by the cooling crystallization process of the present application have a much higher BD than the L-methionine crystals obtained by the general cooling crystallization process without the step of pH control and pH reregulation.
  • Example 22 and Comparative Examples 12-13 are summarized in Table 6 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 출원은 겉보기 밀도가 개선된 L-메티오닌 결정의 제조방법에 관한 것이다. 본 출원의 L-메티오닌 결정의 제조방법에 따라 제조된 L-메티오닌 결정은 겉보기 밀도가 최대 800g/L까지 가능한 것으로 L-메티오닌 분말의 저장 및 수송비용의 절감 및 분말의 유동 특성 향상에 의한 조업환경의 개선까지 기대할 수 있다.

Description

결정화 기술을 이용한 L-메티오닌 결정의 제조방법
본 출원은 L-메티오닌의 겉보기 밀도(bulk density)를 증가시키는 L-메티오닌 결정의 제조방법에 관한 것이며, 보다 상세하게는 L-메티오닌 수용액의 pH를 조절하거나, 이를 가온 및 냉각하는 등의 결정화 기술을 사용하여 겉보기 밀도를 증가시키는 L-메티오닌 결정의 제조방법에 관한 것이다.
결정화 공정은 용액에서 원하는 용질을 고체 상태로 얻어내는 분리기술로 높은 순도를 가지는 아미노산 결정을 수득하기 위해 다양하게 적용되고 있다. 결정화 기술로 겉보기 밀도(bulk density)가 큰 분말의 제조가 가능하게 되면 분말의 저장 및 수송 비용의 절감 및 분말의 유동 특성 향상에 의한 조업환경의 개선까지 기대할 수 있다.
한편, 일반적으로 메티오닌의 결정은 인편상의 결정이기 때문에 안정화가 어려우며, 결정화 시에는 응집제가 필요한 것으로 알려져 있는데 이러한 응집제를 사용하더라도 겉보기 밀도를 증가시키는데는 한계가 있어 메티오닌 결정의 겉보기 밀도를 증가시키기 위한 연구가 계속되고 있다.
겉보기 밀도를 증가시키기 위한 시도가 계속되고 있는데, 예를 들어 메티오닌 가루, 물, 결합제(binding agent) 및 계면활성제의 혼합물을 형성한 후, 상기 혼합물에 높은 전단율을 적용시키는 메티오닌 과립 제조를 위한 방법(대한민국 공개특허 제2003-7001521호), 고온의 메티오닌 용액을 저온의 메티오닌 현탁액에 투입하는 재결정화 방식에 의한 겉보기 밀도 개선 방법(일본 공개특허공보 2004-292324호), 또는 상기 일본 공개특허공보 2004-292324호에 개시된 메티오닌 재결정화 방식을 연속방식으로 수행하는 메티오닌 제조방법(대한민국 공개특허 2014-0138946호) 등이 개시되어 있다. 그러나 아직까지는 만족할 만한 겉보기 밀도를 가진 메티오닌 결정의 제조방법은 개발되지 않은 실정이다.
본 발명자들은 L-메티오닌 결정의 겉보기 밀도를 증가시키는 L-메티오닌 결정의 제조방법을 개발하고자 예의 노력한 결과, L-메티오닌 수용액의 pH 조절, 가온, 응집제 첨가, pH 재조절 및/또는 냉각 등의 결정화 공정을 사용하여 L-메티오닌 결정을 제조하면 겉보기 밀도가 대폭 개선됨을 확인하여 본 출원을 완성하였다.
본 출원의 목적은 겉보기 밀도가 개선된 L-메티오닌 결정의 제조방법을 제공하는 것이다.
본 출원의 다른 목적은 상기 L-메티오닌 결정의 제조방법에 따라 제조된, L-메티오닌 결정을 제공하는 것이다.
본 출원의 L-메티오닌 결정의 제조 방법을 이용하여, 기존에 당업계에 알려진 다른 L-메티오닌 결정 제조 방법에 비해 L-메티오닌의 겉보기 밀도를 현저히 향상시킬 수 있다.
도 1은 L-메티오닌 결정의 SEM 사진으로서, 도 1의 a 및 b는 본 출원의 실시예 1 및 2에 따라 수득된 L-메티오닌 결정의 SEM 사진이며, 도 1의 c는 비교예 1에 따라 수득된 L-메티오닌 결정의 SEM 사진이다.
도 2는 L-메티오닌 결정의 SEM 사진으로서, 도 2의 a 내지 g는 순서대로 본 출원의 실시예 3 내지 9에 따라 수득된 L-메티오닌 결정의 SEM 사진이며, 도 2의 h는 본 출원의 비교예 2에 따라 수득된 L-메티오닌 결정의 SEM 사진이다.
도 3은 L-메티오닌 결정의 SEM 사진으로서, 도 3의 좌측 사진은 모두 실시예에 따라 수득된 L-메티오닌 결정의 SEM 사진이며, 도 3의 우측 사진은 모두 비교예에 따라 수득된 L-메티오닌 결정의 SEM 사진이다. 구체적으로, 도 3의 a, c, e, g 및 i는 순서대로 본 출원의 실시예 10 내지 14에 따라 수득된 L-메티오닌 결정의 SEM 사진이며, 도 3의 b, d, f, h 및 j는 비교예 3 내지 7에 따라 수득된 L-메티오닌 결정의 SEM 사진이다.
도 4는 L-메티오닌 결정의 SEM 사진으로서, 도 4의 a 및 c는 본 출원의 실시예 15 및 16에 따라 수득된 L-메티오닌 결정의 SEM 사진이며, 도 4의 b 및 d는 본 출원의 비교예 8 및 9에 따라 수득된 L-메티오닌 결정의 SEM 사진이다.
도 5는 L-메티오닌 결정의 SEM 사진으로서, 도 5의 a 내지 e는 순서대로 본 출원의 실시예 17 내지 21에 따라 수득된 L-메티오닌 결정의 SEM 사진이며, 도 5의 f 및 g는 본 출원의 비교예 10 및 11에 따라 수득된 L-메티오닌 결정의 SEM 사진이다.
도 6은 L-메티오닌 결정의 SEM 사진으로서, 도 6의 a는 본 출원의 실시예 22에 따라 수득된 L-메티오닌 결정의 SEM 사진이며, 도 6의 b 및 c는 본 출원의 비교예 12 및 13에 따라 수득된 L-메티오닌 결정의 SEM 사진이다.
도 7은 본 출원의 L-메티오닌 결정의 제조방법을 수행할 수 있는 장치의 구성을 나타내는 구성도이다. 도시된 바와 같이, 이 장치는 자켓 결정화기(1), 항온조(2), 임펠러(3), 교반기(4), 온도계(5), pH 조정제 주입기(6) 및 pH 미터(7)를 포함한다.
본 발명자들은 겉보기 밀도가 개선된 L-메티오닌 결정을 제조하기 위하여, L-메티오닌의 결정 공정에서 pH 조절제를 이용하는 방법을 개발하였다. 본 출원의 L-메티오닌 결정의 제조 방법은 기존에 당업계에 알려진 다른 L-메티오닌 결정 제조 방법에 비해 L-메티오닌의 겉보기 밀도를 현저히 향상시킬 수 있는 것이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는, (a) L-메티오닌을 포함하는 수용액에 pH 조절제를 첨가하여 pH를 높이거나 낮추는 단계(pH 조절 단계); (b) L-메티오닌을 포함하는 수용액을 가온하는 단계(가온 단계); 및 (c) 상기 pH 조절 및 가온된 L-메티오닌을 포함하는 수용액으로부터 L-메티오닌 결정을 석출하는 단계(결정석출 단계)를 포함하는 L-메티오닌 결정의 제조방법이다.
본 출원에서 “L-메티오닌”은 화학적으로 합성되거나 미생물 발효 등을 통해 생물학적으로 합성되어 수득한 것일 수 있으나, 이에 제한되는 것은 아니다. 본 출원의 L-메티오닌 결정의 제조방법은 (a) pH 조절 단계, (b) 가온 단계, 및 (c) 결정석출 단계를 포함하며, 이를 통해 겉보기 밀도 (Bulk density)가 큰 균일한 크기의 L-메티오닌 결정을 높은 수율로 제조할 수 있다.
본 출원에서 용어, “겉보기 밀도”는 분말을 어떤 용기에 충전하였을 때 입자 간에 생기는 공극을 포함한 체적을 기준으로 측정한 밀도를 말한다. 이때, 분말로 채워진 실린더를 일정한 힘으로 두드려 실린더 내의 분말을 조밀하게 처리한 후 측정한 밀도를 다짐 겉보기 밀도 (Tapped bulk density, 이하 ‘BD’라고 함.)라 한다. 본 출원의 실시예에서 확인한 겉보기 밀도는 다짐 겉보기 밀도이나, 겉보기 밀도와 다짐 겉보기 밀도가 비례하는 것은 당업자에게 자명한 사항이므로, 본 출원에서는 겉보기 밀도, 다짐 겉보기 밀도, 및 BD를 혼용하여 사용하였다. 이하, 상기 L-메티오닌 결정의 제조방법의 각 단계를 상세히 설명한다.
상기 (a) 단계는 L-메티오닌을 포함하는 수용액에 pH 조절제를 첨가하여 pH를 높이거나 낮추는 단계로서, 본 출원에서는 이를 “pH 조절 단계”로 명명하였다.
상기 (a) 단계에서 L-메티오닌을 포함하는 수용액은 물에 L-메티오닌을 용해시킨 수용액일 수 있으며, L-메티오닌을 포함하는 미생물의 발효액, 효소 반응액, 또는 화학 반응액일 수 있으나, 이에 제한되지 않는다.
또한, 상기 L-메티오닌을 포함하는 수용액은 L-메티오닌 이외의 다른 물질을 포함할 수 있으나, 이에 제한되지 않는다.
또한, 상기 L-메티오닌을 포함하는 수용액은 물 300 중량부에 대하여 L-메티오닌을 구체적으로 20 내지 60 중량부, 더욱 구체적으로 35 내지 50 중량부 포함할 수 있으나, 이에 제한되는 것은 아니고, 첨가되는 pH 조절제 및 이후의 공정에 따라 당업자에 의해 적절한 양으로 포함될 수 있다.
또한, 상기 L-메티오닌을 포함하는 수용액에서 L-메티오닌은 모두 용해된 상태이거나 또는 일부가 용해되지 않은 상태일 수 있다.
본 출원에서 용어, “pH 조절제”는 용액에 첨가되어 pH를 조절하는 물질을 말하며, pH를 감소시키는 pH 감소제 및 pH를 증가시키는 pH 증가제가 모두 포함될 수 있다. 본 출원에서는 L-메티오닌 결정의 제조 과정 중 L-메티오닌을 포함하는 수용액에 pH 조절제를 첨가하는 공정을 포함시키는 것만으로도 제조된 L-메티오닌 결정의 겉보기 밀도가 현저히 증가하는 것을 확인하였다. 즉, 본 출원의 L-메티오닌 결정의 제조방법이 가지는 기술적 특징은 pH 조절단계를 포함하는 것이다. 상기 기술적 특징은 pH를 감소시키는 것 또는 pH를 증가시키는 것 중 어느 하나에 한정되는 것이 아닌, L-메티오닌을 포함하는 수용액에 pH 조절제가 첨가됨에 따라 pH가 변동됨으로써, 즉 pH가 감소하거나 혹은 증가함으로써, L-메티오닌의 용해도 증가에 따라 초기 메티오닌의 투입량 증가에 의한 회수율 증가와 더불어 최종 산물인 L-메티오닌 결정의 겉보기 밀도가 증가하는 효과가 나타나는 것으로 이해하여야 한다.
본 출원에서 pH 감소제는 첨가되는 수용액의 pH를 낮출 수 있는 한 제한이 없으나, 구체적으로 수소이온 공여체(H+ donor), 또는 수산화이온 수여체(OH- acceptor) 일 수 있다. 상기 수소이온 공여체는 수소 이온을 다른 물질에게 줄 수 있는 물질을 모두 포함하며, 구체적으로 황산, 염산 등의 강산성 물질일 수 있으나, 이에 제한되지 않는다. 또한, 상기 수산화이온 수여체는 다른 물질의 수산화이온을 받을 수 있는 물질을 모두 포함하며, 구체적으로 암모늄 염 수용액일 수 있으나, 이에 제한되지 않는다.
본 출원에서 pH 증가제는 첨가되는 수용액의 pH를 높일 수 있는 한 제한이 없으나, 구체적으로 수소이온 수여체(H+ acceptor) 또는 수산화이온 공여체 (OH- donor)일 수 있다. 상기 수소이온 수여체는 다른 물질의 수소이온을 받을 수 있는 물질을 모두 포함하며, 구체적으로 아세테이트 염 수용액일 수 있으나, 이에 제한되지 않는다. 또한, 상기 수산화이온 공여체는 수산화이온을 다른 물질에게 줄 수 있는 물질을 모두 포함하며, 구체적으로 암모니아수, 수산화나트륨, 수산화리튬, 수산화칼륨 등 염기성 물질일 수 있으나, 이에 제한되지 않는다.
구체적으로, 낮은 pH의 L-메티오닌 산성용액 제조(pH 조절단계) 이후, pH를 증가시켜 L-메티오닌 결정을 제조하는 공정(pH 재조절 단계)에서 사용하는 pH 조절제의 경우, pH 조절단계에서의 pH 감소제로는 수소이온 공여체, 예를 들어 황산, 염산 등의 강산성 물질을 사용할 수 있다. 이후 L-메티오닌 결정을 제조하기 위한 pH 재조절 단계에서의 pH 증가제로는 수산화이온 공여체, 예를 들어 암모니아수, 수산화나트륨, 수산화리튬, 수산화칼륨 등의 염기성 물질을 사용할 수 있다. 또한, 용액 내 수소이온 농도가 매우 높은 상태이므로 수소이온 수여체, 예를 들어 약산의 짝염기를 포함하고 있는 염 수용액 (예를 들어, 아세테이트 염 수용액)을 사용할 수 있으며, 약산의 짝염기가 용액 내 수소이온 농도를 감소시킴으로써 pH가 증가하게 되므로 회수율을 향상시킬 수 있다.
또한, 높은 pH의 L-메티오닌 염기성용액 제조(pH 조절단계) 이후, pH를 감소시켜 L-메티오닌 결정을 제조하는 공정(pH 재조절 단계)에서 사용하는 pH 조절제의 경우, pH 조절단계에서의 pH 증가제로 수산화이온 공여체, 예를 들어 암모니아수, 수산화나트륨, 수산화리튬, 수산화칼륨 등의 강염기성 물질을 사용할 수 있다. 이후 L-메티오닌 결정을 제조하기 위한 pH 재조절 단계에서의 pH 감소제로는 수소이온 공여체, 예를 들어 황산, 염산 등의 산성 물질을 사용할 수 있다. 또한, 용액 내 수산화이온 농도가 매우 높은 상태이므로 수산화이온 수여체, 예를 들어 약염기의 짝산을 포함하고 있는 염 수용액 (예를 들어 암모늄 염 수용액)을 사용할 수 있으며, 약염기의 짝산이 용액 내 수산화이온 농도를 감소시킴으로써 pH가 감소하게 되므로 회수율을 향상시킬 수 있다.
다만, 상기 pH 조절제는 상기에서 제시된 예에 제한되지 않고 L-메티오닌의 구조에 영향을 미치지 않고 최종적으로 L-메티오닌의 결정을 수득할 수 있는 한 당업자에 의해 적절히 선택되어 사용될 수 있다.
본 출원에서 L-메티오닌을 포함하는 수용액은 pH 감소제가 첨가되어 pH 1.0 내지 3.5, 구체적으로 pH 2.0 내지 3.0으로 조절되거나, pH 증가제가 첨가되어 pH 7.5 내지 10.0, 구체적으로 pH 8.0 내지 9.0으로 조절될 수 있으나, 이에 제한되지 않는다.
본 출원에서 L-메티오닌을 포함하는 수용액에 첨가되는 pH 감소제의 양은 pH를 낮출 수 있는 한 제한이 없으나, 구체적으로 물 300 중량부에 대하여 2 내지 10 중량부, 더욱 구체적으로 4 내지 8 중량부일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 L-메티오닌을 포함하는 수용액에 첨가되는 pH 증가제의 양은 pH를 높일 수 있는 한 제한이 없으나, 구체적으로 물 300 중량부에 대하여 1 내지 8 중량부 더욱 구체적으로 2 내지 6 중량부일 수 있으나, 이에 제한되는 것은 아니다.
상기 (b) 단계는 L-메티오닌을 포함하는 수용액을 가온하여 L-메티오닌의 용해도를 높이는 단계로서, 본 출원에서는 이를 “가온 단계”로 명명하였다.
상기 가온 단계는 구체적으로 L-메티오닌을 포함하는 수용액을 40 내지 90 ℃, 더 구체적으로 50 내지 70 ℃, 더욱 더 구체적으로 55 내지 65 ℃까지 가온하는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 (a) 단계 및 (b) 단계는 동시에 수행되거나, 순차적으로 수행되거나, 또는 역순차적으로 수행되는 것일 수 있으며, 그 순서에 특별히 제한되지 않는다. 즉, pH가 이미 조절된 수용액에 L-메티오닌을 첨가한 뒤 이를 가온하거나, 혹은 pH가 이미 조절된 수용액을 가온한 뒤 L-메티오닌을 첨가하는 것 또한 모두 본 출원의 범위에 포함되며, L-메티오닌의 첨가 시점은 본 출원의 결과에 영향을 미치지 않는다.
마지막으로, 상기 (c) 단계는 상기 pH 조절 및 가온된 L-메티오닌을 포함하는 수용액으로부터 L-메티오닌 결정을 석출하는 단계로서, 본 출원에서는 이를 “결정석출 단계”로 명명하였다.
본 출원에서 용어, “결정화”는 액체 또는 비결정 상태의 고체가 결정을 형성하는 현상을 말하며, 결정핵의 발생과 결정핵에서의 성장이라는 두 현상이 수반하여 일어난다. 따라서, 상기 (c) 단계는 L-메티오닌의 결정핵이 형성되거나, L-메티오닌의 결정핵이 형성되어 결정핵이 성장하거나, 앞 단계에서 형성된 결정핵이 성장하는 단계를 의미하며, 이를 통해 L-메티오닌 결정을 수득할 수 있다.
상기 결정석출 단계는 증발 농축, 냉각법, 단열 증발법, 화합물 첨가 등 당업계의 공지된 결정화 방식에 의해 수행될 수 있으며, 이에 제한되는 것은 아니다.
본 출원의 L-메티오닌 결정의 제조방법은, 상기 (b) 가온 단계 및 (c) 결정석출 단계 사이에, 또는 (c) 결정석출 단계에 (b-2) L-메티오닌을 포함하는 수용액에 pH 조절제를 첨가하여 pH를 높이거나 낮추는 단계(pH 재조절 단계)를 추가로 포함할 수 있다.
상기 (a) 단계를 통해 pH가 이미 조절된 상태에서, pH 조절제를 첨가하여 pH를 재조절함으로써, L-메티오닌 결정의 겉보기 밀도를 더욱 증가시킬 수 있다.
본 출원의 pH 재조절 단계에서 L-메티오닌을 포함하는 수용액에 pH 조절제를 첨가하여 순간적인 pH 증감에 의해 L-메티오닌 결정이 형성될 수 있다.
특히, 이 경우 pH 조절 단계에서 사용된 pH 조절제가 pH 증가제인 경우, 상기 pH 재조절 단계의 pH 조절제는 pH 감소제일 수 있고, 상기 pH 조절 단계의 pH 조절제가 pH 감소제인 경우, 상기 pH 재조절 단계의 pH 조절제는 pH 증가제일 수 있다.
구체적으로, pH 조절단계에서 pH 조절제 처리에 의해 pH가 높아지거나 낮아짐으로써 L-메티오닌의 용해도가 증가한 상태에서, pH 재조절 단계에서 pH 조절제를 처리하여 pH가 반대로 다시 낮아지거나 높아져, 용해도가 감소할 수 있고 이에 따라 L-메티오닌의 결정화 (중화 결정화)가 발생할 수 있으며, 이러한 과정을 통해 최종 산물인 L-메티오닌 결정의 겉보기 밀도가 증가될 수 있다.
본 출원의 pH 재조절 단계는 pH 조절 단계에서 pH가 감소된 수용액에 pH 증가제를 첨가하여 pH 2.0 내지 5.0, 구체적으로 pH 3.0 내지 4.0으로 재조절하거나, pH 조절 단계에서 pH가 증가된 수용액에 pH 감소제를 첨가하여 pH 6.0 내지 9.0, 구체적으로 pH 7.0 내지 8.0으로 조절할 수 있으나, 이에 제한되지 않는다.
또한, 본 출원의 L-메티오닌 결정의 제조방법은, 상기 (b-2) pH 재조절 단계 전에 (b-1) L-메티오닌을 포함하는 수용액에 응집제를 첨가하는 단계(응집제 첨가 단계)를 추가로 포함할 수 있다.
상술한 바와 같이 상기 (b-2) pH 재조절 단계를 통해 중화 결정화가 가능하므로 이의 효율을 증대시키기 위해 pH 재조절 단계 이전에 응집제를 첨가함으로써 L-메티오닌 결정의 겉보기 밀도를 증가시킬 수 있다.
상기 응집제는 구체적으로 방향족 화합물일 수 있고, 더 구체적으로 아세틸살리실산 (Acetylsalicylic acid), 아세트아미노펜 (Acetaminophen), 벤조산 (Benzoic acid), 살리실산 (Salicylic acid), 갈산 (Gallic acid), L-티로신 (L-Tyrosine), L-페닐알라닌 (L-Phenylalanine), 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
상기 응집제는 L-메티오닌 300 중량부에 대하여 0.1 내지 50 중량부, 구체적으로 0.5 내지 10, 더욱 구체적으로 1 내지 5 중량부로 첨가될 수 있으나, 이에 제한되는 것은 아니다.
나아가, 본 출원의 L-메티오닌 결정의 제조방법은, 상기 (c) 결정석출 단계 전 또는 (c) 결정석출 단계 중에 (b-3) L-메티오닌을 포함하는 수용액을 냉각하는 단계(냉각 단계)를 추가로 포함할 수 있다.
냉각 단계는 가온된 L-메티오닌을 포함하는 수용액을 냉각시키는 단계로, 이를 통해 L-메티오닌의 결정화가 야기될 수 있다. 상기 냉각 단계는 결정석출 단계 전에 수행되거나, 결정석출 단계에서 결정석출 공정과 동시에, 또는 결정석출 공정 그 자체로 수행될 수 있다.
또한, 본 출원에서 상기 냉각 단계는 상기 pH 재조절 단계 후에 수행될 수 있다. 상기 pH 재조절 단계에서 생성된 L-메티오닌 결정이 포함된 현탁액을 냉각시켜 겉보기 밀도가 매우 높게 개선된 L-메티오닌 결정을 얻을 수 있다.
상기 냉각 단계는 가온된 L-메티오닌을 포함하는 수용액을 5 내지 39 ℃, 구체적으로 15 내지 35 ℃의 온도까지 냉각하는 것일 수 있고, 20 ℃/h 이하, 구체적으로 12 ℃/h 이하, 9 ℃/h 이하, 6 ℃/h 이하, 3 ℃/h 이하, 1 ℃/h 이하의 속도로 냉각하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 다른 하나의 양태는 상기 L-메티오닌 결정의 제조방법에 의해 제조된, L-메티오닌 결정이다.
L-메티오닌 결정 및 이의 제조방법은 상술한 바와 같다.
이하, 본 출원을 하기 예에서 보다 구체적으로 설명한다. 그러나 이들 예는 본 출원의 이해를 돕기 위한 것일 뿐, 이들에 의해 본 출원의 범위가 한정되는 것은 아니다.
(1) 실시예 1 ~ 2 및 비교예 1: pH 조절에 따른 L-메티오닌 결정의 제조
실시예 1:
용매인 물 300 g에 대하여 pH 조절제로 황산 6 g을 첨가한 후, 60 ℃의 온도에서 45 g의 L-메티오닌을 용해시켜 pH 2.50의 L-메티오닌 수용액을 제조하였다. 상기 용액을 항온조의 온도 제어 프로그램을 사용하여 30 ℃까지 6 ℃/h의 속도로 냉각하여 L-메티오닌 결정을 수득하였다. 수득한 결정의 BD는 370 g/L였다. 본 실시예에서 BD는 A. B. D Powder Characteristics Measuring Instrument (Tsutsui Scientific Instruments Corporation)를 이용하여 측정하였다.
실시예 2:
용매인 물 300 g에 대하여 pH 조절제로 수산화나트륨 4 g을 첨가한 후, 60 ℃의 온도에서 40 g의 L-메티오닌을 용해시켜 pH 8.15의 L-메티오닌 수용액을 제조하였다. 상기 용액을 항온조의 온도 제어 프로그램을 사용하여 30 ℃까지 6 ℃/h의 속도로 냉각한 후 L-메티오닌 결정을 수득하였다. 수득한 결정의 BD는 350 g/L였다.
비교예 1:
용매인 물 300 g에 대하여 pH 조절제를 사용하지 않고, 60 ℃의 온도에서 27 g의 L-메티오닌을 용해시켜 중성의 L-메티오닌 수용액을 제조하였다. 상기 용액을 항온조의 온도 제어 프로그램을 사용하여 30 ℃까지 6 ℃/h의 속도로 냉각하여 L-메티오닌 결정을 수득하였다. 수득한 결정의 BD는 190 g/L였다.
도 1에 도시된 L-메티오닌 결정의 SEM 사진과 같이, 실시예 1~2 및 비교예 1에 의해 제조된 L-메티오닌 결정은 L-메티오닌 수용액의 pH 조절에 따라 L-메티오닌 결정의 BD가 매우 높게 증가함을 알 수 있었다.
상기 실시예 1~2 및 비교예 1을 하기 표 1에 정리하였다.
Figure PCTKR2017015709-appb-T000001
(2) 실시예 3~9 및 비교예 2: 산성 L-메티오닌 용액에 다양한 응집제 및 pH 증가제 처리에 따른 L-메티오닌 결정의 제조
실시예 3:
용매인 물 300 g에 대하여 pH 조절제로 황산 6 g을 첨가한 후, 60 ℃의 온도에서 45 g의 L-메티오닌을 용해시켜 pH 2.50의 L-메티오닌 수용액을 제조하였다. 상기 용액에 응집제로 아세틸살리실산을 2 g을 첨가한 후, 제2 pH 조절제로 암모늄아세테이트 1:1 수용액(해당 비율은 암모늄아세테이트와 물의 질량 비) 15 mL를 주입하여 L-메티오닌 결정을 수득하였다. 이 때, 현탁액의 pH는 3.69로 증가하며 수득한 L-메티오닌 결정의 BD는 610 g/L였다.
실시예 4:
응집제로 아세틸살리실산 대신 아세트아미노펜 2 g을 첨가한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 590 g/L였다.
실시예 5:
응집제로 아세틸살리실산 대신 벤조산 2 g을 첨가한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 590 g/L였다.
실시예 6:
응집제로 아세틸살리실산 대신 살리실산 2 g을 첨가한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 580 g/L였다.
실시예 7:
응집제로 아세틸살리실산 대신 갈산 2 g을 첨가한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 570 g/L였다.
실시예 8:
응집제로 아세틸살리실산 대신 L-티로신 2 g을 첨가한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 570 g/L였다.
실시예 9:
응집제로 아세틸살리실산 대신 L-페닐알라닌 2 g을 첨가한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 560 g/L였다.
비교예 2:
실시예 3과 동일한 방법으로 L-메티오닌 결정을 제조하되, 응집제를 사용하지 않고 L-메티오닌 결정을 제조하였다. 이때 수득한 L-메티오닌 결정의 BD는 520 g/L였다.
상기 실시예 3~9 및 비교예 2에 의해 제조된 L-메티오닌 결정의 SEM 사진을 도 2에 도시하였다.
pH 조절된 L-메티오닌 수용액의 pH 재조절 시 응집제 종류에 상관 없이 응집제 첨가에 따라 L-메티오닌 결정의 BD가 매우 높게 증가함을 알 수 있었다.
상기 실시예 3~9 및 비교예 2를 하기 표 2에 정리하였다.
Figure PCTKR2017015709-appb-T000002
(3) 실시예 10~14 및 비교예 3~7: 산성 L-메티오닌 용액에 응집제 및 다양한 pH 증가제 처리에 따른 L-메티오닌 결정의 제조
실시예 10:
pH 증가제로 암모늄아세테이트 대신 리튬아세테이트 1:1 수용액(해당 비율은 리튬아세테이트와 물의 질량 비) 15 mL를 주입한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 이 때, 현탁액의 pH는 3.66으로 증가하며 수득한 L-메티오닌 결정의 BD는 580 g/L였다.
비교예 3:
응집제를 첨가하지 않은 것을 제외하고, 상기 실시예 10과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 500 g/L였다.
실시예 11:
pH 증가제로 암모늄아세테이트 대신 소듐아세테이트 1:1 수용액(해당 비율은 소듐아세테이트와 물의 질량 비) 15 mL를 주입한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 이 때, 현탁액의 pH는 3.36으로 증가하며 수득한 L-메티오닌 결정의 BD는 550 g/L였다.
비교예 4:
응집제를 첨가하지 않은 것을 제외하고, 상기 실시예 11과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 500 g/L였다.
실시예 12:
pH 증가제로 암모늄아세테이트 대신 포타슘아세테이트 1:1 수용액(해당 비율은 포타슘 아세테이트와 물의 질량 비) 15 mL를 주입한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 이 때, 현탁액의 pH는 3.26으로 증가하며 수득한 L-메티오닌 결정의 BD는 560 g/L였다.
비교예 5:
응집제를 첨가하지 않은 것을 제외하고, 상기 실시예 12와 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 490 g/L였다.
실시예 13:
pH 증가제로 암모늄아세테이트 수용액 대신 수산화나트륨 4.2 g을 투입한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 이 때, 현탁액의 pH는 3.43으로 증가하며 수득한 L-메티오닌 결정의 BD는 530 g/L였다.
비교예 6:
응집제를 첨가하지 않은 것을 제외하고, 상기 실시예 13과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 450 g/L였다.
실시예 14:
pH증가제로 암모늄아세테이트 수용액 대신 암모니아수 7 mL를 주입한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 이 때, 현탁액의 pH는 3.65로 증가하며 수득한 L-메티오닌 결정의 BD는 600 g/L였다.
비교예 7:
응집제를 첨가하지 않은 것을 제외하고, 상기 실시예 14와 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 510 g/L였다.
실시예 11~14에 의해 제조된 L-메티오닌 결정과 비교예 3~7에 의해 제조된 L-메티오닌 결정의 SEM 사진을 도 3에 도시하였다.
pH 조절된 L-메티오닌 수용액의 pH 재조절 시, 사용되는 pH 조절제 종류에 상관 없이 L-메티오닌 결정의 BD가 매우 높게 증가함을 알 수 있었다.
또한, 상기 실시예 11~14 및 비교예 3~7을 하기 표 3에 정리하였다.
Figure PCTKR2017015709-appb-T000003
(4) 실시예 15~16 및 비교예 8~9: 염기성 L-메티오닌 용액에 응집제 및 pH 감소제 처리에 따른 L-메티오닌 결정의 제조
실시예 15:
용매인 물 300 g에 대하여 pH 조절제로 수산화나트륨 4 g을 첨가한 후, 60 ℃의 온도에서 40 g의 L-메티오닌을 용해시켜 pH 8.15의 L-메티오닌 수용액을 제조하였다. 상기 용액에 응집제로 아세틸살리실산을 2 g을 첨가한 후, pH 감소제로 암모늄아세테이트 6:1 수용액(해당 비율은 암모늄아세테이트와 물의 질량 비) 15 mL를 주입하여 L-메티오닌 결정을 수득하였다. 이 때, 현탁액의 pH는 7.84로 감소하며 수득한 L-메티오닌 결정의 BD는 500 g/L였다.
비교예 8:
응집제를 첨가하지 않은 것을 제외하고, 상기 실시예 15와 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 450 g/L였다.
실시예 16:
pH 감소제로 암모늄아세테이트 6:1 수용액 대신 황산 2 mL를 주입한 것을 제외하고, 상기 실시예 15와 동일한 방법으로 L-메티오닌 결정을 수득하였다. 이 때, 현탁액의 pH는 7.46으로 감소하며 수득한 L-메티오닌 결정의 BD는 480 g/L였다.
비교예 9:
응집제를 첨가하지 않은 것을 제외하고, 상기 실시예 16과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 460 g/L였다.
상기 실시예 15 및 16과 비교예 8 및 9에 의해 제조된 L-메티오닌 결정의 SEM 사진을 도 4에 도시하였다.
pH 증가된 L-메티오닌 수용액의 pH 재조절 시 첨가되는 pH 감소제의 종류에 상관 없이 L-메티오닌 결정의 BD가 매우 높게 증가함을 알 수 있었다.
또한, 상기 실시예 15~16 및 비교예 8~9를 하기 표 4에 정리하였다.
Figure PCTKR2017015709-appb-T000004
(5) 실시예 17~21 및 비교예 10~11: 냉각 속도 차이가 L-메티오닌 결정의 BD값에 미치는 영향 분석
실시예 17:
용매인 물 300 g에 대하여 pH 조절제로 황산 6 g을 첨가한 후, 60 ℃의 온도에서 45 g의 L-메티오닌을 용해시켜 pH 2.50의 L-메티오닌 수용액을 제조하였다. 상기 용액에 응집제로 아세틸살리실산 2 g을 첨가한 후, pH 증가제로 암모늄아세테이트 1:1 수용액(해당 비율은 암모늄아세테이트와 물의 질량 비) 15 mL를 주입하여 L-메티오닌 결정이 생성된 현탁액을 제조하였다. 상기 현탁액을 12 ℃/h의 냉각 속도로 30 ℃까지 냉각한 후 최종 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 690 g/L 였다.
실시예 18:
12 ℃/h의 냉각 속도 대신 9 ℃/h의 냉각 속도로 30 ℃까지 냉각하는 것을 제외하고, 상기 실시예 17과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 730 g/L 였다.
실시예 19:
12 ℃/h의 냉각 속도 대신 6 ℃/h의 냉각 속도로 30 ℃까지 냉각하는 것을 제외하고, 상기 실시예 17과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 750 g/L 였다.
실시예 20:
12 ℃/h의 냉각 속도 대신 3 ℃/h의 냉각 속도로 30 ℃까지 냉각하는 것을 제외하고, 상기 실시예 17과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 760 g/L 였다.
실시예 21:
12 ℃/h의 냉각 속도 대신 1 ℃/h의 냉각 속도로 30 ℃까지 냉각하는 것을 제외하고, 상기 실시예 17과 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 800 g/L 였다.
비교예 10:
응집제를 첨가하지 않은 것을 제외하고, 실시예 19와 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 630 g/L였다.
비교예 11:
용매인 물 300 g에 대하여 pH 조절제로 황산 6 g을 첨가한 후, 암모늄아세테이트 1:1 수용액(해당 비율은 암모늄아세테이트와 물의 질량 비) 15 mL를 주입하였다. 응집제로 사용되는 아세틸살리실산 2 g을 첨가한 후, 60 ℃의 온도에서 45 g의 L-메티오닌을 용해시켜 제조한 용액을 6 ℃/h의 냉각 속도로 30 ℃까지 냉각하여 최종 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 410 g/L 였다.
상기 실시예를 통하여 냉각 속도가 느릴수록 수득된 L-메티오닌 결정의 BD값은 증가됨을 알 수 있었으며, 비교예 11의 실험을 통하여 일반 냉각화 공정에 의해 수득되는 BD값은 현저히 감소함을 알 수 있었다.
실시예 17~21 및 비교예 10~11에 의해 제조된 L-메티오닌 결정의 SEM 사진을 도 5에 나타내었다.
pH 재조절된 L-메티오닌 수용액을 냉각시키는 경우 L-메티오닌 결정의 BD가 매우 높게 증가함을 알 수 있었다.
특히, 상기 본 출원의 냉각 결정화 공정에 의해 수득되는 L-메티오닌 결정은 pH 조절 및 pH 재조절 단계가 없는 일반 냉각 결정화 공정에 의해 수득되는 L-메티오닌 결정 보다 BD가 매우 높음을 알 수 있었다.
또한, 상기 실시예 17~21 및 비교예 10~11을 하기 표 5에 정리하였다.
Figure PCTKR2017015709-appb-T000005
(6) 실시예 22 및 비교예 12~13: L-메티오닌 수용액에 pH 조절제(NaOH) 및 pH 감소제(암모늄아세테이트) 처리에 따른 L-메티오닌 결정의 제조
실시예 22:
용매인 물 300 g에 대하여 pH 조절제로 수산화나트륨 4 g을 첨가한 후, 60 ℃의 온도에서 40 g의 L-메티오닌을 용해시켜 pH 8.15의 L-메티오닌 수용액을 제조하였다. 상기 용액에 응집제로 아세틸살리실산 2 g을 첨가한 후, pH 감소제로 암모늄아세테이트 6:1 수용액(해당 비율은 암모늄아세테이트와 물의 질량 비) 15 mL를 주입하여 L-메티오닌 결정핵이 생성된 현탁액을 제조하였다. 상기 현탁액을 6 ℃/h의 냉각 속도로 30 ℃까지 냉각한 후 최종 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 700 g/L 였다.
비교예 12:
응집제를 첨가하지 않은 것을 제외하고, 실시예 22와 동일한 방법으로 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 660 g/L였다.
비교예 13:
용매인 물 300 g에 대하여 pH 조절제로 수산화나트륨 4 g을 첨가한 후, pH 감소제로 암모늄아세테이트 6:1 수용액(해당 비율은 암모늄아세테이트와 물의 질량 비) 15 mL를 주입하였다. 응집제로 사용되는 아세틸살리실산 2 g을 첨가한 후, 60 ℃의 온도에서 40 g의 L-메티오닌을 용해시켜 제조한 용액을 6 ℃/h의 냉각 속도로 30 ℃까지 냉각하여 최종 L-메티오닌 결정을 수득하였다. 수득한 L-메티오닌 결정의 BD는 400 g/L 였다.
실시예 22 및 비교예 12~13에 의해 제조된 L-메티오닌 결정의 SEM 사진을 도 6에 도시하였다.
pH 재조절된 L-메티오닌 수용액을 냉각시키는 경우 L-메티오닌 결정의 BD가 매우 높게 증가함을 알 수 있었다.
특히, 상기 본 출원의 냉각 결정화 공정에 의해 수득되는 L-메티오닌 결정은 pH 조절 및 pH 재조절 단계가 없는 일반 냉각 결정화 공정에 의해 수득되는 L-메티오닌 결정 보다 BD가 매우 높음을 알 수 있었다.
또한, 상기 실시예 22 및 비교예 12~13을 하기 표 6에 정리하였다.
Figure PCTKR2017015709-appb-T000006
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위, 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (12)

  1. (a) L-메티오닌을 포함하는 수용액에 pH 조절제를 첨가하여 pH를 높이거나 낮추는 단계(pH조절 단계);
    (b) L-메티오닌을 포함하는 수용액을 가온하는 단계(가온 단계); 및
    (c) 상기 조절 및 가온된 L-메티오닌을 포함하는 수용액으로부터 L-메티오닌 결정을 석출하는 단계(결정석출 단계)
    를 포함하는 L-메티오닌 결정의 제조방법.
  2. 제1항에 있어서,
    상기 (b) 가온 단계 및 (c) 결정석출 단계 사이에, 또는 (c) 결정석출 단계에 (b-2) L-메티오닌을 포함하는 수용액에 pH 조절제를 첨가하여 pH를 높이거나 낮추는 단계(pH 재조절 단계)를 추가로 포함하는 L-메티오닌 결정의 제조방법.
  3. 제2항에 있어서,
    상기 (b-2) pH 재조절 단계 전에 (b-1) L-메티오닌을 포함하는 수용액에 응집제를 첨가하는 단계(응집제 첨가 단계)를 추가로 포함하는, L-메티오닌 결정의 제조방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 (c) 결정석출 단계 전 또는 (c) 결정석출 단계 중에 (b-3) L-메티오닌을 포함하는 수용액을 냉각하는 단계(냉각 단계)를 추가로 포함하는, L-메티오닌 결정의 제조방법.
  5. 제2항 또는 제3항에 있어서,
    상기 pH 조절 단계의 pH 조절제가 pH 증가제인 경우, 상기 pH 재조절단계의 pH 조절제는 pH 감소제이고, 상기 pH 조절 단계의 pH 조절제가 pH 감소제인 경우, 상기 pH 재조절 단계의 pH 조절제는 pH 증가제인, L-메티오닌 결정의 제조방법.
  6. 제3항에 있어서,
    상기 응집제는 방향족 화합물인, L-메티오닌 결정의 제조방법.
  7. 제6항에 있어서,
    상기 방향족 화합물은 아세틸살리실산(Acetylsalicylic Acid), 아세트아미노펜(Acetaminophen), 벤조산(Benzoic Acid), 살리실산(Salicylic Acid), 갈산(Gallic Acid), L-티로신(L-Tyrosine) 및 L-페닐알라닌(L-Phenylalanine)으로 이루어진 군으로부터 선택되는 하나 이상의 화합물인, L-메티오닌 결정의 제조방법.
  8. 제3항에 있어서,
    상기 응집제는 L-메티오닌 100중량부에 대하여 2 내지 7중량부로 첨가되는, L-메티오닌 결정의 제조방법.
  9. 제1항에 있어서,
    상기 가온 단계는 40 내지 90℃의 온도까지 가온하는, L-메티오닌 결정의 제조방법.
  10. 제4항에 있어서,
    상기 냉각 단계는 15 내지 35℃의 온도까지 냉각하는, L-메티오닌 결정의 제조방법.
  11. 제4항에 있어서,
    상기 냉각 단계는 20℃/h 이하의 속도로 냉각하는, L-메티오닌 결정의 제조방법.
  12. 제1항의 제조방법에 의해 제조된, L-메티오닌 결정.
PCT/KR2017/015709 2016-12-30 2017-12-29 결정화 기술을 이용한 l-메티오닌 결정의 제조방법 WO2018124803A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780081676.XA CN110114341B (zh) 2016-12-30 2017-12-29 使用结晶技术制备l-甲硫氨酸晶体的方法
EP17886142.3A EP3564213B1 (en) 2016-12-30 2017-12-29 Method for preparing l-methionine crystals using crystallization technique
US16/469,852 US10870619B2 (en) 2016-12-30 2017-12-29 Method for preparing L-methionine crystals using crystallization technique
JP2019531394A JP6893987B2 (ja) 2016-12-30 2017-12-29 結晶化技術を用いたl−メチオニン結晶の製造方法
ES17886142T ES2925653T3 (es) 2016-12-30 2017-12-29 Método para preparar cristales de L-metionina mediante el uso de la técnica de cristalización

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0183571 2016-12-30
KR1020160183571A KR20180078621A (ko) 2016-12-30 2016-12-30 결정화 기술을 이용한 l-메티오닌 결정의 제조방법

Publications (1)

Publication Number Publication Date
WO2018124803A1 true WO2018124803A1 (ko) 2018-07-05

Family

ID=62709773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015709 WO2018124803A1 (ko) 2016-12-30 2017-12-29 결정화 기술을 이용한 l-메티오닌 결정의 제조방법

Country Status (7)

Country Link
US (1) US10870619B2 (ko)
EP (1) EP3564213B1 (ko)
JP (1) JP6893987B2 (ko)
KR (1) KR20180078621A (ko)
CN (1) CN110114341B (ko)
ES (1) ES2925653T3 (ko)
WO (1) WO2018124803A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020254403A1 (en) 2019-06-18 2020-12-24 Evonik Operations Gmbh Process for the preparation of d,l-methionine
CN113856235A (zh) * 2021-09-29 2021-12-31 浙江大华技术股份有限公司 降温结晶控制方法、装置、电子设备和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076040A (ko) * 1997-03-13 2000-12-26 요시히코 시오노 엘-메티오닌 감마-리아제 결정의 제조방법
JP2004292324A (ja) 2003-03-26 2004-10-21 Nippon Soda Co Ltd メチオニンの精製方法
US20050089975A1 (en) * 2003-07-08 2005-04-28 Novus International Methionine recovery processes
KR20060010333A (ko) * 2004-07-28 2006-02-02 주식회사 팬택앤큐리텔 커버의 개폐가 용이한 이동 통신 단말기
KR20120129994A (ko) * 2010-12-29 2012-11-28 씨제이제일제당 (주) L-메티오닌 및 관련 산물의 생산방법
CN104152524A (zh) * 2014-08-08 2014-11-19 山东阳成生物科技有限公司 L-蛋氨酸的生产工艺
KR20140138946A (ko) 2012-03-20 2014-12-04 에보닉 인두스트리에스 아게 메티오닌의 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU386929A1 (ru) * 1971-07-26 1973-06-21 , С. В. царенко Волжский завод органического синтезас Способ очистки синтетического д1-метионина
FR2708267B1 (fr) * 1993-07-28 1995-09-01 Rhone Poulenc Nutrition Animal Méthode de cristallisation de la méthionine.
JP4482973B2 (ja) * 1998-09-11 2010-06-16 住友化学株式会社 メチオニンの製造方法
JP2004175715A (ja) 2002-11-27 2004-06-24 Nippon Soda Co Ltd メチオニンの晶析方法
DE10359668A1 (de) 2003-12-18 2005-07-14 Basf Ag Verfahren zur Herstellung von Methionin
KR101164711B1 (ko) * 2009-02-27 2012-07-11 씨제이제일제당 (주) 미네랄 첨가와 산처리를 이용하여 메치오닌의 용해도를 증가시키는 방법
CN102925530A (zh) * 2012-11-04 2013-02-13 宁波市远发生物工程有限公司 一种l-蛋氨酸的制备方法
CN104744326B (zh) * 2015-02-12 2016-08-10 山东新和成氨基酸有限公司 一种连续制备高堆积密度甲硫氨酸结晶的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076040A (ko) * 1997-03-13 2000-12-26 요시히코 시오노 엘-메티오닌 감마-리아제 결정의 제조방법
JP2004292324A (ja) 2003-03-26 2004-10-21 Nippon Soda Co Ltd メチオニンの精製方法
US20050089975A1 (en) * 2003-07-08 2005-04-28 Novus International Methionine recovery processes
KR20060010333A (ko) * 2004-07-28 2006-02-02 주식회사 팬택앤큐리텔 커버의 개폐가 용이한 이동 통신 단말기
KR20120129994A (ko) * 2010-12-29 2012-11-28 씨제이제일제당 (주) L-메티오닌 및 관련 산물의 생산방법
KR20140138946A (ko) 2012-03-20 2014-12-04 에보닉 인두스트리에스 아게 메티오닌의 제조 방법
CN104152524A (zh) * 2014-08-08 2014-11-19 山东阳成生物科技有限公司 L-蛋氨酸的生产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564213A4

Also Published As

Publication number Publication date
KR20180078621A (ko) 2018-07-10
EP3564213A1 (en) 2019-11-06
EP3564213A4 (en) 2020-08-12
JP2020500923A (ja) 2020-01-16
JP6893987B2 (ja) 2021-06-23
EP3564213B1 (en) 2022-08-10
US10870619B2 (en) 2020-12-22
CN110114341A (zh) 2019-08-09
ES2925653T3 (es) 2022-10-19
CN110114341B (zh) 2021-04-06
US20190315682A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
WO2020145514A1 (ko) L-글루포시네이트 제조 방법
WO2018124803A1 (ko) 결정화 기술을 이용한 l-메티오닌 결정의 제조방법
WO2020145627A1 (ko) 글루포시네이트 제조 방법
WO2018016781A1 (ko) 슬래그를 포함하는 시멘트 콘크리트용 조강혼합물 및 이의 제조방법
WO2014058268A1 (ko) 피마살탄 포타슘염의 일수화물 결정, 그 제조방법, 및 그를 포함하는 약제학적 조성물
WO2015199390A1 (ko) 회전 점도 조절이 용이한 액정 조성물
WO2024128530A1 (ko) 기압을 이용한 고분자 분리막의 제조 방법
EP2247644A2 (en) Ph-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2020080625A1 (ko) 요오드를 포함한 다이아세틸렌계 유방성 액정 혼합물을 이용한 코팅형 편광필름 및 그 제조방법
WO2015167235A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2021118003A1 (ko) 신규 혈관누출 차단제의 고수율 제조방법
WO2012177043A2 (ko) 광학 필름
WO2022220612A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
EP3224257A1 (en) Novel method for preparing thienopyrimidine compound and intermediates used therein
WO2022154537A1 (ko) 3-하이드록시프로피온산염의 결정 및 3-하이드록시프로피온산의 회수 공정
WO2021085997A1 (ko) 공융용매를 이용한 우르소데옥시콜산의 제조방법
WO2021040203A1 (ko) 벤조피라논 화합물의 염 및 결정형, 이의 제조 방법, 및 이를 포함하는 약학적 조성물
WO2015102234A1 (ko) 트리알킬 오르소에스테르를 이용한 무수 이온성 액체 직접 합성법 개발
WO2021060691A1 (ko) 벤조피라논 화합물의 결정형, 이의 제조 방법, 및 이를 포함하는 약학적 조성물
WO2022220610A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2021261952A1 (ko) 발효액으로부터 아미노산 과립의 제조방법
WO2018124644A1 (ko) 싸이에노피리미딘 화합물의 신규 제조방법 및 중간체
WO2019156383A1 (ko) 아크릴 필름
WO2016052930A1 (ko) 고순도의 (r)-9-[2-(포스포노메톡시)프로필]아데닌의 제조방법
WO2021230561A1 (ko) 결정성 에리불린 염

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886142

Country of ref document: EP

Effective date: 20190730