WO2020145627A1 - 글루포시네이트 제조 방법 - Google Patents

글루포시네이트 제조 방법 Download PDF

Info

Publication number
WO2020145627A1
WO2020145627A1 PCT/KR2020/000273 KR2020000273W WO2020145627A1 WO 2020145627 A1 WO2020145627 A1 WO 2020145627A1 KR 2020000273 W KR2020000273 W KR 2020000273W WO 2020145627 A1 WO2020145627 A1 WO 2020145627A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
glufosinate
substituted
intermediate compound
Prior art date
Application number
PCT/KR2020/000273
Other languages
English (en)
French (fr)
Inventor
강민규
김일출
이인성
이창석
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Publication of WO2020145627A1 publication Critical patent/WO2020145627A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/301Acyclic saturated acids which can have further substituents on alkyl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/02Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C219/04Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C219/06Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having the hydroxy groups esterified by carboxylic acids having the esterifying carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/16Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions not involving the amino or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/22Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • It relates to a method for producing glufosinate.
  • Glufosinate was developed in the 1970s. Glufosinate has been widely used as a herbicide because of its broad-spectrum systemic herbicide properties. It was confirmed that the property of the permeable herbicide of glufosinate was an effect by the L-isomer. Accordingly, various methods of preparing the L-isomer of glufosinate have been studied. For example, a method was used to prepare the L-isomer of glufosinate by selectively separating the L-isomer from the racemic mixture of D and L-isomers. In this method, the yield of the L-isomer is reduced to less than half, and unnecessary D-isomer is generated as an excess by-product. In addition, a process is complicated because a resolving agent, a resolving device, and the like are required for separation of the L-isomer.
  • One aspect of the present application is to provide a method for simply preparing L-glufosinate having high optical purity.
  • Preparing a third intermediate compound represented by Chemical Formula 4 by reacting the second intermediate compound with a halogenating agent and at least one compound selected from R 2 -B and R 2 -E;
  • Gluphocy containing the step of preparing a L- glufosinate or a salt thereof represented by the following formula (7) by hydrolysis reaction of the fourth intermediate compound under a third acid catalyst or a third base catalyst
  • a method of making nate is provided:
  • R 2 and R 3 are each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkenyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkynyl group having 1 to 6 carbon atoms, a substitution Or an unsubstituted cycloalkyl group having 3 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 2 to 10 carbon atoms, or -Si(R b )(R c ) (R d ), R b , R c and R d are independently substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms or substituted or unsubstituted aryl groups having 6 to 20 carbon atoms,
  • A is selected from a covalent bond, -O-, and -S-,
  • B and E are each independently selected from a hydroxyl group (-OH), Cl, Br, F, I, and hydrogen,
  • X is halogen
  • Substituents of the alkyl group, alkenyl group, alkynyl group, cycloalkyl group, aryl group, and heteroaryl group are each independently halogen, carboxyl group (-COOH), amino group (-NH 2 ), nitro group (-NO 2 ), cyano group (-CN), an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a cycloalkyl group having 3 to 10 carbon atoms.
  • L-homoserine or a derivative thereof is used as a starting material, and by having a new synthetic route, simple production of L-glutosinate with high optical purity is possible.
  • first, second, third, and fourth may be used to describe various components, but the components should not be limited by these terms. The terms are only used to distinguish one component from other components.
  • L-glufosinate' herein is the L-isomer of glufosinate.
  • D-glufosinate' in this name is the D-isomer of glufosinate.
  • %enantiomeric excess (%ee)' refers to the enantiomeric purity of a sample, ie the percentage of one enantiomer that exceeds the other enantiomers in the sample.
  • the enantiomeric excess of L-glutosinate is the percentage of L-glutosinate in excess of D-glutosinate in glufosinate.
  • the mirror image excess amount of L-glufosinate is represented by Equation 1 below.
  • a method for preparing glufosinate includes preparing a first intermediate compound represented by Chemical Formula 2 by reacting L-homoserine represented by Chemical Formula 1 under a first acid catalyst; Preparing a second intermediate compound represented by Chemical Formula 3 by reacting the first intermediate compound with an R 1 -AR 1 ′ compound under a first base catalyst; Preparing a second intermediate compound represented by Chemical Formula 3 by reacting the first intermediate compound with a halogenating agent and at least one compound selected from R 2 -B and R 2 -E; Preparing a third intermediate compound represented by Formula 5 by reacting the second intermediate compound with a phosphorus compound represented by Formula 4 under a second acid catalyst or a first base catalyst; And preparing a L-glufosinate represented by Chemical Formula 6 or a salt thereof by subjecting the third intermediate compound to a hydrolysis reaction under a third acid catalyst or a second base catalyst:
  • R 2 and R 3 are each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkenyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkynyl group having 1 to 6 carbon atoms, a substitution Or an unsubstituted cycloalkyl group having 3 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 2 to 10 carbon atoms, or -Si(R b )(R c ) (R d ), R b , R c and R d are independently substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms or substituted or unsubstituted aryl groups having 6 to 20 carbon atoms,
  • A is selected from a covalent bond, -O-, and -S-,
  • B and E are each independently selected from a hydroxyl group (-OH), Cl, Br, F, I, and hydrogen,
  • X is halogen
  • Substituents of the alkyl group, alkenyl group, alkynyl group, cycloalkyl group, aryl group, and heteroaryl group are each independently halogen, carboxyl group (-COOH), amino group (-NH 2 ), nitro group (-NO 2 ), cyano group (-CN), an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms.
  • L-homoserine as a starting material, it is possible to simply prepare L-glufosinate having high optical purity by going through a synthetic route to obtain an intermediate compound having a lactone ring and a halogenated compound.
  • the first intermediate compound represented by Chemical Formula 2 may be prepared by reacting L-homoserine represented by Chemical Formula 1 under the first acid catalyst.
  • the lactone compound represented by the following Chemical Formula 2 can be obtained by lactonating L-homoserine represented by Chemical Formula 1 under a first acid catalyst.
  • L-homoserine represented by Chemical Formula 1 may form a lactone ring by the first acid catalyst.
  • L-homoserine represented by Chemical Formula 1 may be prepared, for example, from a fermentation broth containing L-homoserine or a precursor of L-homoserine.
  • the term,'fermentation broth comprising L-homoserine or a precursor of L-homoserine' may be a fermentation broth comprising a precursor of L-homoserine and/or L-homoserine produced from a fermentation process.
  • the fermentation broth may be a fermentation broth obtained by culturing microorganisms in a medium containing sugar, or a fermentation broth obtained by enzymatic conversion of a fermentation broth obtained by culturing microorganisms.
  • a fermentation broth containing a precursor of L-homoserine and/or L-homoserine is produced by directly culturing microorganisms in a medium containing sugar to directly produce a precursor of L-homoserine and/or L-homoserine. It may be a fermentation broth or a fermentation broth containing L-homoserine and/or precursors of L-homoserine obtained by enzymatic conversion of amino acids produced by culturing microorganisms in a medium containing sugar.
  • the type of microorganism used in the preparation of the fermentation broth containing the precursor of L-homoserine and/or L-homoserine is not particularly limited and direct fermentation of the precursor of L-homoserine and/or L-homoserine in the art Any microorganism that can be produced by production or enzyme conversion is possible.
  • the precursor of L-homoserine is, for example, O-acetyl-L-homoserine, O-succinyl-L-homoserine, and the like, but is not limited to these and is obtained in the fermentation process and L-homoserine is used in the art. Any precursor that can be obtained is possible.
  • the content of the first acid catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, 0.1 to 30 parts by weight, and 0.1 to 100 parts by weight of L-homoserine represented by Chemical Formula 1 It may be 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight. If the content of the first acid catalyst is too low, the effect on the reaction rate is negligible, and if the content of the first acid catalyst is too large, by-products may increase.
  • the step of preparing the first intermediate compound may be performed under a solvent or in a neat condition without a solvent.
  • the solvent can be water or an organic solvent.
  • the solvent can be, for example, water or an organic solvent.
  • the organic solvent is, for example, alcohol, toluene, benzene, tetrahydrofuran, acetone, chloroform, dichloromethane, acetonitrile, and the like, but is not limited thereto, and any solvent used with an acid catalyst in the art may be used.
  • the alcohol may be, for example, methanol, ethanol, propanol, butanol, pentanol, and the like, but may not be limited thereto.
  • the pH of the aqueous solution containing water may be 1 to 3. That is, in the step of preparing the first intermediate compound using water as a solvent, the reaction solution may be an acidic aqueous solution having a pH of 1 to 3. The first intermediate compound can be more easily prepared by the reaction solution having a pH in this range.
  • the lactone forming reaction may be performed at a temperature of, for example, 20 to 150°C, 20 to 100°C, 30 to 90°C, 40 to 80°C, or 50 to 70°C.
  • the lactone forming reaction in the step of preparing the first intermediate compound is, for example, 0.1 to 20 hours, 0.1 to 15 hours, 0.1 to 10 hours, 0.1 to 6 hours, 0.5 to 5 hours, 1 to 4 hours, or 2 to 4 hours. Can be performed for an hour.
  • the first intermediate compound can be more easily prepared by performing the lactone forming reaction in this temperature range and time range.
  • the yield of the first intermediate compound is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% Or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the enantiomeric excess of the first intermediate compound having L-form is, for example, 10% ee or more, 20% ee or more, 30% ee or more, 40% ee or more , Over 50% ee, over 60% ee, over 70% ee, over 80% ee, over 90% ee, over 91% ee, over 92% ee, over 93% ee, over 94% ee, over 95% ee , 96% ee or more, 97% ee or more, 98% ee or more, or 99% ee or more.
  • the first intermediate compound represented by Formula 2 is reacted with the R 1 -AR 1 ′ compound under the first base catalyst to form the second intermediate compound represented by Formula 3 Can prepare.
  • the first intermediate compound represented by Chemical Formula 2 is reacted with a R 1 -AR 1 ′ compound under a first base catalyst to obtain a lactone compound in which R 1 as a protecting group is introduced into nitrogen.
  • L-glufosinate having improved optical purity can be more easily prepared.
  • the R 1 -AR 1 ′ compound may
  • the content of the R 1 -AR 1 ′ compound is, for example, 1 to 10 moles, 1 to 5 moles, 1 to 4 moles, 1 to 3 moles, 1 to 2 moles, relative to 1 mole of the first intermediate compound represented by Formula 2 , 1 to 1.5 moles, 0.1 to 1.3 moles, or 1 to 1.1 moles.
  • the first base catalyst is, for example, NH 3 , KOH, NaOH, CaSO 4 , LiOH, NaH, KH, NaOCH 3 , NaOCH 2 CH 3 , NaOC(CH 3 ) 3 , KO C(CH 3 ) 3 , K 2 CO 3 , Na 2 CO 3 , 1,8-diazabicyclo[5.4.0]undeca-7-ene (DBU), 1,5-diazabicyclo[4.3.0]nona-5-ene (DBN) , Tri(C 1 -C 4 alkyl)amine, pyridine, lithium diisopropylamide (LDA), hexamethyldisilazane lithium (LiHMDS), hexamethyldisilazane potassium (KHMDS), and hexamethyldisilazane sodium One or more selected from (NaHMDS), but the first base catalyst is not necessarily limited to them, and any one can be used as long as it is used as a base catalyst in the art.
  • the content of the first base catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, 0.1 to 30 parts by weight, and 0.1 to 100 parts by weight of L-homoserine represented by Chemical Formula 1 It may be 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight.
  • the content of the first base catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, and 0.1 to 30 parts by weight with respect to 100 parts by weight of the first intermediate compound represented by Formula 2 , 0.1 to 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight. If the content of the first base catalyst is too low, the effect on the reaction rate is negligible, and if the content of the first base catalyst is too large, by-products may increase.
  • the step of preparing the second intermediate compound may be performed under a solvent or in a neat condition without a solvent.
  • the solvent can be, for example, water or an organic solvent.
  • the organic solvent is, for example, alcohol, toluene, benzene, tetrahydrofuran, acetone, chloroform, dichloromethane, acetonitrile, and the like, but is not limited thereto, and any solvent used with an acid catalyst in the art may be used.
  • Alcohol is not limited to, for example, methanol, ethanol, propanol, butanol, pentanol, and the like.
  • the solvent may in particular be dichloromethane.
  • the lactone forming reaction in which the protecting group is introduced is performed at a temperature of, for example, 10 to 150°C, 10 to 100°C, 10 to 70°C, 10 to 50°C, or 15 to 35°C Can be.
  • the lactone forming reaction in the step of preparing the first intermediate compound is, for example, 0.1 to 20 hours, 1 to 20 hours, 5 to 20 hours, 10 to 20 hours, 12 to 18 hours, 13 to 17 hours, or 14 to 16 hours. Can be performed for an hour.
  • the second intermediate compound can be more easily prepared by performing the lactone forming reaction in this temperature range and time range.
  • the yield of the second intermediate compound is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% Or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the enantiomeric excess of the first intermediate compound having L-form is, for example, 10% ee or more, 20% ee or more, 30% ee or more, 40% ee or more , Over 50% ee, over 60% ee, over 70% ee, over 80% ee, over 90% ee, over 91% ee, over 92% ee, over 93% ee, over 94% ee, over 95% ee , 96% ee or more, 97% ee or more, 98% ee or more, or 99% ee or more.
  • the second intermediate compound is halogenated with a halogenation agent and at least one compound selected from R 2 -B and R 2 -E to form a chemical formula.
  • a third intermediate compound represented by 4 can be prepared.
  • the halogenated compound represented by Chemical Formula 4 is obtained by subjecting a lactone compound introduced with the protective group represented by Chemical Formula 3 to a halogenation agent and at least one compound selected from R 2 -B and R 2 -E to perform a ring opening reaction and a halogenation reaction. Can lose.
  • a lactone compound introduced with a protecting group represented by Chemical Formula 3 reacts with halogen of a halogenating agent, and after ring opening reaction proceeds, R of at least one compound selected from R 2 -B and R 2 -E 2 -Substitution reaction may proceed to form a third intermediate compound.
  • R a is tert-butyl (tert- butyl)
  • R 2 and R 3 independently of each other are hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, Phenyl, naphthyl, -Si(C 5 H 6 )(CH 3 ) 2 , -Si(C 6 H 5 ) 2 (CH 3 ), -Si(C 5 H 6 ) 3 , -Si(CH 3 ) 3 , -Si(CH 2 CH 3 ) 3 , -Si(CH 2 CH 3 ) 2 (CH 3 ), -Si(CH 2 CH 3 )(CH 3 ) 2 , or -Si(tert-
  • Halogenating agents are, for example, HCl, HBr, HI, phosgene, SOCl 2 , oxalyl chloride, triethylsilane (Et 3 SiH)+PdCl 2 +MeI, POCl 3 , PCl 3 , PCl 5 , PBr 3 , PI 3 , H 2 SO 4 +KBr, P+Cl 2 , P+Br 2 , P+I 2 , TiCl 4 , ZnCl 2 , and one or more selected from BBr 3 , but halogenating agents must It is not limited to, and any one used as a halogenating agent in the art may be used.
  • the halogenating agent can in particular be BBr 3 .
  • the content of the halogenating agent is, for example, 1 to 10 moles, 1 to 5 moles, 1 to 4 moles, 1 to 3 moles, 1 to 2 moles, 1 to 1.5 moles to 1 mole of the second intermediate compound represented by Formula 3 , 0.1 to 1.3 moles, or 1 to 1.1 moles.
  • R 2 -B compounds or R 2 -E compounds can be used in the reaction to form the third intermediate compound.
  • both R 2 -B compounds and R 2 -E compounds can be used in the reaction to form the third intermediate compound.
  • the R 2 -B compound and the R 2 -E compound may be different from each other.
  • the R 2 -B compound and the R 2 -E compound may independently of each other be for example R 2 -X (X is Cl, Br or I), R 2 -H, or R 2 -OH.
  • the R 2 -B compound or R 2 -E compound is, for example, X-Si(R b )(R c )(R d )(X is Cl, Br or I) and R b , R c and R d are It may be an independently substituted or unsubstituted alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms.
  • R 2 -B compound or R 2 -E compound is, for example, X-Si(C 5 H 6 )(CH 3 ) 2 , X-Si(C 6 H 5 ) 2 (CH 3 ), X-Si(C 5 H 6 ) 3 , X-Si(CH 3 ) 3 , X-Si(CH 2 CH 3 ) 3 , X-Si(CH 2 CH 3 ) 2 (CH 3 ), X-Si(CH 2 CH 3 ) (CH 3 ) 2 , or X-Si(tert-butyl) 3 (X is Cl, Br or I).
  • R 2 -B compound or R 2 -E compound is, for example, H-Si(C 5 H 6 )(CH 3 ) 2 , H-Si(C 6 H 5 ) 2 (CH 3 ), H-Si(C 5 H 6 ) 3 , H-Si(CH 3 ) 3 , H-Si(CH 2 CH 3 ) 3 , H-Si(CH 2 CH 3 ) 2 (CH 3 ), H-Si(CH 2 CH 3 ) (CH 3 ) 2 , or H-Si(tert-butyl) 3 .
  • the R 2 -B compound or the R 2 -E compound may be, for example, an alcohol having 1 to 6 carbon atoms.
  • R 2 -B compound and R 2 -E compound are independently of each other, for example, methanol, ethanol, propanol, butanol, pentanol, hexanol, benzyl alcohol, phenol, naphthol, Cl-Si(CH 3 ) 3 , Br- Si(CH 3 ) 3 , I-Si(CH 3 ) 3 , Cl-Si(CH 3 )(tert-butyl) 2 , Br-Si(CH 3 )(tert-butyl) 2 , I-Si(CH 3 )(tert-butyl) 2 , Cl-Si(C 6 H 5 ) 2 (tert-butyl), Br-Si(C 6 H 5 ) 2 (tert-butyl), I-Si(C 6 H 5 ) 2 (tert-butyl), Cl-Si(C 6 H 5 ) 2 (tert-butyl), and triisopropylsilyl trifluo
  • the R 2 -B compound is a compound containing an alkyl group
  • the R 2 -E compound can be a compound containing a silyl group.
  • the R 2 -B compound is an alcohol such as methanol or ethanol
  • the R 2 -E compound may be Cl-Si(C 2 H 5 ) 3 or H-Si(C 2 H 5 ) 3 .
  • the contents of the R 2 -B compound and the R 2 -E compound are each independently 1 to 100 moles, 1 to 10 moles, 1 to 5 moles, and 1 to 1 mole of the second intermediate compound represented by Formula 3, for example. It may be 4 moles, 1 to 3 moles, 1 to 2 moles, 1 to 1.5 moles, 0.1 to 1.3 moles, or 1 to 1.1 moles. It is also possible that at least one of the R 2 -B compound and the R 2 -E compound is used as a solvent.
  • the step of preparing the third intermediate compound may be performed under a solvent or in a neat condition without a solvent.
  • the solvent can be water or an organic solvent.
  • the organic solvent is, for example, alcohol, toluene, benzene, tetrahydrofuran, acetone, chloroform, dichloromethane, acetonitrile, and the like, but is not limited thereto, and any solvent used with an acid catalyst in the art may be used.
  • the alcohol may be, for example, methanol, ethanol, propanol, butanol, pentanol, and the like, but may not be limited thereto.
  • the solvent may in particular be dichloromethane.
  • the ring opening reaction and/or the substitution reaction are, for example, -20 to 150°C, -10 to 100°C, -5 to 80°C, -5 to 50 °C, or may be carried out at a temperature of -5 to 30 °C.
  • the ring-opening reaction and/or the substitution reaction is, for example, 0.1 to 30 hours, 1 to 25 hours, 5 to 25 hours, 10 to 25 hours, 14 to 25 hours, 15 to 23 hours, 17 to 21 hours, or 18 to 20 hours.
  • the second intermediate compound can be more easily prepared by performing the ring-opening reaction and/or the substitution reaction in this temperature range and time range.
  • the yield of the second intermediate compound is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% Or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the enantiomeric excess of the second intermediate compound having L-form is, for example, 10% ee or more, 20% ee or more, 30% ee or more, 40% ee or more , Over 50% ee, over 60% ee, over 70% ee, over 80% ee, over 90% ee, over 91% ee, over 92% ee, over 93% ee, over 94% ee, over 95% ee , 96% ee or more, 97% ee or more, 98% ee or more, or 99% ee or more.
  • the third intermediate compound is reacted with the phosphorus-based compound represented by Formula 6 under the second acid catalyst or the second base catalyst to obtain the formula
  • the fourth intermediate compound represented by 6 can be prepared.
  • the fourth intermediate compound represented by Chemical Formula 6 can be obtained by reacting the halogenated compound represented by Chemical Formula 4 with a phosphorus-based compound under a second acid catalyst or a second base catalyst.
  • R a is tert-butyl (tert-butyl)
  • benzyl benzyl
  • 9-fluorenyl 9-flurorenyl
  • R 2 and R 3 are independently of each other hydrogen, methyl, ethyl, propyl, Butyl, pentyl, hexyl, benzyl, phenyl, naphthyl, -Si(C 5 H 6 )(CH 3 ) 2 , -Si(C 6 H 5 ) 2 (CH 3 ), -Si(C 5 H 6 ) 3 , -Si(CH 3 ) 3 , -Si(CH 2 CH 3 ) 3 , -Si(CH 2 CH 3 ) 2 (CH 3 ), -S
  • the second base catalyst is, for example, NH 3 , KOH, NaOH, CaSO 4 , LiOH, NaH, KH, NaOCH 3 , NaOCH 2 CH 3 , NaOC(CH 3 ) 3 , KO C(CH 3 ) 3 , K 2 CO 3 , Na 2 CO 3 , 1,8-diazabicyclo[5.4.0]undeca-7-ene (DBU), 1,5-diazabicyclo[4.3.0]nona-5-ene (DBN) , Tri(C 1 -C 4 alkyl)amine, pyridine, n-butyllithium, lithium diisopropylamide (LDA), hexamethyldisilazane lithium (LiHMDS), hexamethyldisilazane potassium (KHMDS), and hexa One or more selected from methyldisilazane sodium (NaHMDS), but the second base catalyst is not necessarily limited to these, and any of them can be used as long as it is
  • the content of the second base catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, 0.1 to 30 parts by weight, and 0.1 to 100 parts by weight of L-homoserine represented by Chemical Formula 1 It may be 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight.
  • the content of the second base catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, and 0.1 to 30 parts by weight with respect to 100 parts by weight of the third intermediate compound represented by Formula 5 , 0.1 to 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight. If the content of the second base catalyst is too low, the effect on the reaction rate is negligible, and if the content of the first base catalyst is too large, by-products may increase.
  • the step of preparing the fourth intermediate compound may be performed under a solvent or in a neat condition without a solvent.
  • the solvent can be water or an organic solvent.
  • the organic solvent is, for example, alcohol, toluene, benzene, tetrahydrofuran, acetone, chloroform, dichloromethane, acetonitrile, and the like, but is not limited thereto, and any solvent used with an acid catalyst in the art may be used.
  • Alcohol is not limited to, for example, methanol, ethanol, propanol, butanol, pentanol, and the like.
  • the pH of the aqueous solution containing water may be 7 to 10.
  • the solvent may particularly be terahydrofuran.
  • a second acid catalyst can be used instead of the second base catalyst.
  • the content of the second acid catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, 0.1 to 30 parts by weight, and 0.1 to 100 parts by weight of L-homoserine represented by Chemical Formula 1 It may be 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight.
  • the content of the second acid catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, and 0.1 to 30 parts by weight with respect to 100 parts by weight of the third intermediate compound represented by Formula 5 , 0.1 to 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight. If the content of the second acid catalyst is too low, the effect on the reaction rate is negligible, and if the content of the second acid catalyst is too large, by-products may increase.
  • the reaction in the step of preparing the fourth intermediate compound is, for example, at a temperature of -100 to 150°C, -80 to 100°C, -80 to 50°C, -80 to 40°C, or -80 to 30°C. Can be performed.
  • the reaction in the step of preparing the fourth intermediate compound is, for example, for 0.1 to 20 hours, 1 to 18 hours, 5 to 15 hours, 6 to 14 hours, 8 to 14 hours, 10 to 14 hours, or 11 to 13 hours Can be performed.
  • the fourth intermediate compound can be more easily prepared by performing the reaction in this temperature range and time range.
  • organometallic compounds such as lithium diisopropylamide (LDA), hexamethyldisilazane lithium (LiHMDS), hexamethyldisilazane potassium (KHMDS), sodium hexamethyldisilazane (NaHMDS), etc.
  • LDA lithium diisopropylamide
  • LiHMDS hexamethyldisilazane lithium
  • KHMDS hexamethyldisilazane potassium
  • NaHMDS sodium hexamethyldisilazane
  • the reaction temperature is -80 to -25°C
  • the solvent may be an organic solvent.
  • the organic solvent may be, for example, tetrahydrofuran, diethyl ether, hexane, acetonitrile, or the like.
  • the yield of the fourth intermediate compound is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% Or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the enantiomeric excess of the fourth intermediate compound having L-form is, for example, 10% ee or more, 20% ee or more, 30% ee or more, 40% ee or more , Over 50% ee, over 60% ee, over 70% ee, over 80% ee, over 90% ee, over 91% ee, over 92% ee, over 93% ee, over 94% ee, over 95% ee , 96% ee or more, 97% ee or more, 98% ee or more, or 99% ee or more.
  • the fourth intermediate compound is hydrolyzed under a third acid catalyst or a third base catalyst to obtain Chemical Formula 7
  • the indicated L-glufosinate or salt thereof can be prepared.
  • L-4 represented by Chemical Formula 7 by removing terminal functional groups by hydrolysis under a third acid catalyst or a third base catalyst from the fourth intermediate compound represented by Chemical Formula 6 Glufosinate or a salt thereof is obtained.
  • R a is tert-butyl, benzyl, 9-flu Orenyl (9-flurorenyl)-CH 2 -, R 2 and R 3 independently of each other hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, phenyl, naphthyl, -Si(CH 3 ) (tert-butyl) 2 , -Si(C 6 H 5 ) 2 (tert-butyl), -Si(iso-propyl) 3 , -Si(C 5 H 6 )(CH 3 ) 2 , -Si(C 6 H 5 ) 2 (CH 3 ), -Si(C 5 H 6 ) 3 , -Si(CH 3 ) 3 , -Si(CH 2 CH 3 )
  • the content of the third acid catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, 0.1 to 30 parts by weight, and 0.1 to 100 parts by weight of L-homoserine represented by Chemical Formula 1 It may be 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight.
  • the content of the third acid catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, and 0.1 to 30 parts by weight with respect to 100 parts by weight of the fourth intermediate compound represented by Formula 6 , 0.1 to 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight. If the content of the third acid catalyst is too low, the effect on the reaction rate is negligible, and if the content of the third acid catalyst is too large, by-products may increase.
  • the step of preparing L-glufosinate may be performed under a solvent or in a neat condition without a solvent.
  • the solvent can be water or an organic solvent.
  • the organic solvent is, for example, alcohol, toluene, benzene, tetrahydrofuran, acetone, chloroform, dichloromethane, acetonitrile, and the like, but is not limited thereto, and any solvent used with an acid catalyst in the art may be used.
  • Alcohol is not limited to, for example, methanol, ethanol, propanol, butanol, pentanol, and the like.
  • the pH of the aqueous solution containing water may be 1 to 3.
  • the reaction solution may be an acidic aqueous solution having a pH of 1 to 3.
  • the reaction solution may be an acidic aqueous solution having a pH of 1 to 3.
  • the hydrolysis reaction in the step of preparing L-glufosinate may be performed at a temperature of, for example, 20 to 150°C, 40 to 140°C, 60 to 130°C, 80 to 120°C, or 90 to 110°C.
  • the hydrolysis reaction in the step of preparing L-glufosinate may be, for example, 0.1 to 30 hours, 5 to 30 hours, 8 to 30 hours, 10 to 30 hours, 15 to 25 hours, 16 to 20 hours, or 17 to It can be carried out for 19 hours.
  • L-glufosinate can be more easily produced by performing the hydrolysis reaction in this temperature range and time range.
  • the third base catalyst is, for example, NH 3 , KOH, NaOH, CaSO 4 , LiOH, NaH, KH, NaOCH 3 , NaOCH 2 CH 3 , NaOC(CH 3 ) 3 , KO C(CH 3 ) 3 , K 2 CO 3 , Na 2 CO 3 , 1,8-diazabicyclo[5.4.0]undeca-7-ene (DBU), 1,5-diazabicyclo[4.3.0]nona-5-ene (DBN) , Tri(C 1 -C 4 alkyl)amine, pyridine, n-butyllithium, lithium diisopropylamide (LDA), hexamethyldisilazane lithium (LiHMDS), hexamethyldisilazane potassium (KHMDS), and hexa One or more selected from methyldisilazane sodium (NaHMDS), but the third base catalyst is not necessarily limited to these, and any of them can be used as a base catalyst
  • the content of the third base catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, 0.1 to 30 parts by weight, and 0.1 to 100 parts by weight of L-homoserine represented by Chemical Formula 1 It may be 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight.
  • the content of the third base catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, and 0.1 to 30 parts by weight with respect to 100 parts by weight of the fourth intermediate compound represented by Formula 6 , 0.1 to 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight. If the content of the third base catalyst is too low, the effect on the reaction rate is negligible. If the content of the first base catalyst is too large, by-products may increase. When the third base catalyst is used and the solvent is water, the pH of the aqueous solution containing water may be 7 to 10.
  • the reaction solution may be a basic aqueous solution having a pH of 7 to 10 in the step of preparing L-glufosinate using a third base catalyst and water as a solvent.
  • the reaction solution may be a basic aqueous solution having a pH of 7 to 10 in the step of preparing L-glufosinate using a third base catalyst and water as a solvent.
  • the yield of L-glufosinate is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the enantiomeric excess of the prepared L-glufosinate is, for example, 10% ee or more, 20% ee or more, 30% ee or more, 40% ee or more, 50% ee or more, 60% ee or more, 70 % ee or more, 80% ee or more, 90% ee or more, 91% ee or more, 92% ee or more, 93% ee or more, 94% ee or more, 95% ee or more, 96% ee or more, 97% ee or more, 98 % ee or higher, or 99% ee or higher.
  • L-glufosinate can provide a better herbicide effect, for example.
  • the prepared salt of L-glufosinate is, for example, a hydrochloride salt of L-glufosinate, a sulfate of L-glufosinate, a carbonate of L-glufosinate, an ammonium salt of L-glufosinate, etc., but is necessarily limited to these. If it is not possible, any of the salts of L-glutosinate obtained in the above-described method for producing glufosinate is possible.
  • the L-homoserine can be obtained.
  • Substituents of the substituted alkyl group, substituted alkenyl group, substituted alkynyl group, substituted cycloalkyl group, substituted aryl group, and substituted heteroaryl group independently of each other are halogen, carboxyl group (-COOH), nitro group, cyano group , An aryl group having 6 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms.
  • R e is -CH 3 , -CH 2 CH 2 COOH, 2-pyrazinyl, 2-amino-5-pyridinyl, 4-pyridinyl, or ( 3-amino-5-methyl)phenyl.
  • R 4 may be acetyl, or succinyl.
  • the L-homoserine derivative represented by Chemical Formula 8 may be prepared, for example, from a fermentation broth containing the L-homoserine derivative. Therefore, L-glutosinate can be efficiently produced by using the L-homoserine derivative represented by Chemical Formula 8 produced in the fermentation process. That is, prior to the step of preparing L-homoserine, the step of preparing the L-homoserine derivative from the fermentation broth containing the L-homoserine derivative may be further included.
  • the term,'fermentation liquid containing L-homoserine derivative' may be a fermentation liquid containing L-homoserine derivative produced from the fermentation process.
  • the fermentation broth may be a fermentation broth obtained by culturing microorganisms in a medium containing sugar, or a fermentation broth obtained by enzymatic conversion of a fermentation broth obtained by culturing microorganisms.
  • the fermentation broth containing L-homoserine derivatives is an amino acid produced by culturing microorganisms in a medium containing sugar, and a fermentation broth in which L-homoserine derivatives are directly produced, or a culture medium containing sugar.
  • It may be a fermentation broth containing L- homoserine derivative obtained by enzymatic conversion.
  • the type of microorganism used in the preparation of the fermentation broth containing the L-homoserine derivative is not particularly limited, and any microorganism capable of directly fermenting or enzymatically converting the L-homoserine derivative is possible in the art.
  • the L-homoserine derivative represented by Chemical Formula 8 may be, for example, a compound represented by Chemical Formulas 9 to 14 below:
  • L-homoserine derivatives are, in particular, O-acetyl-L-homoserine, O-succinyl-L-homoserine, but are not limited to these and are obtained during the fermentation process and substituted in the terminal oxygen of L-homoserine in the art. Any derivative is possible.
  • the fermentation broth containing the L-homoserine derivative is, for example, CJM-BTJ/pCJ-MetA-CL, an O-succinyl-L-homoserine producing strain disclosed in Example 2 of KR 10-2014-0116010 (Accession No. : KCCM-10872) or O-acetyl-L-homoserine-producing strain CJM-BTJA/pCJ-MetX-CL (Accession No.: KCCM-10873).
  • the content of the fourth acid catalyst is, for example, 0.1 to 100 parts by weight, 0.1 to 50 parts by weight, 0.1 to 40 parts by weight, 0.1 to 30 parts by weight, 0.1 to 100 parts by weight of the L-homoserine derivative represented by Chemical Formula 7 It may be from 20 to 20 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5 parts by weight, or 0.1 to 2 parts by weight. If the content of the fourth acid catalyst is too low, the effect on the reaction rate is negligible, and if the content of the fourth acid catalyst is too large, by-products may increase.
  • the step of preparing L-homoserine may be performed under a solvent or in a neat condition without a solvent.
  • the solvent can be water or an organic solvent.
  • the organic solvent is, for example, alcohol, toluene, benzene, tetrahydrofuran, acetone, chloroform, dichloromethane, acetonitrile, and the like, but is not limited thereto, and any solvent used with an acid catalyst in the art may be used.
  • Alcohol is not limited to, for example, methanol, ethanol, propanol, butanol, pentanol, and the like.
  • the solvent may in particular be methanol.
  • the hydrolysis reaction may be performed at a temperature of 20 to 150°C, 40 to 140°C, 60 to 130°C, 80 to 120°C, or 90 to 110°C, for example.
  • the hydrolysis reaction in the step of preparing L-homoserine is, for example, 0.1 to 30 hours, 5 to 30 hours, 8 to 30 hours, 10 to 30 hours, 15 to 25 hours, 16 to 20 hours, or 17 to 19 Can be performed for an hour.
  • L-homoserine can be more easily prepared by performing the hydrolysis reaction in this temperature range and time range.
  • the yield of L-homoserine is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% Or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the enantiomeric excess of L-homoserine is, for example, 10% ee or more, 20% ee or more, 30% ee or more, 40% ee or more, 50% ee or more , Over 60% ee, over 70% ee, over 80% ee, over 90% ee, over 91% ee, over 92% ee, over 93% ee, over 94% ee, over 95% ee, over 96% ee , 97% ee or more, 98% ee or more, or 99% ee or more.
  • the herbicide composition according to another embodiment may include L-glufosinate prepared by the above-described method.
  • the enantiomeric excess of L-glufosinate contained in the herbicide composition is, for example, 10% ee or more, 20% ee or more, 30% ee or more, 40% ee or more, 50% ee or more, 60% ee Above, above 70% ee, above 80% ee, above 90% ee, above 91% ee, above 92% ee, above 93% ee, above 94% ee, above 95% ee, above 96% ee, above 97% ee Or higher, 98% ee or higher, or 99% ee or higher.
  • the content of L-glufosinate contained in the herbicide composition may be 0.01 to 99 wt%, 0.1 to 99 wt%, or 10 to 90 wt%.
  • Herbicidal compositions can provide improved herbicidal performance by including L-glufosinate in this range.
  • alkyl as used herein may refer to a fully saturated branched or unbranched (or straight chain or linear) hydrocarbon.
  • alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, and the like.
  • One or more hydrogen atoms of the "alkyl” is a halogen atom, a C1-C20 alkyl group substituted with a halogen atom (eg, CCF 3 , CHCF 2 , CH 2 F, CCl 3, etc.), C1-C20 alkoxy, C2-C20 alkoxy Alkyl, hydroxy group, nitro group, cyano group, amino group, amidino group, hydrazine, hydrazone, carboxyl group or salt thereof, sulfonyl group, sulfamoyl group, sulfonic acid group or salt thereof, phosphoric acid or salt thereof, or C1-C20 Alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 heteroalkyl group, C6-C20 aryl group, C6-C20 arylalkyl group, C6-C20 heteroaryl group, C7-C20 heteroaryl It may be
  • halogen as used herein may include fluorine, bromine, chlorine, and iodine.
  • alkoxy used herein refers to "alkyl-O-" and alkyl is as described above.
  • alkoxy group examples include methoxy group, ethoxy group, 2-propoxy group, butoxy group, t-butoxy group, pentyloxy group, and hexyloxy group.
  • One or more hydrogen atoms in the alkoxy may be substituted with the same substituents as in the case of the alkyl group described above.
  • alkenyl as used herein may refer to a branched or unbranched hydrocarbon having at least one carbon-carbon double bond.
  • alkenyl group include vinyl, allyl, butenyl, propenyl, isobutenyl, and the like, and one or more hydrogen atoms of the alkenyl may be substituted with the same substituent as in the case of the alkyl group described above.
  • alkynyl as used herein may refer to a branched or unbranched hydrocarbon having at least one carbon-carbon triple bond.
  • alkynyl include ethynyl, butynyl, isobutynyl, isopropynyl, and the like.
  • alkynyl One or more hydrogen atoms of the term "alkynyl" in this specification may be substituted with the same substituents as in the case of the alkyl group described above.
  • aryl as used herein may also include a group in which an aromatic ring is selectively fused to one or more carbon rings.
  • Non-limiting examples of “aryl” include phenyl, naphthyl, tetrahydronaphthyl and the like.
  • One or more hydrogen atoms of the “aryl” group can be substituted with the same substituents as the alkyl group described above.
  • heteroaryl as used herein may mean a monocyclic or bicyclic organic group including one or more heteroatoms selected from N, O, P or S, and the remaining ring atoms being carbon. have.
  • the heteroaryl group may include, for example, 1-5 heteroatoms, and may include 5-10 ring members.
  • the S or N may be oxidized and have various oxidation states.
  • heteroaryl examples include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2 ,5-oxadiazolyl, 1,3,4-oxadiazolyl group, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1, 3,4-thiadiazolyl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazole-5 -Yl, isooxazol-3-yl, isooxazol-4-yl, isooxazol-5-yl, 1,2,4-triazol-3-yl, 1,2,4-triazole-5 -Yl, 1,2,3
  • Heteroaryl may include the case where the heteroaromatic ring is selectively fused to one or more aryl, cycloaliphatic, or heterocycles.
  • Example 1 O -Production of L-glufosinate using acetyl-L-homoserine
  • reaction solution was washed sequentially with 1 mL of 120 mL of 1N HCl, once of 120 mL of NaHCO 3 (saturated solution), and once of 120 mL of water, and then the organic layer was separated. The separated organic layer was dried over magnesium sulfate (MgSO 4 ), filtered and concentrated to obtain N- (tert-butoxy)carbonyl-L-Homoserine lactone as a colorless oil (14 g, yield 96%).
  • MgSO 4 magnesium sulfate
  • Rf 0.4. It was colored white in polyacrylamide. It was confirmed that there was no primary amine group in the ninhydrin reaction.
  • Dibutyl methylphosphonite 272 mg (2 mmol) was added to a 7 mL tetrahydrofuran solvent and the diluent was added to the reactor and the reactor temperature was cooled to -78 ° C. Subsequently, in a nitrogen gas atmosphere, 2 mL of 1M LiHMDS was added to the reactor, followed by stirring for 20 minutes. Subsequently, Methyl-2-((tert-butoxycarbonyl)amino)-4-bromobutanoate 0.56 g, 2 mmol, 1.0 equiv.) dissolved in 4 mL of tetrahydrofuran was added to the reactor at the same temperature.
  • Steps 1-6 Preparation of L-glufosinate (L-phosphinothricin) hydrochloride
  • Glufosinate was prepared according to the method disclosed in Example 1 of USP 6,359, 162.
  • the prepared glufosinate was a racemic mixture.
  • Chiral HPLC analysis was measured with a Waters 1525 Instrument.
  • the mirror image excess (% ee) was determined using a CHIRALCEL OJ normal phase chiral column (4.6 mm 2 250 mm).
  • a mobile phase a mixed solution of hexane:ethanol (3:1 volume ratio) was used, the solvent flow rate was 1.0 mL/min, the sample injection amount was 10 ⁇ L, and the UV detection wavelength was set to 254 nm.
  • the glufosinates prepared in Examples 1 to 2 significantly improved the enantiomeric excess of L-glufosinate compared to the glufosinates prepared in Comparative Example 1. Therefore, the present invention It is possible to simply manufacture high-purity L-glufosinate by a manufacturing method.
  • L-homoserine or a derivative thereof is used as a starting material, and by having a new synthetic route, simple production of L-glutosinate with high optical purity is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

L-호모세린을 제1 산(acid) 촉매 하에서 반응시켜 제1 중간체 화합물을 준비하는 단계; 제1 중간체 화합물을 제1 염기(base) 촉매 하에서 R1-A-R1' 화합물과 반응시켜 제2 중간체 화합물을 준비하는 단계; 제2 중간체 화합물을 할로겐화제(halogenation agent), 및 R2-A와 R2-E 중에서 선택된 하나 이상의 화합물과 반응시켜 제3 중간체 화합물을 준비하는 단계; 제3 중간체 화합물을 제2 산(acid) 촉매 또는 제2 염기(base) 촉매 하에서 인계 화합물과 반응시켜 제4 중간체 화합물을 준비하는 단계; 및 제4 중간체 화합물을 제3 산(acid) 촉매 또는 제2 염기(base) 촉매 하에서 가수분해 반응시켜 L-글루포시네이트 또는 이의 염을 제조하는 단계;를 포함하는 글루포시네이트 제조 방법이 제공된다.

Description

글루포시네이트 제조 방법
글루포시네이트의 제조 방법에 관한 것이다.
글루포시네이트는 1970년대에 개발되었다. 글루포시네이트는 광범위한 침투성 제초제(broad-spectrum systemic herbicide) 특성을 가짐에 의하여 제초제로서 널리 사용되었다. 글루포시네이트의 침투성 제초제 특성은 L-이성질체(isomer)에 의한 효과임이 확인되었다. 이에 따라, 글루포시네이트의 L-이성질체를 제조하는 다양한 방법이 연구되었다. 예를 들어, D, L-이성질체의 라세믹 혼합물로부터 L-이성질체를 선택적으로 분리하여 글루포시네이트의 L-이성질체를 제조하는 방법이 사용되었다. 이러한 방법은 L-이성질체의 수율이 절반 이하로 감소되며 불필요한 D-이성질체가 과량의 부산물로 생성되었다. 또한, L-이성질체의 분리를 위하여 분리제(resolving agent), 분리 장치(resolving device) 등이 요구되므로 공정이 복잡하다.
따라서, 높은 광학 순도를 가지는 글루포시네이트의 L-이성질체를 간단하게 제조하는 방법이 요구된다.
본 출원의 한 측면은 높은 광학 순도를 가지는 L-글루포시네이트를 간단하게 제조하는 방법을 제공하는 것이다.
한 측면에 따라,
하기 화학식 1로 표시되는 L-호모세린을 제1 산(acid) 촉매 하에서 반응시켜 하기 화학식 2로 표시되는 제1 중간체 화합물을 준비하는 단계;
상기 제1 중간체 화합물을 제1 염기(base) 촉매 하에서 R1-A-R1' 화합물과 반응시켜 하기 화학식 3으로 표시되는 제2 중간체 화합물을 준비하는 단계;
상기 제2 중간체 화합물을 할로겐화제(halogenation agent), 및 R2-B와 R2-E 중에서 선택된 하나 이상의 화합물과 반응시켜 하기 화학식 4로 표시되는 제3 중간체 화합물을 준비하는 단계;
상기 제3 중간체 화합물을 제2 산(acid) 촉매 또는 제2 염기(base) 촉매 하에서 하기 화학식 5로 표시되는 인계 화합물과 반응시켜 하기 화학식 6으로 표시되는 제4 중간체 화합물을 준비하는 단계; 및
상기 제4 중간체 화합물을 제3 산(acid) 촉매 또는 제3 염기(base) 촉매 하에서 가수분해 반응시켜 하기 화학식 7로 표시되는 L-글루포시네이트 또는 이의 염을 제조하는 단계;를 포함하는 글루포시네이트 제조 방법이 제공된다:
<화학식 1>
Figure PCTKR2020000273-appb-I000001
<화학식 2>
Figure PCTKR2020000273-appb-I000002
<화학식 3>
Figure PCTKR2020000273-appb-I000003
<화학식 4>
Figure PCTKR2020000273-appb-I000004
<화학식 5>
Figure PCTKR2020000273-appb-I000005
<화학식 6>
Figure PCTKR2020000273-appb-I000006
<화학식 7>
Figure PCTKR2020000273-appb-I000007
상기 식들에서,
R1 이 Ra-O-(C=O)- 이고 R1'가 Rb-O-(C=O)- 이며, Ra 및 Rb는 서로 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기, 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기이며,
R2 및 R3이 서로 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기, 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기, 또는 -Si(Rb)(Rc)(Rd)이며, Rb, Rc 및 Rd는 서로 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이며,
A는 공유결합, -O-, 및 -S- 중에서 선택되며,
B 및 E는 서로 독립적으로 하이드록시기(-OH), Cl, Br, F, I, 및 수소 중에서 선택되며,
X는 할로겐이며,
상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 아릴기, 및 헤테로아릴기의 치환기는 서로 독립적으로 할로겐, 카르복실기(-COOH), 아미노기(-NH2), 니트로기(-NO2), 시아노기(-CN), 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 10의 아릴기 및 탄소수 3 내지 10의 시클로알킬기 중에서 선택된 하나 이상이다.
일구현예에 따른 글루포시네이트 제조 방법은 L-호모세린 또는 이의 유도체를 출발 물질로 사용하며, 새로운 합성 경로를 가짐에 의하여 높은 광학 순도를 가지는 L-글루포시네이트의 간단한 제조가 가능하다.
이하, 일구현예에 따른 글루포시네이트 제조 방법에 대하여 보다 상세하게 설명하기로 한다.
이하에서 설명되는 본 출원의 창의적 사상(inventive concept)은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 예시하고, 상세한 설명에 상세하게 설명한다. 그러나, 이는 본 출원의 창의적 사상을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 출원의 창의적 사상의 기술 범위에 포함되는 모든 변환, 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서 제1, 제2, 제3, 제4 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 이러한 용어들에 의하여 한정되어서는 안 된다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
본 명세서에서 용어 'L-글루포시네이트'는 글루포시네이트의 L-이성질체이다. 본 명에서에서 용어 'D-글루포시네이트'는 글루포시네이트의 D-이성질체이다.
본 명세서에서 용어 '거울상 초과량(%enantiomeric excess: %ee)'은 샘플의 거울상체 순도, 즉 샘플 내 다른 거울상체를 초과하는 하나의 거울상체의 백분율을 의미한다. 예를 들어, L-글루포시네이트의 거울상 초과량은 글루포시네이트 내에서 D-글루포시네이트를 초과하는 L-글루포시네이트의 백분율이다. 예를 들어, L-글루포시네이트의 거울상 초과량은 하기 수학식 1로 표시된다.
<수학식 1>
L-글루포시네이트의 거울상 초과량 = [(L-글루포시네이트의 함량 - D-글루포시네이트의 함량) / (L-글루포시네이트의 함량 + D-글루포시네이트의 함량)] × 100
일 구현예에 따른 글루포시네이트 제조 방법은, 화학식 1로 표시되는 L-호모세린을 제1 산(acid) 촉매 하에서 반응시켜 화학식 2로 표시되는 제1 중간체 화합물을 준비하는 단계; 제1 중간체 화합물을 제1 염기(base) 촉매 하에서 R1-A-R1' 화합물과 반응시켜 하기 화학식 3으로 표시되는 제2 중간체 화합물을 준비하는 단계; 제1 중간체 화합물을 할로겐화제(halogenation agent), 및 R2-B와 R2-E 중에서 선택된 하나 이상의 화합물과 반응시켜 화학식 3으로 표시되는 제2 중간체 화합물을 준비하는 단계; 제2 중간체 화합물을 제2 산(acid) 촉매 또는 제1 염기(base) 촉매 하에서 화학식 4로 표시되는 인계 화합물과 반응시켜 화학식 5로 표시되는 제3 중간체 화합물을 준비하는 단계; 및 제3 중간체 화합물을 제3 산(acid) 촉매 또는 제2 염기(base) 촉매 하에서 가수분해 반응시켜 화학식 6으로 표시되는 L-글루포시네이트 또는 이의 염을 제조하는 단계;를 포함할 수 있다:
<화학식 1>
Figure PCTKR2020000273-appb-I000008
<화학식 2>
Figure PCTKR2020000273-appb-I000009
<화학식 3>
Figure PCTKR2020000273-appb-I000010
<화학식 4>
Figure PCTKR2020000273-appb-I000011
<화학식 5>
Figure PCTKR2020000273-appb-I000012
<화학식 6>
Figure PCTKR2020000273-appb-I000013
<화학식 7>
Figure PCTKR2020000273-appb-I000014
상기 식들에서,
R1 이 Ra-O-(C=O)- 이고 R1'가 Rb-O-(C=O)- 이며, Ra 및 Rb는 서로 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기, 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기이며,
R2 및 R3이 서로 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기, 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기, 또는 -Si(Rb)(Rc)(Rd)이며, Rb, Rc 및 Rd는 서로 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이며,
A는 공유결합, -O-, 및 -S- 중에서 선택되며,
B 및 E는 서로 독립적으로 하이드록시기(-OH), Cl, Br, F, I, 및 수소 중에서 선택되며,
X는 할로겐이며,
상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 아릴기, 및 헤테로아릴기의 치환기는 서로 독립적으로 할로겐, 카르복실기(-COOH), 아미노기(-NH2), 니트로기(-NO2), 시아노기(-CN), 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 10의 아릴기 또는 탄소수 3 내지 10의 시클로알킬기이다.
L-호모세린을 출발물질로 사용하며, 락톤 고리를 가지는 중간체 화합물 및 할로겐화 화합물을 수득하는 합성 경로를 거침에 의하여 높은 광학 순도를 가지는 L-글루포시네이트를 간단하게 제조하는 것이 가능하다.
이하에서, L-글루포시네이트 제조 방법에 대하여 단계별로 설명한다.
먼저, 제1 중간체 화합물을 준비하는 단계에서, 화학식 1로 표시되는 L-호모세린을 제1 산(acid) 촉매 하에서 반응시켜 화학식 2로 표시되는 제1 중간체 화합물을 준비할 수 있다.
화학식 1로 표시되는 L-호모세린을 제1 산(acid) 촉매 하에서 락톤화시켜 하기 화학식 2로 표시되는 락톤 화합물이 얻어질 수 있다. 예를 들어, 화학식 1로 표시되는 L-호모세린이 제1 산 촉매에 의하여 락톤 고리를 형성할 수 있다.
<화학식 1>
Figure PCTKR2020000273-appb-I000015
<화학식 2>
Figure PCTKR2020000273-appb-I000016
제1 중간체 화합물을 준비하는 단계에서, 화학식 1로 표시되는 L-호모세린은, 예를 들어 L-호모세린 또는 L-호모세린의 전구체를 포함하는 발효액으로부터 준비될 수 있다.
본 출원에서 용어, 'L-호모세린 또는 L-호모세린의 전구체를 포함하는 발효액' 은 발효 과정으로부터 생성된 L-호모세린 및/또는 L-호모세린의 전구체를 포함하는 발효액일 수 있다. 발효액은 당을 포함하는 배지에서 미생물을 배양하여 수득한 발효액일 수 있으며, 또는 미생물을 배양하여 수득한 발효액을 효소 전환하여 수득한 발효액일 수 있다. 예를 들어, L-호모세린 및/또는 L-호모세린의 전구체를 포함하는 발효액은, 당을 포함하는 배지에서 미생물을 배양하여 L-호모세린 및/또는 L-호모세린의 전구체를 직접 생산한 발효액, 또는 당을 포함하는 배지에서 미생물을 배양하여 생산한 아미노산을 효소전환하여 수득한 L-호모세린 및/또는 L-호모세린의 전구체를 포함하는 발효액일 수 있다. L-호모세린 및/또는 L-호모세린의 전구체를 포함하는 발효액의 제조에 사용되는 미생물의 종류는 특별히 한정되지 않으며 당해 기술분야에서 L-호모세린 및/또는 L-호모세린의 전구체를 직접발효생산 또는 효소전환하여 생산할 수 있는 미생물이라면 모두 가능하다.
L-호모세린의 전구체는 예를 들어 O-아세틸-L-호모세린, O-석시닐-L-호모세린 등이나 반드시 이들로 한정하지 않으며 발효 과정에서 얻어지며 당해 기술 분야에서 L-호모세린을 수득할 수 있는 전구체라면 모두 가능하다.
제1 산 촉매는 예를 들어, HCl, H2SO4, HBr, HI, 포스겐(phosgene), SOCl2, 옥살릴 클로라이드(oxalyl chloride), 트리에틸실란(Et3SiH)+PdCl2+MeI, POCl3, PCl3, PCl5, PBr3, PI3, H2SO4+KBr, P+Cl2, P+Br2, P+I2, TiCl4, ZnCl2, BBr3, 파라-톨루엔술폰산(PTSA), 및 루이스산(Lewis acid) 중에서 선택된 하나 이상이며, 루이스산은 예를 들어 KF+Al2O3, BF3-Et2O(diehtylether), CoCl2, MgBr2, Bu3P, Sc(OTf)3(OTf=trifluoromethanesulfonate), Sc(NTf2)3(Scandium(III) trifluoromethanesulfonimide), TiCl3-2AgClO4, TiCl3(OTf), Sn(OTf)2, TMSOTf(TriMethylSilyl trifluoromethanesulfonate), La(OTf)3, Cu(OTf)2, 및 TaCl5 중에서 선택되는 하나 이상이나, 제1 산 촉매가 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매로 사용하는 것이라면 모두 가능하다. 제1 산 촉매는 특히 35% 이상의 진한 염산일 수 있다.
제1 산 촉매의 함량은 예를 들어 화학식 1로 표시되는 L-호모세린 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 제1 산 촉매의 함량이 지나치게 낮으면 반응 속도에 미치는 영향이 미미하며, 제1 산 촉매의 함량이 지나치게 많으면 부산물이 증가할 수 있다.
제1 중간체 화합물을 준비하는 단계는 용매 하에서 수행되거나 용매 없이 니트(neat) 조건에서 수행될 수 있다. 용매는 물 또는 유기 용매일 수 있다. 용매는 예를 들어 물 또는 유기 용매일 수 있다. 유기 용매는 예를 들어 알코올, 톨루엔, 벤젠, 테트라하이드로퓨란, 아세톤, 클로로포름, 디클로로메탄, 아세토니트릴 등이나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매와 같이 사용하는 용매라면 모두 가능하다. 알코올은 예를 들어 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올 등이나 이들로 한정되지 않을 수 있다. 용매가 물인 경우 물을 포함하는 수용액의 pH는 1 내지 3일 수 있다. 즉, 물을 용매로서 사용하는 제1 중간체 화합물을 준비하는 단계에서 반응 용액은 pH 1 내지 3의 산성 수용액일 수 있다. 반응 용액이 이러한 범위의 pH를 가짐에 의하여 보다 용이하게 제1 중간체 화합물을 준비할 수 있다.
제1 중간체 화합물을 준비하는 단계에서, 락톤 형성 반응은 예를 들어 20 내지 150℃, 20 내지 100℃, 30 내지 90℃, 40 내지 80℃, 또는 50 내지 70℃의 온도에서 수행될 수 있다. 제1 중간체 화합물을 준비하는 단계에서 락톤 형성 반응은 예를 들어 0.1 내지 20 시간, 0.1 내지 15 시간, 0.1 내지 10 시간, 0.1 내지 6 시간, 0.5 내지 5 시간, 1 내지 4 시간, 또는 2 내지 4 시간 동안 수행될 수 있다. 락톤 형성 반응이 이러한 온도 범위 및 시간 범위에서 수행됨에 의하여 보다 용이하게 제1 중간체 화합물을 준비할 수 있다.
제1 중간체 화합물을 준비하는 단계에서, 제1 중간체 화합물의 수율은 예를 들어 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상일 수 있다.
제1 중간체 화합물을 준비하는 단계에서, L-폼을 가지는 제1 중간체 화합물의 거울상 초과량(enantiomeric excess)은 예를 들어 10% ee 이상, 20% ee 이상, 30% ee 이상, 40% ee 이상, 50% ee 이상, 60% ee 이상, 70% ee 이상, 80% ee 이상, 90% ee 이상, 91% ee 이상, 92% ee 이상, 93% ee 이상, 94% ee 이상, 95% ee 이상, 96% ee 이상, 97% ee 이상, 98% ee 이상, 또는 99% ee 이상일 수 있다.
다음으로, 제2 중간체 화합물을 준비하는 단계에서, 화학식 2로 표시되는 제1 중간체 화합물을 제1 염기(base) 촉매 하에서 R1-A-R1' 화합물과 반응시켜 화학식 3으로 표시되는 제2 중간체 화합물을 준비할 수 있다.
화학식 2로 표시되는 제1 중간체 화합물을 제1 염기(base) 촉매 하에서 R1-A-R1' 화합물과 반응시켜 질소에 보호기(protecting group)인 R1가 도입된 락톤 화합물이 얻어진다.
<화학식 2>
Figure PCTKR2020000273-appb-I000017
<화학식 3>
Figure PCTKR2020000273-appb-I000018
화학식 3으로 표시되는 제2 중간체 화합물에서, 예를 들어 R1이 Ra-O-(C=O)-이며, Ra가 tert-부틸(tert-butyl), 벤질(benzyl), 9-플루오레닐(9-flurorenyl)-CH2- 등 일 수 있다. 즉, R1이 tert-부틸-O-(C=O)-, 벤질-O-(C=O)-, 9-플루오레닐-CH2-O-(C=O)- 등 일 수 있다. 화학식 3으로 표시되는 제2 중간체 화합물이 이러한 작용기를 가짐에 의하여 향상된 광학 순도를 가지는 L-글루포시네이트를 더욱 용이하게 제조할 수 있다.
R1-A-R1' 화합물은 예를 들어 R1-O-R1' 화합물일 수 있다. 즉, R1-A-R1' 화합물은 예를 들어 Ra-O-(C=O)-O-(C=O)-Ra 화합물일 수 있다.
R1-A-R1' 화합물은 예를 들어 CH3-O-(C=O)-O-(C=O)-O-CH3, CH3CH2-O-(C=O)-O-(C=O)-O-CH2CH3, CH3CH2CH2-O-(C=O)-O-(C=O)-O-CH2CH2CH3, (CH3)3C-O-(C=O)-O-(C=O)-O-C(CH3)3, C6H5CH2-O-(C=O)-O-(C=O)-O-CH2C6H5, C6H5-O-(C=O)-O-(C=O)-O-C6H5, (9-플루오레닐)-CH2-O-(C=O)-O-(C=O)-O-CH2-(9-플루오레닐) 일 수 있다. R1-A-R1' 화합물은 특히 (CH3)3C-O-(C=O)-O-(C=O)-O-C(CH3)3 일 수 있다.
R1-A-R1' 화합물의 함량은 예를 들어 화학식 2로 표시되는 제1 중간체 화합물 1몰에 대하여 1 내지 10 몰, 1 내지 5 몰, 1 내지 4 몰, 1 내지 3 몰, 1 내지 2 몰, 1 내지 1.5 몰, 0.1 내지 1.3 몰, 또는 1 내지 1.1 몰일 수 있다.
제1 염기 촉매는 예를 들어, NH3, KOH, NaOH, CaSO4, LiOH, NaH, KH, NaOCH3, NaOCH2CH3, NaOC(CH3)3, KO C(CH3)3, K2CO3, Na2CO3, 1,8-디아자바이사이클로[5.4.0]운데카-7-엔(DBU), 1,5-디아자바이사이클로[4.3.0]노나-5-엔(DBN), 트리(C1-C4알킬)아민, 피리딘, 리튬디이소프로필아미드(LDA), 헥사메틸디실라잔리튬(LiHMDS), 헥사메틸디실라잔칼륨(KHMDS), 및 헥사메틸디실라잔나트륨(NaHMDS) 중에서 선택된 하나 이상이나, 제1 염기 촉매가 반드시 이들로 한정되지 않으며 당해 기술분야에서 염기 촉매로 사용하는 것이라면 모두 가능하다. 제2 염기 촉매는 특히 트리에틸아민, 헥사메틸디실라잔리튬(LiHMDS) 등일 수 있다.
제1 염기 촉매의 함량은 예를 들어 화학식 1로 표시되는 L-호모세린 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 다르게는, 제1 염기 촉매의 함량은 예를 들어 화학식 2로 표시되는 제1 중간체 화합물 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 제1 염기 촉매의 함량이 지나치게 낮으면 반응 속도에 미치는 영향이 미미하며, 제1 염기 촉매의 함량이 지나치게 많으면 부산물이 증가할 수 있다.
제2 중간체 화합물을 준비하는 단계는 용매 하에서 수행되거나 용매 없이 니트(neat) 조건에서 수행될 수 있다. 용매는 예를 들어 물 또는 유기 용매일 수 있다. 유기 용매는 예를 들어 알코올, 톨루엔, 벤젠, 테트라하이드로퓨란, 아세톤, 클로로포름, 디클로로메탄, 아세토니트릴 등이나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매와 같이 사용하는 용매라면 모두 가능하다. 알코올은 예를 들어 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올 등이나 이들로 한정되지 않는다. 용매는 특히 디클로로메탄일 수 있다.
제2 중간체 화합물을 준비하는 단계에서, 보호기가 도입된 락톤 형성 반응은 예를 들어 10 내지 150℃, 10 내지 100℃, 10 내지 70℃, 10 내지 50℃, 또는 15 내지 35℃의 온도에서 수행될 수 있다. 제1 중간체 화합물을 준비하는 단계에서 락톤 형성 반응은 예를 들어 0.1 내지 20 시간, 1 내지 20 시간, 5 내지 20 시간, 10 내지 20 시간, 12 내지 18 시간, 13 내지 17 시간, 또는 14 내지 16 시간 동안 수행될 수 있다. 락톤 형성 반응이 이러한 온도 범위 및 시간 범위에서 수행됨에 의하여 보다 용이하게 제2 중간체 화합물을 준비할 수 있다.
제2 중간체 화합물을 준비하는 단계에서, 제2 중간체 화합물의 수율은 예를 들어 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상일 수 있다.
제2 중간체 화합물을 준비하는 단계에서, L-폼을 가지는 제1 중간체 화합물의 거울상 초과량(enantiomeric excess)은 예를 들어 10% ee 이상, 20% ee 이상, 30% ee 이상, 40% ee 이상, 50% ee 이상, 60% ee 이상, 70% ee 이상, 80% ee 이상, 90% ee 이상, 91% ee 이상, 92% ee 이상, 93% ee 이상, 94% ee 이상, 95% ee 이상, 96% ee 이상, 97% ee 이상, 98% ee 이상, 또는 99% ee 이상일 수 있다.
다음으로, 화학식 4로 표시되는 제3 중간체 화합물을 준비하는 단계에서, 제2 중간체 화합물을 할로겐화제(halogenation agent), 및 R2-B와 R2-E 중에서 선택된 하나 이상의 화합물과 할로겐화 반응시켜 화학식 4로 표시되는 제3 중간체 화합물을 준비할 수 있다.
화학식 3으로 표시되는 보호기가 도입된 락톤 화합물을 할로겐화제(halogenation agent), 및 R2-B와 R2-E 중에서 선택된 하나 이상의 화합물과 개환 반응 및 할로겐화 반응시켜 화학식 4로 표시되는 할로겐화 화합물이 얻어질 수 있다. 예를 들어, 화학식 3으로 표시되는 보호기가 도입된 락톤 화합물이 할로겐화제의 할로겐과 반응하여 개환 반응(ring opening reaction)이 진행된 후, R2-B와 R2-E 중에서 선택된 하나 이상의 화합물의 R2- 작용기와 치환 반응(substitution reaction)이 진행되어 제3 중간체 화합물을 형성할 수 있다.
<화학식 3>
Figure PCTKR2020000273-appb-I000019
<화학식 4>
Figure PCTKR2020000273-appb-I000020
화학식 3으로 표시되는 제2 중간체 화합물, 및 화학식 4로 표시되는 제3 중간체 화합물에서, 예를 들어 R1이 Ra-O-(C=O)-이며, Ra가 tert-부틸(tert-butyl), 벤질(benzyl), 9-플루오레닐(9-flurorenyl)-CH2- 등이며, R2 및 R3은 서로 독립적으로 수소, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 벤질, 페닐, 나프틸, -Si(C5H6)(CH3)2, -Si(C6H5)2(CH3), -Si(C5H6)3, -Si(CH3)3, -Si(CH2CH3)3, -Si(CH2CH3)2(CH3), -Si(CH2CH3)(CH3)2, 또는 -Si(tert-butyl)3 일 수 있다. 화학식 3로 표시되는 제2 중간체 화합물, 및 화학식 4로 표시되는 제3 중간체 화합물이 이러한 작용기를 가짐에 의하여 향상된 광학 순도를 가지는 L-글루포시네이트를 더욱 용이하게 제조할 수 있다.
할로겐화제는 예를 들어, HCl, HBr, HI, 포스겐(phosgene), SOCl2, 옥살릴 클로라이드(oxalyl chloride), 트리에틸실란(Et3SiH)+PdCl2+MeI, POCl3, PCl3, PCl5, PBr3, PI3, H2SO4+KBr, P+Cl2, P+Br2, P+I2, TiCl4, ZnCl2, 및 BBr3 중에서 선택되는 하나 이상이나, 할로겐화제가 반드시 이들로 한정되지 않으며 당해 기술분야에서 할로겐화제로 사용하는 것이라면 모두 가능하다. 할로겐화제는 특히 BBr3 일 수 있다.
할로겐화제의 함량은 예를 들어 화학식 3로 표시되는 제2 중간체 화합물 1몰에 대하여 1 내지 10 몰, 1 내지 5 몰, 1 내지 4 몰, 1 내지 3 몰, 1 내지 2 몰, 1 내지 1.5 몰, 0.1 내지 1.3 몰, 또는 1 내지 1.1 몰일 수 있다.
R2-B 화합물 또는 R2-E 화합물이 제3 중간체 화합물을 형성하는 반응에 사용될 수 있다. 다르게는, R2-B 화합물 및 R2-E 화합물 모두가 제3 중간체 화합물을 형성하는 반응에 사용될 수 있다. R2-B 화합물과 R2-E 화합물은 서로 다를 수 있다.
R2-B 화합물 및 R2-E 화합물은 서로 독립적으로 예를 들어 R2-X(X는 Cl, Br 또는 I), R2-H, 또는 R2-OH일 수 있다. R2-B 화합물 또는 R2-E 화합물은 예를 들어 X-Si(Rb)(Rc)(Rd)(X는 Cl, Br 또는 I)이며 Rb, Rc 및 Rd는 서로 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기일 수 있다. R2-B 화합물 또는 R2-E 화합물은 예를 들어 X-Si(C5H6)(CH3)2, X-Si(C6H5)2(CH3), X-Si(C5H6)3, X-Si(CH3)3, X-Si(CH2CH3)3, X-Si(CH2CH3)2(CH3), X-Si(CH2CH3)(CH3)2, 또는 X-Si(tert-butyl)3 일 수 있다(X는 Cl, Br 또는 I). R2-B 화합물 또는 R2-E 화합물은 예를 들어 H-Si(C5H6)(CH3)2, H-Si(C6H5)2(CH3), H-Si(C5H6)3, H-Si(CH3)3, H-Si(CH2CH3)3, H-Si(CH2CH3)2(CH3), H-Si(CH2CH3)(CH3)2, 또는 H-Si(tert-butyl)3 일 수 있다. R2-B 화합물 또는 R2-E 화합물은 예를 들어 탄소수 1 내지 6의 알코올일 수 있다. R2-B 화합물 및 R2-E 화합물은 서로 독립적으로 예를 들어 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 벤질 알코올, 페놀, 나프톨, Cl-Si(CH3)3, Br-Si(CH3)3, I-Si(CH3)3, Cl-Si(CH3)(tert-butyl)2, Br-Si(CH3)(tert-butyl)2, I-Si(CH3)(tert-butyl)2, Cl-Si(C6H5)2(tert-butyl), Br-Si(C6H5)2(tert-butyl), I-Si(C6H5)2(tert-butyl), Cl-Si(C6H5)2(tert-butyl), 및 트리이소프로필실릴-트리플루로로메탄술포네이트(triisopropylsilyl trifluoromethane sulfonate) 중에서 선택될 수 있다. 예를 들어, R2-B 화합물은 알킬기를 포함하는 화합물이고, R2-E 화합물은 실릴기를 포함하는 화합물일 수 있다. 예를 들어, R2-B화합물은 메탄올, 에탄올 등의 알코올이고, R2-E 화합물은 Cl-Si(C2H5)3 또는 H-Si(C2H5)3일 수 있다.
R2-B 화합물 및 R2-E 화합물의 함량은 서로 독립적으로 예를 들어 화학식 3으로 표시되는 제2 중간체 화합물 1몰에 대하여 1 내지 100 몰, 1 내지 10 몰, 1 내지 5 몰, 1 내지 4 몰, 1 내지 3 몰, 1 내지 2 몰, 1 내지 1.5 몰, 0.1 내지 1.3 몰, 또는 1 내지 1.1 몰일 수 있다. R2-B 화합물 및 R2-E 화합물 중 하나 이상이 용매로 사용되는 것도 가능하다.
제3 중간체 화합물을 준비하는 단계는 용매 하에서 수행되거나 용매 없이 니트(neat) 조건에서 수행될 수 있다. 용매는 물 또는 유기 용매일 수 있다. 유기 용매는 예를 들어 알코올, 톨루엔, 벤젠, 테트라하이드로퓨란, 아세톤, 클로로포름, 디클로로메탄, 아세토니트릴 등이나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매와 같이 사용하는 용매라면 모두 가능하다. 알코올은 예를 들어 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올 등이나 이들로 한정되지 않을 수 있다. 용매는 특히 디클로로메탄일 수 있다.
제3 중간체 화합물을 준비하는 단계에서 개환 반응(ring opening reaction) 및/또는 치환 반응(substitution reaction)은 예를 들어 -20 내지 150℃, -10 내지 100℃, -5 내지 80℃, -5 내지 50℃, 또는 -5 내지 30℃의 온도에서 수행될 수 있다. 제2 중간체 화합물을 준비하는 단계에서 개환 반응 및/또는 치환 반응은 예를 들어 0.1 내지 30 시간, 1 내지 25 시간, 5 내지 25 시간, 10 내지 25 시간, 14 내지 25 시간, 15 내지 23 시간, 17 내지 21 시간, 또는 18 내지 20 시간 동안 수행될 수 있다. 개환 반응 및/또는 치환 반응이 이러한 온도 범위 및 시간 범위에서 수행됨에 의하여 보다 용이하게 제2 중간체 화합물을 준비할 수 있다.
제2 중간체 화합물을 준비하는 단계에서, 제2 중간체 화합물의 수율은 예를 들어 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상일 수 있다.
제2 중간체 화합물을 준비하는 단계에서, L-폼을 가지는 제2 중간체 화합물의 거울상 초과량(enantiomeric excess)은 예를 들어 10% ee 이상, 20% ee 이상, 30% ee 이상, 40% ee 이상, 50% ee 이상, 60% ee 이상, 70% ee 이상, 80% ee 이상, 90% ee 이상, 91% ee 이상, 92% ee 이상, 93% ee 이상, 94% ee 이상, 95% ee 이상, 96% ee 이상, 97% ee 이상, 98% ee 이상, 또는 99% ee 이상일 수 있다.
다음으로, 화학식 6으로 표시되는 제4 중간체 화합물을 준비하는 단계에서, 제3 중간체 화합물을 제2 산(acid) 촉매 또는 제2 염기(base) 촉매 하에서 화학식 6으로 표시되는 인계 화합물과 반응시켜 화학식 6으로 표시되는 제4 중간체 화합물을 준비할 수 있다.
즉, 화학식 4로 표시되는 할로겐화 화합물을 제2 산(acid) 촉매 또는 제2 염기(base) 촉매 하에서 인계 화합물과 반응시켜 화학식 6으로 표시되는 제4 중간체 화합물이 얻어질 수 있다.
<화학식 4>
Figure PCTKR2020000273-appb-I000021
<화학식 5>
Figure PCTKR2020000273-appb-I000022
<화학식 6>
Figure PCTKR2020000273-appb-I000023
화학식 4로 표시되는 제3 중간체 화합물, 화학식 5로 표시되는 인계 화합물, 및 화학식 6으로 표시되는 제4 중간체 화합물에서, 예를 들어 R1이 Ra-O-(C=O)-이며, Ra가 tert-부틸(tert-butyl), 벤질(benzyl), 9-플루오레닐(9-flurorenyl)-CH2- 등이며, R2 및 R3은 서로 독립적으로 수소, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 벤질, 페닐, 나프틸, -Si(C5H6)(CH3)2, -Si(C6H5)2(CH3), -Si(C5H6)3, -Si(CH3)3, -Si(CH2CH3)3, -Si(CH2CH3)2(CH3), -Si(CH2CH3)(CH3)2, 또는 -Si(tert-butyl)3 일 수 있다. 화학식 5로 표시되는 제3 중간체 화합물, 화학식 6으로 표시되는 인계 화합물 및 화학식 7로 표시되는 제4 중간체 화합물이 이러한 작용기를 가짐에 의하여 향상된 광학 순도를 가지는 L-글루포시네이트를 더욱 용이하게 제조할 수 있다.
제2 염기 촉매는 예를 들어, NH3, KOH, NaOH, CaSO4, LiOH, NaH, KH, NaOCH3, NaOCH2CH3, NaOC(CH3)3, KO C(CH3)3, K2CO3, Na2CO3, 1,8-디아자바이사이클로[5.4.0]운데카-7-엔(DBU), 1,5-디아자바이사이클로[4.3.0]노나-5-엔(DBN), 트리(C1-C4알킬)아민, 피리딘, n-부틸리튬, 리튬디이소프로필아미드(LDA), 헥사메틸디실라잔리튬(LiHMDS), 헥사메틸디실라잔칼륨(KHMDS), 및 헥사메틸디실라잔나트륨(NaHMDS) 중에서 선택된 하나 이상이나, 제2 염기 촉매가 반드시 이들로 한정되지 않으며 당해 기술분야에서 염기 촉매로 사용하는 것이라면 모두 가능하다. 제2 염기 촉매는 특히 헥사메틸디실라잔리튬(LiHMDS) 등일 수 있다.
제2 염기 촉매의 함량은 예를 들어 화학식 1로 표시되는 L-호모세린 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 다르게는, 제2 염기 촉매의 함량은 예를 들어 화학식 5로 표시되는 제3 중간체 화합물 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 제2 염기 촉매의 함량이 지나치게 낮으면 반응 속도에 미치는 영향이 미미하며, 제1 염기 촉매의 함량이 지나치게 많으면 부산물이 증가할 수 있다.
제4 중간체 화합물을 준비하는 단계는 용매 하에서 수행되거나 용매 없이 니트(neat) 조건에서 수행될 수 있다. 용매는 물 또는 유기 용매일 수 있다. 유기 용매는 예를 들어 알코올, 톨루엔, 벤젠, 테트라하이드로퓨란, 아세톤, 클로로포름, 디클로로메탄, 아세토니트릴 등이나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매와 같이 사용하는 용매라면 모두 가능하다. 알코올은 예를 들어 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올 등이나 이들로 한정되지 않는다. 제2 염기 촉매를 사용하며 용매가 물인 경우 물을 포함하는 수용액의 pH는 7 내지 10일 수 있다. 유기 용매를 사용하는 경우 용매는 특히 테르라하이드로퓨란일 수 있다.
다르게는, 제2 염기 촉매 대신에 제2 산 촉매가 사용될 수 있다.
제2 산 촉매는 예를 들어, HCl, H2SO4, HBr, HI, 포스겐(phosgene), SOCl2, 옥살릴 클로라이드(oxalyl chloride), 트리에틸실란(Et3SiH)+PdCl2+MeI, POCl3, PCl3, PCl5, PBr3, PI3, H2SO4+KBr, P+Cl2, P+Br2, P+I2, TiCl4, ZnCl2, BBr3, 파라-톨루엔술폰산(PTSA), 및 루이스산(Lewis acid) 중에서 선택된 하나 이상이며, 루이스산은 예를 들어 KF+Al2O3, BF3-Et2O(diehtylether), CoCl2, MgBr2, Bu3P, Sc(OTf)3(OTf=trifluoromethanesulfonate), Sc(NTf2)3(Scandium(III) trifluoromethanesulfonimide), TiCl3-2AgClO4, TiCl3(OTf), Sn(OTf)2, TMSOTf(TriMethylSilyl trifluoromethanesulfonate), La(OTf)3, Cu(OTf)2, 및 TaCl5 중에서 선택되는 하나 이상이나, 제2 산 촉매가 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매로 사용하는 것이라면 모두 가능하다. 제2 산 촉매는 특히 루이스산일 수 있다.
제2 산 촉매의 함량은 예를 들어 화학식 1로 표시되는 L-호모세린 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 다르게는, 제2 산 촉매의 함량은 예를 들어 화학식 5로 표시되는 제3 중간체 화합물 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 제2 산 촉매의 함량이 지나치게 낮으면 반응 속도에 미치는 영향이 미미하며, 제2 산 촉매의 함량이 지나치게 많으면 부산물이 증가할 수 있다.
제4 중간체 화합물을 준비하는 단계에서 반응(reaction)은 예를 들어 -100 내지 150℃, -80 내지 100℃, -80 내지 50℃, -80 내지 40℃, 또는 -80 내지 30℃의 온도에서 수행될 수 있다. 제4 중간체 화합물을 준비하는 단계에서 반응은 예를 들어 0.1 내지 20 시간, 1 내지 18 시간, 5 내지 15 시간, 6 내지 14 시간, 8 내지 14 시간, 10 내지 14 시간, 또는 11 내지 13 시간 동안 수행될 수 있다. 반응이 이러한 온도 범위 및 시간 범위에서 수행됨에 의하여 보다 용이하게 제4 중간체 화합물을 준비할 수 있다. 제2 염기 촉매로서 리튬디이소프로필아미드(LDA), 헥사메틸디실라잔리튬(LiHMDS), 헥사메틸디실라잔칼륨(KHMDS), 헥사메틸디실라잔나트륨(NaHMDS) 등의 유기금속화합물(organimetallic comppund)를 사용하는 경우 반응 온도는 -80 내지 -25℃ 이며, 용매는 유기용매일 수 있다. 유기용매는 예를 들어, 테트라하이드로퓨란, 디에틸에테르, 헥산, 아세토니트릴 등일 수 있다.
제4 중간체 화합물을 준비하는 단계에서, 제4 중간체 화합물의 수율은 예를 들어 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상일 수 있다.
제4 중간체 화합물을 준비하는 단계에서, L-폼을 가지는 제4 중간체 화합물의 거울상 초과량(enantiomeric excess)은 예를 들어 10% ee 이상, 20% ee 이상, 30% ee 이상, 40% ee 이상, 50% ee 이상, 60% ee 이상, 70% ee 이상, 80% ee 이상, 90% ee 이상, 91% ee 이상, 92% ee 이상, 93% ee 이상, 94% ee 이상, 95% ee 이상, 96% ee 이상, 97% ee 이상, 98% ee 이상, 또는 99% ee 이상일 수 있다.
다음으로, 화학식 7으로 표시되는 L-글루포시네이트 또는 이의 염을 제조하는 단계에서, 제4 중간체 화합물을 제3 산(acid) 촉매 또는 제3 염기(base) 촉매 하에서 가수분해 반응시켜 화학식 7으로 표시되는 L-글루포시네이트 또는 이의 염을 제조할 수 있다. 예를 들어, 화학식 6으로 표시되는 제4 중간체 화합물로부터 제3 산(acid) 촉매 또는 제3 염기(base) 촉매 하에서 가수분해(hydrolysis)에 의하여 말단 작용기들을 제거함에 의하여 화학식 7로 표시되는 L-글루포시네이트 또는 이의 염이 얻어진다.
<화학식 6>
Figure PCTKR2020000273-appb-I000024
<화학식 7>
Figure PCTKR2020000273-appb-I000025
화학식 6으로 표시되는 제4 중간체 화합물에서, 예를 들어 R1이 Ra-O-(C=O)-이며, Ra가 tert-부틸(tert-butyl), 벤질(benzyl), 9-플루오레닐(9-flurorenyl)-CH2- 등이며, R2 및 R3은 서로 독립적으로 수소, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 벤질, 페닐, 나프틸, -Si(CH3)(tert-butyl)2, -Si(C6H5)2(tert-butyl), -Si(iso-propyl)3, -Si(C5H6)(CH3)2, -Si(C6H5)2(CH3), -Si(C5H6)3, -Si(CH3)3, -Si(CH2CH3)3, -Si(CH2CH3)2(CH3), -Si(CH2CH3)(CH3)2, 또는 -Si(tert-butyl)3 일 수 있다. 화학식 6으로 표시되는 제4 중간체 화합물이 이러한 작용기를 가짐에 의하여 향상된 광학 순도를 가지는 L-글루포시네이트를 더욱 용이하게 제조할 수 있다.
제3 산 촉매는 예를 들어, HCl, H2SO4, HBr, HI, 포스겐(phosgene), SOCl2, 옥살릴 클로라이드(oxalyl chloride), 트리에틸실란(Et3SiH)+PdCl2+MeI, POCl3, PCl3, PCl5, PBr3, PI3, H2SO4+KBr, P+Cl2, P+Br2, P+I2, TiCl4, ZnCl2, BBr3, 파라-톨루엔술폰산(PTSA), 및 루이스산(Lewis acid) 중에서 선택된 하나 이상이며, 루이스산은 예를 들어 KF+Al2O3, BF3-Et2O(diehtylether), CoCl2, MgBr2, Bu3P, Sc(OTf)3(OTf=trifluoromethanesulfonate), Sc(NTf2)3(Scandium(III) trifluoromethanesulfonimide), TiCl3-2AgClO4, TiCl3(OTf), Sn(OTf)2, TMSOTf(TriMethylSilyl trifluoromethanesulfonate), La(OTf)3, Cu(OTf)2, 및 TaCl5 중에서 선택되는 하나 이상이나, 제3 산 촉매가 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매로 사용하는 것이라면 모두 가능하다. 제3 산 촉매는 특히 묽은 염산일 수 있다.
제3 산 촉매의 함량은 예를 들어 화학식 1로 표시되는 L-호모세린 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 다르게는, 제3 산 촉매의 함량은 예를 들어 화학식 6으로 표시되는 제4 중간체 화합물 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 제3 산 촉매의 함량이 지나치게 낮으면 반응 속도에 미치는 영향이 미미하며, 제3 산 촉매의 함량이 지나치게 많으면 부산물이 증가할 수 있다.
L-글루포시네이트를 제조하는 단계는 용매 하에서 수행되거나 용매 없이 니트(neat) 조건에서 수행될 수 있다. 용매는 물 또는 유기 용매일 수 있다. 유기 용매는 예를 들어 알코올, 톨루엔, 벤젠, 테트라하이드로퓨란, 아세톤, 클로로포름, 디클로로메탄, 아세토니트릴 등이나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매와 같이 사용하는 용매라면 모두 가능하다. 알코올은 예를 들어 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올 등이나 이들로 한정되지 않는다. 제3 산 촉매를 사용하며 용매가 물인 경우 물을 포함하는 수용액의 pH는 1 내지 3일 수 있다. 즉, L-글루포시네이트를 제조하는 단계에서 반응 용액은 pH 1 내지 3의 산성 수용액일 수 있다. 반응 용액이 이러한 범위의 pH를 가짐에 의하여 보다 용이하게 L-글루포시네이트를 제조할 수 있다.
L-글루포시네이트를 제조하는 단계에서 가수 분해 반응은 예를 들어 20 내지 150℃, 40 내지 140℃, 60 내지 130℃, 80 내지 120℃, 또는 90 내지 110℃의 온도에서 수행될 수 있다. L-글루포시네이트를 제조하는 단계에서 가수 분해 반응은 예를 들어 0.1 내지 30 시간, 5 내지 30 시간, 8 내지 30 시간, 10 내지 30 시간, 15 내지 25 시간, 16 내지 20 시간, 또는 17 내지 19 시간 동안 수행될 수 있다. 가수 분해 반응이 이러한 온도 범위 및 시간 범위에서 수행됨에 의하여 보다 용이하게 L-글루포시네이트를 제조할 수 있다.
또한, 제3 산 촉매 대신 제3 염기 촉매를 사용하는 것이 가능하다.
제3 염기 촉매는 예를 들어, NH3, KOH, NaOH, CaSO4, LiOH, NaH, KH, NaOCH3, NaOCH2CH3, NaOC(CH3)3, KO C(CH3)3, K2CO3, Na2CO3, 1,8-디아자바이사이클로[5.4.0]운데카-7-엔(DBU), 1,5-디아자바이사이클로[4.3.0]노나-5-엔(DBN), 트리(C1-C4알킬)아민, 피리딘, n-부틸리튬, 리튬디이소프로필아미드(LDA), 헥사메틸디실라잔리튬(LiHMDS), 헥사메틸디실라잔칼륨(KHMDS), 및 헥사메틸디실라잔나트륨(NaHMDS) 중에서 선택된 하나 이상이나, 제3 염기 촉매가 반드시 이들로 한정되지 않으며 당해 기술분야에서 염기 촉매로 사용하는 것이라면 모두 가능하다. 제3 염기 촉매는 특히 수산화나트륨일 수 있다.
제3 염기 촉매의 함량은 예를 들어 화학식 1로 표시되는 L-호모세린 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 다르게는, 제3 염기 촉매의 함량은 예를 들어 화학식 6으로 표시되는 제4 중간체 화합물 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 제3 염기 촉매의 함량이 지나치게 낮으면 반응 속도에 미치는 영향이 미미하며, 제1 염기 촉매의 함량이 지나치게 많으면 부산물이 증가할 수 있다. 제3 염기 촉매를 사용하며 용매가 물인 경우 물을 포함하는 수용액의 pH는 7 내지 10일 수 있다. 즉, 제3 염기 촉매와 물을 용매로서 사용하는 L-글루포시네이트를 제조하는 단계에서 반응 용액은 pH 7 내지 10의 염기성 수용액일 수 있다. 반응 용액이 이러한 범위의 pH를 가짐에 의하여 보다 용이하게 L-글루포시네이트를 제조할 수 있다.
L-글루포시네이트를 제조하는 단계에서, L-글루포시네이트의 수율은 예를 들어 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상일 수 있다.
제조된 L-글루포시네이트의 거울상 초과량(enantiomeric excess)은 예를 들어 10% ee 이상, 20% ee 이상, 30% ee 이상, 40% ee 이상, 50% ee 이상, 60% ee 이상, 70% ee 이상, 80% ee 이상, 90% ee 이상, 91% ee 이상, 92% ee 이상, 93% ee 이상, 94% ee 이상, 95% ee 이상, 96% ee 이상, 97% ee 이상, 98% ee 이상, 또는 99% ee 이상일 수 있다. L-글루포시네이트가 이러한 향상된 광학 순도를 가짐에 의하여 예를 들어 더욱 향상된 제초제 효과를 제공할 수 있다.
제조된 L-글루포시네이트의 염은 예를 들어 L-글루포시네이트의 염산염, L-글루포시네이트의 황산염, L-글루포시네이트의 탄산염, L-글루포시네이트의 암모늄염 등이나 반드시 이들로 한정되지 않으며 상술한 글루포시네이트 제조 방법에서 얻어지는 L-글루포시네이트의 염이라면 모두 가능하다.
추가적으로, 제1 중간체 화합물을 준비하는 단계 전에, 하기 화학식 8로 표시되는 L-호모세린 유도체를 제4 산 촉매 하에서 반응시켜, 화학식 1로 표시되는 L-호모세린을 준비하는 단계;를 더 포함할 수 있다.
예를 들어, 화학식 8로 표시되는 L-호모세린 유도체에서 R4로 표시되는 Ra-(C=O)- 작용기가 제4 산 촉매 하에서 가수분해(hydrolysis) 반응에 의하여 제거되어 화학식 1로 표시되는 L-호모세린이 얻어질 수 있다.
<화학식 8>
Figure PCTKR2020000273-appb-I000026
상기 식에서,
R4은 Re-(C=O)- 이며, Re는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기, 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기이며,
상기 치환된 알킬기, 치환된 알케닐기, 치환된 알키닐기, 치환된 시클로알킬기, 치환된 아릴기, 및 치환된 헤테로아릴기의 치환기는 서로 독립적으로 할로겐, 카르복실기(-COOH), 니트로기, 시아노기, 탄소수 6 내지 10의 아릴기 또는 탄소수 3 내지 10의 시클로알킬기이다.
화학식 8로 표시되는 L-호모세린 유도체에서, 예를 들어 Re가 -CH3, -CH2CH2COOH, 2-피라지닐, 2-아미노-5-피리디닐, 4-피리디닐, 또는 (3-아미노-5-메틸)페닐 일 수 있다. 특히, 화학식 8로 표시되는 L-호모세린 유도체에서, 예를 들어 R4는 아세틸, 또는 석시닐일 수 있다. 화학식 8로 표시되는 L-호모세린 유도체가 이러한 작용기를 가짐에 의하여 향상된 광학 순도를 가지는 L-글루포시네이트를 더욱 용이하게 제조할 수 있다.
L-호모세린을 준비하는 단계에서, 화학식 8로 표시되는 L-호모세린 유도체는, 예를 들어 L-호모세린 유도체를 포함하는 발효액으로부터 준비될 수 있다. 따라서, 발효 과정에서 생성되는 화학식 8로 표시되는 L-호모세린 유도체를 사용하여 L-글루포시네이트이 효율적인 제조가 가능하다. 즉, L-호모세린을 준비하는 단계 전에, L-호모세린 유도체를 포함하는 발효액으로부터 L-호모세린 유도체를 준비하는 단계를 더 포함할 수 있다.
본 출원에서 용어, 'L-호모세린 유도체를 포함하는 발효액' 은 발효 과정으로부터 생성된 L-호모세린 유도체를 포함하는 발효액일 수 있다. 발효액은 당을 포함하는 배지에서 미생물을 배양하여 수득한 발효액일 수 있으며, 또는 미생물을 배양하여 수득한 발효액을 효소 전환하여 수득한 발효액일 수 있다. 예를 들어, L-호모세린 유도체를 포함하는 발효액은, 당을 포함하는 배지에서 미생물을 배양하여 L-호모세린 유도체를 직접 생산한 발효액, 또는 당을 포함하는 배지에서 미생물을 배양하여 생산한 아미노산을 효소전환하여 수득한 L-호모세린 유도체를 포함하는 발효액일 수 있다. L-호모세린 유도체를 포함하는 발효액의 제조에 사용되는 미생물의 종류는 특별히 한정되지 않으며 당해 기술분야에서 L-호모세린 유도체를 직접발효생산 또는 효소전환하여 생산할 수 있는 미생물이라면 모두 가능하다.
화학식 8로 표시되는 L-호모세린 유도체는 예를 들어 하기 화학식 9 내지 14로 표시되는 화합물일 수 있다:
<화학식 9>
Figure PCTKR2020000273-appb-I000027
<화학식 10>
Figure PCTKR2020000273-appb-I000028
<화학식 11>
Figure PCTKR2020000273-appb-I000029
<화학식 12>
Figure PCTKR2020000273-appb-I000030
<화학식 13>
Figure PCTKR2020000273-appb-I000031
<화학식 14>
Figure PCTKR2020000273-appb-I000032
L-호모세린 유도체는 특히 O-아세틸-L-호모세린, O-석시닐-L-호모세린이나 반드시 이들로 한정하지 않으며 발효 과정에서 얻어지며 당해 기술 분야에서 L-호모세린의 말단 산소에 치환기가 연결된 유도체라면 모두 가능하다. L-호모세린 유도체를 포함하는 발효액은 예를 들어, KR 10-2014-0116010의 실시예 2에 개시된 O-숙시닐-L-호모세린 생산 균주인 CJM-BTJ/pCJ-MetA-CL (수탁 번호: KCCM-10872) 또는 O-아세틸-L-호모세린 생산 균주인 CJM-BTJA/pCJ-MetX-CL (수탁번호 : KCCM-10873)를 포함하는 배지를 발효시켜 얻어지는 발효액일 수 있다.
제4 산 촉매는 예를 들어, HCl, H2SO4, HBr, HI, 포스겐(phosgene), SOCl2, 옥살릴 클로라이드(oxalyl chloride), 트리에틸실란(Et3SiH)+PdCl2+MeI, POCl3, PCl3, PCl5, PBr3, PI3, H2SO4+KBr, P+Cl2, P+Br2, P+I2, TiCl4, ZnCl2, BBr3, 파라-톨루엔술폰산(PTSA), 및 루이스산(Lewis acid) 중에서 선택된 하나 이상이며, 루이스산은 예를 들어 KF+Al2O3, BF3-Et2O(diehtylether), CoCl2, MgBr2, Bu3P, Sc(OTf)3(OTf=trifluoromethanesulfonate), Sc(NTf2)3(Scandium(III) trifluoromethanesulfonimide), TiCl3-2AgClO4, TiCl3(OTf), Sn(OTf)2, TMSOTf(TriMethylSilyl trifluoromethanesulfonate), La(OTf)3, Cu(OTf)2, 및 TaCl5 중에서 선택되는 하나 이상이나, 제4 산 촉매가 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매로 사용하는 것이라면 모두 가능하다. 제4 산 촉매는 특히 묽은 염산, 황산 등일 수 있다.
제4 산 촉매의 함량은 예를 들어 화학식 7로 표시되는 L-호모세린 유도체 100 중량부에 대하여 0.1 내지 100 중량부, 0.1 내지 50 중량부, 0.1 내지 40 중량부, 0.1 내지 30 중량부, 0.1 내지 20 중량부, 0.1 내지 10 중량부, 0.1 내지 5 중량부, 또는 0.1 내지 2 중량부일 수 있다. 제4 산 촉매의 함량이 지나치게 낮으면 반응 속도에 미치는 영향이 미미하며, 제4 산 촉매의 함량이 지나치게 많으면 부산물이 증가할 수 있다.
L-호모세린을 준비하는 단계는 용매 하에서 수행되거나 용매 없이 니트(neat) 조건에서 수행될 수 있다. 용매는 물 또는 유기 용매일 수 있다. 유기 용매는 예를 들어 알코올, 톨루엔, 벤젠, 테트라하이드로퓨란, 아세톤, 클로로포름, 디클로로메탄, 아세토니트릴 등이나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 산 촉매와 같이 사용하는 용매라면 모두 가능하다. 알코올은 예를 들어 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올 등이나 이들로 한정되지 않는다. 용매는 특히 메탄올일 수 있다.
L-호모세린을 제조하는 단계에서 가수 분해 반응은 예를 들어 20 내지 150℃, 40 내지 140℃, 60 내지 130℃, 80 내지 120℃, 또는 90 내지 110℃의 온도에서 수행될 수 있다. L-호모세린을 제조하는 단계에서 가수 분해 반응은 예를 들어 0.1 내지 30 시간, 5 내지 30 시간, 8 내지 30 시간, 10 내지 30 시간, 15 내지 25 시간, 16 내지 20 시간, 또는 17 내지 19 시간 동안 수행될 수 있다. 가수 분해 반응이 이러한 온도 범위 및 시간 범위에서 수행됨에 의하여 보다 용이하게 L-호모세린을 준비할 수 있다.
L-호모세린을 준비하는 단계에서, L-호모세린의 수율은 예를 들어 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상일 수 있다.
L-호모세린을 준비하는 단계에서, L-호모세린의 거울상 초과량(enantiomeric excess)은 예를 들어 10% ee 이상, 20% ee 이상, 30% ee 이상, 40% ee 이상, 50% ee 이상, 60% ee 이상, 70% ee 이상, 80% ee 이상, 90% ee 이상, 91% ee 이상, 92% ee 이상, 93% ee 이상, 94% ee 이상, 95% ee 이상, 96% ee 이상, 97% ee 이상, 98% ee 이상, 또는 99% ee 이상일 수 있다.
다른 일 구현예에 따른 제초제 조성물은 상술한 방법으로 제조된 L-글루포시네이트를 포함할 수 있다.
제초제 조성물이 포함하는 L-글루포시네이트의 거울상 초과량(enantiomeric excess)은 예를 들어 10% ee 이상, 20% ee 이상, 30% ee 이상, 40% ee 이상, 50% ee 이상, 60% ee 이상, 70% ee 이상, 80% ee 이상, 90% ee 이상, 91% ee 이상, 92% ee 이상, 93% ee 이상, 94% ee 이상, 95% ee 이상, 96% ee 이상, 97% ee 이상, 98% ee 이상, 또는 99% ee 이상일 수 있다.
제초제 조성물이 포함하는 L-글루포시네이트의 함량은 0.01 내지99wt%, 0.1 내지 99wt%, 또는 10 내지 90wt%일 수 있다. 제초제 조성물이 이러한 범위의 L-글루포시네이트를 포함함에 의하여 향상된 제초 성능을 제공할 수 있다.
본 명세서에서 용어 "알킬"은 완전 포화된 분지형 또는 비분지형 (또는 직쇄 또는 선형) 탄화수소를 말할 수 있다.
"알킬"의 비제한적인 예로는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, n-펜틸, 이소펜틸, 네오펜틸, n-헥실, 3-메틸헥실, 2,2-디메틸펜틸, 2,3-디메틸펜틸, n-헵틸 등을 들 수 있다.
"알킬"중 하나 이상의 수소 원자는 할로겐 원자, 할로겐 원자로 치환된 C1-C20의 알킬기(예: CCF3, CHCF2, CH2F, CCl3 등), C1-C20의 알콕시, C2-C20의 알콕시알킬, 히드록시기, 니트로기, 시아노기, 아미노기, 아미디노기, 히드라진, 히드라존, 카르복실기나 그의 염, 술포닐기, 설파모일(sulfamoyl)기, 술폰산기나 그의 염, 인산이나 그의 염, 또는 C1-C20의 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20의 헤테로알킬기, C6-C20의 아릴기, C6-C20의 아릴알킬기, C6-C20의 헤테로아릴기, C7-C20의 헤테로아릴알킬기, C6-C20의 헤테로아릴옥시기, C6-C20의 헤테로아릴옥시알킬기 또는 C6-C20의 헤테로아릴알킬기로 치환될 수 있다.
본 명세서에서 용어 "할로겐"는 불소, 브롬, 염소, 요오드 등을 포함할 수 있다.
본 명세서에서 용어 "알콕시"는 "알킬-O-"을 나타내며, 알킬은 상술한 바와 같다. 알콕시기는 예를 들어 메톡시기, 에톡시기, 2-프로폭시기, 부톡시기, t-부톡시기, 펜틸옥시기, 헥실옥시기 등을 들 수 있다. 알콕시중 하나 이상의 수소 원자는 상술한 알킬기의 경우와 동일한 치환기로 치환될 수 있다.
본 명세서에서 용어 "알케닐"은 적어도 하나의 탄소-탄소 이중결합을 갖는 분지형 또는 비분지형 탄화수소를 말할 수 있다. 알케닐기의 비제한적인 예로는 비닐, 알릴, 부테닐, 프로페닐, 이소부테닐 등을 들 수 있고, 알케닐중 하나 이상의 수소 원자는 상술한 알킬기의 경우와 동일한 치환기로 치환될 수 있다.
본 명세서에서 용어 "알키닐"은 적어도 하나의 탄소-탄소 삼중결합을 갖는 분지형 또는 비분지형 탄화수소를 말할 수 있다. "알키닐"의 비제한적인 예로는 에티닐, 부티닐, 이소부티닐, 이소프로피닐 등을 들 수 있다.
본 명세서에서 용어 "알키닐"중 하나 이상의 수소 원자는 상술한 알킬기의 경우와 동일한 치환기로 치환될 수 있다.
본 명세서에서 용어 "아릴"은 방향족 고리가 하나 이상의 탄소고리에 선택적으로 융합된 그룹도 포함할 수 있다. "아릴"의 비제한적인 예로서, 페닐, 나프틸, 테트라히드로나프틸 등이 있다. "아릴"기중 하나 이상의 수소 원자는 상술한 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서에서 용어 "헤테로아릴"은 N, O, P 또는 S 중에서 선택된 하나 이상의 헤테로원자를 포함하고, 나머지 고리원자가 탄소인 모노사이클릭(monocyclic) 또는 바이사이클릭(bicyclic) 유기 그룹을 의미할 수 있다. 헤테로아릴기는 예를 들어 1-5개의 헤테로원자를 포함할 수 있고, 5-10 고리 멤버(ring member)를 포함할 수 있다. 상기 S 또는 N은 산화되어 여러가지 산화 상태를 가질 수 있다.
헤테로아릴의 예로는 티에닐, 푸릴, 피롤릴, 이미다졸릴, 피라졸릴, 티아졸릴, 이소티아졸릴, 1,2,3-옥사디아졸릴, 1,2,4-옥사디아졸릴, 1,2,5-옥사디아졸릴, 1,3,4-옥사디아졸릴기, 1,2,3-티아디아졸릴, 1,2,4-티아디아졸릴, 1,2,5-티아디아졸릴, 1,3,4-티아디아졸릴, 이소티아졸-3-일, 이소티아졸-4-일, 이소티아졸-5-일, 옥사졸-2-일, 옥사졸-4-일, 옥사졸-5-일, 이소옥사졸-3-일, 이소옥사졸-4-일, 이소옥사졸-5-일, 1,2,4-트리아졸-3-일, 1,2,4-트리아졸-5-일, 1,2,3-트리아졸-4-일, 1,2,3-트리아졸-5-일, 테트라졸릴, 피리드-2-일, 피리드-3-일, 2-피라진-2일, 피라진-4-일, 피라진-5-일, 2- 피리미딘-2-일, 4- 피리미딘-2-일, 또는 5-피리미딘-2-일을 들 수 있다.
헤테로아릴은 헤테로방향족 고리가 하나 이상의 아릴, 지환족(cyclyaliphatic), 또는 헤테로사이클에 선택적으로 융합된 경우를 포함할 수 있다.
이하의 실시예 및 비교예를 통하여 본 출원이 더욱 상세하게 설명된다. 단, 실시예는 본 출원을 예시하기 위한 것으로서 이들만으로 본 출원의 범위가 한정되는 것이 아니다.
실시예 1: O -아세틸-L-호모세린을 이용한 L-글루포시네이트의 제조
(1-1 단계: L-Homoserine의 제조)
Figure PCTKR2020000273-appb-I000033
O-Acetyl-L-Homoserine (II) (1g, 6.2 mmol)이 물 70mL에 용해된 수용액에, 산 촉매로서 HCl (62.1mmol, O-Acetyl-L-Homoserine (II)과 HCl의 몰비 = 1:10)을 천천히 첨가하여 pH 1.0의 반응 용액을 준비하였다. 이어서, 반응 용액을 50℃로 승온한 후, 50℃에서 5시간 동안 환류시켰다. 이어서, 반응이 완료된 용액을 감압 농축하여 농축액을 준비하였다. 준비된 농축액을 감압 여과하여 연노란색 고체상의 L-Homoserine (III-1) 0.7g (수율 99%)을 얻었다.
반응의 종료는 박막크로마토그래피(TLC) 법으로 확인하였다. 이동상(mobile phase)은 헥산:n-에틸 아세테이트 =4:1 부피비 혼합용매를 사용하였다. Rf = 0.4이었다. 폴리아크릴아미드에서 흰색으로 발색하였다.
(1-2 단계: L-Homoserine lactone의 제조)
Figure PCTKR2020000273-appb-I000034
L-Homoserine(III-1) (10g, 62 mmol)이 물 100mL에 용해된 수용액에, 산 촉매로서 c-HCl(진한 염산) 50mL를 천천히 첨가한 후 반응 용액을 60℃에서 3시간 동안 환류 반응시켰다. 반응이 완료된 후 반응 용액을 25℃까지 냉각시킨 후 디클로로메탄 100ml, 및 NaHCO3 포화용액 120mL를 투입하여 세척한 후 유기층을 추출하였다. 추출된 유기층을 감압 농축하여 농축액을 얻었다.
(1-3 단계: N-(tert-butoxy)carbonyl-L-Homoserine lactone 의 제조)
Figure PCTKR2020000273-appb-I000035
1-2 단계에서 제조된 농축액에 디클로로메탄 70mL를 첨가하여 용해하고 25℃에서 약 30분간 교반하여 반응 용액을 준비하였다. 이어서, 트리에틸아민 10.9g(1.3equiv, 107.7 mmol)과 Di-t-Butyl-dicarbonate(Boc2O) 17.5g (1.0 equiv, 80.2 mmol)를 디클로로메탄 50mL에 녹여(2.7M) 혼합액을 준비하였다. 준비된 혼합액을 25℃에서 2시간에 걸쳐 반응 용액에 적가한 후 15시간 교반하였다. 반응이 완료된 후 반응 용액을 1N HCl 120mL 1회, NaHCO3(포화 용액) 120mL 1회, 및 물 120mL 1회 순착적으로 세척 한 후, 유기층을 분리하였다. 분리된 유기층을 황산마그네슘(MgSO4)로 건조시킨 후 여과 및 농축하여 무색 오일의 N-(tert-butoxy)carbonyl-L-Homoserine lactone을 얻었다(14g, 수율 96%).
N-(tert-butoxy)carbonyl-L-Homoserine lactone에서 아민 보호기(protecting group)의 형성은 박막크로마토그래피법(TLC)으로 확인하였다.
이동상(mobile phase)은 헥산:n-에틸 아세테이트 =9:1 부피비 혼합용매를 사용하였다. Rf = 0.4이었다. 폴리아크릴아미드에서 흰색으로 발색하였다. 닌하이드린(Ninhydrin) 반응으로 1차 아민기가 없음을 확인하였다.
(1-4 단계: Methyl-2-((tert-butoxycarbonyl)amino)-4-bromobutanoate의 제조)
Figure PCTKR2020000273-appb-I000036
N-(tert-butoxy)carbonyl-L-Homoserine lactone 10g (54 mmol)을 디클로로메탄 80mL에 용해시킨 용액에, 보론트리브로마이드(BBr3) 1M 용액 51 mL (51 mmol)를 0oC에서 서서히 첨가하여 반응 용액을 준비하였다. 준비된 반응 용액을 25℃에서 19시간 교반하였다. 이어서, 반응 용액에 메탄올 100 mL (0.2M)을 첨가하고 25℃에서 1시간 교반하였다. 이어서, 반응 요액에 물 100 mL를 첨가한 후 유기층을 분리하였다. 유기층은 소금물(brine)로 1회 세척한 후, 무수황산마그네슘(MgSO4)으로 건조하였다. 건조된 유기층을 여과한 후, 여과액을 감압 농축하여 Methyl-2-((tert-butoxycarbonyl)amino)-4-bromobutanoate 를 포함하는 잔류물을 얻었다.
얻어진 잔류물을 컬럼 크로마토그래프로 분리하여 (이동상(mobile phase), 헥산:에틸아세테이트= 1:1) 무색 오일인 Methyl-2-((tert-butoxycarbonyl)amino)-4-bromobutanoate 11.7 g (수율 77.4%)을 얻었다.
1H NMR (CDCl3, 300 MHz): δ 5.11 (d, J= 5 Hz, 1H), 4.39 (t, J= 14.5 Hz, 1H), 3.78 (s, 3H), 3.45 (t, J= 13 Hz, 2H), 2.41 (m, 1H), 2.22 (m, 1H), 1.41 (s, 9H))
(1-5 단계: Methyl-2-((tert-butoxycarbonyl)amino)-4-(butoxymethylphosphinyl)butanoate 의 제조)
Figure PCTKR2020000273-appb-I000037
Dibutyl methylphosphonite 272 mg (2 mmol)을 테트라하이드로퓨란 용매 7mL에 첨가한 희석액을 반응기에 투입하고 반응기 온도를 -78 oC로 냉각하였다. 이어서, 질소 가스 분위기하에서, 반응기에 1M LiHMDS 2mL를 첨가한 후 20분간 교반하였다. 이어서, 반응기에 테트라하이드로퓨란 4mL에 용해된 Methyl-2-((tert-butoxycarbonyl)amino)-4-bromobutanoate 0.56g, 2 mmol, 1.0 equiv.)를 같은 온도에서 첨가하였다. 이어서, 반응기 온도를 1시간에 걸쳐 25oC 으로 올린 뒤 18시간 동안 교반시켰다. 반응이 완료된 후, 반응기에 증류수와 에틸아세테이트를 추가로 첨가하여 교반한 후 유기층을 분리하였다. 분리된 유기층은 소금물(brine)로 1회 세척하고, 무수황산마그네슘(MgSO4)으로 건조한 후 여과하였다. 여과액을 감압 농축하여 잔류물을 수득하였다. 잔류물을 컬럼 크로마토그래프로 분리하여 (이동상(mobile phase), 에틸아세테이트(ethyl acetate):이소프로판올(isopropanol)=4:1부피비) 연노랑색 오일인 Methyl-2-((tert-butoxycarbonyl)amino)-4-(butoxymethylphosphinyl)butanoate (VII) (0.40g (수율 60.0%)을 얻었다.
1H NMR (CDCl3, 300 MHz) δ 5.02 (d, J = 9.5 Hz, 1 H), 4.50 (m, 1 H), 3.60-3.81 (m, 3 H), 3.54 (d, J HP = 14.1 Hz, 3H), 2.18-2.37 (m, 2H), 1.27-1.86 (m, 17H), 0.93 (t, J= 7.3 Hz, 3H).
31P NMR (CDCl3, 121.47 MHz) δ 48.0 & 44.41 (s).
(1-6 단계: L-glufosinate (L-phosphinothricin) hydrochloride의 제조)
Figure PCTKR2020000273-appb-I000038
Methyl-2-((tert-butoxycarbonyl)amino)-4-(butoxymethylphosphinyl)butanoate (VII) 281mg (0.8 mmol)을 메탄올 5mL와 6N HCl 5mL의 혼합 용액에 용해시킨 후, 밀봉 튜브(Seal tube)에 투입하고, 100oC에서 8시간 교반하였다. 가수분해 반응이 완료된 후, 감압 하에서 용매를 제거하여 흰색 L-글루포시네이트 염산염 (L-Glufosinate hydrochloride salt) 172 mg, (수율 99%)를 수득하였다.
1H NMR (400 MHz, D2O): δ 4.12 (m, 1H), 2.45-1.65 (m, 4H), 1.46 (d, J= 14 Hz, 3H).
실시예 2: O -석시닐-L-호모세린을 이용한 L-글루포시네이트의 제조
(2-1 단계: L-Homoserine의 제조)
Figure PCTKR2020000273-appb-I000039
O-Succinyl-L-Homoserine (III-1) (1g, 4.57 mmol)이 물 52mL에 용해된 수용액에, 산 촉매로서 HCl (45.6 mmol, O-Succinyl-L-Homoserine (II)과 HCl의 몰비 = 1:10)을 천천히 첨가하여 pH 1.0의 반응 용액을 준비하였다. 이어서, 반응 용액을 50℃로 승온한 후, 50℃에서 5시간 동안 환류시켰다. 이어서, 반응이 완료된 용액을 감압 농축하여 농축액을 준비하였다. 준비된 농축액을 감압 여과하여 노란색 고체상의 L-Homoserine (III-1) 0.54g (수율 98.5%)을 얻었다.
반응의 종료는 박막크로마토그래피(TLC) 법으로 확인하였다. 이동상(mobile phase)은 헥산:n-에틸 아세테이트 =4:1 부피비 혼합용매를 사용하였다. Rf = 0.4이었다. 폴리아크릴아미드에서 흰색으로 발색하였다.
(2-2 단계 내지 2-6 단계)
이하 단계들은 실시예 1과 동일하게 실시하여 흰색 L-글루포시네이트 염산염 (L-Glufosinate hydrochloride salt)(수율 99%)를 수득하였다.
1H NMR (400 MHz, D2O): δ 4.12 (m, 1H), 2.45-1.65 (m, 4H), 1.46 (d, J= 14 Hz, 3H).
비교예 1: 라세믹(racemic) 글루포시네이트의 제조
USP 6,359, 162의 실시예 1에 개시된 방법에 따라 글루포시네이트를 제조하였다. 제조된 글루포시네이트는 라세믹 혼합물(racemic mixture)이었다.
평가예 1: 거울상 초과량(enantiomeric excess, % ee) 측정
실시예 1 내지 2 및 비교예 1에서 합성된 L-글루포시네이트의 거울상 초과량을 카이랄 HPLC를 사용하여 측정하여 그 결과를 하기 표 1에 나타내었다.
카이랄 HPLC 분석은 Waters 1525 Instrument로 측정하였다. 거울상 초과량(% ee)은 CHIRALCEL OJ 노말상(normal phase) 카이랄 컬럼(chiral column, 4.6 ㅧ 250 mm)을 사용하여 결정하였다. 이동상(mobile phase)은 헥산 : 에탄올(3:1 부피비)의 혼합 용액을 사용하였고 용매 흐름 속도는 1.0 mL/min, 시료 주입량은 10 μL, UV 검출파장은 254 nm로 정하였다
거울상 초과량 [% ee]
실시예 1 92.1
실시예 2 91.8
비교예 1 1 미만
상기 표 1에서 보여지는 바와 같이, 실시예 1 내지 2에서 제조된 글루포시네이트는 비교예 1에서 제조된 글루포시네이트에 비하여 L-글루포시네이트의 거울상 초과량이 현저히 향상되었다.따라서, 본원발명의 제조방법에 의하여 고순도의 L-글루포시네이트를 간단하게 제조하는 것이 가능하다.
일구현예에 따른 글루포시네이트 제조 방법은 L-호모세린 또는 이의 유도체를 출발 물질로 사용하며, 새로운 합성 경로를 가짐에 의하여 높은 광학 순도를 가지는 L-글루포시네이트의 간단한 제조가 가능하다.

Claims (19)

  1. 하기 화학식 1로 표시되는 L-호모세린을 제1 산(acid) 촉매 하에서 반응시켜 하기 화학식 2로 표시되는 제1 중간체 화합물을 준비하는 단계;
    상기 제1 중간체 화합물을 제1 염기(base) 촉매 하에서 R1-A-R1' 화합물과 반응시켜 하기 화학식 3으로 표시되는 제2 중간체 화합물을 준비하는 단계;
    상기 제2 중간체 화합물을 할로겐화제(halogenation agent), 및 R2-B와 R2-E 중에서 선택된 하나 이상의 화합물과 반응시켜 하기 화학식 4로 표시되는 제3 중간체 화합물을 준비하는 단계;
    상기 제3 중간체 화합물을 제2 산(acid) 촉매 또는 제2 염기(base) 촉매 하에서 하기 화학식 5로 표시되는 인계 화합물과 반응시켜 하기 화학식 6으로 표시되는 제4 중간체 화합물을 준비하는 단계; 및
    상기 제4 중간체 화합물을 제3 산(acid) 촉매 또는 제3 염기(base) 촉매 하에서 가수분해 반응시켜 하기 화학식 7로 표시되는 L-글루포시네이트 또는 이의 염을 제조하는 단계;를 포함하는 글루포시네이트 제조 방법:
    <화학식 1>
    Figure PCTKR2020000273-appb-I000040
    <화학식 2>
    Figure PCTKR2020000273-appb-I000041
    <화학식 3>
    Figure PCTKR2020000273-appb-I000042
    <화학식 4>
    Figure PCTKR2020000273-appb-I000043
    <화학식 5>
    Figure PCTKR2020000273-appb-I000044
    <화학식 6>
    Figure PCTKR2020000273-appb-I000045
    <화학식 7>
    Figure PCTKR2020000273-appb-I000046
    상기 식들에서,
    R1 이 Ra-O-(C=O)- 이고 R1'가 Rb-O-(C=O)- 이며, Ra 및 Rb는 서로 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기, 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기이며,
    R2 및 R3이 서로 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기, 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기, 또는 -Si(Rb)(Rc)(Rd)이며, Rb, Rc 및 Rd는 서로 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이며,
    A는 공유결합, -O-, 및 -S- 중에서 선택되며,
    B 및 E는 서로 독립적으로 하이드록시기(-OH), Cl, Br, F, I, 및 수소 중에서 선택되며,
    X는 할로겐이며,
    상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 아릴기, 및 헤테로아릴기의 치환기는 서로 독립적으로 할로겐, 카르복실기(-COOH), 아미노기(-NH2), 니트로기(-NO2), 시아노기(-CN), 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 10의 아릴기 또는 탄소수 3 내지 10의 시클로알킬기일 수 있다.
  2. 제1 항에 있어서, 상기 Ra가 tert-부틸(tert-butyl), 벤질(benzyl), 또는 9-플루오레닐(9-flurorenyl)-CH2- 이며,
    상기 R2 및 R3가 서로 독립적으로 수소, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 벤질, 페닐, 나프틸, -Si(CH3)(tert-butyl)2, -Si(C6H5)2(tert-butyl), -Si(iso-propyl)3, -Si(C5H6)(CH3)2, -Si(C6H5)2(CH3), -Si(C5H6)3, -Si(CH3)3, -Si(CH2CH3)3, -Si(CH2CH3)2(CH3), -Si(CH2CH3)(CH3)2, 또는 -Si(tert-butyl)3 인 글루포시네이트 제조 방법.
  3. 제1 항에 있어서, 상기 L-호모세린이, 상기 L-호모세린 또는 L-호모세린의 전구체를 포함하는 발효액으로부터 준비되는 글루포시네이트 제조 방법.
  4. 제1 항에 있어서, 상기 제1 산 촉매, 제2 산 촉매 및 제3 산 촉매가 서로 독립적으로, HCl, H2SO4, HBr, HI, 포스겐(phosgene), SOCl2, 옥살릴 클로라이드(oxalyl chloride), 트리에틸실란(Et3SiH)+PdCl2+MeI, POCl3, PCl3, PCl5, PBr3, PI3, H2SO4+KBr, P+Cl2, P+Br2, P+I2, TiCl4, ZnCl2, BBr3, 파라-톨루엔술폰산(PTSA), 수지 촉매(resin catalyst) 및 루이스산(Lewis acid) 중에서 선택된 하나 이상이며,
    상기 루이스산이 KF+Al2O3, BF3-Et2O(diehtylether), CoCl2, MgBr2, Bu3P, Sc(OTf)3(OTf=trifluoromethanesulfonate), Sc(NTf2)3(Scandium(III) trifluoromethanesulfonimide), TiCl3-2AgClO4, TiCl3(OTf), Sn(OTf)2, TMSOTf(TriMethylSilyl trifluoromethanesulfonate), La(OTf)3, Cu(OTf)2, 및 TaCl5 중에서 선택되며,
    상기 제1 산 촉매, 제2 산 촉매 및 제3 산 촉매의 함량이 서로 독립적으로 상기 L-호모세린 100 중량부에 대하여 0.1 내지 100 중량부인 글루포시네이트 제조 방법.
  5. 제1 항에 있어서, 상기 제1 염기 촉매 및 제2 염기 촉매가 서로 독립적으로, NH3, KOH, NaOH, CaSO4, LiOH, NaH, KH, NaOCH3, NaOCH2CH3, NaOC(CH3)3, KO C(CH3)3, K2CO3, Na2CO3, 1,8-디아자바이사이클로[5.4.0]운데카-7-엔(DBU), 1,5-디아자바이사이클로[4.3.0]노나-5-엔(DBN), 트리(C1-C4알킬)아민, 피리딘, n-부틸리튬, 리튬디이소프로필아미드(LDA), 헥사메틸디실라잔리튬(LiHMDS), 헥사메틸디실라잔칼륨(KHMDS), 및 헥사메틸디실라잔나트륨(NaHMDS) 중에서 선택된 하나 이상이며,
    상기 제1 염기 촉매 또는 제2 염기 촉매의 함량이 L-호모세린 100 중량부에 대하여 0.1 내지 100 중량부인 글루포시네이트 제조 방법.
  6. 제1 항에 있어서, 상기 할로겐화제가 HCl, HBr, HI, 포스겐(phosgene), SOCl2, 옥살릴 클로라이드(oxalyl chloride), 트리에틸실란(Et3SiH)+PdCl2+MeI, POCl3, PCl3, PCl5, PBr3, PI3, H2SO4+KBr, P+Cl2, P+Br2, P+I2, TiCl4, ZnCl2, 및 BBr3 중에서 선택되며,
    상기 할로겐화제의 함량이 상기 제2 중간체 화합물 1 몰에 대하여 1 내지 10 몰인 글루포시네이트 제조 방법.
  7. 제1 항에 있어서, 상기 제1 중간체 화합물을 준비하는 단계, 제2 중간체 화합물을 준비하는 단계, 제3 중간체 화합물을 준비하는 단계, 제4 중간체 화합물을 준비하는 단계, 및 L-글루포시네이트를 제조하는 단계가 서로 독립적으로, 용매 하에서 또는 용매 없이 수행되며,
    상기 용매가 물 및 유기 용매 중에서 선택된 하나 이상을 포함하는, 글루포시네이트 제조 방법.
  8. 제1 항에 있어서, 상기 반응이 -100 내지 150℃의 온도에서 수행되는 글루포시네이트 제조 방법.
  9. 제1 항에 있어서, 상기 반응은 0.1 내지 30 시간 동안 수행되는 글루포시네이트 제조 방법.
  10. 제6 항에 있어서, 상기 용매가 물이며, 상기 물을 포함하는 수용액의 pH가 1 내지 3인 글루포시네이트 제조 방법.
  11. 제1 항에 있어서, 상기 L-글루포시네이트의 거울상 초과량(enantiomeric excess)이 50% ee 이상인 글루포시네이트 제조 방법.
  12. 제11 항에 있어서, 상기 L-글루포시네이트의 거울상 초과량(enantiomeric excess)이 90% ee 이상인 글루포시네이트 제조 방법.
  13. 제1 항에 있어서, 상기 L-글루포시네이트의 염이 L-글루포시네이트의 염산염, L-글루포시네이트의 황산염, L-글루포시네이트의 탄산염, 및 L-글루포시네이트의 암모늄염 중에서 선택된 하나 이상을 포함하는 글루포시네이트 제조 방법.
  14. 제1 항에 있어서, 상기 제1 중간체 화합물을 준비하는 단계 전에,
    하기 화학식 8로 표시되는 L-호모세린 유도체를 제4 산 촉매 하에서 가수분해 반응시켜 상기 화학식 1로 표시되는 L-호모세린을 준비하는 단계;를 더 포함하는 글루포시네이트 제조 방법.
    <화학식 8>
    Figure PCTKR2020000273-appb-I000047
    상기 식에서,
    R4은 Re-(C=O)- 이며, Re는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기, 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 탄소수 2 내지 10의 헤테로아릴기이며,
    상기 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 아릴기, 및 헤테로아릴기의 치환기는 서로 독립적으로 할로겐, 카르복실기(-COOH), 아미노기(-NH2), 니트로기(-NO2), 시아노기(-CN), 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 10의 아릴기 또는 탄소수 3 내지 10의 시클로알킬기이다.
  15. 제14 항에 있어서, 상기 Re가 -CH3, -CH2CH2COOH, 2-피라지닐, 2-아미노-5-피리디닐, 4-피리디닐, 또는 (3-아미노-5-메틸)페닐인 글루포시네이트 제조 방법.
  16. 제14 항에 있어서, 상기 R4가 아세틸 또는 석시닐인 글루포시네이트 제조 방법.
  17. 제14 항에 있어서, 상기 L-호모세린 유도체가, L-호모세린 유도체를 포함하는 발효액으로부터 준비되는 글루포시네이트 제조 방법.
  18. 제1 항에 있어서, 상기 제4 산 촉매가 HCl, H2SO4, HBr, HI, 포스겐(phosgene), SOCl2, 옥살릴 클로라이드(oxalyl chloride), 트리에틸실란(Et3SiH)+PdCl2+MeI, POCl3, PCl3, PCl5, PBr3, PI3, H2SO4+KBr, P+Cl2, P+Br2, P+I2, TiCl4, ZnCl2, BBr3, 파라-톨루엔술폰산(PTSA), 수지 촉매(resin catalyst) 및 루이스산(Lewis acid) 중에서 선택된 하나 이상이며,
    상기 루이스산이 KF+Al2O3, BF3-Et2O(diehtylether), CoCl2, MgBr2, Bu3P, Sc(OTf)3(OTf=trifluoromethanesulfonate), Sc(NTf2)3(Scandium(III) trifluoromethanesulfonimide), TiCl3-2AgClO4, TiCl3(OTf), Sn(OTf)2, TMSOTf(TriMethylSilyl trifluoromethanesulfonate), La(OTf)3, Cu(OTf)2, 및 TaCl5 중에서 선택되며,
    상기 제4 산 촉매의 함량이 상기 L-호모세린 유도체 100 중량부에 대하여 0.1 내지 100 중량부인 글루포시네이트 제조 방법.
  19. 제18 항에 있어서, 상기 L-호모세린계 화합물을 준비하는 단계가, 용매 하에서 수행되며,
    상기 L-호모세린 유도체의 함량이 용매 100 중량부에 대하여 1 내지 100 중량부이며,
    상기 용매가 물이며, 상기 물을 포함하는 수용액의 pH가 1 내지 3이며,
    상기 반응이 20 내지 150℃의 온도에서 0.1 내지 20 시간 동안 수행되는 글루포시네이트 제조 방법.
PCT/KR2020/000273 2019-01-11 2020-01-07 글루포시네이트 제조 방법 WO2020145627A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0004163 2019-01-11
KR1020190004163A KR102582675B1 (ko) 2019-01-11 2019-01-11 글루포시네이트 제조 방법

Publications (1)

Publication Number Publication Date
WO2020145627A1 true WO2020145627A1 (ko) 2020-07-16

Family

ID=71520409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000273 WO2020145627A1 (ko) 2019-01-11 2020-01-07 글루포시네이트 제조 방법

Country Status (2)

Country Link
KR (1) KR102582675B1 (ko)
WO (1) WO2020145627A1 (ko)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021143712A1 (zh) * 2020-01-13 2021-07-22 利尔化学股份有限公司 一种制备l-草铵膦中间体的方法
WO2021143713A1 (zh) * 2020-01-13 2021-07-22 利尔化学股份有限公司 制备l-草铵膦中间体的方法
WO2022041603A1 (zh) * 2020-08-26 2022-03-03 浙江工业大学 L-草铵膦粉剂的制备方法
WO2022077989A1 (zh) * 2020-10-14 2022-04-21 利尔化学股份有限公司 L-草铵膦的制备方法
WO2022207543A1 (en) 2021-04-01 2022-10-06 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
WO2022248739A1 (en) 2021-06-16 2022-12-01 Evonik Operations Gmbh Enzymatic method for the production of l-glufosinate p-alkyl esters
WO2022264168A1 (en) * 2021-06-17 2022-12-22 Chandrasekhar Dayal Mudaliar A process for preparation of an intermediate of l-glufosinate
WO2022264043A1 (en) * 2021-06-15 2022-12-22 Upl Limited One pot process for preparation of a chiral amino acid
WO2023001132A1 (zh) * 2021-07-20 2023-01-26 利尔化学股份有限公司 制备草铵膦或其类似物的方法
WO2023001185A1 (zh) * 2021-07-20 2023-01-26 利尔化学股份有限公司 制备草铵膦或其类似物的方法
WO2023001131A1 (zh) * 2021-07-20 2023-01-26 利尔化学股份有限公司 草铵膦的制备方法
EP4151643A1 (en) 2021-09-16 2023-03-22 Evonik Operations GmbH Improved process for production of phosphoesters of glufosinate precursors
WO2023109757A1 (zh) * 2021-12-13 2023-06-22 利尔化学股份有限公司 L-草铵膦衍生物、包含其的组合物及其制备方法和用途
WO2023174511A1 (en) 2022-03-14 2023-09-21 Evonik Operations Gmbh Enzymatic method for the production of l-glufosinate p-esters
WO2023222227A1 (en) 2022-05-19 2023-11-23 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate
WO2023222226A1 (en) 2022-05-19 2023-11-23 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate
WO2023232225A1 (en) 2022-05-31 2023-12-07 Evonik Operations Gmbh Enzymatic method for the diastereoselective production of l-glufosinate p-esters
US11840496B2 (en) 2019-09-10 2023-12-12 Cj Cheiljedang Corporation Method of preparing L-homoserine
WO2024061455A1 (en) 2022-09-21 2024-03-28 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
WO2024061456A1 (en) 2022-09-21 2024-03-28 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
WO2024067610A1 (zh) * 2022-09-27 2024-04-04 摩珈(上海)生物科技有限公司 利用膦试剂制备l-草铵膦的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116789695B (zh) * 2022-11-17 2024-03-29 永农生物科学有限公司 一种草铵膦的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080146840A1 (en) * 2006-01-28 2008-06-19 Degussa Gmbh Method for production of methionine from homoserine
KR20140116010A (ko) * 2013-03-20 2014-10-01 씨제이제일제당 (주) 미생물 유래의 o-아실호모세린으로부터 바이오 유래 호모세린락톤 염산염 및 바이오 유래 유기산을 제조하는 방법
CN106083922A (zh) * 2016-08-23 2016-11-09 山东省农药科学研究院 一种精草铵膦的制备方法
WO2017151573A1 (en) * 2016-03-02 2017-09-08 Agrimetis, Llc Methods for making l-glufosinate
CN108516991A (zh) * 2018-05-28 2018-09-11 山东省农药科学研究院 一种精草铵膦的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080146840A1 (en) * 2006-01-28 2008-06-19 Degussa Gmbh Method for production of methionine from homoserine
KR20140116010A (ko) * 2013-03-20 2014-10-01 씨제이제일제당 (주) 미생물 유래의 o-아실호모세린으로부터 바이오 유래 호모세린락톤 염산염 및 바이오 유래 유기산을 제조하는 방법
WO2017151573A1 (en) * 2016-03-02 2017-09-08 Agrimetis, Llc Methods for making l-glufosinate
CN106083922A (zh) * 2016-08-23 2016-11-09 山东省农药科学研究院 一种精草铵膦的制备方法
CN108516991A (zh) * 2018-05-28 2018-09-11 山东省农药科学研究院 一种精草铵膦的制备方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840496B2 (en) 2019-09-10 2023-12-12 Cj Cheiljedang Corporation Method of preparing L-homoserine
WO2021143713A1 (zh) * 2020-01-13 2021-07-22 利尔化学股份有限公司 制备l-草铵膦中间体的方法
WO2021143712A1 (zh) * 2020-01-13 2021-07-22 利尔化学股份有限公司 一种制备l-草铵膦中间体的方法
WO2022041603A1 (zh) * 2020-08-26 2022-03-03 浙江工业大学 L-草铵膦粉剂的制备方法
JP7404598B2 (ja) 2020-10-14 2023-12-26 リアー ケミカル カンパニー リミテッド L-グルホシネートの製造方法
WO2022077989A1 (zh) * 2020-10-14 2022-04-21 利尔化学股份有限公司 L-草铵膦的制备方法
CN114650997A (zh) * 2020-10-14 2022-06-21 利尔化学股份有限公司 L-草铵膦的制备方法
JP2023511204A (ja) * 2020-10-14 2023-03-16 リアー ケミカル カンパニー リミテッド L-グルホシネートの製造方法
US11655265B2 (en) 2020-10-14 2023-05-23 Lier Chemical Co., Ltd. Method for preparing L-glufosinate
CN114650997B (zh) * 2020-10-14 2024-04-26 利尔化学股份有限公司 L-草铵膦的制备方法
WO2022207543A1 (en) 2021-04-01 2022-10-06 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
WO2022264043A1 (en) * 2021-06-15 2022-12-22 Upl Limited One pot process for preparation of a chiral amino acid
EP4105335A1 (en) 2021-06-16 2022-12-21 Evonik Operations GmbH Enzymatic method for the production of l-glufosinate p-alkyl esters
WO2022248739A1 (en) 2021-06-16 2022-12-01 Evonik Operations Gmbh Enzymatic method for the production of l-glufosinate p-alkyl esters
WO2022264168A1 (en) * 2021-06-17 2022-12-22 Chandrasekhar Dayal Mudaliar A process for preparation of an intermediate of l-glufosinate
US11932662B2 (en) 2021-07-20 2024-03-19 Lier Chemical Co., Ltd. Method for preparing glufosinate or analogue thereof
EP4230634A4 (en) * 2021-07-20 2024-03-06 Lier Chemical Co., Ltd. METHOD FOR PRODUCING GLUFOSINATE AMMONIUM
WO2023001131A1 (zh) * 2021-07-20 2023-01-26 利尔化学股份有限公司 草铵膦的制备方法
TWI815565B (zh) * 2021-07-20 2023-09-11 中國大陸商利爾化學股份有限公司 製備草銨膦或其類似物的方法
WO2023001185A1 (zh) * 2021-07-20 2023-01-26 利尔化学股份有限公司 制备草铵膦或其类似物的方法
WO2023001132A1 (zh) * 2021-07-20 2023-01-26 利尔化学股份有限公司 制备草铵膦或其类似物的方法
AU2022316399B2 (en) * 2021-07-20 2024-02-15 Lier Chemical Co., Ltd. Method for preparing glufosinate or analogue thereof
TWI807923B (zh) * 2021-07-20 2023-07-01 中國大陸商利爾化學股份有限公司 草銨膦的製備方法
EP4151643A1 (en) 2021-09-16 2023-03-22 Evonik Operations GmbH Improved process for production of phosphoesters of glufosinate precursors
WO2023109757A1 (zh) * 2021-12-13 2023-06-22 利尔化学股份有限公司 L-草铵膦衍生物、包含其的组合物及其制备方法和用途
WO2023174511A1 (en) 2022-03-14 2023-09-21 Evonik Operations Gmbh Enzymatic method for the production of l-glufosinate p-esters
WO2023222227A1 (en) 2022-05-19 2023-11-23 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate
WO2023222226A1 (en) 2022-05-19 2023-11-23 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate
WO2023232225A1 (en) 2022-05-31 2023-12-07 Evonik Operations Gmbh Enzymatic method for the diastereoselective production of l-glufosinate p-esters
WO2024061455A1 (en) 2022-09-21 2024-03-28 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
WO2024061456A1 (en) 2022-09-21 2024-03-28 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
WO2024067610A1 (zh) * 2022-09-27 2024-04-04 摩珈(上海)生物科技有限公司 利用膦试剂制备l-草铵膦的方法

Also Published As

Publication number Publication date
KR20200087620A (ko) 2020-07-21
KR102582675B1 (ko) 2023-09-25

Similar Documents

Publication Publication Date Title
WO2020145627A1 (ko) 글루포시네이트 제조 방법
WO2020145514A1 (ko) L-글루포시네이트 제조 방법
WO2012030106A2 (en) Production method of intermediate compound for synthesizing medicament
WO2013108959A1 (ko) 글루탐산 유도체와 하이드록시 아닐린 또는 하이드록시기가 보호된 하이드록시 아닐린을 이용한 라말린 및 라말린 전구체의 합성방법
WO2019066467A1 (ko) (2r)-2-(2-메톡시페닐)-2-(옥산-4-일옥시)에탄-1-올 화합물의 신규 제조방법 및 이에 사용되는 중간체
WO2019168269A1 (ko) 입체 선택성이 우수한 이 작용성 유기 키랄 촉매 화합물, 이의 제조 방법 및 이를 이용한 나이트로 화합물로부터의 비천연 감마-아미노산의 제조 방법
WO2021118003A1 (ko) 신규 혈관누출 차단제의 고수율 제조방법
WO2017126847A1 (ko) 3-((2s,5s)-4-메틸렌-5-(3-옥소프로필)테트라히드로퓨란-2-일)프로판올 유도체의 제조방법 및 이를 위한 중간체
WO2014010990A1 (en) Novel pyridine derivatives and method for preparation of intermediate compound for producing sulfonylurea herbicides using the same
WO2021194244A1 (ko) 신규한 이노토디올의 제조방법
WO2022220610A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2022092835A1 (ko) 대칭형 포스페이트계 화합물의 제조방법
EP3224257A1 (en) Novel method for preparing thienopyrimidine compound and intermediates used therein
WO2022220612A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2023033284A1 (ko) 불화알킬글리세린 유도체 및 계면활성제 용도
WO2022092833A1 (ko) 유기 황 화합물의 인시츄 제조방법
WO2019088800A9 (ko) 폴리에틸렌글리콜 유도체 및 이의 제조방법
WO2023075263A1 (ko) 비대칭형 포스페이트계 화합물의 제조방법
WO2012148246A2 (en) A preparation method of sitagliptin
WO2014112688A1 (ko) 질소에 치환기가 없는 이민의 촉매적 제조 방법 및 생성된 이민의 이용
WO2018124847A1 (ko) 에리불린 메실산염의 제조 중간체 및 그의 제조방법
WO2022220608A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2014098410A1 (ko) 보센탄 일수화물의 제조방법, 이에 사용되는 신규 중간체 및 이의 제조방법
WO2023090858A1 (ko) 아이속사졸 유도체의 제조 방법 및 그의 중간체
WO2021080380A1 (en) Method for preparing aryl 2-tetrazol-2-yl ketone with improved selectivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738060

Country of ref document: EP

Kind code of ref document: A1