WO2018121324A1 - 乙醇合成用催化剂及其制备方法和用途 - Google Patents

乙醇合成用催化剂及其制备方法和用途 Download PDF

Info

Publication number
WO2018121324A1
WO2018121324A1 PCT/CN2017/116966 CN2017116966W WO2018121324A1 WO 2018121324 A1 WO2018121324 A1 WO 2018121324A1 CN 2017116966 W CN2017116966 W CN 2017116966W WO 2018121324 A1 WO2018121324 A1 WO 2018121324A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
core
shell
copper
molecular sieve
Prior art date
Application number
PCT/CN2017/116966
Other languages
English (en)
French (fr)
Inventor
柴剑宇
椿范立
杨国辉
李永烨
Original Assignee
高化学技术株式会社
柴剑宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高化学技术株式会社, 柴剑宇 filed Critical 高化学技术株式会社
Publication of WO2018121324A1 publication Critical patent/WO2018121324A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/08Ethanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a process for the preparation of a catalyst for the one-step ethanol production of dimethyl ether and syngas, as well as a catalyst prepared by the process and the use of the catalyst.
  • ethanol is an important basic raw material and is widely used in medicine and chemical industry.
  • the production methods of ethanol mainly include chemical synthesis and biological methods.
  • the chemical synthesis method mainly refers to the preparation of ethanol by ethylene catalyzed hydration from the petroleum route.
  • the path has serious drawbacks such as serious pollution and high energy consumption.
  • the biological method refers to the production of ethanol from biomass fermentation.
  • the method uses non-petroleum biomass as raw material, but the biomass is mainly corn, sugar cane, cassava and other plants, which easily cause global food shortage and price fluctuation. Therefore, the development of non-oil route and non-food biomass routes to produce ethanol is of great significance for reducing dependence on petroleum resources and reducing environmental pollution.
  • Chinese patent CN1122567C discloses a method for synthesizing ethanol in a two-step synthesis gas. First, the synthesis gas synthesizes a C 2 oxygenate through a Rh-based catalyst, followed by the formation of ethanol through a Cu-based catalyst.
  • Chinese patent CN103537282B discloses a method for synthesizing ethanol to synthesize methane by syngas, wherein a Rh-based catalyst and Mn are used as auxiliary agents, the CO conversion rate is 20%, and the ethanol selectivity is 25%.
  • the above technical solutions all use the precious metal Rh catalyst, which is expensive and has high industrial production cost.
  • the raw material gas passes through the molecular sieve catalyst layer, and dimethyl ether undergoes carbonylation reaction with carbon monoxide to form methyl acetate; then, through the copper-based catalyst layer, methyl acetate is hydrogenated to form main product ethanol and by-product methanol.
  • the conversion of dimethyl ether and the selectivity of ethanol can reach 100% and 48%, respectively.
  • the by-product methanol can be recycled and further formed into dimethyl ether and water under the action of a catalyst such as alumina or molecular sieve, the selectivity of ethanol can reach 100%. Therefore, this reaction is a green environmentally friendly ethanol production route in which the main by-product is water and no precious metal catalyst is used.
  • the two-stage packed catalyst of the reaction significantly reduces the space-time yield and is not conducive to industrial production.
  • the filling method of the upper and lower layers of the catalyst limits the synergistic effect between the active sites, thereby limiting the increase of the catalyst activity; the molecular sieve catalyst has serious carbon deposition during the reaction process, and the catalyst life is lowered, which is far from the industrialization requirement.
  • Cida Patent Application Publication No. CN104801337A discloses a catalyst for the one-step ethanol production of dimethyl ether and syngas, which is a Cu-based high-efficiency hydrogenation catalyst and a core-shell catalyst composed of various types of molecular sieves having an eight-membered ring structure, Cu
  • the base catalyst introduces transition metal chlorides and nitrates of Groups VIII, IB and IIB of the Periodic Table of the Elements as a cocatalyst; in order to obtain the core-shell catalyst, the core catalyst is directly added to the synthesis liquid of the shell molecular sieve, and the core is obtained by hydrothermal crystallization.
  • Shell catalyst is difficult to directly coat the shell catalyst on the core catalyst, and the yield is extremely low.
  • the inventors of the present invention conducted extensive and in-depth research on a one-step nuclear/shell catalyst for the production of ethanol from dimethyl ether and syngas, with a view to discovering a novel preparation of dimethyl ether and A method for producing a core/shell catalyst for ethanol by one-step synthesis gas.
  • the inventors have found that the addition of a "tie layer" between the core catalyst and the shell catalyst during the preparation of the core/shell catalyst greatly increases the proportion of shell catalyst in the core shell capsule catalyst.
  • the "tie layer” is mainly divided into two categories: one is a silica gel solution, and the other is a combination of one or more silane coupling agents and one or more Silicalite series pure silicon molecular sieves. Adding a "bonding layer” is not only simple, The core/shell catalyst is successfully produced, and the catalyst prepared by the method can obtain an improved dimethyl ether conversion rate and an improved ethanol selectivity when used in a one-step process for producing dimethyl ether and syngas. The present invention has been achieved based on the foregoing findings.
  • the method can not only produce a core/shell catalyst simply and successfully, but also the catalyst prepared by the method can obtain improved dimethyl ether conversion rate and improved ethanol when used for one-step preparation of dimethyl ether and syngas. Selectivity.
  • Another object of the invention is to provide a core/shell catalyst prepared by the process of the invention.
  • the catalyst can obtain improved dimethyl ether conversion rate and improved ethanol selectivity when used in one-step ethanol production from dimethyl ether and syngas.
  • a final object of the present invention is to provide the use of a core/shell catalyst prepared by the process of the present invention as a catalyst in the one-step ethanol production of dimethyl ether and syngas.
  • the catalyst can obtain improved dimethyl ether conversion rate and increased ethanol selectivity when used for one-step preparation of dimethyl ether and syngas.
  • a method for producing a core/shell catalyst for the one-step ethanol production of dimethyl ether and syngas comprising:
  • M is one or more elements selected from the second main group, the third main group, and the transition element of the periodic table different from Cu, preferably selected from the group consisting of Mg, Ca, Al, Ti, Mn, Co, Fe, One or more elements of Ni, Zn and Mo, more preferably one or more of Zn, Al and Mn; a is a number between 0-30, preferably between 0-20 More preferably, it is a number between 0-10, particularly preferably a number of 1-8;
  • x is the number of oxygen atoms required to satisfy the valence of each element of formula (I);
  • the molecular sieve catalyst B comprises one or more metal elements X selected from Fe, Co, Cu, Zn, Ru, Rh, Pd, Ag, Ir and Pt supported thereon.
  • a is an integer from 1 to 3, especially 1;
  • Y is the same or different and independently of each other, vinyl, C 1 -C 6 alkyl, chloro C 1 -C 6 alkoxy, amino C 1 -C 6 alkoxy, glycidyl etheroxy C 1 -C 6 Alkyl, (methacryloyloxy) C 1 -C 6 alkyl or N-(amino C 1 -C 6 alkyl)amino C 1 -C 6 alkyl, preferably Y is selected from vinyl, C 1 -C 4- alkyl, chloro C 1 -C 4 alkoxy, amino C 1 -C 4 alkoxy, glycidyl etheroxy C 1 -C 4 alkyl, (methacryloyloxy) C 1 -C 4 alkane Or N-(amino C 1 -C 4 alkyl)amino C 1 -C 4 alkyl; and X are the same or different and independently of each other are OMe, OEt, OC 2 H 4 OCH 3
  • the silane coupling agent is selected from the group consisting of ⁇ -aminopropoxytriethoxysilane (APTES), ⁇ -aminopropoxytrimethoxysilane (APTMS), ⁇ -glycidoxypropyltrimethoxysilane , ⁇ -(methacryloyloxy)propyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane and N-(2-aminoethyl)-3-amino One or more of propyl.methyldimethoxysilane.
  • APTES ⁇ -aminopropoxytriethoxysilane
  • APITMS ⁇ -aminopropoxytrimethoxysilane
  • ⁇ -glycidoxypropyltrimethoxysilane ⁇ -(methacryloyloxy)propyltrimethoxysilane
  • step (ii) forming the second hydrothermally treated copper-based catalyst A particles in step (b2) together with molecular sieve catalyst B and water to form an aqueous dispersion, or directly adding the copper-based catalyst A particles obtained by the second hydrothermal treatment.
  • An aqueous dispersion is obtained in the synthesis liquid of the molecular sieve catalyst B, and a part of the metal ions of the catalyst A particles are dissolved into the liquid phase by adjusting the pH of the obtained aqueous dispersion, and then the aqueous dispersion is in a hydrothermal reaction vessel at 100 Hydrothermal treatment at -300 ° C for 1-96 h, preferably hydrothermal treatment at 150-250 ° C for 24-72 h, filtration, washing, drying, calcination, to obtain a core / shell catalyst doped with one or more metals in the shell .
  • molecular sieve catalyst B is one or more selected from the group consisting of H-MOR, H-ZSM-5, H-ZSM-35 and H- ⁇ , preferably For H-MOR and / or H-ZSM-35.
  • Solid phase milling The Cu salt is first ground with the optional M salt for 0.5-5 h, then added to at least a stoichiometric amount of Cu and M precipitated selected from the group consisting of NaOH, Na 2 CO 3 and NaHCO 3 One or more together continue to grind 0.5-6h, washed with deionized water to remove Na, dried at 50-150 ° C for 5-24h, calcined at 350-600 ° C for 1-24h, to obtain copper-based catalyst A;
  • the heating temperature is maintained at 25-100 ° C, after the completion of the addition, aging for 2 - 48 h, the precipitate is filtered off, washed with deionized water, dried at 50-150 ° C for 5-24 h, at 350-600 ° C Calcined for 1-24 hours to prepare a copper-based catalyst A;
  • a core/shell catalyst prepared by the process according to any one of items 1-9.
  • Figure 1 is a schematic view showing the structure of a core/shell catalyst prepared by the method of the present invention, wherein M is a copper-based catalyst A, and N is a molecular sieve catalyst B, wherein a bonding layer exists between the M layer and the N layer.
  • a process for the preparation of a core/shell catalyst for the one-step ethanol production of dimethyl ether and syngas comprising:
  • M is one or more selected from the second main group, the third main group, and the transition element of the periodic table of elements different from Cu;
  • a is a number between 0-30;
  • x is the number of oxygen atoms required to satisfy the valence of each element of formula (I);
  • the catalyst prepared by the method of the invention is a catalyst having a core/shell structure, and is a composite catalyst, and the compounding of the two catalysts can make ethanol in one step of dimethyl ether and syngas.
  • the shell of the core/shell catalyst is a molecular sieve having a catalytic function of carbonylation, which is capable of catalyzing the carbonylation of dimethyl ether to form methyl acetate.
  • the core of the core/shell catalyst is a copper-based catalyst for hydrogenation reaction which is capable of hydrogenating the ester to the corresponding alcohol.
  • the reaction raw material dimethyl ether is first carbonylated at the "shell" active site of the molecular sieve to form methyl acetate, and then diffused to the Cu-based "nucleus".
  • the hydrogenation reaction occurs at the active site of the catalyst to form ethanol, so that ethanol can be obtained in one step.
  • the core/shell catalyst of the present invention shortens the diffusion path of the two-step reaction and achieves an increase in reactivity and space-time rate.
  • the core/shell catalyst of the invention has the advantages of high conversion of dimethyl ether, high selectivity of ethanol and long life of the catalyst when used for one-step ethanol production of dimethyl ether and syngas, and has good application prospect.
  • the core of the core/shell catalyst of the present invention comprises a copper-based catalyst A of the compound of the following formula (I):
  • M is one or more selected from the group consisting of the second main group, the third main group and the transition element of the periodic table, different from Cu, preferably selected from the group consisting of Mg, Ca, Al, Ti, Mn, Co, Fe, One or more elements of Ni, Zn, and Mo are more preferably one or more of Zn, Al, and Mn.
  • a is the molar ratio of the element M to Cu. If M is two or more elements, a is the sum of the molar ratio of each of these elements to Cu. a is usually a number between 0 and 30, preferably a number between 0 and 20, more preferably a number between 0 and 10, particularly preferably a number from 1 to 8.
  • the copper-based catalyst A may be a supported catalyst or an unsupported catalyst. When it is a supported catalyst, the choice of its carrier is conventional.
  • the support may generally be one or more selected from the group consisting of SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , SiC, MgO, and activated carbon.
  • the content of the copper-based catalyst A is usually from 40 to 80% by weight, preferably from 50 to 80%, based on the total weight of the core/shell catalyst.
  • the core/shell catalyst of the present invention it is usually necessary to first provide particles of the copper-based catalyst A as a core, and then coat the molecular sieve catalyst B as a shell.
  • the particles of the copper-based catalyst A can be prepared in a conventional manner. According to the invention, it is advantageous to prepare the particles of the copper-based catalyst A by solid phase grinding, high-efficiency precision precipitation or ultrasonic volumetric impregnation.
  • the Cu salt is first ground with the optional M salt for 0.5-5 h, then at least a stoichiometric amount of Cu, M precipitated, selected from the group consisting of NaOH, Na 2 CO 3 and NaHCO 3 One or more of them are continuously milled for 0.5-6 h, washed with deionized water to remove Na, dried at 50-150 ° C for 5-24 h, and calcined at 350-600 ° C for 1-24 h to prepare copper-based catalyst A.
  • the copper-based catalyst A is pulverized to obtain particles of the copper-based catalyst A.
  • the Cu salt herein, copper nitrate, copper sulfate, copper chloride or the like can be used.
  • the M salt herein, a nitrate, a sulfate or a chloride, for example, zinc nitrate, aluminum nitrate or the like can be used.
  • the M salt and the Cu salt are used in an amount such that the molar ratio of the M element to the Cu element is equal to a in the above formula (I).
  • the drying in the solid phase milling method is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C.
  • the drying time is usually from 5 to 24 h, preferably from 8 to 18 h.
  • the calcination in the solid phase milling process is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C.
  • the calcination time is usually from 1 to 24 h, preferably from 1 to 10 h.
  • the particles of the copper-based catalyst A have an average particle diameter of usually 10 to 200 mesh, preferably 20 to 80 mesh.
  • an aqueous solution A of a soluble Cu salt and an optional soluble M salt is prepared, and an aqueous solution or an aqueous ammonia solution B of one or more compounds selected from the group consisting of NaOH, Na 2 CO 3 and NaHCO 3 is prepared.
  • the pulsed liquid pump separately adds the solutions A and B to the reactor, and the addition rate of the two is ensured that the pH of the mixture formed by the already added solution A and the already added solution B is 8-14, and the feeding process is Under heating and stirring, the heating temperature is maintained at 25-100 ° C, after the completion of the addition, the aging is carried out for 2-48 h, the precipitate is filtered off, washed with deionized water, dried at 50-150 ° C for 5-24 h, and calcined at 350-600 ° C. From 2 to 24 hours, a copper-based catalyst A was obtained. The copper-based catalyst A is pulverized to obtain particles of the copper-based catalyst A.
  • soluble Cu salt copper nitrate, copper sulfate, copper chloride or the like can be used.
  • soluble M salt a nitrate, a sulfate or a chloride, for example, zinc nitrate, aluminum nitrate or the like can be used.
  • the soluble M salt and the soluble Cu salt are used in an amount such that the molar ratio of the M element to the Cu element is equal to a in the above formula (I).
  • Solution A and solution B are usually added dropwise to the reactor. The rate of addition of Solution A to Solution B should ensure that the pH of the mixture formed from the already added solution A and the already added solution B in real time is usually from 8 to 14, preferably from 8 to 10.
  • the mixture of the already added solution A and the already added solution B needs to be stirred and heated, and the heating should be maintained at a temperature of usually 25 to 100 ° C, preferably 40 to 90 ° C.
  • the reaction mixture is aged for 2 to 48 h, preferably aged for 10 to 24 h.
  • the precipitate was then filtered off and washed with deionized water. It is then dried and calcined. Drying is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C.
  • the drying time is usually from 5 to 24 h, preferably from 8 to 18 h.
  • the calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C.
  • the calcination time is usually from 1 to 24 h, preferably from 1 to 10 h.
  • an aqueous solution of a soluble Cu salt and an optional soluble M salt is prepared, and the aqueous solution is immersed in an equal volume on a porous support under ultrasonication, and the obtained product is vacuum dried at 50 to 150 ° C for 5 to 24 hours.
  • the copper-based catalyst A was obtained by calcining at 350-600 ° C for 1-24 h.
  • the copper-based catalyst A is pulverized to obtain particles of the copper-based catalyst A.
  • the soluble Cu salt herein, copper nitrate, copper sulfate, copper chloride or the like can be used.
  • the soluble M salt herein, a nitrate, a sulfate or a chloride such as zinc nitrate, aluminum nitrate or the like can be used.
  • the soluble M salt and the soluble Cu salt are used in an amount such that the molar ratio of the M element to the Cu element is equal to a in the above formula (I).
  • the aqueous solution is immersed in an equal volume on the porous support under the action of ultrasonic waves.
  • the equal volume herein means that the volume of the aqueous solution used (i.e., the immersion liquid) is the same as the pore volume of the carrier.
  • the support herein is any copper-based catalyst support suitable for hydrogenation of an ester to form the corresponding alcohol, including SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , SiC, MgO, activated carbon, and the like.
  • the frequency of the ultrasonic waves is usually ⁇ 20 KHz.
  • drying and calcination Drying is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C.
  • the drying time is usually from 5 to 24 h, preferably from 8 to 18 h.
  • the calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C.
  • the calcination time is usually from 1 to 24 h, preferably from 1 to 10 h.
  • the particles of the copper-based catalyst A After the particles of the copper-based catalyst A are supplied, it is next required to coat the particles of the copper-based catalyst A with the molecular sieve catalyst B as a shell layer.
  • the present inventors have found that the following two methods (i.e., the methods in the steps (b1) and (b2)) can successfully coat the particles of the copper-based catalyst A with the molecular sieve catalyst B.
  • the shell, and the core/shell catalyst thus coated can be used not only to obtain high dimethyl ether conversion rate but also to obtain high ethanol yield when used for one-step ethanol production from dimethyl ether and syngas.
  • the stability of the catalyst is good and the life is extended.
  • (b1) The particles of the copper-based catalyst A are impregnated with a silica sol, and then the powder of the molecular sieve catalyst B is added to coat the impregnated copper-based catalyst particles, followed by drying and calcination.
  • This method can be referred to as a first immersion bonding method.
  • the silica sol is used as a binder in the present invention, and as the water in the silica sol evaporates, the colloidal particles are firmly attached to the surface of the object.
  • the concentration of the silica sol is usually from 20 to 40% by weight.
  • the amount of the silica sol is usually equal to or larger than the pore volume of the pores contained in the particles of the copper-based catalyst A.
  • the powder of the molecular sieve catalyst B is added, and the powder of the molecular sieve catalyst B is coated on the impregnated copper-based catalyst particles by adhesion in the presence of the binder. It is then dried and calcined.
  • Drying is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C.
  • the drying time is usually from 5 to 24 h, preferably from 8 to 18 h.
  • the calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C.
  • the calcination time is usually from 1 to 24 h, preferably from 1 to 10 h.
  • the following method can also be employed:
  • the synthetic liquid is hydrothermally treated in a hydrothermal reactor at 50-200 ° C for 1-24 h, washed, dried, calcined, and the obtained calcined product and the aqueous dispersion of molecular sieve catalyst B are hydrothermally treated at 100-300 ° C for 1-96 h. , washing, drying, roasting.
  • a silane coupling agent is a type of organosilicon compound containing two different chemical groups in a molecule, and its classical product can be represented by the general formula Y a SiX 4-a , especially YSiX 3 , wherein a is 1-3.
  • Y is a non-hydrolyzable group, including an alkenyl group (mainly a vinyl group), and a terminal having Cl, NH 2 , SH, an epoxy group, N 3 , a (meth)acryloyloxy group, an isocyanate group, or the like.
  • the hydrocarbon group of the functional group that is, the carbon functional group, and X is a hydrolyzable group, including Cl, OMe, OEt, OC 2 H 4 OCH 3 , OSiMe 3 and OAc, and the like. Due to this special structure of the silane coupling agent, a reactive group capable of chemically bonding with an inorganic material and a reactive group chemically bonded to the organic material are simultaneously contained in the molecule, and thus can be used for surface treatment. According to the invention it is preferred that the silane coupling agent has the formula:
  • a is an integer from 1 to 3, especially 1, Y is the same or different and independently of each other is a vinyl group, a C 1 -C 6 alkyl group, a chloro C 1 -C 6 alkoxy group, an amino group C 1 -C 6 Alkoxy, glycidyl etheroxy C 1 -C 6 alkyl, (methacryloyloxy) C 1 -C 6 alkyl or N-(amino C 1 -C 6 alkyl)amino C 1 -C 6 alkane
  • the groups, and X are the same or different and independently of each other are OMe, OEt, OC 2 H 4 OCH 3 , OSiMe 3 or OAc.
  • Y is the same or different and independently of each other is a vinyl group, a C 1 -C 4 alkyl group, a chloro C 1 -C 4 alkoxy group, an amino group C 1 -C 4 alkoxy, glycidyl etheroxy C 1 -C 4 alkyl, (methacryloyloxy) C 1 -C 4 alkyl or N-(amino C 1 -C 4 alkyl)amino C 1 -C 4 Alkyl; and/or X are the same or different and independently of each other are OMe or OEt.
  • silane coupling agent of the present invention there may be mentioned: ⁇ -aminopropoxytriethoxysilane (APTES), ⁇ -aminopropoxytrimethoxysilane (APTMS), ⁇ -glycidyloxypropyltrimethyl Oxysilane, ⁇ -(methacryloyloxy)propyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane And N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane
  • APTES ⁇ -aminopropoxytriethoxysilane
  • APITMS ⁇ -aminopropoxytrimethoxysilane
  • ⁇ -glycidyloxypropyltrimethyl Oxysilane ⁇ -(methacryloyloxy)propyltrimethoxysilane
  • the solvent used for the silane coupling agent solution is usually a mixture of water, alcohol or hydroalcohol.
  • the concentration of the silane coupling agent solution is usually from 0.2 to 5% by weight.
  • the amount of the silane coupling agent solution is usually a pore volume larger than or equal to the pores contained in the particles of the copper-based catalyst A.
  • Copper-based catalyst A particles and silane coupling agent After the solution is mixed, it is hydrothermally treated at 50 to 200 ° C for 1 to 24 hours in a hydrothermal reaction vessel, preferably hydrothermally treated at 80 to 150 ° C for 5 to 12 hours in a hydrothermal reaction vessel, followed by washing and drying. Washing is usually washed with deionized water.
  • Drying is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C.
  • the drying time is usually from 5 to 24 h, preferably from 8 to 18 h.
  • the particles of the copper-based catalyst A subjected to the first hydrothermal treatment are obtained, and then hydrothermally treated with an aqueous solution or a synthetic solution of a Silicalite series pure silicon molecular sieve at a temperature of 50 to 200 ° C for 1 to 24 hours in a hydrothermal reaction vessel. , dry, roast.
  • the Silicalite series of pure silica molecular sieves herein refers to molecular sieves containing only silicon.
  • the Silicalite series pure silicon molecular sieve it may be Silicalite-1, MCM-41, SBA-15 or the like.
  • the aqueous solution of the Silicalite series of pure silicon molecular sieves is usually a solution of a commercially available or self-made Silicalite series pure silicon molecular sieve in a mixture of water, alcohol or hydroalcohol, and the concentration of the solution is usually from 0.1 to 2% by weight.
  • the amount of the solution is usually a pore volume equal to or larger than the pores contained in the particles of the catalyst A.
  • the synthesis liquid of Silicalite series pure silicon molecular sieve is a synthetic liquid obtained by preparing a corresponding molecular sieve by a conventional method (that is, a liquid mixture before hydrothermal synthesis of molecular sieve).
  • a conventional method that is, a liquid mixture before hydrothermal synthesis of molecular sieve.
  • Silicalite series pure silicon molecular sieve is encapsulated in the outer layer of copper-based catalyst A core, which can play a role of seed crystal in the process of synthesizing shell catalyst, and is easy to synthesize shell layer.
  • the solution or synthesis solution of the Silicalite series molecular sieve is mixed with the particles of the first hydrothermally treated copper-based catalyst A, and then hydrothermally treated in a hydrothermal reaction kettle at 50-200 ° C for 1-24 h, preferably in a hydrothermal reaction kettle.
  • the mixture was hydrothermally treated at 80-180 ° C for 4-12 h, then washed, dried and calcined to obtain particles of the copper-based catalyst A subjected to the second hydrothermal treatment.
  • Washing is usually washed with deionized water. Drying is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C. The drying time is usually from 5 to 24 h, preferably from 8 to 18 h. The calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C. The calcination time is usually from 1 to 24 h, preferably from 1 to 10 h.
  • the second hydrothermally treated copper-based catalyst A particles are combined with molecular sieve catalyst B and water to form an aqueous dispersion, or the second hydrothermally treated copper-based catalyst A particles are directly added to the synthetic solution of molecular sieve catalyst B.
  • Forming an aqueous dispersion hydrothermally treating the aqueous dispersion in a hydrothermal reaction vessel at 100-300 ° C for 1-96 h, preferably at 150-250 ° C for 24-72 h, washing, drying, and roasting to obtain a core/shell catalyst. Washing is usually washed with deionized water. Drying is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C.
  • Drying time is usually 5-24h, It is preferably 8-18h.
  • the calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C.
  • the calcination time is usually from 1 to 24 h, preferably from 4 to 10 h.
  • the shell molecular sieve is only catalytically active when it is H type, if the shell layer is Na or other ionic molecular sieve, it needs to be converted to its H type by ion exchange.
  • this can generally be carried out as follows: a Na-type molecular sieve is added to a 1 M aqueous solution of ammonium nitrate, stirred at 80 ° C for 2-12 h, filtered, washed, dried, and calcined to obtain a core having a H-type molecular sieve shell layer / Shell catalyst. Drying is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C. The drying time is usually from 5 to 24 h, preferably from 8 to 18 h. The calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 550 ° C. The calcination time is usually from 1 to 24 h, preferably from 4 to 10 h.
  • Molecular sieve catalyst B which is a shell of the core/shell catalyst of the present invention, is a molecular sieve having a carbonylation catalytic function capable of catalyzing the carbonylation of dimethyl ether to form methyl acetate.
  • the molecular sieve catalyst B is one or more selected from the group consisting of H-MOR, H-ZSM-5, H-ZSM-35 and H- ⁇ , especially H-MOR and/or H-ZSM-35.
  • the molecular sieve catalyst B comprises one or more metal elements selected from the group consisting of Fe, Co, Cu, Zn, Ru, Rh, Pd, Ag, Ir and Pt (hereinafter referred to as As the metal X), the element may exist as a simple substance, or as a compound such as an oxide, or as a mixture of a simple substance and a compound thereof.
  • the inclusion of the metal X enhances the anti-coking ability of the core/shell catalyst of the present invention, thereby prolonging the life of the catalyst.
  • the content of the metal X in terms of the element is usually from 0 to 10% by weight, preferably from 1 to 6% by weight, based on the total weight of the shell of the core/shell catalyst.
  • the loading method of the metal X includes a dipping method, an ion exchange method, and the like.
  • the dipping method is generally: preparing an aqueous solution of a water-soluble precursor of metal X in deionized water, immersing the aqueous solution in an equal volume on the molecular sieve catalyst B or calcining in the step (b1) or secondary baking in the step (b2). The core/shell catalyst is then dried and calcined.
  • the equal volume herein means that the volume of the impregnation liquid is equal to the pore volume of the pores contained in the core/shell catalyst obtained by the molecular sieve catalyst B or the calcination in the step (b1) or the second calcination in the step (b2). Drying is usually carried out at 50-150 ° C, preferably at 60-120 ° C. The drying time is usually carried out at 5 to 24 h, preferably 8 to 18 h. The calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C. The calcination time is usually from 1 to 24 h, preferably from 1 to 10 h.
  • a water-soluble salt of the metal X may be mentioned, and a nitrate, a sulfate or a chloride or the like such as copper nitrate, platinum nitrate, ruthenium chloride or the like may be used.
  • Ion exchange method is a commonly used catalyst preparation method, especially in the metal modification of molecular sieves, using cations (such as Na + , NH 4 + ) in the molecular sieve and cations in the solution (ions to be exchanged, such as Cu 2+ , Zn The concentration difference of 2+ ) enables ion exchange.
  • the usual practice is to prepare a solution of a water-soluble precursor (for example, a water-soluble salt) of metal X, and add the sample to be supported (either as the molecular sieve catalyst B before coating or calcination in step (b1) or in step (b2).
  • the core/shell catalyst obtained by secondary calcination is stirred and maintained at a temperature of 60 to 100 ° C, preferably 60 to 80 ° C, and after the end of the exchange, suction filtration, drying, and calcination are carried out. Drying is usually carried out at 50-150 ° C, preferably at 60-120 ° C.
  • the drying time is usually carried out at 5 to 24 h, preferably 8 to 18 h.
  • the calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C.
  • the calcination time is usually from 1 to 24 h, preferably from 1 to 10 h.
  • step (ii) forming the second hydrothermally treated copper-based catalyst A particles in step (b2) together with molecular sieve catalyst B and water to form an aqueous dispersion, or directly adding the copper-based catalyst A particles obtained by the second hydrothermal treatment.
  • An aqueous dispersion is obtained in the synthesis liquid of the molecular sieve catalyst B, and a part of the metal ions of the catalyst A particles are dissolved into the liquid phase by adjusting the pH of the obtained aqueous dispersion, and then the aqueous dispersion is in a hydrothermal reaction vessel at 100 Hydrothermal treatment at -300 ° C for 1-96 h, preferably hydrothermal treatment at 150-250 ° C for 24-72 h, filtration, washing, drying, calcination, to obtain a core / shell catalyst doped with one or more metals in the shell .
  • the pH here is usually from 7 to 13, preferably from 8 to 12. Washing is usually washed with deionized water.
  • Drying is usually carried out at 50 to 150 ° C, preferably at 60 to 120 ° C.
  • the drying time is usually from 5 to 24 h, preferably from 8 to 18 h.
  • the calcination is usually carried out at 350 to 600 ° C, preferably at 350 to 500 ° C.
  • the calcination time is usually from 1 to 24 h, preferably from 1 to 10 h.
  • the mass ratio of the catalyst A to the catalyst B is from 0.1 to 10, preferably from 0.5 to 5, more preferably from 1 to 5.
  • the total amount of catalyst A and catalyst B is greater than 80%, preferably greater than 90%, based on the total weight of the core/shell catalyst.
  • the core/shell catalyst of the present invention has an average particle diameter of from 10 to 200 mesh, preferably from 12 to 60 mesh.
  • a core/shell catalyst prepared by the process of the invention is provided. All of the characteristics of the core/shell catalyst are the same as described above for the core/shell catalyst preparation.
  • a core/shell catalyst prepared by the process of the invention for the direct production of ethanol from dimethyl ether and syngas.
  • the core/shell catalyst of the present invention is required to be in the form of a simple substance if the Cu in the copper-based catalyst and the optional M in the molecular sieve catalyst B are not completely present before the direct production of ethanol from the dimethyl ether and the synthesis gas.
  • the core/shell catalyst is reduced such that the elements in the catalyst are in elemental form.
  • the core/shell catalyst is usually reduced with a hydrogen-containing atmosphere.
  • the reduction temperature is usually from 200 to 500 ° C, preferably from 200 to 300 ° C.
  • the reduction pressure is usually from 0 to 10 MPa, preferably from 0 to 5 MPa.
  • the reduction time is usually from 5 to 24 h, preferably from 5 to 12 h.
  • the reducing atmosphere may be either pure hydrogen or a mixture containing hydrogen and CO. Therefore, the CO:H 2 molar ratio is usually from 0 to 10, preferably from 0 to 5.
  • the reduction space velocity is usually from 500 to 50,000 h -1 , preferably from 500 to 10,000 h -1 .
  • the reaction may be carried out batchwise or continuously.
  • the catalyst can be used in any conventional form, preferably in the form of a fixed bed.
  • a reaction stream comprising Ar (argon), DME, CO, and H 2 is passed through a reactor comprising the core/shell catalyst of the present invention.
  • the reaction temperature is usually from 200 to 500 ° C, preferably from 200 to 300 ° C.
  • the reaction pressure is usually from 0 to 10 MPa, preferably from 0.5 to 5 MPa.
  • the reaction time is usually from 0.5 to 20 h, preferably from 0.5 to 10 h.
  • the reaction space velocity is usually from 500 to 50,000 h -1 , preferably from 500 to 10,000 h -1 .
  • Reaction gas molar ratio: Ar: DME: CO: H 2 1: (0.1-20): (0.1-50): (0.1-50), preferably 1: (0.1-10): (10-50) :(10-50), wherein Ar is an internal standard, and DME is dimethyl ether.
  • 1 M aqueous ammonia solution B was prepared by using deionized water; 0.1 mol of copper nitrate, 0.05 mol of zinc nitrate and 0.05 mol of aluminum nitrate were weighed and prepared as an aqueous solution A with deionized water.
  • the prepared solution A and solution B were respectively dropped into the same beaker by a pulse liquid pump, and the dropping rate of the two solutions was controlled to accurately control the pH of the mixed solution obtained in real time to 10, and the temperature of the mixed solution was maintained. At 50 ° C, stirring was maintained during the addition, and a precipitate was formed. After the solution A was added, the solution B was stopped.
  • the resulting precipitated mixture was aged for 12 hours, filtered, washed with deionized water, dried at 120 ° C for 10 h, calcined at 350 ° C for 3 h, and pressed into pellets of 20-40 mesh.
  • 0.5 g of the obtained pellet was placed in a 1 g of a 30 wt% silica sol to be sufficiently wetted, followed by addition of a commercial powder molecular sieve H-MOR (Tosoh Co., Ltd.), uniformly stirred, dried at 100 ° C for 6 h, and calcined at 500 ° C for 5 h.
  • CuZn 0.5 Al 0.5 O 2.25 @S@Cu 5 H-MOR core / shell catalyst, in which CuZn 0.5 Al 0.5 O 2.25 is the core, Cu 5 H-MOR is the shell, "Cu 5 " refers to It is a content of Cu in the shell relative to the shell layer of 5 wt%.
  • S is a bonding layer (silica sol) connecting the core and the shell, the core accounts for 70% of the total weight of the core/shell catalyst, and the total weight of the core and the shell accounts for 90% of the total weight of the core/shell catalyst.
  • 0.5 g of the obtained granules were added to 0.5 g of a silane coupling agent APTMS (Aldrich) in a 0.3 wt% ethanol solution, hydrothermally treated in a hydrothermal reactor at 80 ° C for 12 h, washed with deionized water, and dried at 100 ° C for 10 h. Then, a 1 wt% aqueous solution of commercial Silicalite-1 molecular sieve (Tosoh Co., Ltd.) was added, hydrothermally treated at 100 ° C for 12 h in a hydrothermal reactor, washed with deionized water, dried at 100 ° C for 10 h, and calcined at 450 ° C for 5 h.
  • APTMS Aldrich
  • the obtained calcined product was added to a synthesis liquid of H-ZSM-35 (1.85Na 2 O: 1 Al 2 O 3 : 20 SiO 2 : 592 H 2 O: 19.7 pyrrolidine), and hydrothermally treated at 200 ° C for 72 h in a hydrothermal reaction kettle.
  • the mixture was filtered, washed with deionized water, dried at 100 ° C for 10 h, and calcined at 550 ° C for 3 h to obtain a core/shell catalyst in which the shell catalyst was a Na type molecular sieve.
  • the above synthetic liquid was prepared as follows: 1.16 g of NaAlO 2 was weighed and dissolved in 60 mL of 0.5 M aqueous NaOH solution, and it was recorded as solution A; another 29.68 g of 30 wt% of silica sol was weighed, and 10.21 g of pyrrolidine was added, and the obtained solution was recorded as Solution B; a synthetic solution (1.85Na 2 O: 1Al 2 O 3 : 20 SiO 2 : 592 H 2 O: 19.7 pyrrolidine) after uniformly mixing the A and B solutions.
  • a Na-type molecular sieve as a shell catalyst was subjected to ion exchange to obtain an H-type molecular sieve.
  • 1 g of the obtained core/shell catalyst sample was weighed, added to a 1 M aqueous solution of ammonium nitrate, stirred at 80 ° C for 6 h, filtered, washed with deionized water, dried at 100 ° C for 10 h, and then baked at 550 ° C. After burning for 3 h, a core/shell catalyst having a shell catalyst as a H-type molecular sieve was obtained.
  • Pt is further loaded into the shell layer of the core/shell catalyst by a dipping method.
  • 2 g of the obtained shell catalyst is a core/shell catalyst of H-type molecular sieve immersed in an aqueous solution of 2 g of Pt(NH 3 ) 2 (NO 2 ) 2 in deionized water, and the Pt content in the aqueous solution is 0.005.
  • the catalyst preparation method was basically the same as that of Example 3, except that the calcined product obtained by hydrothermal treatment, washing, drying and calcination with a commercial Silicalite-1 molecular sieve aqueous solution in Example 3 was added to H-ZSM-35 synthetic liquid (1.85). After Na 2 O:1Al 2 O 3 :20SiO 2 :592H 2 O:19.7 pyrrolidine), the pH of the aqueous dispersion was controlled to 10 by using a 0.02 M aqueous NaOH solution to dissolve a part of the ions of the core catalyst into the liquid phase.
  • the Na-type molecular sieve as a shell catalyst was subjected to ion exchange to obtain an H-type molecular sieve, thereby obtaining a "CuZn 1 Si 5 O 12 @S@Cu 5 H-ZSM-35" core/shell.
  • the layers (APTMS and Silicalite-1), which account for 50% of the total weight of the core/shell catalyst, account for 88% of the total weight of the core/shell catalyst.
  • the preparation method of the catalyst is basically the same as that of the embodiment 2, except that the Cu loading step of the shell catalyst in the embodiment 2 is omitted, that is, the "CuZn 0.5 Al 0.5 O 2.25 @S@H-MOR" core/shell catalyst is obtained.
  • CuZn 0.5 Al 0.5 O 2.25 is the core
  • H-MOR is the shell
  • S is the bonding layer (silica sol) connecting the core and the shell
  • the core accounts for 70% of the total weight of the core/shell catalyst
  • the total weight of the core and the shell It accounts for 93% of the total weight of the core/shell catalyst.
  • the catalyst preparation method was basically the same as in Example 3 except that the commercial Silicalite-1 molecular sieve was hydrothermally treated in Example 3 to be hydrothermally treated with commercial MCM-41 molecular sieve. Finally, a "CuZn 1 Si 5 O 12 @S@Pt 1 H-ZSM-35" core/shell catalyst is obtained, in which CuZn 1 Si 5 O 12 is a core, Pt 1 H-ZSM-35 is a shell, and "Pt 1 " refers to a shell.
  • the content of Pt relative to the shell is 1wt%
  • S is the bonding layer connecting the core and the shell (APTMS and MCM-41)
  • the core accounts for 50% of the total weight of the core/shell catalyst, and the total weight of the core and shell occupies the core. 92% of the total weight of the shell catalyst.
  • the catalyst preparation method is basically the same as that of the third embodiment, except that: 1), 0.1 mol of zinc nitrate used in the preparation of the nuclear catalyst in Example 3 is replaced by 0.05 mol of ferric nitrate + 0.05 mol of cobalt nitrate; 2) before coating
  • the silane coupling agent APTMS (Aldrich) used was replaced by APTES (Aldrich); and 3), the Pt modification in the shell layer was replaced by Rh modification, that is, Pt(NH 3 ) 2 (NO 2 ) 2 was in deionized water.
  • the aqueous solution was replaced with an aqueous solution of 2 g of Rh(NO 3 ) 3 in deionized water having a Rh content of 0.005 wt%.
  • a "CuFe 0.5 Co 0.5 Si 5 O 12 @S@Rh 1 H-ZSM-35" core/shell catalyst was obtained, in which CuFe 0.5 Co 0.5 Si 5 O 12 was a core and Rh 1 H-ZSM-35 was a shell, " Rh 1 ” means that the content of Rh relative to the shell is 1 wt%, S is the bonding layer (APTES and Silicalite-1) connecting the core and the shell, and the core accounts for 60% of the total weight of the core/shell catalyst, and the core and the shell The total weight is 86% of the total weight of the core/shell catalyst.
  • the catalyst preparation method is basically the same as that of Example 3, except that: 1) 0.1 mol of zinc nitrate used in the preparation of the core catalyst in Example 3 is replaced by 0.05 mol of nickel nitrate + 0.025 mol of manganese nitrate + 0.025 mol of magnesium nitrate; 2) The silane coupling agent APTMS (Aldrich) used before coating was replaced with ⁇ -glycidoxypropyltrimethoxysilane (Aldrich); and 3) the commercial Silicalite-1 molecular sieve was replaced with a commercial SBA-15 molecular sieve.
  • APTMS Aldrich
  • Example 3 was repeated except that the reaction time for direct preparation of ethanol from dimethyl ether and syngas was extended to 40 h, and the reaction results are shown in Table 1.
  • Example 3 was repeated except that the reaction pressure of the direct preparation of ethanol from dimethyl ether and synthesis gas was changed to 0.5 MPa, and the reaction results are shown in Table 1.
  • the preparation method of the catalyst is basically the same as that in the first embodiment, but the amount of the catalyst core is changed so that the core of the obtained catalyst accounts for 90% of the total weight of the core/shell catalyst, and the total weight of the core and the shell accounts for the core/shell. 95% of the total weight of the agent.
  • the catalyst preparation method is basically the same as that of Example 2, except that the amount of zinc nitrate and aluminum nitrate is changed so that the obtained catalyst has a composition: "CuZn 20 Al 20 O 51 @S@CuH-MOR" core/shell catalyst, wherein CuZn 20 Al 20 O 51 is the core, CuH-MOR is the shell, the content of Cu in the shell is 5%, S is the bonding layer (silica sol) connecting the core and the shell, and the core accounts for 70% of the total weight of the core/shell catalyst, and the core and shell The total weight accounts for 90% of the total weight of the core/shell catalyst.
  • the obtained catalyst was applied as described in Example 1, and the obtained /shell catalyst was applied to the direct preparation of ethanol from dimethyl ether and synthesis gas. The results are shown in Table 1.
  • the catalyst preparation method was similar to that of Example 1, except that the step of impregnating the silica sol was changed to immersion water, and then the wet copper-based catalyst particles A (20-40 mesh particles) were directly mixed with a commercial powder molecular sieve H-MOR (Tosoh Co., Ltd.). After mixing and uniformly stirring, the mixture was dried at 100 ° C for 6 h and calcined at 500 ° C for 5 h, and the obtained calcined product did not have a core/shell structure.
  • the catalyst preparation method was similar to that of Example 3 except that the hydrothermal treatment step of APTMS was omitted, that is, the press-formed 20-40 mesh particles A were directly added to a 1 wt% solution of a commercial Silicalite-1 molecular sieve (Tosoh Co., Ltd.).
  • Example 3 a "CuZn 1 Si 5 O 12 @S@Pt 1 H-ZSM-35" core/shell catalyst is obtained, wherein CuZn 1 Si 5 O 12 is a core, Pt 1 H-ZSM -35 is the shell, "Pt 1 " refers to the content of Pt relative to the shell layer is 1wt%, S is the bonding layer (Silicalite-1) connecting the core and the shell, and the core accounts for 50% of the total weight of the core/shell catalyst. The total weight of the core and shell is 90% of the total weight of the core/shell catalyst.
  • the catalyst preparation method was similar to that of Example 3 except that the hydrothermal treatment with the silane coupling agent APTMS and the commercial Silicalite-1 molecular sieve was omitted, that is, the copper-based catalyst particles (ie, the press-formed 20-40 mesh particles A) were directly used.
  • the synthesis liquid of H-ZSM-35 (1.85Na 2 O: 1Al 2 O 3 : 20 SiO 2 : 592H 2 O: 19.7 Pyrrolidine) was added, and the subsequent operation was identical to that of Example 3, that is, "CuZn 1 Si 5 O 12 was obtained.
  • @Pt 1 H-ZSM-35" core/shell catalyst in which CuZn 1 Si 5 O 12 is a core, Pt 1 H-ZSM-35 is a shell, and "Pt 1 " refers to a Pt relative shell content of 1 wt%
  • the core accounts for 90% of the total weight of the core/shell catalyst, and the total weight of the core and shell accounts for 100% of the total weight of the core/shell catalyst.
  • the catalyst was applied to the direct preparation of ethanol from dimethyl ether and syngas, and the results are shown in Table 1.
  • Example 9 The reduction conditions of Example 9 were the same as above, but the reaction time in the reaction conditions was extended to 40 h.
  • Example 10 The reduction conditions of Example 10 were the same as above, but the pressure in the reaction conditions was 0.5 MPa, and the others are the same as above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

一种乙醇合成用核/壳催化剂及其制备方法和用途。该催化剂包含:(A)40-80重量%的包含式(I)CuM aO x的铜基催化剂核;和(B)分子筛催化剂壳。该制备方法包括:用硅溶胶浸渍铜基催化剂颗粒,然后包覆分子筛催化剂;或将硅烷偶联剂溶液与铜基催化剂颗粒进行水热处理,然后与纯硅分子筛进行水热处理,最后将所得焙烧产物用分子筛催化剂进行水热处理。该方法不仅简便成功地制得核/壳催化剂,而且该催化剂在用于二甲醚与合成气一步法制备乙醇时,可以获得提高的二甲醚转化率和乙醇选择性。

Description

[根据细则37.2由ISA制定的发明名称] 乙醇合成用催化剂及其制备方法和用途 技术领域
本发明涉及一种制备二甲醚与合成气一步法制乙醇用催化剂的方法,以及由该方法制得的催化剂和该催化剂的用途。
背景技术
随着全球能源供需矛盾、环境污染等问题日益突出,急需发展化石能源的替代品。乙醇作为一种清洁、高效、可再生燃料,受到了人们的关注。此外,乙醇作为一种重要的基础原料,在医药、化工等方面用途广泛。目前乙醇的生产方法主要有化学合成法和生物法。化学合成法主要指由石油路线出发乙烯催化水合法制备乙醇,该路径存在污染严重、能耗高等弊端。随着石油资源的日益枯竭,化学合成法的竞争力逐年下降。生物法指由生物质发酵制取乙醇,该方法采用非石油能源的生物质为原料,但生物质主要为玉米、甘蔗、木薯等植物,容易造成全球粮食短缺和价格波动。因此,开发非石油路线、非食物生物质路线生产乙醇,对减轻依赖石油资源、降低环境污染等具有重要意义。
目前,合成气制乙醇被认为是最有前景的乙醇生产路线之一。中国专利CN1122567C公开了一种合成气两步合成乙醇的方法。首先,合成气通过Rh基催化剂合成C2含氧化合物,接着通过Cu基催化剂生成乙醇。中国专利CN103537282B公开了一种合成气合成乙醇联产甲烷的方法,其中采用Rh基催化剂、Mn为助剂,CO转化率达到20%、乙醇选择性达25%。以上技术方案均使用了贵金属Rh催化剂,价格昂贵、工业化生产成本高。此外还存在一氧化碳转化率低,乙醇选择性低,副产物多的技术瓶颈。
近年来,本发明人的团队[Energy&Fuels 23(2009)2843,Chem Sus Chem 3(2010),1192]提出了一种以二甲醚与合成气(一种一氧化碳与氢气的混合气)为原料制备乙醇的新路径。二甲醚可由丰富的煤炭资源转化而来, 合成气可由煤炭、天然气、生物质等非石油资源生产。该路径提供了一种新的非石油路线生产乙醇的方法。在同一反应器中,采用“双层催化剂”填装法生产乙醇。首先原料气体通过分子筛催化剂层,二甲醚与一氧化碳发生羰基化反应生成乙酸甲酯;接着通过铜基催化剂层,乙酸甲酯加氢生成主产物乙醇、副产物甲醇。其中二甲醚的转化率和乙醇选择性分别可达100%和48%。因副产物甲醇可以被循环利用、在氧化铝或分子筛等催化剂作用下进一步生成二甲醚和水,故乙醇的选择性可以达到100%。因此,本反应是一个主要副产物为水且不使用贵金属催化剂的绿色环境友好型乙醇生产路线。
然而,该反应的两段填充催化剂明显降低了时空产率,不利于工业化生产。此外上下两层催化剂的填充方式限制了活性位之间的协同作用,进而限制催化剂活性的提高;分子筛催化剂在反应过程中积炭严重、降低了催化剂寿命,远不能达到工业化要求。
中国专利申请公开CN104801337A公开了一种用于二甲醚与合成气一步法制乙醇的催化剂,该催化剂是Cu基高效加氢催化剂和具有八元环结构的各种类型分子筛组成的核壳催化剂,Cu基核催化剂引入元素周期表VIII、IB和IIB族过渡金属氯化物及硝酸盐作为助催化剂;为了得到该核壳催化剂,将核催化剂直接加入壳分子筛的合成液中,经水热晶化得到核壳催化剂。然而,该制备方法很难将壳层催化剂直接包裹在核催化剂上,收率极低。
发明内容
鉴于现有技术的上述状况,本发明的发明人在二甲醚与合成气一步法制乙醇用的核/壳催化剂方面进行了广泛而又深入的研究,以期发现一种新的制备二甲醚与合成气一步法制乙醇用的核/壳催化剂的方法。本发明人发现,在制备核/壳催化剂时,在核催化剂与壳催化剂之间加一层“粘结层”可以大大提高壳层催化剂在核壳胶囊催化剂中所占比例。该“粘结层”主要分为两类:一类是硅胶溶液,另一类是一种或多种硅烷偶联剂与一种或多种Silicalite系列纯硅分子筛的组合。增加“粘结层”后不仅可以简便、 成功地制得核/壳催化剂,而且通过该方法制备的催化剂在用于二甲醚与合成气一步法制乙醇时,可以获得提高的二甲醚转化率和提高的乙醇选择性。本发明正是基于前述发现得以实现。
因此,本发明的一个目的是提供一种制备二甲醚与合成气一步法制乙醇用的核/壳催化剂的方法。该方法不仅可以简便、成功地制得核/壳催化剂,而且通过该方法制备的催化剂在用于二甲醚与合成气一步法制备乙醇时,可以获得提高的二甲醚转化率和提高的乙醇选择性。
本发明的另一个目的是提供通过本发明方法制备的核/壳催化剂。该催化剂在用于二甲醚与合成气一步法制乙醇时,可以获得提高的二甲醚转化率和提高的乙醇选择性。
本发明的最后一个目的是提供通过本发明方法制备的核/壳催化剂在二甲醚与合成气一步法制乙醇中作为催化剂的用途。该催化剂在用于二甲醚与合成气一步法制备乙醇时,可以获得提高的二甲醚转化率和提高的乙醇选择性。
实现本发明上述目的的技术方案可以概括如下:
1.一种制备二甲醚与合成气一步法制乙醇用的核/壳催化剂的方法,该催化剂包含:
(A)作为核的包含下式(I)化合物的铜基催化剂A,基于核/壳催化剂的总重量,铜基催化剂A的含量为40-80重量%,优选为50-80%,
CuMaOx     (I)
其中
M为不同于Cu的选自元素周期表第二主族、第三主族和过渡元素中的一种或几种元素,优选为选自Mg、Ca、Al、Ti、Mn、Co、Fe、Ni、Zn和Mo中的一种或多种元素,更优选为Zn、Al和Mn中的一种或多种元素;a为0-30之间的数,优选为0-20之间的数,更优选为0-10之间的数,特别优选为1-8的数;和
x为满足式(I)各元素化合价所需的氧原子数;以及
(B)作为壳的能够催化二甲醚羰基化形成乙酸甲酯的分子筛催化剂B,其特征在于,核/壳催化剂通过包括如下步骤的方法制备:
(a)提供铜基催化剂A的颗粒;以及
(b1)使用硅溶胶对铜基催化剂A的颗粒进行浸渍,然后加入分子筛催化剂B的粉末对经浸渍的铜基催化剂颗粒进行包覆,随后干燥和焙烧;或者
(b2)将硅烷偶联剂的溶液与铜基催化剂A的颗粒混合,在水热反应釜中于50-200℃下水热处理1-24h,洗涤,干燥,然后用Silicalite系列纯硅分子筛的溶液或合成液在水热反应釜中在50-200℃下再水热处理1-24h,洗涤,干燥,焙烧,将所得焙烧产物与分子筛催化剂B的水分散体或合成液于100-300℃下水热处理1-96h,洗涤,干燥,焙烧。
2.根据第1项的方法,其中分子筛催化剂B包含一种或多种负载其上的选自Fe、Co、Cu、Zn、Ru、Rh、Pd、Ag、Ir和Pt的金属元素X。
3.根据第1或2项的方法,其中硅烷偶联剂具有下式:
YaSiX4-a    (I)
其中
a为1-3的整数,尤其是1;
Y相同或不同且彼此独立地为乙烯基、C1-C6烷基、氯代C1-C6烷氧基、氨基C1-C6烷氧基、缩水甘油醚氧C1-C6烷基、(甲基丙烯酰氧)C1-C6烷基或N-(氨基C1-C6烷基)氨基C1-C6烷基,优选Y选自乙烯基、C1-C4烷基、氯代C1-C4烷氧基、氨基C1-C4烷氧基、缩水甘油醚氧C1-C4烷基、(甲基丙烯酰氧)C1-C4烷基或N-(氨基C1-C4烷基)氨基C1-C4烷基;以及X相同或不同且彼此独立地为OMe、OEt、OC2H4OCH3、OSiMe3或OAc,优选为OMe或OEt,
优选的是,硅烷偶联剂为选自γ-氨丙氧三乙氧基硅烷(APTES),γ-氨丙氧三甲氧基硅烷(APTMS),γ-缩水甘油醚氧丙基三甲氧基硅烷,γ-(甲基丙烯酰氧)丙基三甲氧基硅烷,N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷和N-(2-氨基乙基)-3-氨基丙基.甲基二甲氧基硅烷中的一种或多种。
4.根据第项1-3中任一项的方法,其中Silicalite系列纯硅分子筛为选自Silicalite-1、MCM-41和SBA-15中的一种或多种。
5.根据第2-4项中任一项的方法,其中采用下列方式(i)或(ii)使分子筛 催化剂B包含金属元素X,
(i)将包覆前的分子筛催化剂B或步骤(b1)中焙烧得到的或步骤(b2)中二次焙烧得到的核/壳催化剂用金属X的水溶性前驱体的水溶液进行处理,干燥和焙烧,从而负载上金属X;
(ii)将步骤(b2)中经第二次水热处理的铜基催化剂A颗粒与分子筛催化剂B和水一起形成水分散体,或者将经第二次水热处理得到的铜基催化剂A颗粒直接加入分子筛催化剂B的合成液中得到一水分散体,通过调节所得水分散体的pH值,使催化剂A颗粒的部分金属离子溶解至液相中,然后将水分散体在水热反应釜中于100-300℃下水热处理1-96h,优选于150-250℃下水热处理24-72h,过滤,洗涤,干燥,焙烧,得到壳层中掺杂有一种或多种核中所含金属的核/壳催化剂。
6.根据第1-5项中任一项的化合物,其中分子筛催化剂B为选自H-MOR、H-ZSM-5、H-ZSM-35和H-β中的一种或多种,优选为H-MOR和/或H-ZSM-35。
7.根据第1-6项中任一项的方法,其中基于核/壳催化剂的总重量,催化剂A与催化剂B的总量大于80%,优选为大于90%。
8.根据第1-7项中任一项的方法,其中催化剂A与催化剂B的质量之比为0.1-10,优选为0.5-5,更优选为1-5。
9.根据第1-8项中任一项的方法,其中铜基催化剂A通过如下方式制备:
(1)固相研磨法:将Cu盐与任选的M盐先一起研磨0.5-5h,然后加入能将Cu和M沉淀的至少化学计算量的选自NaOH、Na2CO3和NaHCO3中的一种或多种一起继续研磨0.5-6h,用去离子水洗涤除Na,在50-150℃干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A;
(2)高效精准沉淀法:配制可溶性Cu盐和任选的可溶性M盐的水溶液A,配制选自NaOH、Na2CO3和NaHCO3中的一种或多种化合物的水溶液或氨水溶液B,采用脉冲液相泵分别将溶液A与B加入反应器中,二者的添加速率应确保由已经加入的溶液A与已经加入的溶液B实时形成的混合物的pH值为8-14,该加料过程在加热和搅拌下进行,加热温度保持 在25-100℃,加料完毕后陈化2-48h,滤出沉淀,用去离子水洗涤,在50-150℃干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A;以及
(3)超声波等体积浸渍法:配制可溶性Cu盐和任选的可溶性M盐的水溶液,在超声波作用下将该水溶液等体积浸渍于多孔载体上,所得产物在50-150℃真空干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A。
10.通过根据第1-9项中任一项的方法制得的核/壳催化剂。
11.通过根据第1-9项中任一项的方法制得的核/壳催化剂在二甲醚与合成气直接制乙醇中作为催化剂的用途。
本发明的这些和其它目的、特征和优点在结合下文考虑本发明后,将易于为普通技术人员所明白。
附图说明
图1是根据本发明方法制备的核/壳催化剂的结构示意图,其中M为铜基催化剂A,和N为分子筛催化剂B,其中M层和N层之间存在一粘结层。
具体实施方式
根据本发明的一个方面,提供了一种制备二甲醚与合成气一步法制乙醇用的核/壳催化剂的方法,该催化剂包含:
(A)作为核的包含下式(I)化合物的铜基催化剂A,基于核/壳催化剂的总重量,铜基催化剂A的含量为40-80重量%,
CuMaOx     (I)
其中
M为不同于Cu的选自元素周期表第二主族、第三主族和过渡元素中的一种或几种;
a为0-30之间的数;和
x为满足式(I)各元素化合价所需的氧原子数;以及
(B)作为壳的能够催化二甲醚羰基化形成乙酸甲酯的分子筛催化剂B,其特征在于,核/壳催化剂通过包括如下步骤的方法制备:
(a)提供铜基催化剂A的颗粒;以及
(b1)使用硅溶胶对铜基催化剂A的颗粒进行浸渍,然后加入分子筛催化剂B的粉末对经浸渍的铜基催化剂颗粒进行包覆,随后干燥和焙烧;或者
(b2)将硅烷偶联剂的溶液与铜基催化剂A的颗粒混合,在水热反应釜中于50-200℃下水热处理1-24h,洗涤,干燥,然后用Silicalite系列纯硅分子筛的溶液或合成液在水热反应釜中在50-200℃下再水热处理1-24h,洗涤,干燥,焙烧,将所得焙烧产物与分子筛催化剂B的水分散体或合成液于100-300℃下水热处理1-96h,洗涤,干燥,焙烧。
本发明方法制备的催化剂为具有核/壳结构的催化剂,为一种复合催化剂,两种催化剂的复合可以使得二甲醚与合成气一步法就制得乙醇。核/壳催化剂的壳为具有羰基化催化功能的分子筛,能够催化二甲醚羰基化形成乙酸甲酯。核/壳催化剂的核为加氢反应用的铜基催化剂,该催化剂能够将酯加氢还原为相应的醇。当本发明的核/壳催化剂用于二甲醚与合成气制乙醇时,反应原料二甲醚首先在分子筛“壳”活性位上发生羰基化反应生成乙酸甲酯,再扩散至Cu基“核”催化剂的活性位上发生加氢反应生成乙醇,从而在一个步骤中即可制得乙醇。本发明的核/壳催化剂缩短了两步反应的扩散路径,实现了反应活性和时空速率的提高。本发明的核/壳催化剂在用于二甲醚与合成气一步法制乙醇时,具有二甲醚转化率高、乙醇选择性高、催化剂寿命长的优势,具有良好的应用前景。
本发明核/壳催化剂的核包含下式(I)化合物的铜基催化剂A:
CuMaOx    (I)
其中M为不同于Cu的选自元素周期表第二主族、第三主族和过渡元素中的一种或几种,优选为选自Mg、Ca、Al、Ti、Mn、Co、Fe、Ni、Zn和Mo中的一种或多种元素,更优选为Zn、Al和Mn中的一种或多种元素。a为元素M与Cu的摩尔比。如果M为两种或更多种元素,则a为这些元素各自与Cu的摩尔比之和。a通常为0-30之间的数,优选为0-20之间的数,更优选为0-10之间的数,特别优选为1-8的数。铜基催化剂A可以为负载型催化剂,也可为非负载型催化剂。当为负载型催化剂时,其载体的 选择是常规的。该载体通常可以为选自SiO2、TiO2、Al2O3、ZrO2、SiC、MgO和活性炭中的一种或多种。基于核/壳催化剂的总重量,铜基催化剂A的含量通常为40-80重量%,优选为50-80%。
为了制备本发明的核/壳催化剂,通常需要先提供作为核的铜基催化剂A的颗粒,然后包覆作为壳的分子筛催化剂B。
铜基催化剂A的颗粒可以采用常规方式制备。根据本发明有利的是,采用固相研磨法、高效精准沉淀法或超声波等体积浸渍法来制备铜基催化剂A的颗粒。
固相研磨法
在固相研磨法中,将Cu盐与任选的M盐先一起研磨0.5-5h,然后加入能将Cu和M沉淀的至少化学计算量的选自NaOH、Na2CO3和NaHCO3中的一种或多种一起继续研磨0.5-6h,用去离子水洗涤除Na,在50-150℃干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A。该铜基催化剂A经粉碎,即可得到铜基催化剂A的颗粒。作为这里的Cu盐,可以使用硝酸铜、硫酸铜或氯化铜等。作为这里的M盐,可以使用硝酸盐、硫酸盐或氯化物等,例如硝酸锌、硝酸铝等。M盐与Cu盐的用量应使得M元素与Cu元素的摩尔比等于上式(I)中的a。固相研磨法中的干燥通常在50-150℃下进行,优选在60-120℃下进行。该干燥时间通常为5-24h,优选为8-18h。固相研磨法中的焙烧通常在350-600℃下进行,优选在350-500℃下进行。该焙烧时间通常为1-24h,优选为1-10h。铜基催化剂A的颗粒的平均粒径通常为10-200目,优选20-80目。
高效精准沉淀法
在高效精准沉淀法中,配制可溶性Cu盐和任选的可溶性M盐的水溶液A,配制选自NaOH、Na2CO3和NaHCO3中的一种或多种化合物的水溶液或氨水溶液B,采用脉冲液相泵分别将溶液A与B加入反应器中,二者的添加速率应确保由已经加入的溶液A与已经加入的溶液B实时形成的混合物的pH值为8-14,该加料过程在加热和搅拌下进行,加热温度保持在25-100℃,加料完毕后陈化2-48h,滤出沉淀,用去离子水洗涤,在50-150℃干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A。该铜 基催化剂A经粉碎,即可得到铜基催化剂A的颗粒。作为这里的可溶性Cu盐,可以使用硝酸铜、硫酸铜或氯化铜等。作为这里的可溶性M盐,可以使用硝酸盐、硫酸盐或氯化物等,例如硝酸锌、硝酸铝等。可溶性M盐与可溶性Cu盐的用量应使得M元素与Cu元素的摩尔比等于上式(I)中的a。溶液A与溶液B通常滴加到反应器中。溶液A与溶液B的添加速率应确保:由已经加入的溶液A与已经加入的溶液B实时形成的混合物的pH通常为8-14,优选为8-10。在添加溶液A与溶液B时,已经加入的溶液A与已经加入的溶液B的混合物需要搅拌和加热,加热应保持所得混合物的温度通常为25-100℃,优选为40-90℃,在该过程中不断有沉淀产生。加料完毕之后,将反应混合物陈化2-48h,优选陈化10-24h。然后滤出沉淀,用去离子水洗涤。然后干燥和焙烧。干燥通常在50-150℃下进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h。焙烧通常在350-600℃下进行,优选在350-500℃下进行。焙烧时间通常为1-24h,优选为1-10h。
超声波等体积浸渍法
在超声波等体积浸渍法中,配制可溶性Cu盐和任选的可溶性M盐的水溶液,在超声波作用下将该水溶液等体积浸渍于多孔载体上,所得产物在50-150℃真空干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A。该铜基催化剂A经粉碎,即可得到铜基催化剂A的颗粒。作为这里的可溶性Cu盐,可以使用硝酸铜、硫酸铜或氯化铜等。作为这里的可溶性M盐,可以使用硝酸盐、硫酸盐或氯化物,例如硝酸锌、硝酸铝等。可溶性M盐与可溶性Cu盐的用量应使得M元素与Cu元素的摩尔比等于上式(I)中的a。制得可溶性Cu盐与任选的可溶性M盐的水溶液之后,将该水溶液在超声波作用下等体积浸渍于多孔载体上。这里的等体积指的是,所用水溶液(即浸渍液)的体积与载体的孔体积相同。这里的载体即为任何适于酯加氢形成相应醇的铜基催化剂用载体,包括SiO2、TiO2、Al2O3、ZrO2、SiC、MgO、活性炭等。超声波的频率通常为≥20KHz。超声波等体积浸渍之后,干燥和焙烧。干燥通常在50-150℃下进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h。焙烧通常在350-600℃下进行,优选 在350-500℃下进行。焙烧时间通常为1-24h,优选为1-10h。
在提供了铜基催化剂A的颗粒之后,接下来需要在铜基催化剂A的颗粒上包覆作为壳层的分子筛催化剂B。
为了包覆上作为壳层的分子筛催化剂B,本发明发现如下两种方法(即步骤(b1)和(b2)中的方法)可以成功地在铜基催化剂A的颗粒上包覆上分子筛催化剂B壳,而且如此包覆得到的核/壳催化剂在用于由二甲醚与合成气一步法制乙醇时,不仅可以获得高的二甲醚转化率,而且还可以获得高的乙醇产率,此外,催化剂的稳定性良好,寿命延长。
为了包覆上作为壳层的分子筛催化剂B,可以采用如下方式:
(b1):使用硅溶胶对铜基催化剂A的颗粒进行浸渍,然后加入分子筛催化剂B的粉末对经浸渍的铜基催化剂颗粒进行包覆,随后干燥和焙烧。该方法可称作先浸渍后粘结法。
硅溶胶在本发明中用作粘合剂,随着硅溶胶中水分蒸发,胶体粒子牢固地附着在物体表面。硅溶胶的浓度通常为20-40重量%。为了对铜基催化剂A的颗粒进行浸渍,硅溶胶的用量通常是大于等于铜基催化剂A的颗粒所含孔隙的孔体积。铜基催化剂A的颗粒浸渍之后,加入分子筛催化剂B的粉末,由于粘接剂的存在,使得分子筛催化剂B的粉末通过粘附的方式包覆在经浸渍的铜基催化剂颗粒上。然后干燥和焙烧。干燥通常在50-150℃下进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h。焙烧通常在350-600℃下进行,优选在350-500℃下进行。焙烧时间通常为1-24h,优选为1-10h。
作为包覆分子筛催化剂B的方法,还可以采用如下方式:
(b2):将硅烷偶联剂的溶液与铜基催化剂A的颗粒混合,在水热反应釜中于50-200℃下水热处理1-24h,洗涤,干燥,然后用Silicalite系列纯硅分子筛的溶液或合成液在水热反应釜中在50-200℃下再水热处理1-24h,洗涤,干燥,焙烧,将所得焙烧产物与分子筛催化剂B的水分散体于100-300℃下水热处理1-96h,洗涤,干燥,焙烧。
该方法可称作水热合成法。硅烷偶联剂是一类在分子中同时含有两种不同化学性质基团的有机硅化合物,其经典产物可用通式YaSiX4-a,尤其 是YSiX3表示,其中a为1-3的整数,Y为非水解基团,包括链烯基(主要为乙烯基),以及末端带有Cl、NH2、SH、环氧基、N3、(甲基)丙烯酰氧基、异氰酸酯基等官能团的烃基,即碳官能基,以及X为可水解基团,包括Cl、OMe、OEt、OC2H4OCH3、OSiMe3及OAc等。由于硅烷偶联剂的这一特殊结构,在其分子中同时具有能与无机质材料化学结合的反应基团及与有机质材料化学结合的反应基团,因此可以用于表面处理。根据本发明优选的是,硅烷偶联剂具有下式:
YaSiX4-a     (I)
其中a为1-3的整数,尤其是1,Y相同或不同且彼此独立地为乙烯基、C1-C6烷基、氯代C1-C6烷氧基、氨基C1-C6烷氧基、缩水甘油醚氧C1-C6烷基、(甲基丙烯酰氧)C1-C6烷基或N-(氨基C1-C6烷基)氨基C1-C6烷基,以及X相同或不同且彼此独立地为OMe、OEt、OC2H4OCH3、OSiMe3或OAc。作为式(I)硅烷偶联剂,优选的是,Y相同或不同且彼此独立地为乙烯基、C1-C4烷基、氯代C1-C4烷氧基、氨基C1-C4烷氧基、缩水甘油醚氧C1-C4烷基、(甲基丙烯酰氧)C1-C4烷基或N-(氨基C1-C4烷基)氨基C1-C4烷基;和/或X相同或不同且彼此独立地为OMe或OEt。作为本发明硅烷偶联剂的实例,可以提及:γ-氨丙氧三乙氧基硅烷(APTES),γ-氨丙氧三甲氧基硅烷(APTMS),γ-缩水甘油醚氧丙基三甲氧基硅烷,γ-(甲基丙烯酰氧)丙基三甲氧基硅烷,N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷
Figure PCTCN2017116966-appb-000001
和N-(2-氨基乙基)-3-氨基丙基甲基二甲氧基硅烷
Figure PCTCN2017116966-appb-000002
硅烷偶联剂溶液所用溶剂通常为水、醇或水醇混合物。硅烷偶联剂溶液的浓度通常为0.2-5重量%。硅烷偶联剂溶液的用量通常是大于等于铜基催化剂A的颗粒所含孔隙的孔体积。铜基催化剂A的颗粒与硅烷偶联剂 溶液混合之后,在水热反应釜中于50-200℃下水热处理1-24h,优选在水热反应釜中于80-150℃下水热处理5-12h,然后洗涤和干燥。洗涤通常用去离子水洗涤。干燥通常在50-150℃下进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h。干燥之后,得到经第一次水热处理的铜基催化剂A的颗粒,然后用Silicalite系列纯硅分子筛的水溶液或合成液在水热反应釜中在50-200℃下再水热处理1-24h,洗涤,干燥,焙烧。这里的Silicalite系列纯硅分子筛指只含硅的分子筛。作为Silicalite系列纯硅分子筛,可以是Silicalite-1,MCM-41,SBA-15等。Silicalite系列纯硅分子筛的水溶液通常为商购或自制的Silicalite系列纯硅分子筛在水、醇或水醇混合物中的溶液,该溶液的浓度通常为0.1-2重量%。该溶液的用量通常是大于等于催化剂A的颗粒所含孔隙的孔体积。Silicalite系列纯硅分子筛的合成液为采用常规方法制备对应分子筛得到的合成液(即,分子筛水热合成前的液体混合物)。这类分子筛的合成方法、条件已经非常成熟,极易获得。
Silicalite系列纯硅分子筛包裹在铜基催化剂A核外层后,可以在合成壳层催化剂的过程中起到晶种的作用,易于壳层的合成。Silicalite系列分子筛的溶液或合成液与经第一次水热处理的铜基催化剂A的颗粒混合之后,再在水热反应釜中于50-200℃下水热处理1-24h,优选在水热反应釜中于80-180℃下水热处理4-12h,然后洗涤、干燥和焙烧,得到经第二次水热处理的铜基催化剂A的颗粒。洗涤通常用去离子水洗涤。干燥通常在50-150℃下进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h。焙烧通常在350-600℃下进行,优选在350-500℃下进行。焙烧时间通常为1-24h,优选为1-10h。
接下来,将经第二次水热处理的铜基催化剂A颗粒与分子筛催化剂B和水一起形成水分散体,或将经第二次水热处理的铜基催化剂A颗粒直接加入分子筛催化剂B的合成液中形成水分散体,将该水分散体在水热反应釜中于100-300℃下水热处理1-96h,优选于150-250℃下水热处理24-72h,洗涤,干燥,焙烧,得到核/壳催化剂。洗涤通常用去离子水洗涤。干燥通常在50-150℃下进行,优选在60-120℃下进行。干燥时间通常为5-24h, 优选为8-18h。焙烧通常在350-600℃下进行,优选在350-500℃下进行。焙烧时间通常为1-24h,优选为4-10h。
由于壳层分子筛只有在为H型的时候才有催化活性,所以如果壳层为Na或其它离子型分子筛,还需通过离子交换转化为其H型。例如,这通常可如下文所述操作:将Na型分子筛加入1M的硝酸铵水溶液中,在80℃下搅拌2-12h,过滤,洗涤,干燥,焙烧,得到具有H型分子筛壳层的核/壳催化剂。干燥通常在50-150℃下进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h。焙烧通常在350-600℃下进行,优选在350-550℃下进行。焙烧时间通常为1-24h,优选为4-10h。
作为本发明核/壳催化剂的壳的分子筛催化剂B,它为具有羰基化催化功能的分子筛,能够催化二甲醚羰基化形成乙酸甲酯。优选的是,分子筛催化剂B为选自H-MOR、H-ZSM-5、H-ZSM-35和H-β中的一种或多种,尤其是H-MOR和/或H-ZSM-35。
在本发明的一个优选实施方案中,分子筛催化剂B包含一种或多种负载其上的选自Fe、Co、Cu、Zn、Ru、Rh、Pd、Ag、Ir和Pt的金属元素(下文称作金属X),该元素可作为单质存在,也可作为化合物如氧化物存在,抑或作为单质与其化合物的混合物的形式存在。金属X的包含使得本发明的核/壳催化剂的抗积炭能力增强,从而延长催化剂寿命。基于核/壳催化剂的壳的总重量,金属X以元素计的含量通常为0-10重量%,优选为1-6重量%
为了使得分子筛催化剂B包含所述金属元素X,可以采用下列方式(i)或(ii)来实现:
(i)将包覆前的分子筛催化剂B或步骤(b1)中焙烧得到的或步骤(b2)中二次焙烧得到的核/壳催化剂用金属X的水溶性前驱体的水溶液进行处理,干燥和焙烧,从而负载上金属X。金属X的负载方法包括浸渍法、离子交换法等。浸渍法通常为:配制金属X的水溶性前驱体在去离子水中的水溶液,将该水溶液等体积浸渍于分子筛催化剂B上或步骤(b1)中焙烧得到的或步骤(b2)中二次焙烧得到的核/壳催化剂上,然后干燥,焙烧。这里的等体积指的是浸渍液的体积与分子筛催化剂B或步骤(b1)中焙烧得到的或步 骤(b2)中二次焙烧得到的核/壳催化剂所含孔隙的孔体积相等。干燥通常在50-150℃进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h进行。焙烧通常在350-600℃下进行,优选在350-500℃下进行。焙烧时间通常为1-24h,优选为1-10h。作为这里的金属X的水溶性前驱体,可以提及金属X的水溶性盐,可以使用硝酸盐、硫酸盐或氯化物等,例如硝酸铜、硝酸铂、氯化钌等。离子交换法是一种常用的催化剂制备方法,尤其在分子筛的金属改性方面,利用分子筛中阳离子(如Na+,NH4 +)与溶液中阳离子(需交换的离子,如Cu2+,Zn2+)的浓度差,实现离子交换。通常的做法是:配制金属X的水溶性前驱体(例如水溶性盐)的溶液,加入待负载样品(为包覆前的分子筛催化剂B或步骤(b1)中焙烧得到的或步骤(b2)中二次焙烧得到的核/壳催化剂),搅拌并保持温度为60-100℃,优选为60-80℃,交换结束后抽滤、干燥、焙烧。干燥通常在50-150℃进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h进行。焙烧通常在350-600℃下进行,优选在350-500℃下进行。焙烧时间通常为1-24h,优选为1-10h。
(ii)将步骤(b2)中经第二次水热处理的铜基催化剂A颗粒与分子筛催化剂B和水一起形成水分散体,或者将经第二次水热处理得到的铜基催化剂A颗粒直接加入分子筛催化剂B的合成液中得到一水分散体,通过调节所得水分散体的pH值,使催化剂A颗粒的部分金属离子溶解至液相中,然后将水分散体在水热反应釜中于100-300℃下水热处理1-96h,优选于150-250℃下水热处理24-72h,过滤,洗涤,干燥,焙烧,得到壳层中掺杂有一种或多种核中所含金属的核/壳催化剂。这里的pH值通常为7-13,优选8-12。洗涤通常用去离子水洗涤。干燥通常在50-150℃下进行,优选在60-120℃下进行。干燥时间通常为5-24h,优选为8-18h。焙烧通常在350-600℃下进行,优选在350-500℃下进行。焙烧时间通常为1-24h,优选为1-10h。
在本发明的核/壳催化剂中,催化剂A与催化剂B的质量之比为0.1-10,优选为0.5-5,更优选为1-5。基于核/壳催化剂的总重量,催化剂A与催化剂B的总量为大于80%,优选为大于90%。
本发明核/壳催化剂的平均粒径为10-200目,优选为12-60目。
根据本发明的另一方面,提供了通过本发明方法制得的核/壳催化剂。该核/壳催化剂的所有特征与上文对核/壳催化剂制备所述相同。
根据本发明的最后一个方面,提供了通过本发明方法制得的核/壳催化剂在二甲醚与合成气直接制乙醇中的用途。
本发明的核/壳催化剂在用于二甲醚与合成气直接制乙醇之前,如果铜基催化剂中的Cu和任选的M以及分子筛催化剂B中任选包含的金属X不全呈单质形式,需要将该核/壳催化剂进行还原,以使得催化剂中的所述元素呈单质形式。为此,通常将核/壳催化剂用含氢气的气氛还原。还原温度通常为200-500℃,优选为200-300℃。还原压力通常为0-10MPa,优选0-5MPa的表压。还原时间通常为5-24h,优选5-12h。还原气氛可以使用纯氢气,也可以使用含氢气和CO的混合气。因此,CO:H2摩尔比通常为0-10,优选0-5。还原空速通常为500-50000h-1,优选500-10000h-1。还原之后,核/壳催化剂中的铜基催化剂中的Cu和任选的M以及分子筛催化剂B中任选包含的金属X元素呈单质形式,表现出催化活性。
本发明的核/壳催化剂在用于二甲醚与合成气直接制乙醇时,反应可以间歇进行,也可连续进行。催化剂可以任何常规形式使用,优选以固定床形式使用。当本发明的核/壳催化剂用于二甲醚与合成气直接制乙醇时,使包含Ar(氩气)、DME、CO和H2的反应料流通过包含本发明核/壳催化剂的反应器。反应温度通常为200-500℃,优选为200-300℃。反应压力通常为0-10MPa,优选0.5-5MPa的表压。反应时间通常为0.5-20h,优选0.5-10h。反应空速通常为500-50000h-1,优选500-10000h-1。反应气体的摩尔比:Ar:DME:CO:H2=1:(0.1-20):(0.1-50):(0.1-50),优选为1:(0.1-10):(10-50):(10-50),其中Ar为内标,和DME为二甲醚。
实施例
以下将结合具体实施例对本发明作进一步说明,但不应将其理解为对本发明保护范围的限制。
实施例1
催化剂的制备
称取0.1mol硝酸铜与0.1mol硝酸锌,在玛瑙研钵中研磨0.5h,加入0.2mol碳酸钠,继续研磨2h。所得样品经去离子水洗净,100℃干燥10h,350℃焙烧3h,压制成型为20-40目的颗粒。将所得颗粒0.5g放入0.5g的30wt%硅溶胶中充分浸润,随后加入商业粉末分子筛H-MOR(Tosoh株式会社),均匀搅拌后,100℃干燥6h,500℃焙烧5h,即得“CuZnO@S@H-MOR”核/壳催化剂,其中CuZnO为核,H-MOR为壳,S为连接核与壳的粘结层(硅溶胶),核占核/壳催化剂总重量的80%,核和壳的总重量占核/壳催化剂总重量的90%。
催化剂的还原和反应
称取0.5g所得核/壳催化剂,装入内径8mm的竖立放置的管式固定床反应器中,催化剂床的两端用石英棉填充,从一端通入流速为30mL/min的100%H2,在300℃和常压下还原10h后,接着将气体切换为反应气体,该反应气体中所含各组分的摩尔比是:Ar:DME:CO:H2=1:1:48:50,流速为40mL/min在反应温度220℃和气体总压力1.5MPa(表压)下开始反应,连续反应,实时测算反应物转化率和产物选择性。结果见表1。
实施例2
用去离子水配制1M的氨水溶液B;称取0.1mol硝酸铜、0.05mol硝酸锌和0.05mol硝酸铝,用去离子水配制为一水溶液A。通过脉冲液相泵将所配制的溶液A与溶液B分别滴入同一烧杯中,同时控制两种溶液的滴加速率精确控制实时得到的混合液的pH值为10,并保持混合液的温度为50℃,加料过程中保持搅拌,同时有沉淀产生,溶液A滴加完毕后停止滴入溶液B。加料完毕之后,将所得沉淀混合物陈化12h,过滤,经去离子水洗涤,120℃干燥10h,350℃焙烧3h,压制成型为20-40目的颗粒。接着将所得颗粒0.5g放入30wt%硅溶胶1g中充分浸润,随后加入商业粉末 分子筛H-MOR(Tosoh株式会社),均匀搅拌后,100℃干燥6h,500℃焙烧5h。然后进行如下离子交换:将焙烧后的样品1g加入0.2M的硝酸铜水溶液50mL中,搅拌并保持温度为80℃,2h后抽滤,100℃干燥6h,500℃焙烧2h;该离子交换步骤重复4次,即得“CuZn0.5Al0.5O2.25@S@Cu5H-MOR”核/壳催化剂,其中CuZn0.5Al0.5O2.25为核,Cu5H-MOR为壳,“Cu5”指的是壳中Cu相对壳层的含量为5wt%。S为连接核与壳的粘接层(硅溶胶),核占核/壳催化剂总重量的70%,核和壳的总重量占核/壳催化剂总重量的90%。
重复实施例1中的催化剂的还原和反应,结果见表1。
实施例3
称取0.1mol硝酸铜和0.1mol硝酸锌,用去离子水配置为30mL水溶液,将该水溶液在超声波(20KHz)辅助下浸渍于0.5mol SiO2载体上,在50℃真空干燥24h,350℃焙烧4h,压制成型为20-40目的颗粒。然后将0.5g所得颗粒加入0.5g硅烷偶联剂APTMS(Aldrich)的0.3wt%乙醇溶液中,在水热反应器中在80℃水热处理12h,用去离子水洗涤,在100℃干燥10h后,然后加入商业Silicalite-1分子筛(Tosoh株式会社)的1wt%水溶液,在水热反应器中在100℃水热处理12h,用去离子水洗涤,在100℃干燥10h后,450℃焙烧5h。将所得焙烧物加入H-ZSM-35的合成液(1.85Na2O:1Al2O3:20SiO2:592H2O:19.7吡咯烷)中,在水热反应釜中于200℃下水热处理72h,过滤,经去离子水洗涤,100℃干燥10h,550℃焙烧3h,得到壳层催化剂为Na型分子筛的核/壳催化剂。前述合成液的制备如下:称取1.16g NaAlO2,溶解在60mL 0.5M的NaOH水溶液中,记为溶液A;另称量29.68g 30wt%的硅溶胶,加入10.21g吡咯烷,所得溶液记为溶液B;均匀混合A与B溶液后即为合成液(1.85Na2O:1Al2O3:20SiO2:592H2O:19.7吡咯烷)。
接下来,将作为壳层催化剂的Na型分子筛通过离子交换得到H型分子筛。具体为:称取1g所得核/壳催化剂样品,加入1M的硝酸铵水溶液中,80℃搅拌6h,过滤,用去离子水洗涤,100℃干燥10h后,550℃焙 烧3h,得到壳层催剂为H型分子筛的核/壳催化剂。
之后,再采用浸渍法将Pt负载于核/壳催化剂的壳层中。具体而言,将2g所得的壳层催剂为H型分子筛的核/壳催化剂浸渍于2g Pt(NH3)2(NO2)2在去离子水中的水溶液中,该水溶液中Pt含量为0.005wt%,过滤,100℃干燥12h,500℃焙烧5h,即得“CuZn1Si5O12@S@Pt1H-ZSM-35”核/壳催化剂,其中CuZn1Si5O12为核,Pt1H-ZSM-35为壳,“Pt1”指的是Pt相对壳层的含量为1wt%,S为连接核与壳的粘结层(APTMS和Silicalite-1),核占核/壳催化剂总重量的50%,核和壳的总重量占核/壳催化剂总重量的92%。
使用所得核/壳催化剂,重复实施例1中的催化剂的还原和反应,结果见表1。
实施例4
催化剂制备方法基本与实施例3相同,不同之处是:在将实施例3中用商业Silicalite-1分子筛水溶液水热处理、洗涤、干燥和焙烧得到的焙烧物加入H-ZSM-35合成液(1.85Na2O:1Al2O3:20SiO2:592H2O:19.7吡咯烷)中之后,采用0.02M的NaOH水溶液将该水分散体的pH控制为10,使核催化剂的部分离子溶解至液相中,然后在水热反应釜中于200℃下水热处理72h,过滤,经去离子水洗涤,100℃干燥10h,550℃焙烧3h,得到壳层催化剂为Na型分子筛的核/壳催化剂。
接下来,按实施例3所述,将作为壳层催化剂的Na型分子筛通过离子交换得到H型分子筛,即得“CuZn1Si5O12@S@Cu5H-ZSM-35”核/壳催化剂,其中CuZn1Si5O12为核,Cu5H-ZSM-35为壳,“Cu5”指的是壳中Cu相对壳层的含量为5wt%,S为连接核与壳的粘结层(APTMS和Silicalite-1),核占核/壳催化剂总重量的50%,核和壳的总重量占核/壳催化剂总重量的88%。
重复实施例1中的催化剂的还原和反应,结果见表1。
实施例5
催化剂制备方法基本与实施例2基本相同,不同之处是:将实施例2中壳层催化剂的Cu负载步骤省略,即得“CuZn0.5Al0.5O2.25@S@H-MOR”核/壳催化剂,其中CuZn0.5Al0.5O2.25为核,H-MOR为壳,S为连接核与壳的粘接层(硅溶胶),核占核/壳催化剂总重量的70%,核和壳的总重量占核/壳催化剂总重量的93%。
重复实施例1中的催化剂的还原和反应,结果见表1。
实施例6
催化剂制备方法基本与实施例3相同,不同之处是:在将实施例3中用商业Silicalite-1分子筛水热处理改为用商业MCM-41分子筛水热处理。最终得到“CuZn1Si5O12@S@Pt1H-ZSM-35”核/壳催化剂,其中CuZn1Si5O12为核,Pt1H-ZSM-35为壳,“Pt1”指的是Pt相对壳层的含量为1wt%,S为连接核与壳的粘结层(APTMS和MCM-41),核占核/壳催化剂总重量的50%,核和壳的总重量占核/壳催化剂总重量的92%。
使用所得核/壳催化剂,重复实施例1中的催化剂的还原和反应,结果见表1。
实施例7
催化剂制备方法基本与实施例3相同,不同之处是:1)、将实施例3中制备核催化剂所用的0.1mol硝酸锌替换为0.05mol硝酸铁+0.05mol硝酸钴;2)、包覆前使用的硅烷偶联剂APTMS(Aldrich)替换为APTES(Aldrich);以及3)、壳层中的Pt改性替换为Rh改性,即将Pt(NH3)2(NO2)2在去离子水中的水溶液替换为2g Rh(NO3)3在去离子水中的水溶液,该水溶液中Rh含量为0.005wt%。最终得到“CuFe0.5Co0.5Si5O12@S@Rh1H-ZSM-35”核/壳催化剂,其中CuFe0.5Co0.5Si5O12为核,Rh1H-ZSM-35为壳,“Rh1”指的是Rh相对壳层的含量为1wt%,S为连接核与壳的粘结层(APTES和Silicalite-1),核占核/壳催化剂总重量的60%,核和壳的总重量占核/壳催 化剂总重量的86%。
使用所得核/壳催化剂,重复实施例1中的催化剂的还原和反应,结果见表1。
实施例8
催化剂制备方法基本与实施例3相同,不同之处是:1)将实施例3中制备核催化剂所用的0.1mol硝酸锌替换为0.05mol硝酸镍+0.025mol硝酸锰+0.025mol硝酸镁;2)将包覆前使用的硅烷偶联剂APTMS(Aldrich)替换为γ-缩水甘油醚氧丙基三甲氧基硅烷(Aldrich);以及3)将商业Silicalite-1分子筛替换为商业SBA-15分子筛。最终得到“CuNi0.5Mn0.25Mg0.25Si5O12@S@Pt1H-ZSM-35”核/壳催化剂,其中CuNi0.5Mn0.25Mg0.25Si5O12为核,Pt1H-ZSM-35为壳,“Pt1”指的是Pt相对壳层的含量为1wt%,S为连接核与壳的粘结层(γ-缩水甘油醚氧丙基三甲氧基硅烷和SBA-15),核占核/壳催化剂总重量的70%,核和壳的总重量占核/壳催化剂总重量的85%。
使用所得核/壳催化剂,重复实施例1中的催化剂的还原和反应,结果见表1。
实施例9
重复实施例3,不同之处是:二甲醚与合成气直接制备乙醇的反应时间延长为40h,反应结果见表1。
实施例10
重复实施例3,不同之处是:二甲醚与合成气直接制备乙醇反应的反应压力变为0.5MPa,反应结果见表1。
对比例1
催化剂制备方法与实施例1基本相同,但改变催化剂核的用量,使得所得催化剂中核占核/壳催化剂总重量的90%,核和壳的总重量占核/壳催 化剂总重量的95%。
按照实施例1所述,将所得催化剂应用于二甲醚与合成气直接制备乙醇,结果见表1。
对比例2
催化剂制备方法与实施例2基本相同,但改变硝酸锌和硝酸铝的用量,使所得催化剂具有组成:“CuZn20Al20O51@S@CuH-MOR”核/壳催化剂,其中CuZn20Al20O51为核,CuH-MOR为壳,壳中Cu的含量为5%,S为连接核与壳的粘接层(硅溶胶),核占核/壳催化剂总重量的70%,核和壳的总重量占核/壳催化剂总重量的90%。
按照实施例1所述,将所得催化剂,将所得/壳催化剂应用于二甲醚与合成气直接制备乙醇反应,结果见表1。
对比例3
催化剂制备方法与实施例1类似,但是将浸渍硅溶胶的步骤改为浸渍水,然后将湿润的铜基催化剂颗粒A(20-40目的颗粒)直接与商业粉末分子筛H-MOR(Tosoh株式会社)混合,均匀搅拌后,100℃干燥6h,500℃焙烧5h,所得焙烧物不具有核/壳结构。
按照实施例1所述,将所得焙烧物应用于二甲醚与合成气直接制备乙醇反应,结果见表1。
对比例4
催化剂制备方法与实施例3类似,不同之处是:省去采用APTMS的水热处理步骤,即将压制成型的20-40目颗粒A直接加入商业Silicalite-1分子筛(Tosoh株式会社)的1wt%溶液中,随后操作与实施例3完全相同,即得“CuZn1Si5O12@S@Pt1H-ZSM-35”核/壳催化剂,其中CuZn1Si5O12为核,Pt1H-ZSM-35为壳,“Pt1”指的是Pt相对壳层的含量为1wt%,S为连接核与壳的粘结层(Silicalite-1),核占核/壳催化剂总重量的50%,核和 壳的总重量占核/壳催化剂总重量的90%。
使用所得核/壳催化剂,重复实施例1中的催化剂的还原和反应,结果见表1。
对比例5(无粘接层)
催化剂制备方法与实施例3类似,不同之处是:省略用硅烷偶联剂APTMS和商业Silicalite-1分子筛的水热处理,即直接将铜基催化剂颗粒(即压制成型的20-40目颗粒A)加入H-ZSM-35的合成液(1.85Na2O:1Al2O3:20SiO2:592H2O:19.7Pyrrolidine)中,随后操作与实施例3完全相同,即得“CuZn1Si5O12@Pt1H-ZSM-35”核/壳催化剂,其中CuZn1Si5O12为核,Pt1H-ZSM-35为壳,“Pt1”指的是Pt相对壳层的含量为1wt%,核占核/壳催化剂总重量的90%,核和壳的总重量占核/壳催化剂总重量的100%。将该催化剂应用于二甲醚与合成气直接制备乙醇反应,结果见表1。
表1
Figure PCTCN2017116966-appb-000003
以上催化剂的活性评价条件如下:
实施例1-8与比较例1-5的还原条件为:300℃、0.1MPa、1000h-1、CO:H2=0:1;反应条件为:220℃、4h、1.5MPa、1000h-1、0.5g催化剂、Ar:DME:CO:H2=1:1:48:50;
实施例9的还原条件同上,但是反应条件中反应时间延长至40h。
实施例10的还原条件同上,但是反应条件中压力为0.5MPa,其他同上。

Claims (11)

  1. 一种制备二甲醚与合成气一步法制乙醇用的核/壳催化剂的方法,该催化剂包含:
    (A)作为核的包含下式(I)化合物的铜基催化剂A,基于核/壳催化剂的总重量,铜基催化剂A的含量为40-80重量%,优选为50-80%,
    CuMaOx  (I)
    其中
    M为不同于Cu的选自元素周期表第二主族、第三主族和过渡元素中的一种或几种元素,优选为选自Mg、Ca、Al、Ti、Mn、Co、Fe、Ni、Zn和Mo中的一种或多种元素,更优选为Zn、Al和Mn中的一种或多种元素;a为0-30之间的数,优选为0-20之间的数,更优选为0-10之间的数,特别优选为1-8的数;和
    x为满足式(I)各元素化合价所需的氧原子数;以及
    (B)作为壳的能够催化二甲醚羰基化形成乙酸甲酯的分子筛催化剂B,其特征在于,核/壳催化剂通过包括如下步骤的方法制备:
    (a)提供铜基催化剂A的颗粒;以及
    (b1)使用硅溶胶对铜基催化剂A的颗粒进行浸渍,然后加入分子筛催化剂B的粉末对经浸渍的铜基催化剂颗粒进行包覆,随后干燥和焙烧;或者
    (b2)将硅烷偶联剂的溶液与铜基催化剂A的颗粒混合,在水热反应釜中于50-200℃下水热处理1-24h,洗涤,干燥,然后用Silicalite系列纯硅分子筛的溶液或合成液在水热反应釜中在50-200℃下再水热处理1-24h,洗涤,干燥,焙烧,将所得焙烧产物与分子筛催化剂B的水分散体或合成液于100-300℃下水热处理1-96h,洗涤,干燥,焙烧。
  2. 根据权利要求1的方法,其中分子筛催化剂B包含一种或多种负载其上的选自Fe、Co、Cu、Zn、Ru、Rh、Pd、Ag、Ir和Pt的金属元素X。
  3. 根据权利要求1或2的方法,其中硅烷偶联剂具有下式:
    YaSiX4-a  (I)
    其中
    a为1-3的整数,尤其是1;
    Y相同或不同且彼此独立地为乙烯基、C1-C6烷基、氯代C1-C6烷氧基、氨基C1-C6烷氧基、缩水甘油醚氧C1-C6烷基、(甲基丙烯酰氧)C1-C6烷基或N-(氨基C1-C6烷基)氨基C1-C6烷基,优选Y选自乙烯基、C1-C4烷基、氯代C1-C4烷氧基、氨基C1-C4烷氧基、缩水甘油醚氧C1-C4烷基、(甲基丙烯酰氧)C1-C4烷基或N-(氨基C1-C4烷基)氨基C1-C4烷基;以及
    X相同或不同且彼此独立地为OMe、OEt、OC2H4OCH3、OSiMe3或OAc,优选为OMe或OEt,
    优选的是,硅烷偶联剂为选自γ-氨丙氧三乙氧基硅烷(APTES),γ-氨丙氧三甲氧基硅烷(APTMS),γ-缩水甘油醚氧丙基三甲氧基硅烷,γ-(甲基丙烯酰氧)丙基三甲氧基硅烷,N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷和N-(2-氨基乙基)-3-氨基丙基甲基二甲氧基硅烷中的一种或多种。
  4. 根据权利要求1-3中任一项的方法,其中Silicalite系列纯硅分子筛为选自Silicalite-1、MCM-41和SBA-15中的一种或多种。
  5. 根据权利要求2-4中任一项的方法,其中采用下列方式(i)或(ii)使分子筛催化剂B包含金属元素X,
    (i)将包覆前的分子筛催化剂B或步骤(b1)中焙烧得到的或步骤(b2)中二次焙烧得到的核/壳催化剂用金属X的水溶性前驱体的水溶液进行处理,干燥和焙烧,从而负载上金属X;
    (ii)将步骤(b2)中经第二次水热处理的铜基催化剂A颗粒与分子筛催化剂B和水一起形成水分散体,或者将经第二次水热处理得到的铜基催化剂A颗粒直接加入分子筛催化剂B的合成液中得到一水分散体,通过调节所得水分散体的pH值,使催化剂A颗粒的部分金属离子溶解至液相中,然后将水分散体在水热反应釜中于100-300℃下水热处理1-96h,优选于150-250℃下水热处理24-72h,过滤,洗涤,干燥,焙烧,得到壳层中掺杂有一种或多种核中所含金属的核/壳催化剂。
  6. 根据权利要求1-5中任一项的化合物,其中分子筛催化剂B为选自H-MOR、H-ZSM-5、H-ZSM-35和H-β中的一种或多种,优选为H-MOR 和/或H-ZSM-35。
  7. 根据权利要求1-6中任一项的方法,其中基于核/壳催化剂的总重量,催化剂A与催化剂B的总量大于80%,优选为大于90%。
  8. 根据权利要求1-7中任一项的方法,其中催化剂A与催化剂B的质量之比为0.1-10,优选为0.5-5,更优选为1-5。
  9. 根据权利要求1-8中任一项的方法,其中铜基催化剂A通过如下方式制备:
    (1)固相研磨法:将Cu盐与任选的M盐先一起研磨0.5-5h,然后加入能将Cu和M沉淀的至少化学计算量的选自NaOH、Na2CO3和NaHCO3中的一种或多种一起继续研磨0.5-6h,用去离子水洗涤除Na,在50-150℃干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A;
    (2)高效精准沉淀法:配制可溶性Cu盐和任选的可溶性M盐的水溶液A,配制选自NaOH、Na2CO3和NaHCO3中的一种或多种化合物的水溶液或氨水溶液B,采用脉冲液相泵分别将溶液A与B加入反应器中,二者的添加速率应确保由已经加入的溶液A与已经加入的溶液B实时形成的混合物的pH值为8-14,该加料过程在加热和搅拌下进行,加热温度保持在25-100℃,加料完毕后陈化2-48h,滤出沉淀,用去离子水洗涤,在50-150℃干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A;以及
    (3)超声波等体积浸渍法:配制可溶性Cu盐和任选的可溶性M盐的水溶液,在超声波作用下将该水溶液等体积浸渍于多孔载体上,所得产物在50-150℃真空干燥5-24h,在350-600℃焙烧1-24h,制得铜基催化剂A。
  10. 通过根据权利要求1-9中任一项的方法制得的核/壳催化剂。
  11. 通过根据权利要求1-9中任一项的方法制得的核/壳催化剂在二甲醚与合成气直接制乙醇中作为催化剂的用途。
PCT/CN2017/116966 2016-12-26 2017-12-18 乙醇合成用催化剂及其制备方法和用途 WO2018121324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611219518.XA CN108238846B (zh) 2016-12-26 2016-12-26 一种乙醇合成用催化剂的制备方法及由此得到的催化剂和该催化剂的用途
CN201611219518.X 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018121324A1 true WO2018121324A1 (zh) 2018-07-05

Family

ID=62701912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116966 WO2018121324A1 (zh) 2016-12-26 2017-12-18 乙醇合成用催化剂及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN108238846B (zh)
WO (1) WO2018121324A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327937A (zh) * 2019-07-26 2019-10-15 郑州轻工业学院 用于合成气一步法制备低碳醇的活性组分与载体协同作用催化剂及其制备方法和应用
CN110563592A (zh) * 2019-09-18 2019-12-13 宁夏大学 一种由二氧化碳、氢气和氨气一步制备二甲胺的方法
CN110787818A (zh) * 2019-09-05 2020-02-14 宁夏大学 一种丙烯环氧化催化剂及其制备方法和应用
CN110961110A (zh) * 2019-12-23 2020-04-07 上海华谊(集团)公司 催化剂及其在2,3,6-三氯吡啶加氢脱氯中的用途
CN111097397A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 合成异丙叉丙酮和异佛尔酮的方法
CN111438373A (zh) * 2020-05-27 2020-07-24 山西大同大学 一种铜银核壳结构双金属球状纳米粒子的制备方法
CN112121847A (zh) * 2019-06-25 2020-12-25 高化学株式会社 一种二甲醚羰基化制备乙酸甲酯用催化剂及其制备和应用
CN112870964A (zh) * 2020-12-28 2021-06-01 阜阳莱纳环保科技有限公司 一种加氢催化剂及其在处理含硫废气中的应用
CN113019444A (zh) * 2021-03-10 2021-06-25 厦门大学 羰基化-除水双功能催化剂前驱体及其制备方法、羰基化-除水双功能催化剂及其应用
CN113289632A (zh) * 2021-06-02 2021-08-24 浙江师范大学 一种用于草酸二甲酯加氢制乙醇的催化剂及其制备方法和应用
CN113398938A (zh) * 2021-06-07 2021-09-17 宁夏大学 一种甲醇合成催化剂及制备方法
CN113713605A (zh) * 2021-09-03 2021-11-30 常州翡尔达环保科技有限公司 一种空气净化生物过滤滤料颗粒及其制备方法和用途
CN113753909A (zh) * 2020-06-01 2021-12-07 中国科学院大连化学物理研究所 一种中空mfi沸石材料及其制备方法
CN114425418A (zh) * 2020-09-02 2022-05-03 中国石油化工股份有限公司 一种核壳型分子筛在重油催化裂化催化剂中的应用
CN116060081A (zh) * 2021-10-31 2023-05-05 中国石油化工股份有限公司 一种捕硅催化剂及其制备方法
CN116626114A (zh) * 2023-07-25 2023-08-22 南方电网数字电网研究院有限公司 C2h6传感器、制备方法、气体检测装置及应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001431B (zh) * 2019-12-06 2020-12-01 西南化工研究设计院有限公司 一种二甲醚和合成气一步法制乙醇的核壳催化剂及其制备方法及应用
CN113926478B (zh) * 2020-06-29 2024-01-09 中国石油化工股份有限公司 用于费托合成制备低碳烯烃的催化剂及其制备方法和应用
CN112007643A (zh) * 2020-08-20 2020-12-01 正大能源材料(大连)有限公司 一种用于合成气直接制乙醇的催化剂及其制备方法和应用
CN114590818B (zh) * 2022-02-25 2023-08-08 厦门大学 一种薄片状mor分子筛及其制备方法、利用合成气制备乙醇的催化剂和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070225383A1 (en) * 2006-03-24 2007-09-27 Cortright Randy D Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions
US20120277489A1 (en) * 2011-04-26 2012-11-01 Celanese International Corporation Recovering Ethanol with Sidestreams to Regulate C3+ Alcohols Concentrations
CN103288596A (zh) * 2012-02-27 2013-09-11 中国科学院大连化学物理研究所 一种有机酸加氢制备一元醇或二元醇的方法
CN103816908A (zh) * 2014-03-20 2014-05-28 神华集团有限责任公司 一种用于醋酸酯加氢制乙醇的催化剂及其制备方法
CN104801337A (zh) * 2015-03-19 2015-07-29 沈阳化工大学 一种合成气、二甲醚一步法制备的乙醇催化剂及其制备方法
CN105562116A (zh) * 2015-12-23 2016-05-11 中国科学院烟台海岸带研究所 一种负载的金属催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070225383A1 (en) * 2006-03-24 2007-09-27 Cortright Randy D Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions
US20120277489A1 (en) * 2011-04-26 2012-11-01 Celanese International Corporation Recovering Ethanol with Sidestreams to Regulate C3+ Alcohols Concentrations
CN103288596A (zh) * 2012-02-27 2013-09-11 中国科学院大连化学物理研究所 一种有机酸加氢制备一元醇或二元醇的方法
CN103816908A (zh) * 2014-03-20 2014-05-28 神华集团有限责任公司 一种用于醋酸酯加氢制乙醇的催化剂及其制备方法
CN104801337A (zh) * 2015-03-19 2015-07-29 沈阳化工大学 一种合成气、二甲醚一步法制备的乙醇催化剂及其制备方法
CN105562116A (zh) * 2015-12-23 2016-05-11 中国科学院烟台海岸带研究所 一种负载的金属催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LONG, XU: "Investigation on the Bifunctional Catalyst for the Steam Reforming of Dimethyl Ether Science -Engineering (A", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 December 2014 (2014-12-15), pages 3, ISSN: 1674-022X *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111097397A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 合成异丙叉丙酮和异佛尔酮的方法
CN112121847B (zh) * 2019-06-25 2024-01-05 高化学株式会社 一种二甲醚羰基化制备乙酸甲酯用催化剂及其制备和应用
CN112121847A (zh) * 2019-06-25 2020-12-25 高化学株式会社 一种二甲醚羰基化制备乙酸甲酯用催化剂及其制备和应用
CN110327937A (zh) * 2019-07-26 2019-10-15 郑州轻工业学院 用于合成气一步法制备低碳醇的活性组分与载体协同作用催化剂及其制备方法和应用
CN110787818B (zh) * 2019-09-05 2022-04-15 宁夏大学 一种丙烯环氧化催化剂及其制备方法和应用
CN110787818A (zh) * 2019-09-05 2020-02-14 宁夏大学 一种丙烯环氧化催化剂及其制备方法和应用
CN110563592A (zh) * 2019-09-18 2019-12-13 宁夏大学 一种由二氧化碳、氢气和氨气一步制备二甲胺的方法
CN110563592B (zh) * 2019-09-18 2022-08-12 宁夏大学 一种由二氧化碳、氢气和氨气一步制备二甲胺的方法
CN110961110A (zh) * 2019-12-23 2020-04-07 上海华谊(集团)公司 催化剂及其在2,3,6-三氯吡啶加氢脱氯中的用途
CN110961110B (zh) * 2019-12-23 2022-11-08 上海华谊(集团)公司 催化剂及其在2,3,6-三氯吡啶加氢脱氯中的用途
CN111438373B (zh) * 2020-05-27 2022-11-22 山西大同大学 一种铜银核壳结构双金属球状纳米粒子的制备方法
CN111438373A (zh) * 2020-05-27 2020-07-24 山西大同大学 一种铜银核壳结构双金属球状纳米粒子的制备方法
CN113753909B (zh) * 2020-06-01 2023-06-06 中国科学院大连化学物理研究所 一种中空mfi沸石材料及其制备方法
CN113753909A (zh) * 2020-06-01 2021-12-07 中国科学院大连化学物理研究所 一种中空mfi沸石材料及其制备方法
CN114425418A (zh) * 2020-09-02 2022-05-03 中国石油化工股份有限公司 一种核壳型分子筛在重油催化裂化催化剂中的应用
CN114425418B (zh) * 2020-09-02 2023-07-11 中国石油化工股份有限公司 一种核壳型分子筛在重油催化裂化催化剂中的应用
CN112870964A (zh) * 2020-12-28 2021-06-01 阜阳莱纳环保科技有限公司 一种加氢催化剂及其在处理含硫废气中的应用
CN112870964B (zh) * 2020-12-28 2023-12-22 大连安泰化工有限公司 一种加氢催化剂及其在处理含硫废气中的应用
CN113019444A (zh) * 2021-03-10 2021-06-25 厦门大学 羰基化-除水双功能催化剂前驱体及其制备方法、羰基化-除水双功能催化剂及其应用
CN113289632A (zh) * 2021-06-02 2021-08-24 浙江师范大学 一种用于草酸二甲酯加氢制乙醇的催化剂及其制备方法和应用
CN113289632B (zh) * 2021-06-02 2022-11-15 浙江师范大学 一种用于草酸二甲酯加氢制乙醇的催化剂及其制备方法和应用
CN113398938A (zh) * 2021-06-07 2021-09-17 宁夏大学 一种甲醇合成催化剂及制备方法
CN113713605A (zh) * 2021-09-03 2021-11-30 常州翡尔达环保科技有限公司 一种空气净化生物过滤滤料颗粒及其制备方法和用途
CN116060081A (zh) * 2021-10-31 2023-05-05 中国石油化工股份有限公司 一种捕硅催化剂及其制备方法
CN116626114A (zh) * 2023-07-25 2023-08-22 南方电网数字电网研究院有限公司 C2h6传感器、制备方法、气体检测装置及应用
CN116626114B (zh) * 2023-07-25 2023-10-20 南方电网数字电网研究院有限公司 C2h6传感器、制备方法、气体检测装置及应用

Also Published As

Publication number Publication date
CN108238846B (zh) 2021-07-27
CN108238846A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2018121324A1 (zh) 乙醇合成用催化剂及其制备方法和用途
Sun et al. Advances in catalytic applications of zeolite‐supported metal catalysts
KR101405518B1 (ko) 피셔-트롭시 합성반응용 코발트계 촉매의 제조방법
CN102658165B (zh) 乙酸气相加氢制备乙醇的催化剂及其制备方法
WO2017197980A1 (zh) 整体式铁钴双金属费托合成催化剂及其制备方法
CN101698152A (zh) 一种钴基费托合成催化剂及其制备方法和应用
WO2022247717A1 (zh) 一种乙醇催化转化合成高级醇的方法
AU2012343061A1 (en) Fischer-Tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
CN110102313B (zh) 一种限域结构钌镍核壳双金属纳米催化剂的制备及其催化对苯二甲酸二甲酯选择加氢的应用
KR20160147872A (ko) 메조포러스 물질로 코팅된 코발트계 피셔-트롭시 합성 촉매제 및 그 제조 방법
WO2017161980A1 (zh) 超高分散性钴铂费托合成催化剂及其制备方法
CN101327430A (zh) 由合成气制重质烃的钴基催化剂及其制备方法和应用
CN114029063B (zh) 一种二氧化碳加氢制备甲醇的催化剂及其制备方法
CN102133529A (zh) 新型镍基lpg水蒸气重整催化剂及其制备方法
CN112121847B (zh) 一种二甲醚羰基化制备乙酸甲酯用催化剂及其制备和应用
JP2019155227A (ja) Co2メタン化触媒及びこれを用いた二酸化炭素の還元方法
CN105597772B (zh) 核壳结构的钴基催化剂及其制备方法
CN112387283A (zh) 一种低温二氧化碳甲烷化催化剂及其制备方法
CN110903843B (zh) 一种二氧化碳催化加氢制取异构烷烃的方法
CN108997274A (zh) 一种液相氢转移催化糠醛加氢制备2-甲基呋喃的方法
CN110368949B (zh) 一种CO加氢制低碳醇GaFe基催化剂及制法和应用
Pan et al. Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction
CN108404961B (zh) 醋酸加氢制乙醇含氮二氧化硅空心球负载铂锡催化剂及制备
CN107626320A (zh) 草酸酯加氢合成乙二醇催化剂及其制备方法与应用
CN105170156B (zh) 类气凝胶结构的镍基甲烷干重整催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886052

Country of ref document: EP

Kind code of ref document: A1