WO2017161980A1 - 超高分散性钴铂费托合成催化剂及其制备方法 - Google Patents

超高分散性钴铂费托合成催化剂及其制备方法 Download PDF

Info

Publication number
WO2017161980A1
WO2017161980A1 PCT/CN2017/073863 CN2017073863W WO2017161980A1 WO 2017161980 A1 WO2017161980 A1 WO 2017161980A1 CN 2017073863 W CN2017073863 W CN 2017073863W WO 2017161980 A1 WO2017161980 A1 WO 2017161980A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
cobalt
fischer
tropsch synthesis
alumina carrier
Prior art date
Application number
PCT/CN2017/073863
Other languages
English (en)
French (fr)
Inventor
海国良
宋德臣
刘倩倩
郑申棵
詹晓东
张岩丰
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2017161980A1 publication Critical patent/WO2017161980A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group

Definitions

  • the invention belongs to the technical field of Fischer-Tropsch synthesis, and in particular to an ultra-high dispersion cobalt platinum Fischer-Tropsch synthesis catalyst and a preparation method thereof.
  • Fischer-Tropsch synthesis refers to the process of hydrogenation of carbon oxides to hydrocarbons and oxygenates under the action of a catalyst.
  • the reaction was invented by Germans Franz Fischer and Hans Tropsch in 1925 and is mainly used in syngas. Produce high value-added chemical products such as gasoline, diesel and paraffin for raw materials. Its products are sulfur-free, nitrogen-free, aromatic-free, and metal-free, making it a very clean energy source.
  • the research progress of Fischer-Tropsch synthesis has been closely related to the price of petroleum. With the increasing shortage of petroleum resources and increasingly demanding environmental protection, Fischer-Tropsch synthesis has renewed great interest in the past 20 years, with coal, Natural gas, biomass and other carbonaceous materials are used as raw materials. Carbon monoxide and hydrogen are first produced, and then clean oil is obtained through the synthesis process, which becomes a more feasible alternative route for energy.
  • supported cobalt catalysts have become the most potential research object because of their high activity, high stability and low water gas conversion activity.
  • Commonly used carriers for supported cobalt catalysts include titanium oxide, silicon oxide, aluminum oxide, molecular sieves, activated carbon, etc., and studies on porous materials such as carbon nanotubes, zirconia, and montmorillonite have been used as carriers.
  • the influence of the carrier on the performance of the Fischer-Tropsch synthesis catalyst is complicated, and the surface acidity, pore structure and dispersion of the carrier may affect the reactivity and product selectivity of the catalyst.
  • 5,554,674 sprays a cobalt metal active surface layer on the surface of an inorganic oxide carrier by spraying, and simultaneously adds auxiliaries such as zirconium, hafnium, tantalum, niobium, uranium and thorium to improve the activity of the catalyst, the regenerative capacity and the selectivity of liquid hydrocarbons.
  • the catalyst deactivates slowly, and the distillate oil containing linear alkanes and olefins has a high yield, but the active species distribution of the catalyst prepared by this method is not uniform, and the catalyst activity selectivity is limited.
  • the Chinese invention patent No. 200810055104.7 discloses a Fischer-Tropsch synthesis cobalt-based catalyst, which is a preparation method and application.
  • the invention patent uses a dipping method to prepare a catalyst supported on cobalt under different supports, and the carbon monoxide conversion rate can reach 82%.
  • the properties are between 7 and 13.4%, but the catalyst prepared by this method is very difficult to activate and requires a long reduction time. It can be seen that the above catalyst prepared by the impregnation method or the modified impregnation method cannot avoid the disadvantages of uneven dispersion of the active component, the catalyst activation is difficult, and the catalyst performance is poor when the active component loading is high.
  • the catalyst has high activity, and the preparation method has simple process conditions, and the cobalt in the obtained product catalyst maintains a very uniform and highly dispersed state.
  • the ultrahigh dispersion cobalt platinum Fischer-Tropsch synthesis catalyst of the present invention comprises an alumina carrier, an active component cobalt and a co-activity platinum, which is special in that the weight percentage of each component in the catalyst
  • the alumina carrier is 53 to 84.5%, the active component cobalt is 15 to 45%, and the active agent platinum is 0.5 to 2.0%; and the alumina carrier has a particle diameter of 0.6 to 2.4 mm and a specific surface area of 140 to 300 m 2 . /g;
  • the active component cobalt and the co-active platinum have a particle diameter of 3 to 20 nm, and they are supported on the alumina carrier in the form of uniformly dispersed nanoclusters.
  • the alumina carrier has a particle diameter of 0.8 to 2.2 mm and a specific surface area of 160 to 280 m 2 /g; and the active component cobalt and the co-activity platinum have a particle diameter of 5 to 18 nm.
  • the alumina carrier has a particle diameter of 1.0 to 2.0 mm and a specific surface area of 180 to 260 m 2 /g; and the active component cobalt and the co-activity platinum have a particle diameter of 8 to 15 nm.
  • the preparation method of the ultra-high dispersion cobalt platinum Fischer-Tropsch synthesis catalyst comprises the following steps:
  • the platinum salt is weighed according to the loading amount of the active auxiliary platinum, 0.5 to 2.0% of the total weight of the finished catalyst, and dissolved in the acetonitrile solvent, and then the alumina carrier is added in an amount of 53 to 84.5% of the total weight of the finished catalyst, and fully stirred. , adding a molar amount of 6 to 12 times the NaOH solution of the platinum salt, and reacting at 20 to 35 ° C for 10 to 24 hours;
  • the baking treatment temperature is 400 to 500 ° C, and the baking time is 2 to 4 hours.
  • the platinum salt is platinum acetate or platinum nitrate.
  • the molar amount of the NaOH solution added is 8 to 10 times that of the platinum salt.
  • the concentration of the NaOH solution added dropwise is 3% by weight.
  • the concentration of the NaOH solution added dropwise is from 5 to 8% by weight.
  • the reactant is heated to 55 to 65 °C.
  • the molar ratio of the added formaldehyde to the platinum salt is from 30 to 80..1.
  • the molar ratio of the added formaldehyde to the platinum salt is 40 to 50..1.
  • the lye added is a NaOH solution having a concentration by weight of 10 to 25%.
  • the reduced product is washed by alternately washing with deionized water and ethanol several times, and then the reduced product is dried at 70 to 90 °C.
  • the organic solvent used is one of ethanol, n-octanol or isopropanol or a combination thereof.
  • the cobalt salt is cobalt carbonate.
  • the volume ratio of hydrogen to carbon monoxide in the mixed gas of hydrogen and carbon monoxide is 1..1 to 3.
  • the alumina carrier is calcined at 350 to 600 ° C for pretreatment, and the water in the spent catalyst and the residual organic substance impurities can be effectively removed to obtain high-purity alumina.
  • Step 2 selecting a metal platinum salt according to a platinum loading of the co-agent of 0.5 to 2% of the total catalyst weight, the platinum salt is dissolved in the acetonitrile solvent, and then the pretreated alumina carrier and the sodium hydroxide solution are added, and the platinum salt is The reaction is carried out in an alkaline environment to precipitate platinum hydroxide.
  • the reaction formula is:
  • the molar ratio of the added NaOH to the platinum salt is controlled to be 6 to 12.1, which is advantageous for the sufficient conversion of the platinum salt and sufficient sodium hydroxide to maintain the reaction environment to be alkaline.
  • Step 3) is: adding a reducing agent formaldehyde at a certain temperature, reacting with platinum hydroxide to obtain elemental platinum, and the generated elemental platinum is attached to the surface of the alumina carrier, and the reaction formula is:
  • the molar ratio of formaldehyde to platinum salt it is preferred to control the molar ratio of formaldehyde to platinum salt to be 30 to 80..1, which is advantageous for the sufficient conversion of the platinum salt.
  • Step 4 according to the loading of the active component cobalt, the ratio of the total weight of the finished catalyst is 15 to 45%.
  • the cobalt salt is selected, and the alumina carrier and the organic solvent to which the elemental platinum is attached are added, the cobalt salt is sufficiently dissolved, and the cobalt salt is reacted with carbon monoxide under hydrogen and heating to form cobalt carbonyl, which is supported on the surface of the alumina carrier.
  • the reaction formula is:
  • the cobalt carbonyl supported on the surface of the alumina carrier is fully reacted at 100 to 200 ° C for 8 to 36 hours to decompose to form a simple substance of cobalt, which is attached to the alumina carrier.
  • the reaction formula is:
  • the invention adopts a suitable alumina as a carrier, firstly supporting a Pt salt to obtain a Pt/Al 2 O 3 catalyst, which can reduce the reaction pressure of cobalt carbonyl synthesis and increase the yield of cobalt carbonyl; and then, cobalt salt As a cobalt source, in the presence of Pt/Al 2 O 3 , cobalt carbonate reacts with carbon monoxide under high temperature and high pressure to form cobalt carbonyl; cobalt carbonyl is gradually decomposed into metal cobalt on the surface of alumina under certain conditions, so that the metal cobalt and the carrier
  • the highly dispersed cobalt-based Fischer-Tropsch synthesis catalyst can be obtained by tightly combining and uniformly dispersed.
  • Pt plays a dual role, as a catalyst for the synthesis of cobalt carbonyl, and also as an auxiliary agent for the Fischer-Tropsch synthesis catalyst.
  • Pt does not need to be separated from the cobalt carbonyl, directly in the reaction kettle.
  • the in-situ heating is decomposed to uniformly load the metal cobalt on the Pt/Al 2 O 3 .
  • the presence of platinum also facilitates the dispersion of cobalt metal and promotes the catalytic activity of cobalt.
  • the catalyst prepared by the method of the invention has high active component dispersion, and the cobalt forms a uniformly dispersed nano cluster on the carrier, and is not easy to agglomerate at a high loading, and has more active sites, and can fully exert the catalytic effect of the cobalt metal. It can effectively reduce the selectivity of methane while maintaining high activity of the catalyst.
  • Cobalt carbonyl is synthesized on alumina support and decomposed in situ upon heating. It is slowly deposited on the support in a metallic state to form uniformly dispersed nanoclusters, which maintains a very uniform height even when the cobalt loading is high. Dispersed state, avoiding high-loading grain agglomeration;
  • platinum is first supported on the carrier, and platinum is a catalyst for synthesizing carbonyl cobalt, and can also be used as an auxiliary agent for Fischer-Tropsch synthesis catalyst, and can be used without separation after carbonyl cobalt synthesis;
  • the highly dispersed cobalt catalyst obtained has more active sites, and can fully exert the catalytic effect of metal cobalt, and can effectively reduce the selectivity of methane while maintaining high activity of the catalyst.
  • the catalyst is supported by alumina, and the active species are directly supported on the carrier in a metallic state.
  • the catalyst reduction step is reduced, the activity of the catalyst is greatly improved, and the methane selectivity can be effectively reduced.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst A comprising an alumina carrier, an active component cobalt and a co-activity platinum, and the weight percentage of each component in the catalyst A is 84% of the alumina carrier, and the active component cobalt 15%, the active agent platinum is 1%; and the alumina carrier has a particle diameter of 0.6 to 2.4 mm and a specific surface area of 196 m 2 /g; and the active component cobalt and the co-active platinum have a particle size of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst B comprising an alumina carrier, an active component cobalt and a co-activity platinum, and the weight percentage of each component in the catalyst B is 69% of the alumina carrier, and the active component cobalt 30%, the active agent platinum is 1%; and the alumina carrier has a particle diameter of 0.6 to 2.4 mm and a specific surface area of 213 m 2 /g; the active component cobalt and the co-active platinum have a particle size of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst C comprising an alumina carrier, an active component cobalt and a co-active platinum, and the weight percentage of each component in the catalyst C is 54% of the alumina carrier, and the active component cobalt 45%, the active agent platinum is 1%; and the alumina carrier has a particle diameter of 1.3 to 2.1 mm and a specific surface area of 157 m 2 /g; the active component cobalt and the co-active platinum have a particle size of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst D comprising an alumina carrier, an active component cobalt and a co-agent platinum, and the weight percentage of each component in the catalyst D is 68% of the alumina carrier, and the active component cobalt 30%, the active agent platinum 2%; and, the alumina carrier has a particle diameter of 0.6 to 2.3 mm and a specific surface area of 195 m 2 /g; the active component cobalt and the co-agent platinum have a particle size of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst E comprising an alumina carrier, an active component cobalt and a co-active platinum, and the weight percentage of each component in the catalyst E is 68% of the alumina carrier, and the active component cobalt 30%, the active agent platinum 2%; and, the alumina carrier has a particle diameter of 0.8 to 2.1 mm and a specific surface area of 277 m 2 /g; the active component cobalt and the co-agent platinum have a particle size of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst F comprising an alumina carrier, an active component cobalt and a co-active platinum, and the weight percentage of each component in the catalyst F is 83% of the alumina carrier, and the active component cobalt 15%, the active agent platinum 2%; and, the alumina carrier has a particle diameter of 0.7 to 2.3 mm and a specific surface area of 175 m 2 /g; the active component cobalt and the co-agent platinum have a particle size of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst G comprising an alumina carrier, an active component cobalt and a co-active platinum, wherein the weight percentage of each component in the catalyst G is 69.5% of the alumina carrier, and the active component cobalt 30%, 0.5% of the active auxiliary platinum; and the alumina carrier has a particle diameter of 0.8 to 1.7 mm and a specific surface area of 295 m 2 /g; and the active component cobalt and the co-active platinum have a particle size of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst H comprising an alumina carrier, an active component cobalt and a co-active platinum, wherein the weight percentage of each component in the catalyst H is 54.5% of the alumina carrier, and the active component cobalt 45%, 0.5% of the active auxiliary platinum; and the alumina carrier has a particle diameter of 1.1 to 2.4 mm and a specific surface area of 187 m 2 /g; and the active component cobalt and the co-active platinum have a particle diameter of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • An ultra-highly dispersible cobalt-platinum Fischer-Tropsch synthesis catalyst I comprising an alumina carrier, an active component cobalt and a co-active platinum, wherein the weight percentage of each component in the catalyst I is 69.5% of the alumina carrier, and the active component cobalt 30%, 0.5% of the active auxiliary platinum; and the alumina carrier has a particle diameter of 0.7 to 2.1 mm and a specific surface area of 275 m 2 /g; and the active component cobalt and the co-active platinum have a particle size of 3 ⁇ 20 nm, they are supported on the alumina support in the form of uniformly dispersed nanoclusters.
  • the reactants obtained in the above examples were all transferred into a glove box which had been deaerated, filtered under a nitrogen atmosphere, and the filtered catalyst was poured into a vessel containing wax oil to be stored in an oxygen atmosphere for use.
  • 0.191 g of platinum acetate was weighed in an amount of 1 wt% of the total platinum in the catalyst, and dissolved in 20 ml of acetonitrile, stirred until completely dissolved, and 10 g of the calcined carrier was added, stirred for 8 h, and dried at 150 ° C for 5 h.
  • the content of cobalt in the whole catalyst is 15wt%
  • the mass of cobalt nitrate hexahydrate is 6.935g
  • the required deionized water is 8.5g
  • the cobalt nitrate hexahydrate is dissolved in 8.5g deionized water, and slowly added to 10g oxidation.
  • the aluminum support was allowed to stand for 8 h, dried at 150 ° C, and calcined at 450 ° C for 5 h. 3 g of the catalyst was weighed into a fixed bed reactor, and the catalyst J was obtained by reduction at 450 ° C for 4 h in a hydrogen stream.
  • Catalyst K prepared by conventional impregnation method:
  • the performance parameters of the obtained catalyst are shown in Table 1.
  • the CO conversion rate of the catalyst prepared by the method of the invention is obviously improved, from 75% to 80% of the conventional catalyst, and the activity is maintained high.
  • the selectivity of methane is effectively reduced, and the methane selectivity is below 15%.
  • the dispersion of the active metals of the catalysts A to I prepared by the method of the present invention is significantly larger than that of the catalyst prepared by the conventional impregnation method, and exhibits excellent performance.
  • the reduction step is reduced, the reaction activity is remarkably improved, and the performance is remarkably superior to the catalyst prepared by the conventional impregnation method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种超高分散性钴铂基费托合成催化剂及其制备方法。催化剂包括氧化铝载体、活性组份钴和活性助剂铂,催化剂中各组份的重量百分比分别为53~84.5%、15~45%和0.5~2.0%;氧化铝载体的粒径为0.6~2.4mm、比表面积为140~300m 2/g;活性组份钴和活性助剂铂的粒径为3~20nm,它们以分散均匀的纳米团簇形态负载在氧化铝载体上。催化剂制备方法工艺条件简单,产品催化剂中钴保持非常均匀的高度分散状态。

Description

超高分散性钴铂费托合成催化剂及其制备方法 技术领域
本发明属于费托合成技术领域,具体是指一种超高分散性钴铂费托合成催化剂及其制备方法。
背景技术
费托合成(Fischer-Tropsch synthesis)是指在催化剂作用下一氧化碳加氢生成烃类和含氧化合物的过程,该反应是1925年由德国人Franz Fischer和Hans Tropsch发明的,主要应用于以合成气为原料生产高附加值化工产品,如汽油、柴油、石蜡等。其产物不含硫、氮,无芳烃、无金属污染,是一种非常清洁的能源。费托合成的研究进展一直与石油的价格密切相关,随着石油资源的日益匮乏和环保要求的日趋苛刻,在过去的20年里费托合成又重新引起了人们极大的兴趣,以煤、天然气、生物质等含碳物质为原料,先制成一氧化碳和氢气,再经费托合成过程得到清洁油品,成为一条比较可行的能源替代路线。
铁、钴、镍、钌等金属都具有费托合成催化活性,其中负载型钴催化剂以其高活性、高稳定性、较低的水煤气转化活性等优势,成为最有潜力的研究对象。负载型钴催化剂常用的载体有:氧化钛、氧化硅、氧化铝、分子筛、活性炭等,也有关于用碳纳米管、氧化锆、蒙脱土等多孔材料作为载体的研究。载体对费托合成催化剂性能的影响比较复杂,载体的表面酸性、孔道结构、分散作用等都可能会影响到催化剂的反应活性和产物选择性。有文献记载了通过对载体预处理来影响催化剂性能,但常常对活性物种的晶粒大小及分散等影响不大;也有一些文献公开了通过添加氧化物助剂来促进钴的分散,增强钴的还原,提高催化剂的稳定性等,但是这些助剂往往价格昂贵,而且,由于活性物种已经与载体形成了难还原物种,氧化物助剂的还原效果并不明显。
研究表明,控制钴活性物种的分散度、还原度及负载量等可以实现催化作用预期的性质和效果。钴催化剂研究的核心问题之一就是如何在高活性前提下抑制甲烷的生成。甲烷选择性与钴活性物种的分散度有很大关系,传统的浸渍 法制备的催化剂,活性组分分散不均匀,随着负载量的升高,尤其是在负载量大于20wt%时,钴活性物种易发生团聚,分散不均匀从而影响了催化剂的整体性能。如何在高负载量时提高钴活性组分的分散度是一个重要的研究课题。美国专利US5545674通过喷涂法在无机氧化物载体的表面喷涂钴金属活性表层,同时加入锆、铼、铪、铈、铀、钍等助剂,以提高催化剂的活性、再生能力和液态烃的选择性,催化剂失活缓慢,含线形烷烃和烯烃的馏分油产量高,但这种方法制备的催化剂活性物种分布不均匀,催化剂活性选择性提高有限。申请号为200810055104.7的中国发明专利公开了一种费托合成钴基催化剂即制备方法和应用,该发明专利采用浸渍法制备了钴负载在不同载体的催化剂,一氧化碳转化率可达到82%,甲烷选择性在7~13.4%之间,但是该方法制备的催化剂活化难度很大,需要很长的还原时间。可见,以上采用浸渍法或改良浸渍法制备的催化剂,都无法避免活性组分分散不均匀的弊端,催化剂活化困难,在活性组分负载量较高时催化剂性能不佳。李泽壮等在《燃料化学学报》2011,39(1),54-58发表的《热分解法制备的Co/SiO2催化剂上费托合成反应性能》一文中,通过加热分解硝酸钴制备了分散均匀的钴基费托合成催化剂,但是该文所公开的硝酸钴分解后的金属氧化物与载体间相互作用力较强,不利于金属的还原,从而影响了催化剂的性能。
发明内容
本发明的目的是提供一种超高分散性钴铂基费托合成催化剂及其制备方法。该催化剂活性高,而且,其制备方法工艺条件简单,制得的产品催化剂中钴保持非常均匀的高度分散状态。
为实现上述目的,本发明的超高分散性钴铂费托合成催化剂,包括氧化铝载体、活性组份钴和活性助剂铂,其特殊之处在于:所述催化剂中各组份的重量百分比为氧化铝载体53~84.5%、活性组份钴15~45%、活性助剂铂0.5~2.0%;并且,所述氧化铝载体的粒径为0.6~2.4mm、比表面积为140~300m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
优选地,所述氧化铝载体的粒径为0.8~2.2mm、比表面积为160~280m2/g;所述活性组份钴和活性助剂铂的粒径为5~18nm。
进一步优选地,所述氧化铝载体的粒径为1.0~2.0mm、比表面积为180~260m2/g;所述活性组份钴和活性助剂铂的粒径为8~15nm。
所述超高分散性钴铂费托合成催化剂的制备方法,它包括以下步骤:
1)将氧化铝载体在350~600℃的条件下进行焙烧处理,获得粒径为0.6~2.4mm、比表面积为140~300m2/g的超细粉末;
2)按活性助剂铂的负载量为整个催化剂成品重量的0.5~2.0%称取铂盐,并溶于乙腈溶剂中,然后加入占整个催化剂成品重量53~84.5%的氧化铝载体,充分搅拌,再滴加摩尔量为铂盐6~12倍的NaOH溶液,在20~35℃的条件下反应10~24h;
3)然后将反应物加热到45~70℃,再滴加足量的甲醛进行还原反应,反应时间10~24h,反应过程中通过滴加碱液维持pH=11~12,反应完毕后将还原产物洗净、烘干,得到负载铂的氧化铝载体;
4)按活性组份钴的负载量为整个催化剂成品重量的15~45%称取钴盐投入高压反应釜中,再投入所得负载铂的氧化铝载体,向高压反应釜加入有机溶剂并充入氢气和一氧化碳的混合气体,加压至8~15Mpa,升温至120~180℃,搅拌反应1~12h;
5)随后冷却至室温、泄压,充入氮气排出高压反应釜中的氢气和一氧化碳;
6)保持氮气气氛,将高压反应釜缓慢加热至100~200℃,搅拌反应8~36h,使活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到超高分散性钴铂费托合成催化剂。
以下方案中的任一种可作为本发明制备方法的优选技术方案:
所述步骤1)中,焙烧处理温度为400~500℃、焙烧时间为2~4h。
所述步骤2)中,铂盐为醋酸铂或硝酸铂。
所述步骤2)中,所滴加NaOH溶液的摩尔量为铂盐的8~10倍。
所述步骤2)中,所滴加NaOH溶液的重量百分比浓度为3~10%。
所述步骤2)中,所滴加NaOH溶液的重量百分比浓度为5~8%。
所述步骤3)中,将反应物加热到55~65℃。
所述步骤3)中,所滴加甲醛与铂盐的摩尔比为30~80︰1。
所述步骤3)中,所滴加甲醛与铂盐的摩尔比为40~50︰1。
所述步骤3)中,所滴加碱液是重量百分比浓度为10~25%的NaOH溶液。
所述步骤3)中,采用去离子水和乙醇交替冲洗若干次的方式将还原产物洗净,然后再在70~90℃的条件下将还原产物烘干。
所述步骤4)中,所采用的有机溶剂为乙醇、正辛醇或异丙醇中的一种或其组合。
所述步骤4)中,钴盐为碳酸钴。
所述步骤4)中,氢气和一氧化碳的混合气体中,氢气与一氧化碳的体积比为1︰1~3。
本发明的钴基费托合成催化剂的制备方法中各步骤中工艺参数的作用及其限定原理如下:
步骤1)中通过将氧化铝载体进行在350~600℃下焙烧预处理,能有效除去废催化剂中的水分及残留的有机物质杂质,得到高纯度的氧化铝。
步骤2)按照活性助剂铂负载量为整个催化剂重量0.5~2%的比例选择金属铂盐,铂盐溶解于乙腈溶剂后再加入经预处理的氧化铝载体以及氢氧化钠溶液,铂盐在碱性环境下反应得氢氧化铂沉淀,反应式为:
2NaOH+Pt2+—Pt(OH)2+2Na+
反应中,控制所加入NaOH与铂盐的摩尔比为6~12︰1是有利于铂盐充分转化,并有足够氢氧化钠维持反应环境成碱性。
步骤3)是在一定温度下,加入还原剂甲醛,与氢氧化铂反应得到单质铂,生成的单质铂附着在氧化铝载体表面,反应式为:
2Pt(OH)2+2HCHO+2OH-→2Pt+2HCOO-+4H2O
本步骤中,优选控制甲醛与铂盐的摩尔比为30~80︰1,有利于铂盐的充分转化。
步骤4),按照活性组分钴的负载量为整个催化剂成品重量15~45%的比例 选择钴盐,再加入附着了单质铂的氧化铝载体和有机溶剂,将钴盐充分溶解,在氢气和加热条件下钴盐与一氧化碳反应生成羰基钴,负载在氧化铝载体表面。反应式为:
2CoCO3+8CO+2H2→Co2(CO)8+CO2+2H2O
步骤6)中,负载在氧化铝载体表面的羰基钴在100~200℃,充分反应8~36h,分解生成钴单质,附着在氧化铝载体上。反应式为:
Co2(CO)8→2Co+8CO。
本发明通过选用合适的氧化铝作为载体,先负载Pt盐,制得Pt/Al2O3催化剂,该催化剂可以降低羰基钴合成的反应压力,同时提高羰基钴产率;然后,再以钴盐为钴源,在Pt/Al2O3存在的条件下,碳酸钴在高温高压下与一氧化碳反应生成羰基钴;羰基钴在一定条件下在氧化铝表面逐渐分解成金属钴,使金属钴与载体结合紧密,并呈均匀分散状态即可得到高分散的钴基费托合成催化剂。本发明中,Pt起到了双重的作用,即可作为羰基钴合成的催化剂,也可作为费托合成催化剂的助剂,在合成出羰基钴以后,Pt不需与羰基钴分离,直接在反应釜中原位加热分解,使金属钴均匀负载在Pt/Al2O3上。同时,铂的存在也有利于钴金属的分散,且可促进钴的催化活性。
采用本发明的方法制备的催化剂,活性组分高度分散,钴在载体上形成分散均匀的纳米团簇,在高负载量时也不易团聚,活性位更多,能更充分发挥钴金属的催化效用,在保持催化剂高活性的同时,可以有效降低甲烷的选择性。
本发明的有益技术效果在于:
1)羰基钴在氧化铝载体上合成后在加热时即原位分解,以金属态缓慢沉积在载体上,形成分散均匀的纳米团簇,即使钴负载量很高时依然能保持非常均匀的高度分散状态,避免了高负载量的晶粒团聚现象;
2)制备过程中,先在载体上负载铂,铂既是合成羰基钴的催化剂,也可作为费托合成催化剂的助剂,在羰基钴合成后不需分离即可使用;
3)所得到的高度分散的钴催化剂活性位更多,能更充分发挥金属钴的催化效用,在保持催化剂高活性的同时,可以有效降低甲烷的选择性。
4)该催化剂以氧化铝为载体,由于活性物种直接以金属态负载在载体上, 减少了催化剂还原步骤,极大的提高了催化剂的活性,而且可以有效降低甲烷选择性。
具体实施方式
下面结合具体实施例对本发明钴基费托合成催化剂的制备方法作进一步详细说明。
实施例1
一种超高分散性钴铂基费托合成催化剂A,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂A中各组份的重量百分比为氧化铝载体84%、活性组份钴15%、活性助剂铂1%;并且,所述氧化铝载体的粒径为0.6~2.4mm、比表面积为196m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂A:
1)将氧化铝载体20g置于马弗炉中在450℃下焙烧4h,获得粒径为0.6~2.4mm、比表面积为196m2/g的超细粉末;
2)以10g载体为基准,按活性助剂金属铂负载量为整个催化剂重量的1%称取醋酸铂0.191g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂成品重量84%的氧化铝载体10g,搅拌5h,再滴加重量百分比浓度5%的NaOH溶液共3.12g(摩尔量为醋酸铂的6倍),30℃下反应12h;
3)在45℃水浴条件下,滴加2ml甲醛还原反应12h,氢氧化铂被还原得到单质铂,反应过程中通过滴加重量百分比浓度为15%的NaOH溶液维持体系pH在11~12,用温热去离子水及乙醇交替冲5次,并在80℃烘干得到负载单质铂的氧化铝载体;
4)按活性组分钴负载量为整个催化剂重量的15%称取碳酸钴3.602g投入到高压反应釜中,再加入步骤3)所得负载单质铂的氧化铝载体,高压反应釜中加入150ml正辛醇溶解,用氢气充气三次排除釜中的氧气,再向高压反应釜中充入氢气和一氧化碳混合气体(氢气与一氧化碳的体积比为1︰1)加压至8Mpa,升温至180℃,搅拌反应8h;
5)冷却至室温,泄压并充入氮气排出反应釜中的氢气和一氧化碳;
6)保持氮气气氛后缓慢加热至200℃,搅拌反应24h羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到超高分散性钴铂费托合成催化剂A。
本实施例中具体计算过程如下:
设铂的质量为x,钴的质量为y,以10g载体为基准,则:
Figure PCTCN2017073863-appb-000001
两式联立可得:x=0.119,y=1.785
根据醋酸铂的摩尔质量313.13g/mol、碳酸钴的摩尔质量118.93g/mol,可以计算出,需要醋酸铂0.191g,碳酸钴3.602g。
实施例2
一种超高分散性钴铂基费托合成催化剂B,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂B中各组份的重量百分比为氧化铝载体69%、活性组份钴30%、活性助剂铂1%;并且,所述氧化铝载体的粒径为0.6~2.4mm、比表面积为213m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂B:
1)将市售氧化铝载体30g置于马弗炉中在500℃下焙烧3h,获得粒径为0.6~1.8mm、比表面积为196m2/g的超细粉末;
2)以20g载体为基准,按最终催化剂重量中金属铂负载量为1%称取醋酸铂0.466g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂成品重量69%的氧化铝载体20g,搅拌5h,滴加重量百分比浓度为5%的NaOH溶液共6.24g(摩尔量为醋酸铂的6倍),室温下反应12h;
3)45℃水浴条件下,滴加4ml甲醛还原反应,通过滴加重量百分比浓度为15%的NaOH溶液维持体系pH在11~12;室温下老化一夜,用温热去离子水及乙醇交替冲5次,80℃干燥12h,得到负载单质铂的载体;
4)按钴负载量为整个催化剂重量30%称取碳酸钴17.548g加入高压反应釜中,再加入步骤3)所得的负载过铂的氧化铝,高压反应釜中加入150ml正辛醇溶解,用氢气充气三次排除釜中的氧气,氢气和一氧化碳按1︰1体积比冲压至12Mpa,160℃反应8h;
5)冷却至室温,充入氮气排出反应釜中的氢气和一氧化碳;
6)保持氮气气氛后缓慢加热至200℃,搅拌反应24h,羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到高分散的钴基费托合成催化剂B。
实施例3
一种超高分散性钴铂基费托合成催化剂C,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂C中各组份的重量百分比为氧化铝载体54%、活性组份钴45%、活性助剂铂1%;并且,所述氧化铝载体的粒径为1.3~2.1mm、比表面积为157m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂C:
1)将氧化铝载体20g置于马弗炉中在550℃下焙烧2.5h,获得粒径为1.3~2.1mm、比表面积为157m2/g的超细粉末;
2)以5g载体为基准,按整个催化剂重量中金属铂负载量为1%称取醋酸铂0.149g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂成品重量54%的氧化铝载体5g,搅拌6h,滴加重量百分比浓度为5%的NaOH溶液共1.56g(摩尔量为醋酸铂的6倍),室温下老化一夜;
3)65℃水浴条件下,滴加1ml甲醛还原反应20h,通过滴加重量百分比浓度为15%的NaOH溶液维持体系pH在11~12,室温下老化一夜,用温热去离子水及乙醇交替冲5次,80℃干燥12h,得到负载铂的载体;
4)按钴负载量为整个催化剂重量45%称取碳酸钴8.408g加入高压反应釜中,再加入步骤3)所得负载过铂的氧化铝,高压反应釜中加入150ml异丙醇溶解,用氢气充气三次排除釜中的氧气,再充入氢气和一氧化碳,氢气和一氧化碳按1︰2体积比冲压至15Mpa,120℃反应8h;
5)冷却至室温,排出反应釜中的氢气和一氧化碳,充入氮气;
6)保持氮气气氛后缓慢加热加热至180℃,搅拌反应12h羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到高分散的钴基费托合成催化剂C。
实施例4
一种超高分散性钴铂基费托合成催化剂D,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂D中各组份的重量百分比为氧化铝载体68%、活性组份钴30%、活性助剂铂2%;并且,所述氧化铝载体的粒径为0.6~2.3mm、比表面积为195m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂D:
1)将氧化铝载体30g置于马弗炉中在450℃下焙烧3h,获得粒径为0.6~2.3mm、比表面积为195m2/g的超细粉末;
2)以20g载体为基准,按整个催化剂重量中金属铂负载量为2%称取醋酸铂0.944g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂成品重量68%的氧化铝载体20g,搅拌5h,滴加重量百分比浓度5%的NaOH溶液共21g(摩尔量为醋酸铂的10倍),室温下老化一夜;
3)65℃水浴条件下,滴加5ml甲醛还原,通过重量百分比浓度为15%的NaOH溶液维持体系pH在11~12,室温下老化一夜;用温热去离子水及乙醇交替冲5次,80℃干燥12h,得到负载铂的载体;
4)按活性组分钴负载量为整个催化剂重量的30%称取碳酸钴17.804g加入高压反应釜中,再加入步骤3)所得负载过铂的氧化铝,高压反应釜中加入150ml乙醇溶解,用氢气充气三次排除釜中的氧气,氢气和一氧化碳按相同比例冲压至12Mpa,160℃反应8h;
5)冷却至室温,排出反应釜中的氢气和一氧化碳,充入氮气;
6)保持氮气气氛后缓慢加热至150℃,搅拌反应12h羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到高分散的钴基费托合成催化剂D。
实施例5
一种超高分散性钴铂基费托合成催化剂E,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂E中各组份的重量百分比为氧化铝载体68%、活性组份钴30%、活性助剂铂2%;并且,所述氧化铝载体的粒径为0.8~2.1mm、比表面积为277m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂E:
1)将氧化铝载体20g置于马弗炉中在450℃下焙烧3h,获得粒径为0.8~2.1mm、比表面积为277m2/g的超细粉末;
2)以10g载体为基准,按整个催化剂重量中金属铂负载量为2%称取醋酸铂0.472g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂成品重量68%的氧化铝载体10g,搅拌5h,滴加重量百分比浓度为5%的NaOH溶液共10.5g(摩尔量为醋酸铂的10倍),室温下老化一夜;
3)65℃水浴条件下,滴加2.5ml甲醛还原,氢氧化铂被还原得到单质铂,反应过程中滴加重量百分比浓度为15%的NaOH溶液维持体系pH在11~12,室温下老化一夜,用温热去离子水及乙醇交替冲5次,80℃干燥12h,得到负载铂的氧化铝载体;
4)按活性组分钴负载量为整个催化剂重量的30%称取碳酸钴8.903g,加入高压反应釜中,再加入步骤3)所得负载过铂的氧化铝,高压反应釜中加入150ml正辛醇溶解,用氢气充气三次排除釜中的氧气,按氢气和一氧化碳按相同比例冲压至12Mpa,160℃反应8h;
5)冷却至室温,排出反应釜中的氢气和一氧化碳,充入氮气;
6)保持氮气气氛后缓慢加热至200℃,搅拌反应12h羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到超高分散性钴铂费托合成催化剂E。
实施例6
一种超高分散性钴铂基费托合成催化剂F,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂F中各组份的重量百分比为氧化铝载体83%、活性组份 钴15%、活性助剂铂2%;并且,所述氧化铝载体的粒径为0.7~2.3mm、比表面积为175m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂F:
1)将氧化铝载体20g置于马弗炉中在450℃下焙烧3h,获得粒径为0.7~2.3mm、比表面积为175m2/g的超细粉末;
2)以5g载体为基准,按整个催化剂重量中金属铂负载量为2%称取醋酸铂1.94g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂成品重量83%的氧化铝载体5g,搅拌5h,滴加重量百分比浓度为5%的NaOH溶液共5.25g(摩尔量为醋酸铂的10倍),室温下老化一夜;
3)65℃水浴条件下,滴加1.25ml甲醛还原,氢氧化铂被还原得到单质铂,反应过程中通过滴加重量百分比浓度为15%的NaOH溶液维持体系pH在11~12,室温下老化一夜;用温热去离子水及乙醇交替冲5次,80℃干燥12h;
4)按活性组分钴负载量为整个催化剂重量的15%称取碳酸钴1.823g,加入高压反应釜中,再加入步骤3)所得负载过铂的氧化铝,高压反应釜中加入150ml乙醇溶解,用氢气充气三次排除釜中的氧气,按氢气和一氧化碳按相同比例冲压至8Mpa,180℃反应8h;
5)冷却至室温,排出反应釜中的氢气和一氧化碳,充入氮气;
6)保持氮气气氛后缓慢加热至150℃,搅拌反应36h,羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到超高分散性钴铂费托合成催化剂F。
实施例7
一种超高分散性钴铂基费托合成催化剂G,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂G中各组份的重量百分比为氧化铝载体69.5%、活性组份钴30%、活性助剂铂0.5%;并且,所述氧化铝载体的粒径为0.8~1.7mm、比表面积为295m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂G:
1)将氧化铝载体20g置于马弗炉中在450℃下焙烧3h,获得粒径为0.8~1.7mm、比表面积为295m2/g的超细粉末;
2)以10g载体为基准,按整个催化剂重量中金属铂负载量为0.5%称取醋酸铂0.116g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂成品重量69.5%的氧化铝载体10g,搅拌5h,滴加重量百分比浓度为5%的NaOH溶液共3.2g(摩尔量为醋酸铂的12倍),室温下老化一夜;
3)55℃水浴条件下,滴加1.6ml甲醛还原,通过重量百分比浓度为15%的NaOH溶液维持体系pH在11~12,室温下老化一夜,用温热去离子水及乙醇交替冲5次,80℃干燥12h;
4)按活性组分钴负载量为整个催化剂重量的30%称取碳酸钴8.712g,加入高压反应釜中,再加入10g负载过铂的氧化铝,高压反应釜中加入150ml乙醇溶解,用氢气充气三次排除釜中的氧气,按氢气和一氧化碳按相同比例冲压至12Mpa,160℃反应8h;
5)冷却至室温,排出反应釜中的氢气和一氧化碳,充入氮气;
6)加热至150℃,搅拌反应36h羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到高分散的钴基费托合成催化剂G。
实施例8
一种超高分散性钴铂基费托合成催化剂H,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂H中各组份的重量百分比为氧化铝载体54.5%、活性组份钴45%、活性助剂铂0.5%;并且,所述氧化铝载体的粒径为1.1~2.4mm、比表面积为187m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂H:
1)将氧化铝载体20g置于马弗炉中在450℃下焙烧3h,获得粒径为1.1~2.4mm、比表面积为187m2/g的超细粉末;
2)以10g载体为基准,按整个催化剂重量中金属铂负载量为0.5%称取醋酸铂0.147g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂 成品重量54.5%的氧化铝载体10g,搅拌5h,滴加重量百分比浓度为5%的NaOH溶液共3.2g(摩尔量为醋酸铂的12倍),室温下老化一夜;
3)55℃水浴条件下,滴加1.6ml甲醛还原,通过重量百分比浓度为15%的NaOH溶液维持体系pH在11~12,室温下老化一夜,用温热去离子水及乙醇交替冲5次,80℃干燥12h,得到负载单质铂的载体;
4)按钴负载量为整个催化剂重量45%称取碳酸钴16.709g,加入高压反应釜中,再加入10g负载过铂的氧化铝,高压反应釜中加入150ml异丙醇溶解,用氢气充气三次排除釜中的氧气,按氢气和一氧化碳按相同比例冲压至12Mpa,160℃反应8h;
5)冷却至室温,排出反应釜中的氢气和一氧化碳,充入氮气;
6)加热至180℃,搅拌反应24h羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到高分散的钴基费托合成催化剂H。
实施例9
一种超高分散性钴铂基费托合成催化剂I,包括氧化铝载体、活性组份钴和活性助剂铂,催化剂I中各组份的重量百分比为氧化铝载体69.5%、活性组份钴30%、活性助剂铂0.5%;并且,所述氧化铝载体的粒径为0.7~2.1mm、比表面积为275m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
合成高分散的钴基费托合成催化剂I:
1)将氧化铝载体30g置于马弗炉中在450℃下焙烧3h,获得粒径为0.7~2.1mm、比表面积为275m2/g的超细粉末;
2)以20g载体为基准,按整个催化剂重量中金属铂负载量为0.5%称取醋酸铂0.232g,并溶于30ml乙腈溶剂中,搅拌至完全溶解,加入占整个催化剂成品重量69.5%的氧化铝载体20g,搅拌5h,滴加重量百分比浓度为5%的NaOH溶液共3.2g(摩尔量为醋酸铂的12倍),室温下老化一夜;
3)55℃水浴条件下,滴加3.2ml甲醛还原,通过重量百分比浓度为15%的NaOH溶液维持体系pH在11~12,室温下老化一夜,用温热去离子水及乙 醇交替冲5次,80℃干燥12h,得到负载单质铂的载体;
4)按钴负载量为整个催化剂重量30%称取碳酸钴17.424g,加入高压反应釜中,再加入步骤3)所得的负载过铂的氧化铝载体,高压反应釜中加入150ml异丙醇溶解,用氢气充气三次排除釜中的氧气,按氢气和一氧化碳按相同比例冲压至15Mpa,反应8h;
5)冷却至室温,排出反应釜中的氢气和一氧化碳,充入氮气;
6)加热至100℃,搅拌反应36h羰基钴分解得到单质钴,这样活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到高分散的钴基费托合成催化剂I。
将上述实施例所得的反应物全部转入已除氧的手套箱中,氮气气氛下过滤,将过滤后的催化剂倒入装有蜡油的容器中隔绝氧气保存,备用即可。
对比例1
以传统浸渍方法制备的催化剂J:
取10g氧化铝载体,滴加去离子水至初润,消耗水的质量为11g。
按整个催化剂中金属铂负载量为1wt%称取醋酸铂0.191g,并溶于20ml乙腈中,搅拌至完全溶解,加入10g焙烧过的载体,搅拌8h,150℃下干燥5h。
按整个催化剂中钴的含量为15wt%计算出六水合硝酸钴的质量为6.935g,所需去离子水为8.5g,将六水合硝酸钴溶解于8.5g去离子水中,缓慢滴加至10g氧化铝载体上,静止8h,150℃干燥后于450℃焙烧5h,称取3g催化剂装入固定床反应器中,在氢气流中,450℃还原4h即得催化剂J。
对比例2
以传统浸渍方法制备的催化剂K:
取10g氧化铝载体,滴加去离子水至初润,消耗水的质量为11g。
按金属铂负载量为1wt%称取醋酸铂0.233g,并溶于20ml乙腈中,搅拌至完全溶解,加入10g焙烧过的载体,搅拌8h,150℃下干燥5h。
按钴的含量为30wt%计算出六水合硝酸钴的质量为16.89g,所需去离子水为5g,将六水合硝酸钴溶解于5g去离子水中,缓慢滴加至10g氧化铝载体上,静止8h,150℃干燥后于450℃焙烧5h,称取3g催化剂装入固定床反应器中。 在氢气流中,450℃还原4h即得催化剂得催化剂K。
催化剂的性能评价在固定床反应器上进行,反应条件为:H2/CO=2,T=230℃,P=2Mpa,GHSV=1000h-1。所得到的催化剂各项性能参数如表1所示。
表1:Co/Al2O3催化剂的费托合成反应性能
Figure PCTCN2017073863-appb-000002
经过表1数据对比可以看出,对比传统浸渍法制备的催化剂J、K,本发明方法制备的催化剂CO转化率明显提高,从传统催化剂的75%提升到80%以上,而且在保持高活性的同时,有效的降低了甲烷的选择性,甲烷选择性均在15%以下。在相同负载量下,采用本发明方法所制备得到的催化剂A~I活性金属的分散度明显大于传统浸渍法制备的催化剂,表现出了非常优异的性能。而且,采用本发明的制备方法,减少了还原步骤,明显的提高了反应活性,性能明显优于传统浸渍法制备的催化剂。

Claims (17)

  1. 一种超高分散性钴铂费托合成催化剂,包括氧化铝载体、活性组份钴和活性助剂铂,其特征在于:所述催化剂中各组份的重量百分比为氧化铝载体53~84.5%、活性组份钴15~45%、活性助剂铂0.5~2.0%;并且,所述氧化铝载体的粒径为0.6~2.4mm、比表面积为140~300m2/g;所述活性组份钴和活性助剂铂的粒径为3~20nm、它们以分散均匀的纳米团簇形态负载在氧化铝载体上。
  2. 根据权利要求1所述的超高分散性钴铂费托合成催化剂,其特征在于:所述氧化铝载体的粒径为0.8~2.2mm、比表面积为160~280m2/g;所述活性组份钴和活性助剂铂的粒径为5~18nm。
  3. 根据权利要求2所述的超高分散性钴铂费托合成催化剂,其特征在于:所述氧化铝载体的粒径为1.0~2.0mm、比表面积为180~260m2/g;所述活性组份钴和活性助剂铂的粒径为8~15nm。
  4. 一种超高分散性钴铂费托合成催化剂的制备方法,其特征在于:它包括以下步骤:
    1)将氧化铝载体在350~600℃的条件下进行焙烧处理,获得粒径为0.6~2.4mm、比表面积为140~300m2/g的超细粉末;
    2)按活性助剂铂的负载量为整个催化剂成品重量的0.5~2.0%称取铂盐,并溶于乙腈溶剂中,然后加入占整个催化剂成品重量53~84.5%的氧化铝载体,充分搅拌,再滴加摩尔量为铂盐6~12倍的NaOH溶液,在20~35℃的条件下反应10~24h;
    3)然后将反应物加热到45~70℃,再滴加足量的甲醛进行还原反应,反应时间10~24h,反应过程中通过滴加碱液维持pH=11~12,反应完毕后将还原产物洗净、烘干,得到负载铂的氧化铝载体;
    4)按活性组份钴的负载量为整个催化剂成品重量的15~45%称取钴盐投入 高压反应釜中,再投入所得负载铂的氧化铝载体,向高压反应釜加入有机溶剂并充入氢气和一氧化碳的混合气体,加压至8~15Mpa,升温至120~180℃,搅拌反应1~12h;
    5)随后冷却至室温、泄压,充入氮气排出高压反应釜中的氢气和一氧化碳;
    6)保持氮气气氛,将高压反应釜缓慢加热至100~200℃,搅拌反应8~36h,使活性组份钴和活性助剂铂以纳米团簇形态分散负载在氧化铝载体上,即可得到超高分散性钴铂费托合成催化剂。
  5. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤1)中,焙烧处理温度为400~500℃、焙烧时间为2~4h。
  6. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤2)中,铂盐为醋酸铂或硝酸铂。
  7. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤2)中,所滴加NaOH溶液的摩尔量为铂盐的8~10倍。
  8. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤2)中,所滴加NaOH溶液的重量百分比浓度为3~10%。
  9. 根据权利要求8所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤2)中,所滴加NaOH溶液的重量百分比浓度为5~8%。
  10. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤3)中,将反应物加热到55~65℃。
  11. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其 特征在于:所述步骤3)中,所滴加甲醛与铂盐的摩尔比为30~80︰1。
  12. 根据权利要求11所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤3)中,所滴加甲醛与铂盐的摩尔比为40~50︰1。
  13. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤3)中,所滴加碱液是重量百分比浓度为10~25%的NaOH溶液。
  14. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤3)中,采用去离子水和乙醇交替冲洗若干次的方式将还原产物洗净,然后再在70~90℃的条件下将还原产物烘干。
  15. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤4)中,所采用的有机溶剂为乙醇、正辛醇或异丙醇中的一种或其组合。
  16. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤4)中,钴盐为碳酸钴。
  17. 根据权利要求4所述超高分散性钴铂费托合成催化剂的制备方法,其特征在于:所述步骤4)中,氢气和一氧化碳的混合气体中,氢气与一氧化碳的体积比为1︰1~3。
PCT/CN2017/073863 2016-03-24 2017-02-17 超高分散性钴铂费托合成催化剂及其制备方法 WO2017161980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610172162.2A CN105772022B (zh) 2016-03-24 2016-03-24 超高分散性钴铂费托合成催化剂及其制备方法
CN201610172162.2 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017161980A1 true WO2017161980A1 (zh) 2017-09-28

Family

ID=56391643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073863 WO2017161980A1 (zh) 2016-03-24 2017-02-17 超高分散性钴铂费托合成催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN105772022B (zh)
WO (1) WO2017161980A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996301A (zh) * 2020-07-28 2022-02-01 中国科学院大连化学物理研究所 一种碳材料负载钴基催化剂及其制备与应用
CN114433183A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种重整后生成油选择性加氢脱烯烃的催化剂
CN114471613A (zh) * 2022-02-10 2022-05-13 武汉理工大学 一种高效光热催化二氧化碳甲烷干法重整的Pt/Co-Al2O3催化剂及其制备方法
CN115138355A (zh) * 2022-05-12 2022-10-04 西北工业大学 一种基于氢溢流的羟基修饰碳催化加氢材料及其制备方法和应用
CN115770589A (zh) * 2022-11-24 2023-03-10 中国科学院深圳先进技术研究院 一种超小稳定铂钴纳米粒子催化剂及其制备方法和在选择加氢中的应用
CN116116429A (zh) * 2022-12-16 2023-05-16 中南大学 一种低铂合金催化剂及其制备方法和应用
CN116435528A (zh) * 2023-06-14 2023-07-14 长春黄金研究院有限公司 负载Pt的ZIF-67基氢燃料电池催化剂的制备方法
CN116550327A (zh) * 2022-01-28 2023-08-08 中国科学院大连化学物理研究所 一种催化剂及其制备和在费托合成反应中的应用
CN116726923A (zh) * 2023-08-09 2023-09-12 山东久元新材料有限公司 一种高负载量等体积均匀负载工艺及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772022B (zh) * 2016-03-24 2018-04-17 武汉凯迪工程技术研究总院有限公司 超高分散性钴铂费托合成催化剂及其制备方法
CN109678708B (zh) * 2017-10-19 2022-04-05 中国石油化工股份有限公司 3-羟基丙酸酯的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396539A (en) * 1981-08-14 1983-08-02 Sapienza Richard S Hydrocarbon synthesis catalyst and method of preparation
CN104289231A (zh) * 2014-10-09 2015-01-21 武汉凯迪工程技术研究总院有限公司 高分散度钴基费托合成催化剂及其制备方法和应用
CN105772022A (zh) * 2016-03-24 2016-07-20 武汉凯迪工程技术研究总院有限公司 超高分散性钴铂费托合成催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698152A (zh) * 2009-10-20 2010-04-28 武汉凯迪科技发展研究院有限公司 一种钴基费托合成催化剂及其制备方法和应用
CA2955307C (en) * 2014-07-16 2023-09-05 Velocys Technologies, Ltd. Cobalt-containing fischer-tropsch catalysts, methods of making, and methods of conducting fischer-tropsch synthesis
CN104741133A (zh) * 2014-12-18 2015-07-01 神华集团有限责任公司 一种使用聚乙二醇作为分散剂的钴基费托催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396539A (en) * 1981-08-14 1983-08-02 Sapienza Richard S Hydrocarbon synthesis catalyst and method of preparation
CN104289231A (zh) * 2014-10-09 2015-01-21 武汉凯迪工程技术研究总院有限公司 高分散度钴基费托合成催化剂及其制备方法和应用
CN105772022A (zh) * 2016-03-24 2016-07-20 武汉凯迪工程技术研究总院有限公司 超高分散性钴铂费托合成催化剂及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996301A (zh) * 2020-07-28 2022-02-01 中国科学院大连化学物理研究所 一种碳材料负载钴基催化剂及其制备与应用
CN114433183A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种重整后生成油选择性加氢脱烯烃的催化剂
CN114433183B (zh) * 2020-10-31 2023-09-01 中国石油化工股份有限公司 一种重整后生成油选择性加氢脱烯烃的催化剂
CN116550327A (zh) * 2022-01-28 2023-08-08 中国科学院大连化学物理研究所 一种催化剂及其制备和在费托合成反应中的应用
CN114471613A (zh) * 2022-02-10 2022-05-13 武汉理工大学 一种高效光热催化二氧化碳甲烷干法重整的Pt/Co-Al2O3催化剂及其制备方法
CN115138355B (zh) * 2022-05-12 2024-01-16 西北工业大学 一种基于氢溢流的羟基修饰碳催化加氢材料及其制备方法和应用
CN115138355A (zh) * 2022-05-12 2022-10-04 西北工业大学 一种基于氢溢流的羟基修饰碳催化加氢材料及其制备方法和应用
CN115770589A (zh) * 2022-11-24 2023-03-10 中国科学院深圳先进技术研究院 一种超小稳定铂钴纳米粒子催化剂及其制备方法和在选择加氢中的应用
CN116116429A (zh) * 2022-12-16 2023-05-16 中南大学 一种低铂合金催化剂及其制备方法和应用
CN116435528A (zh) * 2023-06-14 2023-07-14 长春黄金研究院有限公司 负载Pt的ZIF-67基氢燃料电池催化剂的制备方法
CN116435528B (zh) * 2023-06-14 2023-09-05 长春黄金研究院有限公司 负载Pt的ZIF-67基氢燃料电池催化剂的制备方法
CN116726923A (zh) * 2023-08-09 2023-09-12 山东久元新材料有限公司 一种高负载量等体积均匀负载工艺及应用
CN116726923B (zh) * 2023-08-09 2023-10-27 山东久元新材料有限公司 一种高负载量等体积均匀负载工艺及应用

Also Published As

Publication number Publication date
CN105772022B (zh) 2018-04-17
CN105772022A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2017161980A1 (zh) 超高分散性钴铂费托合成催化剂及其制备方法
CA3052345C (en) Fischer-tropsch synthesis catalyst containing nitride carrier, and preparation method therefor and use thereof
CA2752017C (en) Process for the preparation of fischer-tropsch catalysts and their use
JP5174890B2 (ja) フィッシャー・トロプシュ合成用コバルト/リン−アルミナ触媒及びその製造方法
CN105324173B (zh) 适用于费托反应的基于铁的新颖催化剂和其处理方法
JP5128526B2 (ja) フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
CN101269329A (zh) 费托合成钴基催化剂及制备方法和应用
Jiang et al. Hydrogen production from chemical looping steam reforming of glycerol by Ni based Al-MCM-41 oxygen carriers in a fixed-bed reactor
US10066169B2 (en) Mesoporous cobalt-metal oxide catalyst for Fischer-Tropsch synthesis reactions and a preparing method thereof
CN105618034A (zh) 一种负载型钌金属纳米簇基催化剂及其制备与应用
CA2826520C (en) A method of preparing a catalyst precursor
Zhao et al. Synergistic bimetallic Ru–Pt catalysts for the low‐temperature aqueous phase reforming of ethanol
JP5129037B2 (ja) フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
JP2021513453A (ja) フィッシャー−トロプシュ法、担持フィッシャー−トロプシュ法合成触媒およびその使用
JP4132295B2 (ja) 炭酸ガスを含む低級炭化水素ガスから液体炭化水素油を製造する方法
CN106947511A (zh) 费托合成制备液体烃类的方法和制备催化剂的方法
WO2009157260A1 (ja) フィッシャー・トロプシュ合成用触媒及び炭化水素類の製造方法
Sun et al. Unraveling catalytic properties by yttrium promotion on mesoporous SBA-16 supported nickel catalysts towards CO2 methanation
Xie et al. Double-Edged Sword Effect of Classical Strong Metal–Support Interaction in Catalysts for CO2 Hydrogenation to CO, Methane, and Methanol
CN113117689B (zh) 一种催化剂在费托合成反应中的应用
CN102441391B (zh) 一种钴基费托合成催化剂的制备方法
EA015831B1 (ru) Процесс фишера-тропша
CN102049259A (zh) 一种钴基费托合成催化剂的制备方法
CN110026199B (zh) 碳酸氧镧改性的氧化铝负载的镍基催化剂及其制备方法
AU2018219673B2 (en) Start-up procedure for a fischer-tropsch process

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769257

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769257

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.04.2019)