WO2018117068A1 - 光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線 - Google Patents
光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線 Download PDFInfo
- Publication number
- WO2018117068A1 WO2018117068A1 PCT/JP2017/045432 JP2017045432W WO2018117068A1 WO 2018117068 A1 WO2018117068 A1 WO 2018117068A1 JP 2017045432 W JP2017045432 W JP 2017045432W WO 2018117068 A1 WO2018117068 A1 WO 2018117068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- tape core
- laser light
- intermittent
- resin composition
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4403—Optical cables with ribbon structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4479—Manufacturing methods of optical cables
- G02B6/4482—Code or colour marking
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
- G02B6/4431—Protective covering with provision in the protective covering, e.g. weak line, for gaining access to one or more fibres, e.g. for branching or tapping
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4479—Manufacturing methods of optical cables
- G02B6/448—Ribbon cables
Definitions
- the present invention relates to an optical fiber intermittent tape core manufacturing method and an optical fiber intermittent tape core. More specifically, the present invention relates to an optical fiber intermittent tape core manufacturing method in which adjacent optical fiber cores are intermittently connected in the length direction by intermittent connection portions, and an optical fiber intermittent tape core.
- the optical fiber ribbon is a plurality of optical fibers coated with a protective coating with a resin composition or the like on an optical fiber in a planar shape, and connected and integrated at a connecting portion made of a resin composition or the like. Is.
- Optical fiber ribbons are currently used in configurations of 4 cores, 8 cores, 12 cores, 24 cores, etc., and can be configured compactly as wired optical fibers.
- the cable can be reduced in diameter and density.
- adjacent optical fiber core wires are intermittently connected in the length direction (longitudinal direction), and are alternately arranged so that adjacent connection portions in the tape width direction do not overlap.
- the adjacent optical fiber cores are intermittently connected in the length direction to form a tape core, the shape can be easily changed when a plurality of tape cores are bundled.
- the diameter and density of the cable can be reduced.
- there is a non-connecting portion (single core portion) in the tape core wire it can be separated into single cores relatively easily without using a dedicated tool.
- a means for applying the adhesive member for intermittently bonding the optical fiber core wires one that is discharged and adhered by a dispenser (for example, see Patent Document 2) or one that uses a shutter mechanism. (For example, refer to Patent Document 3), and those using a coating method by transfer from a rotating body (for example, refer to Patent Document 4). Further, there are provided those that partially cure the resin after application to obtain intermittent adhesive portions.
- an adhesive member is intermittently applied to any of the above.
- the coating speed of the adhesive member is a major factor that determines the manufacturing speed, it has been difficult to increase the drawing speed of the optical fiber core wire in order to increase productivity.
- the adhesive member is pushed out onto the fiber strand while pressure is applied, but there is a limit to the switching operation of whether or not pressure is applied by the dispenser, and the line speed is increased. As it continues, it reaches an area where the dispenser cannot follow.
- the linear speed is limited by the operating speed of the shutter.
- the transfer means from a rotary body as shown in patent document 4 the adhesive member adhering to the rotary body surface will be scattered by the centrifugal force generated with the rotation, and the optical fiber core wire There is a problem that the amount of adhesion to the surface is not stable. Also, this effect becomes more prominent during high-speed manufacturing.
- the present invention has been made in view of the above problems, and provides an optical fiber intermittent tape core manufacturing method and an optical fiber intermittent tape core wire that can be applied to manufacture when the linear velocity is high. Is.
- a method for manufacturing an optical fiber intermittent tape core according to the first aspect of the present invention includes a plurality of optical fiber cores arranged in parallel, and the adjacent optical fiber cores are long.
- the method of manufacturing an optical fiber intermittent tape core according to the present invention is the above first invention, wherein the step of converting the optical fiber core into a tape core absorbs a laser wavelength of the optical fiber core. It is a process of forming a tape core with a resin composition containing an absorbent component.
- an optical fiber intermittent tape core manufacturing method in which a plurality of optical fiber cores are arranged in parallel and the adjacent optical fiber cores are intermittently connected in the length direction.
- a method of manufacturing an optical fiber intermittent tape core having a connecting portion, wherein a laser wavelength is absorbed between the step of forming the optical fiber core into a tape core and at least the adjacent optical fiber core A step of forming a laser light absorbing portion in which a resin composition containing a laser light absorbing component is present; and irradiating the laser light absorbing portion with pulsed laser light so that the adjacent optical fiber cores are in the length direction.
- Forming intermittent connection parts by intermittently forming non-connection parts that are not connected.
- the method for manufacturing an optical fiber intermittent tape core according to the present invention is characterized in that, in the above-described second invention, the laser light absorbing portion is intermittently formed in the length direction of the optical fiber core.
- the laser light absorbing portion is formed by applying a resin composition containing a laser light absorbing component that absorbs a laser wavelength. It is characterized by being.
- the method for producing an optical fiber intermittent tape core wire according to the present invention is such that the content of the laser light absorbing component that absorbs the laser wavelength is relative to the entire resin composition containing the laser light absorbing component. 0.3 to 5.0% by mass.
- the method for manufacturing an optical fiber intermittent tape core wire according to the present invention is characterized in that, in the above-described present invention, the wavelength of the pulse laser beam is 500 to 2000 nm.
- the optical fiber intermittent tape core according to the present invention is manufactured by the above-described method for manufacturing an optical fiber intermittent tape, and the unconnected portion is intermittently formed by irradiation with pulsed laser light.
- An optical fiber intermittent tape core manufacturing method is a method in which an optical fiber tape core that is not intermittently bonded is subjected to laser processing by irradiating pulsed laser light, thereby forming adjacent optical fibers formed into a tape core. Since non-connecting portions and intermittently connecting portions can be easily formed between the core wires, the linear velocity of the optical fiber core wires and the resin composition applied to connect adjacent optical fiber core wires to each other Provided is a method of manufacturing an intermittently connected optical fiber intermittent tape core wire capable of forming intermittently connected portions and non-connected portions at high speed while maintaining a high coating speed.
- the obtained optical fiber intermittent tape core wire has a non-connected part and an intermittently connected part formed by irradiation with pulsed laser light, so that intermediate branching can be reliably executed without impairing the cable characteristics during high-density mounting.
- an intermittently connected optical fiber intermittent tape core wire capable of ensuring workability during batch connection can be obtained.
- FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
- FIG. 4 is a sectional view taken along line BB in FIG. 3.
- FIG. 1 is a cross-sectional view showing an example of the structure of the optical fiber core wire 1.
- FIG. 2 is a cross-sectional view showing another example of the structure of the optical fiber core wire 1.
- 1 and 2 1 is an optical fiber core (optical fiber colored core)
- 10 is an optical fiber
- 11 is a primary coating layer
- 12 is a secondary coating layer
- 12a is a colored secondary coating layer (see FIG. 1). 2 only) and 13 indicate colored layers (FIG. 1 only), respectively.
- a primary coating layer 11 (primary layer) around an optical fiber 10 such as a glass optical fiber
- a secondary coating layer 12 (secondary layer) around the primary coating layer 11, and a secondary coating layer.
- a colored layer 13 colored around 12 is formed in this order, and constitutes the optical fiber core 1. Further, the colored layer 13 becomes the outermost layer of the optical fiber core wire 1.
- a primary coating layer 11 around the optical fiber 10 and a secondary coating layer 12 a colored around the primary coating layer 11 are formed in this order. 1 Further, the colored secondary coating layer 12 a becomes the outermost layer of the optical fiber core wire 1.
- the colored layer 13 that is the outermost layer of the optical fiber core 1 and the colored secondary coating layer 12a may be combined to form the colored layer 13 or the like.
- the outer diameter of each layer in the optical fiber core 1 is generally 80 ⁇ m to 125 ⁇ m for the optical fiber 10, 120 ⁇ m to 200 ⁇ m for the primary coating layer 11, 160 ⁇ m to 242 ⁇ m for the secondary coating layer 12,
- the outer diameter of the colored layer 13 is preferably in the range of 173 ⁇ m to 255 ⁇ m.
- the colored secondary coating layer 12a preferably has an outer diameter in the range of 160 ⁇ m to 255 ⁇ m. .
- resin materials that are the constituent materials of the primary coating layer 11 (primary layer) and the secondary coating layer 12 (secondary layer) of the optical fiber core 1 and the constituent materials of the colored layer 13 of the optical fiber core 1 are known.
- the resin composition and additive mixture composition thereof can be used.
- an ultraviolet curable resin composition containing a resin such as an ultraviolet curable resin can be used.
- various additives such as oligomers, dilution monomers, polyols, photoinitiators, silane coupling agents, sensitizers, pigments (and coloring materials obtained by mixing pigments and resins, etc.), lubricants, etc.
- a resin composition containing necessary components can be preferably used.
- the production of the optical fiber core 1 will be described by taking a glass optical fiber 10 as an example of an optical fiber and an ultraviolet curable resin composition as an example of a resin composition.
- the reform (base material) is heated and melted in a drawing furnace to obtain an optical fiber made of quartz glass (glass optical fiber 10).
- a component (ultraviolet curable resin composition) containing a liquid resin is applied to the glass optical fiber 10 using a coating die, and subsequently, the ultraviolet curable resin applied by the ultraviolet irradiation device (UV irradiation device) is applied. Irradiate ultraviolet rays to cure such components.
- the optical fiber core wire 1 is manufactured by coating the outer periphery with the colored layer 13 in the next step.
- the secondary coating layer 12 may be colored so that the optical fiber core wire 1 is formed as the secondary coating layer 12a in which the outermost layer is colored.
- the optical fiber intermittent tape core 2 to be manufactured according to the present invention has a plurality of optical fiber cores 1 obtained by the above-described method or the like arranged in parallel, and the adjacent optical fiber cores 1 are arranged in the length direction. It is manufactured by forming intermittently connected portions 3 that are intermittently connected and non-connected portions 4 in which adjacent optical fiber cores 1 are not intermittently connected in the length direction.
- a step of arranging a plurality of optical fiber cores 1 in parallel and forming a tape core with a resin composition containing a laser light absorbing component that absorbs a laser wavelength (tape core forming step) , And by irradiating a pulse laser beam between adjacent optical fiber cores 1 and intermittently forming non-connecting portions 4 in which the adjacent optical fiber core wires 1 are not connected in the length direction.
- the optical fiber intermittent tape core wire 2 is manufactured by the step of forming the connecting portion 3 (intermittent connecting portion and non-connecting portion forming step).
- FIG. 3 is a front view (a view in which the tape surface is the front. The same applies to the front view hereinafter) showing one aspect of the optical fiber intermittent tape core wire 2 manufactured by the manufacturing method of the present invention (first view). Common to the embodiment and the second embodiment to be described later).
- 4 shows an AA cross-sectional view of FIG. 3
- FIG. 5 shows a BB cross-sectional view of FIG. 3 to 5 show an optical fiber intermittent tape core 2 composed of eight optical fiber cores 1 for convenience, and the sectional shapes of FIGS. 4 and 5 are as follows.
- the optical fiber core 1 one having a cross-sectional shape of the configuration shown in FIG. 2 is shown as an example.
- the optical fiber intermittent tape core 2 has a laser wavelength to be described later between the optical fiber cores 1 arranged in parallel and between the adjacent optical fiber cores 1.
- a portion 7 that is collectively covered with a resin composition containing a laser light absorbing component to be absorbed (hereinafter, sometimes simply referred to as “absorbing component”) is formed and exists between adjacent optical fiber cores 1.
- An intermittent connection portion 3 (also referred to as an intermittent connection portion) is formed, and a non-connection portion 4 cut out by laser processing is provided between the intermittent connection portions 3 (intermittent connection portions 31 and 32) in the length direction. It is formed and connected intermittently in the length direction.
- the connecting portion intermittent connecting portion 3
- the unitization and handling of the optical fiber core 1 are improved, and an intermediate branch is provided.
- the laying work can be simplified and the time can be shortened.
- the optical fiber intermittent tape core wire 2 is an intermittently connected portion in the length direction of two adjacent optical fiber core wires 1 (optical fiber core wires 1a to 1h). 31 and 32 and the non-connection part 4 are formed so as to be alternately arranged with a predetermined length, and the adjacent optical fiber cores 1 are intermittently connected in the length direction by the intermittent connection part 3 (
- an optical fiber core pair t1 composed of the optical fiber core wire 1a and the optical fiber core wire 1b shown in FIG. 3
- an optical fiber core wire pair t2 composed of the optical fiber core wire 1b and the optical fiber core wire 1c,.
- optical fiber core pairs t1 to t7 such as optical fiber core pair t7 including optical fiber core 1g and optical fiber core 1h.
- a pair of optical fiber cores composed of two adjacent cores (two) formed with intermittent coupling portions 31 and 32 are formed. Both sides (outside) in the tape width direction of the portion where the intermittent connection portion 3 is formed from t1 to t7 are not connected (for example, the optical fiber core 1c shown in FIGS. 3 and 4).
- the optical fiber core pair t3 composed of the optical fiber core wire 1d is formed with an intermittent connection portion 31 for connecting the two optical fiber core wires 1c and 1d, while the intermittent connection portion 3 is formed. (Both sides in the tape width direction (outside) are not connected.)
- the length L1 of the intermittent coupling portions 31 and 32 in the optical fiber intermittent tape core wire 2 is preferably about 5 to 35 mm, but this range is particularly limited.
- the length is preferably about 5 to 15 mm, but is not particularly limited to this range.
- the length of the unconnected portion 4 (the length in the length direction between the two intermittently connected portions 31) L3 of one pair of optical fiber core wires (for example, the optical fiber core wire pair t1) is approximately:
- the thickness is preferably 15 to 65 mm, but is not particularly limited to this range.
- the pitch P in the optical fiber intermittent tape core 2 (the length of the intermittent connection part 31 to the intermittent connection part 31 (or the intermittent connection part 32 to the intermittent connection part 32) adjacent in the length direction is pointed out.
- the distance from the connecting portion 31 to the intermittently connecting portion 31 is preferably 100 mm or less, and is preferably about 20 to 90 mm, but is not particularly limited to this range.
- (II-a) Tape core forming process In the present embodiment, in the tape core forming step, the surroundings of the optical fiber cores 1 arranged in parallel are collectively made of a resin composition containing a laser light absorbing component (absorbing component) that absorbs the laser wavelength. This is a process for manufacturing the optical fiber ribbon 21 by coating. By the tape core forming step, there is a portion 7 that is collectively covered with a resin composition containing a laser light absorbing component between adjacent optical fiber cores 1 (laser between adjacent optical fiber cores 1).
- the portion 7 collectively covered with the resin composition containing the light absorbing component may be hereinafter referred to as “the portion 7 containing the laser light absorbing component”.
- the portion 7 containing the laser light absorbing component By cutting out the portion corresponding to the non-connecting portion 4 of the portion 7, the non-connecting portion 4 and the intermittent connecting portion 3 (of the portion 7 containing the laser light absorption component between the adjacent optical fiber cores 1, The portion that remains without being cut out) can be formed.
- the laser light absorbing component for example, conventionally known pigments can be used, and cyanine compounds, phthalocyanine compounds, dithiol metal complexes, naphthoquinone compounds, diimmonium compounds, azo compounds, naphthalocyanine compounds, nickel dithiolene complexes, squalium dyes, and the like.
- Quinone compounds, azo compounds, quinacridone, dioxan, bensuimidazolone, carbon black, titanium oxide, ferrite compounds such as nickel-iron ferrite, manganese-zinc ferrite, nickel-zinc ferrite, copper-zinc ferrite, phthalocyanine compound, nickel Iron particles, gold particles, copper particles, and the like can be used.
- These components may be used individually by 1 type, and may be used in combination of 2 or more type.
- the resin used as a matrix material has no absorption in the visible light or near infrared region, so that the visible light region (approximately 380 nm to 780 nm) is used as a pulsed laser beam.
- the visible light region approximately 380 nm to 780 nm
- the near-infrared region (approximately 1000 nm to 2000 nm)
- the laser light absorbing component can be used in any shape such as a spherical shape, a powdery shape, a granular shape, etc. in addition to particles, and the average particle size of the laser light absorbing component is generally 0.01 to 2 ⁇ m. It is preferable to be within the range.
- the average particle diameter is measured, for example, using a transmission electron microscope, measuring the primary particle diameter of the laser light absorption component in the observation sample at a predetermined magnification (for example, 100,000 times), and calculating the average value. You may make it use.
- the shape of the laser light absorbing component is not spherical, the major axis and minor axis are measured, and the value obtained by (sum of major axis and minor axis) / 2 may be used as the average particle diameter.
- a resin composition containing such a laser light absorbing component it is a main material of a material for coating or connecting the optical fiber core wire 1 in forming a tape core, and it becomes a matrix containing a laser light absorbing component
- a resin composition that can be used a conventionally known resin composition and additive mixture composition thereof can be used as well as the constituent material of the primary coating layer 11 and the like of the optical fiber core wire 1 described above.
- An ultraviolet curable resin composition containing a resin such as an ultraviolet curable resin can be used.
- a resin composition containing various components can be preferably used. It is preferable that the resin composition be an ultraviolet curable resin composition because the resin composition can be easily cured by ultraviolet irradiation during the tape core forming step.
- the content of the laser light absorbing component relative to the resin composition may be appropriately determined depending on the type of other components of the resin composition, etc., but the object to be processed (cured product of resin composition containing a component that absorbs the laser wavelength) Etc.) is not particularly limited as long as it is an amount effective for absorbing the laser beam for cutting out. As a guide, it is preferable to adjust the content so that the absorption rate of the laser wavelength in the cured product of the resin composition is 10% or more.
- Laser processing is performed by the object to be processed absorbing laser light.
- the higher the laser light absorption rate of the object the more efficiently the laser light is absorbed by the object, and the processing is also efficient.
- a low absorptance is not preferable because laser light that is not absorbed is likely to be reflected on the surface of the object to be processed or thermally damaged in the processing region.
- the absorption rate of the laser wavelength is 15% or more.
- the absorptance of 10% or more may be selected, for example, by irradiating a processing object with pulsed laser light having a wavelength of 1550 nm or 1060 nm under predetermined conditions so that the absorptance is 10%.
- the laser light absorbing component is generally 0.3 to 5.0% by mass with respect to the entire resin composition containing the laser light absorbing component. .
- the content is less than 0.3% by mass, it becomes difficult to make the absorption rate of the laser wavelength 10% or more, and the pulse laser beam may not be absorbed well.
- the laser light absorbing component is particularly preferably 1.0 to 5.0% by mass with respect to the entire resin composition.
- an absorptivity of the laser wavelength of the resin composition containing a laser light absorbing component for example, an oligomer obtained by adding an aromatic isocyanate and hydroxyethyl acrylate to a polyol using polypropylene glycol as an oligomer, and a polyol in an intermediate block
- the molecular weight of (polypropylene glycol) was changed as appropriate, and a resin composition containing a laser light absorbing component having a content shown in Table 1 below in a resin using a bifunctional monomer or polyfunctional monomer was cured by ultraviolet irradiation.
- Table 1 shows the absorptance when the cured sheet (thickness: 40 ⁇ m) is irradiated with pulsed laser beams having a laser beam wavelength of 1550 nm and 1060 nm under predetermined conditions.
- FIG. 6 is a front view showing an aspect of the optical fiber ribbon 21 obtained by the tape stranding process according to the first embodiment.
- the optical fiber tape core wire 21 (referring to the optical fiber tape core wire before the intermittent connection portion 3 and the non-connection portion 4 are formed. The same applies hereinafter) for manufacturing the optical fiber tape core wire 21 having the configuration shown in FIG.
- a plurality of optical fiber cores 1 are assembled and arranged in parallel by a predetermined aligning means, and after passing through nipples and dies, a laser light absorption component is contained between the adjacent optical fiber cores 1.
- the resin composition After the resin composition is applied to the periphery or the like in a state where a portion made of a resin composition (for example, an ultraviolet curable resin composition or the like) is present, the resin composition is cured by a curing means such as ultraviolet irradiation. You can do that.
- a resin composition for example, an ultraviolet curable resin composition or the like
- the adjacent optical fiber cores 1 are collectively covered with a resin composition containing a laser light absorbing component, whereby an optical fiber ribbon 21 having a flat tape surface in cross-sectional view is manufactured.
- the resin composition may be coated so that the tape surface has a flat shape in a cross-sectional view as shown in FIG. 4 and the like, and as shown in FIG. You may make it coat
- Intermittently connected portion and non-connected portion forming step In the intermittent connection portion and non-connection portion forming step (hereinafter, sometimes simply referred to as “intermittent connection portion formation step”), as shown in FIG. An optical fiber tape core wire in which the intermittent connection portion 3 and the non-connection portion 4 are not formed.) A pulse laser beam with respect to a portion 7 containing a laser light absorption component existing between adjacent optical fiber core wires 1 , The unconnected portions 4 where the adjacent optical fiber cores 1 are not connected in the length direction are intermittently formed. As a result, the portion that remains without being cut out becomes an intermittent connection portion 3 that intermittently connects adjacent optical fiber cores 1.
- the linear velocity of the optical fiber core wire 1 can be increased.
- the intermittent connection part 3 and the non-connection part 4 can be formed at a high speed while maintaining a high application speed of the resin composition applied to connect the adjacent optical fiber cores 1 to each other.
- the intermittent tape core wire 2 can be manufactured at high speed.
- the portion 7 containing the laser light absorption component is irradiated with pulsed laser light, and the length direction of the optical fiber intermittent tape core wire 2 is absorbed by the absorption of the pulse laser light in the portion 7.
- Laser processing is performed by cutting in the orthogonal direction.
- pulsed laser light for example, laser light having a time width of about 0.1 to 100 nsec (seconds); the same applies hereinafter
- CO 2 laser light is used instead of pulse laser light
- the wavelength of CO 2 laser light is generally 10.6 ⁇ m, which is in the far infrared region (generally 3 to 1000 ⁇ m). It will be absorbed by the glass.
- the beam spot of the laser light is as large as 70 to 120 ⁇ m, which is not preferable because it damages not only the optical fiber core 1 but also the optical fiber 10 itself.
- the beam spot (corresponding to the cutout width) can be suppressed to about 8 to 15 ⁇ m, and the processing width (cutout width) can be reduced.
- Irradiation with pulsed laser light has a wavelength of approximately 500 to 2000 nm so that the unconnected portion 4 can be efficiently formed by clipping (laser processing) by absorption of the pulsed laser light by the laser light absorbing component. Is preferred.
- the laser processing using the above-described CO 2 laser light is generally in the far infrared region, and uses a wavelength longer than the range of the pulse laser light. In the present invention, for example, pulse laser light having a wavelength of 1550 nm, 1060 nm, or the like can be preferably used.
- the processing width (cutout width) by irradiation with pulsed laser light corresponds to the width of the unconnected portion 4 but is preferably about 8 to 15 ⁇ m.
- the cutout width in such a range, the non-connecting portion 4 can be efficiently formed, and damage to the optical fiber core 1 and the like can be suppressed.
- various conditions necessary for irradiation with the pulsed laser beam can be set, for example, within the following range, but are not limited thereto.
- Pulse output 1 to 100W
- Pulse width 0.1-100ns
- a conventionally known pulse laser beam irradiation apparatus can be used, but in the present invention, it is preferable to use an apparatus provided with a fiber type pulse laser.
- the fiber type pulse laser employs a MOPA (Master Oscillator Power Amplifier) configuration that amplifies an output light pulse from a semiconductor laser by a fiber type optical amplifier (not shown).
- MOPA Master Oscillator Power Amplifier
- the laser output characteristics pulse width, repetition frequency, etc.
- high output can be achieved by connecting multiple fiber amplifiers. is there.
- fiber-type pulse laser examples include the fiber-type pulse laser reported in “Development of 1.5 ⁇ m-band nanosecond pulse laser” in “Laser Society 482nd Research Meeting Fiber Laser Technology”, and Furukawa Electric (Nanosecond) fiber-type pulse laser reported in Hokupo 131, “Development of nanosecond fiber-type pulse laser”, etc. may be used.
- a fiber-type pulse laser or the like generates a light pulse obtained by directly modulating and driving a semiconductor laser having a wavelength of 1550 nm or 1060 nm using a dedicated drive circuit, and the light pulse output from the semiconductor laser is a two-stage erbium-doped fiber.
- Amplified by an amplifier The booster amplifier employs an erbium-doped HOM (High Order Mode) fiber that utilizes higher-order mode propagation to suppress the influence of nonlinear phenomena in the fiber.
- HOM High Order Mode
- FIG. 7 is an explanatory diagram schematically showing the implementation of the intermittent connection portion forming process according to the first embodiment (the upper part of the figure is “before pulse laser light irradiation” and the lower part is “after pulse laser light irradiation”). The same applies to FIGS. 9 and 14 to be described later).
- the optical fiber core wire 1 is exemplified by a four-fiber optical fiber tape core wire 21 and an optical fiber intermittent tape core wire 2, and is formed with a predetermined cross section in the length direction.
- the non-connection part 4, the intermittent connection part 3, and the pulse laser beam irradiation device 5 corresponding to the formation of the non-connection part 4 and the like are shown (this also applies to FIGS. 9 and 14 to be described later).
- the optical fiber tape core wire 21 converted into a tape core wire (the intermittently connected portion 3 and the unconnected portion 4 are not formed) is advanced in the length direction.
- the unconnected portion 4 in the portion containing the laser light absorption component existing between the adjacent optical fibers 1 is formed by the pulse laser beam irradiation device 5. What is necessary is just to irradiate the part which is going to be irradiated with a pulse laser beam.
- the optical fiber tape core 21 is collectively coated with a resin composition containing a laser light absorption component to form a tape core, the laser between the adjacent optical fiber cores 1 while proceeding in the length direction.
- the portion absorbs the pulsed laser light and cuts out in the direction perpendicular to the length direction. It is laser processed so that it enters.
- an unconnected portion 4 which is a portion where adjacent optical fiber cores 1 are not connected in the length direction, is formed, and an optical fiber intermittent tape core 2 is formed.
- the non-connecting portion 4 is formed in this way, the portion where the non-connecting portion 4 between the adjacent optical fiber cores 1 is not formed is arranged so that the adjacent optical fiber core wires 1 are in the length direction. It becomes the intermittent connection part 3 connected intermittently.
- the portion 7 (the portion 7 containing the laser light absorbing component) collectively covered with the resin composition containing the laser light absorbing component is the length direction of the optical fiber ribbon 21 ( (It is also common to the length direction of the optical fiber core 1). Therefore, the pulse laser beam for forming the unconnected portion 4 while the optical fiber tape core wire 21 is advanced in the length direction. It is preferable to carry out the irradiation intermittently aiming at the portion where the non-connecting portion 4 is formed. In this respect, the same applies to the irradiation of the pulsed laser light for forming the non-connecting portion 4, which will be described with respect to a modification of the embodiment described later.
- the optical fiber tape core wire 1 obtained by the above manufacturing method has the non-connection portion 4 and the intermittent connection portion 3 formed by irradiation with pulsed laser light, and without damaging the cable characteristics at the time of high-density mounting.
- the intermittently connected optical fiber intermittent tape core wire 2 can reliably execute the intermediate branching and can secure the workability at the time of batch connection.
- optical fiber intermittent tape core wire 2 and its manufacture (second embodiment): Next, a second embodiment of the present invention will be described. Similarly to the first embodiment, the optical fiber intermittent tape core 2 to be manufactured in this embodiment is also arranged in parallel with a plurality of optical fiber cores 1 and the adjacent optical fiber cores 1 are arranged in the length direction. It is manufactured by forming intermittently connected portions 3 that are intermittently connected and non-connected portions 4 in which adjacent optical fiber cores 1 are not intermittently connected in the length direction.
- the laser light absorption component is contained around or between the optical fiber core wires 1 arranged in parallel in the tape core forming step. It demonstrated using the aspect coat
- the optical fiber cores 1 arranged in parallel are converted into tape cores with a resin composition (tape core forming step), and the resin composition does not contain a laser light absorbing component.
- the laser light absorbing portion 6 (adjacent in the first embodiment) in which a resin composition containing a laser light absorbing component is present at least between the adjacent optical fiber cores 1
- the second embodiment is different from the first embodiment in that it corresponds to the portion 7 containing the laser light absorption component, which is present between the optical fiber cores 1 (the laser light absorption portion forming step).
- the same structure and common members as those of the first embodiment are denoted by the same reference numerals. Detailed description thereof will be omitted or simplified.
- the optical fiber intermittent tape core 2 manufactured in the present embodiment is common in appearance to the optical fiber intermittent tape core 2 shown in FIGS. 3 to 5 and contains a laser light absorbing component. The difference is that the portion 7 collectively covered by the step becomes a portion 7 'collectively covered with a resin composition not containing a laser light absorbing component.
- a conventionally known resin composition used for manufacturing the optical fiber intermittent tape core wire 2 can be used, for example,
- the resin constituting the resin composition containing the laser light absorbing component described in the first embodiment can be preferably used.
- the additive mentioned in 1st Embodiment can be used similarly about the additive added to a resin composition.
- the “resin composition not containing a laser beam absorbing component” means that the laser beam absorbing component is not actively contained, and is common with the above-described absorbing component by not aiming to absorb the laser beam. It does not exclude the inclusion of similar components.
- the laser light absorbing section 6 can preferably use the laser light absorbing component and the resin composition shown in the first embodiment.
- the additive mentioned in 1st Embodiment can be used similarly about the additive added to a resin composition.
- the laser light absorbing portion 6 is formed by forming a resin composition containing a laser light absorbing component at least between the adjacent optical fiber cores 1.
- the laser light absorbing portion 6 may be formed continuously in the length direction of the optical fiber core 1, but may be formed in a portion corresponding to a portion where the non-connecting portion 4 is formed. It is preferable to form intermittently in the length direction of the optical fiber core wire 1. By intermittently forming the laser light absorbing portion 6 in the length direction, the use of a resin composition containing a laser light absorbing component can be minimized, and the cost can be reduced.
- FIG. 8 is a front view showing the optical fiber ribbon 21 obtained by the laser light absorber forming process according to the second embodiment. 8 shows a configuration in which the laser light absorber 6 is intermittently formed in the length direction of the optical fiber core wire 1 (optical fiber tape core wire 21).
- the optical fiber core 1 is formed by a method similar to that of the first embodiment, using a resin composition that does not contain a laser light absorbing component.
- a portion 7 ′ is formed which is made into a tape core and is collectively covered with a resin composition not containing a laser light absorbing component.
- a resin composition such as an ultraviolet curable resin composition containing a laser light absorbing component is applied to a desired portion including a portion where the non-connecting portion 4 is to be formed by using an application roll or the like.
- the obtained resin composition is cured by ultraviolet irradiation or the like.
- the optical fiber tape core 21 having the laser light absorbing portion 6 formed as shown in the front view of FIG. 8 is obtained.
- the formation of the laser light absorbing portion 6 is preferably formed by applying a resin composition containing a laser light absorbing component as described above. By forming the laser light absorbing portion 6 by coating, the operation becomes simple and the laser light absorbing portion 6 can be reliably and efficiently formed.
- FIG. 9 is an explanatory view schematically showing the implementation of the intermittent connection portion forming process according to the second embodiment.
- the part 7 ′ and the laser light absorption part 6 collectively covered with the resin composition not containing the laser light absorption component were formed.
- the optical fiber ribbon 21 is advanced in the length direction, and the laser light absorption between the adjacent optical fibers 1 is performed by the pulse laser beam irradiation device 5 from the normal direction of the tape surface of the optical fiber ribbon 21. What is necessary is just to irradiate a pulse laser beam with respect to the part 6 (it will be a part which is going to form the non-connecting part 4).
- Laser processing is performed so that the laser light absorption unit 6 between the adjacent optical fiber cores 1 is irradiated with pulsed laser light so that the laser beam absorption unit 6 is cut out in the direction perpendicular to the length direction.
- a non-connecting portion 4 that is a portion where the adjacent optical fiber cores 1 are not connected in the length direction is formed (FIGS. 3 to 5). As shown in FIG. 5, the non-connection part 4 is formed.).
- the laser light absorbing portion 6 may remain on the surface of the optical fiber intermittent tape core wire 2, but the remaining laser light absorption is shown in the lower part of FIGS. 3 to 5 and FIG. Part 6 is not shown.
- the non-connecting portion 4 is formed in this way, the portion where the non-connecting portion 4 between the adjacent optical fiber cores 1 is not formed is arranged so that the adjacent optical fiber core wires 1 are in the length direction.
- the intermittent connection portion 3 is connected intermittently, which is the same as in the first embodiment (the intermittent connection portion 3 is formed as shown in FIGS. 3 to 5).
- the laser light absorbing portion 6 is intermittently formed in the length direction of the optical fiber tape core 21, but the other portions of the optical fiber tape core 21 absorb the laser light. No component is present and does not absorb pulsed laser light. Therefore, the optical fiber intermittent tape core wire 2 can be manufactured even when the pulse laser beam is irradiated continuously in the length direction.
- the laser light absorbing component is formed around or between the optical fiber cores 1 arranged in parallel in the tape core forming step. It demonstrated using the aspect coat
- the periphery of the optical fiber cores 1 arranged in parallel is collectively covered with a resin composition containing a laser light absorbing component in the tape core forming step. It is not essential to perform, for example, the following modified embodiment in which the adjacent optical fiber cores 1 are converted into tape cores by forming a portion 7a connected with a resin composition containing a laser light absorbing component. It is included in the manufacturing method according to the first embodiment.
- FIG. 10 is a front view showing the optical fiber intermittent tape core wire 2 manufactured by the manufacturing method according to the modification of the first embodiment.
- FIG. 11 is a sectional view taken along line AA in FIG. 10
- FIG. 12 is a sectional view taken along line BB in FIG.
- the optical fiber intermittent tape core 2 shown in FIG. 10 to FIG. 12 is made of a resin composition containing a laser light absorption component between adjacent optical fiber cores 1 with respect to the optical fiber cores 1 arranged in parallel.
- a connected portion 7a (a portion containing a laser light absorption component) (see FIG. 13 and FIG. 14 to be described later for the connected portion 7a) is interposed, and is adjacent to the connected portion 7a.
- the intermittent connection part 3 which connects the optical fiber core wire 1 and the non-connection part 4 cut out intermittently in the length direction are formed by irradiation of pulse laser light.
- FIG. 13 is a front view showing an aspect of the optical fiber ribbon 21 obtained by the tape core forming step according to the modification of the first embodiment.
- a resin such as an ultraviolet curable resin composition containing a laser light absorbing component between adjacent optical fiber cores 1 After applying the composition, it is cured under predetermined conditions to obtain the optical fiber ribbon 21 having the configuration shown in FIG.
- a plurality of optical fiber cores 1 are applied to a resin composition such as an ultraviolet curable resin composition containing a laser light absorbing component on the side surface of the optical fiber core wire 1 in contact with each coating roll, Optical fibers arranged in parallel by aligning means so that the side surfaces of the optical fiber core wire 1 coated with the resin composition on the side surfaces are in contact with each other and curing the resin composition by ultraviolet irradiation or the like.
- a resin composition such as an ultraviolet curable resin composition containing a laser light absorbing component on the side surface of the optical fiber core wire 1 in contact with each coating roll
- Optical fibers arranged in parallel by aligning means so that the side surfaces of the optical fiber core wire 1 coated with the resin composition on the side surfaces are in contact with each other and curing the resin composition by ultraviolet irradiation or the like.
- an optical fiber tape core wire 21 having a portion 7a connected between the adjacent optical fiber core wires 1 by a resin composition containing a laser light absorption component can be obtained.
- FIG. 14 is an explanatory view schematically showing the implementation of the intermittent connection portion forming process according to the modification of the first embodiment.
- the optical fiber tape core wire 21 having the configuration shown in FIG. The part which is going to form the non-connection part 4 of the part 7a connected with the resin composition containing a laser beam absorption component with the pulse laser beam irradiation apparatus 5 from the tape surface normal line direction of the optical fiber tape core wire 21 What is necessary is just to make it irradiate with a pulse laser beam.
- the portion By irradiating the portion of the connected portion 7a between the adjacent optical fiber cores 1 where the unconnected portion 4 is to be formed with pulsed laser light, the portion is perpendicular to the length direction.
- the laser processing is performed so that the cutout is formed, and the non-connecting portion 4 which is a portion where the adjacent optical fiber cores 1 are not connected in the length direction is formed.
- the non-connecting portion 4 in this way, the portion where the non-connecting portion 4 is not formed in the portion 7a connected by the resin composition containing the laser light absorbing component is adjacent to the light. It becomes the intermittent connection part 3 which connects the fiber core wire 1 intermittently in the length direction.
- the optical fiber colored core wire 1 having the configuration shown in FIG. 2 is illustrated in FIG. 4 as an example of the optical fiber core wire 1 constituting the optical fiber intermittent tape core wire 2.
- the optical fiber tape core 21 and the optical fiber intermittent tape core 2 are coated with a resin composition so that the tape surface is flat when viewed in cross section, as shown in FIG.
- the embodiment in which the portion 7 or the like collectively covered with the resin composition containing the light absorbing component is formed has been described.
- the optical fiber ribbon 21 or the like is not limited to the structure shown in FIG. 4 or the like, and is covered with, for example, a resin composition so that a recess is formed between the adjacent optical fibers 1. You may do it.
- FIG. 15 is a diagram showing a cross-sectional structure of another embodiment of the optical fiber ribbon 21, and FIG. 16 is a diagram showing a cross-section of another embodiment of the optical fiber intermittent ribbon 2.
- FIG. 15 and FIG. 16 for the sake of convenience, the four-fiber optical fiber 1 is described.
- the optical fiber tape core 21 shown in FIG. 15 has a shorter laser processing length (depth) than the optical fiber tape core 21 shown in FIG.
- the optical fiber intermittent tape core wire 2 shown in FIG. 16 can be efficiently manufactured. Moreover, since the quantity of the resin composition used for coating
- the part 7 collectively covered with the resin composition containing the laser light absorbing component is collectively covered with the resin composition not containing the laser light absorbing component. 7 ′, a laser light absorbing portion 6 (not shown) is formed between adjacent optical fiber cores 1 and used in the manufacturing method described in the second embodiment, and the optical fiber intermittently shown in FIG.
- the tape core wire 2 may be obtained.
- the specific structure, shape, and the like in the implementation of the present invention may be other structures as long as the object of the present invention can be achieved.
- the present invention can be effectively used as a means for providing an optical fiber ribbon that does not impair cable characteristics during high-density mounting, and has high industrial applicability.
- Optical fiber core (optical fiber colored core) 1a to 1h ... optical fiber core (optical fiber colored core) 10 ...
- Optical fiber (glass optical fiber) 11 Primary coating layer (primary layer) 12 & Secondary coating layer (secondary layer) 12a ... Colored secondary coating layer 13 ... Colored layer 2 ...
- Optical fiber intermittent tape core 21 ...
- Optical fiber tape core 3 ... Intermittent connection part 31, 32 ... Intermittent connection part 4 ... Non Connecting part (single core part) 5 ; Pulsed laser light irradiation device 6 ; Laser light absorption part 7 ; Part covered with resin composition containing laser light absorption component (part containing laser light absorption component) 7 '... part covered with a resin composition not containing a laser light absorption component 7a ... part connected by a resin composition containing a laser light absorption component t1 to t7 ... optical fiber core pair
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
【課題】線速を高速とした場合の製造にも対応が可能な光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線を提供すること。 【解決手段】本発明は、光ファイバテープ心線に対し、パルスレーザー光の照射によるレーザー加工を施すことで、テープ心線化された隣接した光ファイバ心線1の間に非連結部4及び間欠連結部3を簡便に形成することができるため、光ファイバ心線1の線速や、隣り合う光ファイバ心線1同士を連結するために塗布される樹脂組成物の塗布速度を高速に維持しつつ、間欠連結部3や非連結部4を高速で形成可能な、間欠連結型の光ファイバ間欠テープ心線2の製造方法となる。また、得られた光ファイバテープ心線1は、パルスレーザー光の照射によって非連結部4及び間欠連結部3が形成され、高密度実装時のケーブル特性を損なうことなく、中間分岐を確実に実行できるとともに一括接続時の作業性を確保できる間欠連結型の光ファイバ間欠テープ心線2となる。
Description
本発明は、光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線に関する。さらに詳しくは、隣接する光ファイバ心線が、間欠連結部によって長さ方向に間欠的に連結されて形成される光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線に関する。
近年、様々なインターネットサービスを担う大規模データセンタの内外を繋ぐための近距離高速光通信のニーズが高まっており、それに伴って光ファイバを一般家庭に直接引き込むための高速大容量化通信サービスが急速に拡大している。かかるサービスに用いられる光ファイバケーブルには、複数本の光ファイバテープ心線(以下、「テープ心線」とする場合がある。)が束ねられて収容されている。この光ファイバケーブルから利用者宅に光ファイバを引き落とすには、光ファイバケーブルを中間分岐して所望のテープ心線を取り出し、このテープ心線から単心線を分離して取り出す必要がある。
そこで、容易に単心線を分離できるとともに光ファイバケーブルの細径化・高密度化を実現すべく、種々の光ファイバテープ心線が提案されている(例えば、特許文献1等を参照。)。ここで、光ファイバテープ心線とは、光ファイバに樹脂組成物等による保護被覆を施した光ファイバ心線を複数本平面状に配し、樹脂組成物等からなる連結部で連結一体化したものである。
光ファイバテープ心線は、現在、4心、8心、12心、24心等の構成のものが使用されており、配線された光ファイバとしてコンパクトな構成をとることができ、また、光ファイバケーブルとした場合に、ケーブルの細径化・高密度化を図ることができる。例えば、特許文献1では、隣接する光ファイバ心線同士を長さ方向(長手方向)に間欠的に連結し、テープ幅方向に隣接する連結部が重ならないように交互に配置している。このように、隣接する光ファイバ心線同士を長さ方向に間欠的に連結してテープ心線とすることで、複数本のテープ心線を束ねるときに形状を変化させやすくなるため、光ファイバケーブルの細径化・高密度化を図ることができる。また、テープ心線には非連結部(単心部)が存在するので、専用の工具を使わず比較的容易に単心に分離することができる。
ここで、光ファイバ心線同士を間欠的に接着するための接着部材の塗布手段としては、ディスペンサによって吐出して付着させるもの(例えば、特許文献2を参照。)や、シャッター機構を用いたもの(例えば、特許文献3を参照。)や、回転体からの転写による塗布法を用いたもの(例えば、特許文献4を参照。)等が提供されている。また、塗布後の樹脂を部分的に硬化させ、間欠的な接着部を得るもの等が提供されている。
このように、光ファイバ心線同士を任意の間隔で間欠的に接着した光ファイバ間欠テープ心線を製造するためには、複数の光ファイバ心線を併走させながら、隣り合う光ファイバ心線同士の任意の箇所に対して間欠的に接着部材を塗布する方法がある。しかしながら、この方法では、接着部材の塗布速度が製造速度を決定する大きな要素となるため、生産性を高めるために光ファイバ心線の線速を上げるのが困難であった。
たとえば、特許文献2のような方法では、接着部材は圧力がかけられている間にファイバ素線上へと押し出されるが、ディスペンサによる加圧の有無の切り替え動作には限界があり、線速を上げていくとディスペンサの動作が追従できない領域に達する。同様に、特許文献3に示されるようなシャッター機構を用いた場合においても、その線速はシャッターの動作速度により制限されてしまう。そして、特許文献4に示されるような回転体からの転写手段を用いた場合には、回転体表面に付着した接着部材が回転に伴って生じた遠心力により飛散してしまい、光ファイバ心線への付着量が安定しないという問題がある。また、この影響は高速製造時により顕著となる。
本発明は、前記の課題に鑑みてなされたものであり、線速を高速とした場合の製造にも対応が可能な光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線を提供するものである。
前記の課題を解決するために、本発明の第1発明に係る光ファイバ間欠テープ心線の製造方法は、複数本の光ファイバ心線が並列に配置され、隣接する前記光ファイバ心線を長さ方向に間欠的に連結する間欠連結部が形成された光ファイバ間欠テープ心線の製造方法であって、前記光ファイバ心線をテープ心線化する工程と、隣接する前記光ファイバ心線の間に対して、パルスレーザー光を照射し、隣接する前記光ファイバ心線が長さ方向に連結されない非連結部を間欠的に形成することにより、前記間欠連結部を形成する工程と、を含むことを特徴とする。
本発明に係る光ファイバ間欠テープ心線の製造方法は、前記した第1発明において、前記光ファイバ心線をテープ心線化する工程が、前記光ファイバ心線を、レーザー波長を吸収するレーザー光吸収成分を含有する樹脂組成物によってテープ心線化する工程であることを特徴とする。
本発明の第2発明に係る光ファイバ間欠テープ心線の製造方法は、複数本の光ファイバ心線が並列に配置され、隣接する前記光ファイバ心線を長さ方向に間欠的に連結する間欠連結部が形成された光ファイバ間欠テープ心線の製造方法であって、前記光ファイバ心線をテープ心線化する工程と、少なくとも隣接する前記光ファイバ心線の間に、レーザー波長を吸収するレーザー光吸収成分を含有する樹脂組成物が存在するレーザー光吸収部を形成する工程と、前記レーザー光吸収部に対してパルスレーザー光を照射し、隣接する前記光ファイバ心線が長さ方向に連結されない非連結部を間欠的に形成することにより、前記間欠連結部を形成する工程と、を含むことを特徴とする。
本発明に係る光ファイバ間欠テープ心線の製造方法は、前記した第2発明において、前記レーザー光吸収部を、前記光ファイバ心線の長さ方向に間欠的に形成することを特徴とする。
本発明に係る光ファイバ間欠テープ心線の製造方法は、前記した第2発明において、前記レーザー光吸収部は、レーザー波長を吸収するレーザー光吸収成分を含有する樹脂組成物を塗布することによって形成されることを特徴とする。
本発明に係る光ファイバ間欠テープ心線の製造方法は、前記した本発明において、前記レーザー波長を吸収するレーザー光吸収成分の含有量が、前記レーザー光吸収成分を含有する樹脂組成物全体に対して0.3~5.0質量%であることを特徴とする。
本発明に係る光ファイバ間欠テープ心線の製造方法は、前記した本発明において、前記パルスレーザー光の波長が500~2000nmであることを特徴とする。
本発明に係る光ファイバ間欠テープ心線は、前記した光ファイバ間欠テープ心線の製造方法によって製造され、パルスレーザー光の照射によって非連結部が間欠的に形成されていることを特徴とする。
本発明の光ファイバ間欠テープ心線の製造方法は、間欠接着されていない光ファイバテープ心線に対し、パルスレーザー光の照射によるレーザー加工を施すことで、テープ心線化された隣接した光ファイバ心線の間に非連結部及び間欠連結部を簡便に形成することができるため、光ファイバ心線の線速や、隣り合う光ファイバ心線同士を連結するために塗布される樹脂組成物の塗布速度を高速に維持しつつ、間欠連結部や非連結部を高速で形成可能な、間欠連結型の光ファイバ間欠テープ心線の製造方法を提供する。
また、得られた光ファイバ間欠テープ心線は、パルスレーザー光の照射によって非連結部及び間欠連結部が形成されており、高密度実装時のケーブル特性を損なうことなく、中間分岐を確実に実行できるとともに一括接続時の作業性を確保できる間欠連結型の光ファイバ間欠テープ心線となる。
以下、本発明の一態様を説明する。
(I)光ファイバ心線1の構成及びその製造:
まず、光ファイバ間欠テープ心線2を構成する光ファイバ心線1の一態様として、光ファイバ着色心線1を例に挙げて説明する。図1は、光ファイバ心線1の構造の一例を示した断面図である。また、図2は、光ファイバ心線1の構造の他の例を示した断面図である。図1及び図2中、1は光ファイバ心線(光ファイバ着色心線)、10は光ファイバ、11は一次被覆層、12は二次被覆層、12aは着色された二次被覆層(図2のみ)、13は着色層(図1のみ)、をそれぞれ示す。
まず、光ファイバ間欠テープ心線2を構成する光ファイバ心線1の一態様として、光ファイバ着色心線1を例に挙げて説明する。図1は、光ファイバ心線1の構造の一例を示した断面図である。また、図2は、光ファイバ心線1の構造の他の例を示した断面図である。図1及び図2中、1は光ファイバ心線(光ファイバ着色心線)、10は光ファイバ、11は一次被覆層、12は二次被覆層、12aは着色された二次被覆層(図2のみ)、13は着色層(図1のみ)、をそれぞれ示す。
図1の構成にあっては、ガラス光ファイバ等の光ファイバ10の周囲に一次被覆層11(プライマリ層)、一次被覆層11の周囲に二次被覆層12(セカンダリ層)、二次被覆層12の周囲に着色された着色層13がこの順で形成されており、光ファイバ心線1を構成する。また、着色層13が光ファイバ心線1の最外層となる。
一方、図2の構成にあっては、光ファイバ10の周囲に一次被覆層11、一次被覆層11の周囲に着色された二次被覆層12aがこの順で形成されており、光ファイバ心線1となる。また、着色された二次被覆層12aが光ファイバ心線1の最外層となる。なお、以下の説明において、光ファイバ心線1の最外層となる着色層13と着色された二次被覆層12aとを併せて、着色層13等とする場合がある。
光ファイバ心線1における各層の外径は、一般に、光ファイバ10の外径は80μm~125μm、一次被覆層11の外径は120μm~200μm、二次被覆層12の外径は160μm~242μm、着色層13の外径は173μm~255μmの範囲内とすることが好ましい。また、図2に示すように、二次被覆層12が着色層13を兼ねるような構成の場合、着色された二次被覆層12aは、外径を160μm~255μmの範囲内とすることが好ましい。
光ファイバ心線1の一次被覆層11(プライマリ層)及び二次被覆層12(セカンダリ層)の構成材料となる樹脂材料や、光ファイバ心線1の着色層13の構成材料としては、従来公知の樹脂組成物及びその添加剤混合組成物を使用することができ、例えば、紫外線硬化樹脂等の樹脂等を含む紫外線硬化性樹脂組成物等を使用することができる。具体的には、例えば、オリゴマー、希釈モノマー、ポリオール、光開始剤、シランカップリング剤、増感剤、顔料(及び顔料と樹脂等を混合した着色材)、滑剤等、各種の添加剤等のうち必要な成分を含有した樹脂組成物を好ましく使用することができる。
光ファイバ心線1の製造について、光ファイバとしてガラス光ファイバ10を例に挙げ、樹脂組成物として紫外線硬化樹脂組成物を例に挙げて説明すると、例えば、まず、石英ガラスを主成分とするプリフォーム(母材)を線引炉によって加熱溶融して、石英ガラス製光ファイバ(ガラス光ファイバ10)とする。次に、このガラス光ファイバ10にコーティングダイスを用いて液状の樹脂を含む成分(紫外線硬化樹脂組成物)を塗布し、続いて、紫外線照射装置(UV照射装置)で塗布された紫外線硬化樹脂に紫外線を照射してかかる成分を硬化させる。
このようにして、ガラス光ファイバ10に一次被覆層11と二次被覆層12が被覆された後、次工程において、外周に着色層13を被覆することにより、光ファイバ心線1が製造される。なお、前記したように、二次被覆層12に着色することで、最外層が着色された二次被覆層12aとした光ファイバ心線1とするようにしてもよい。
(II)光ファイバテープ心線の構成及びその製造(第1実施形態):
本発明の製造対象となる光ファイバ間欠テープ心線2は、前記した方法等により得られた光ファイバ心線1を複数本並列に配置して、隣接する光ファイバ心線1を長さ方向に間欠的に連結する間欠連結部3、及び隣接する光ファイバ心線1が長さ方向に間欠的に連結されない非連結部4、を形成することにより製造される。
本発明の製造対象となる光ファイバ間欠テープ心線2は、前記した方法等により得られた光ファイバ心線1を複数本並列に配置して、隣接する光ファイバ心線1を長さ方向に間欠的に連結する間欠連結部3、及び隣接する光ファイバ心線1が長さ方向に間欠的に連結されない非連結部4、を形成することにより製造される。
本実施形態にあっては、複数の光ファイバ心線1を並列に配置し、レーザー波長を吸収するレーザー光吸収成分を含有する樹脂組成物によってテープ心線化する工程(テープ心線化工程)、及び隣接する光ファイバ心線1の間に対して、パルスレーザー光を照射し、隣接する光ファイバ心線1が長さ方向に連結されない非連結部4を間欠的に形成することにより、間欠連結部3を形成する工程(間欠連結部及び非連結部形成工程)、により、光ファイバ間欠テープ心線2が製造される。
図3は、本発明の製造方法で製造された光ファイバ間欠テープ心線2の一態様を示した正面図(テープ面を正面とした図。以下、正面図について同じ。)である(第1実施形態と、後記する第2実施形態に共通。)。また、図4は、図3のA-A断面図、図5は、図3のB-B断面図、をそれぞれ示す。なお、図3から図5では、便宜的に、8心の光ファイバ心線1から構成される光ファイバ間欠テープ心線2を示しており、また、図4及び図5の断面形状については、光ファイバ心線1については、断面形状が図2の構成のものを一例として載せている。
光ファイバ間欠テープ心線2は、並列に配置された光ファイバ心線1について、並列に配置された光ファイバ心線1の周囲や隣接する光ファイバ心線1の間を、後記するレーザー波長を吸収するレーザー光吸収成分(以下、単に「吸収成分」とする場合がある。)を含有する樹脂組成物により一括被覆された部分7が形成され、隣接する光ファイバ心線1の間に存在する間欠連結部3(間欠型連結部とも呼ばれる。)が形成され、また、長さ方向の間欠連結部3(間欠連結部31,32)の間に、レーザー加工により切り抜かれた非連結部4が形成されて、長さ方向に間欠的に連結されてなる。光ファイバ心線1に間欠的に連結部(間欠連結部3)を設けることで、光ファイバ心線1を連結一体化し、光ファイバ心線1のユニット化及び取扱性を向上させ、中間分岐を確実に実行できることに加え、敷設作業の簡略化や時間短縮化を図ることができる。
図3に示した構成では、光ファイバ間欠テープ心線2は、隣接する2心(2本)の光ファイバ心線1(光ファイバ心線1a~1h)について、長さ方向に、間欠連結部31,32と非連結部4が、それぞれ所定の長さで交互に配置されるように形成され、隣接する光ファイバ心線1を、間欠連結部3によって長さ方向に間欠的に連結する(例えば、図3に示した光ファイバ心線1aと光ファイバ心線1bからなる光ファイバ心線対t1、光ファイバ心線1bと光ファイバ心線1cからなる光ファイバ心線対t2、……、光ファイバ心線1gと光ファイバ心線1hからなる光ファイバ心線対t7等の光ファイバ心線対t1~t7を参照。)。
なお、図3に示した構成では、テープ幅方向では、図3から図5に示すように、間欠連結部31,32が形成された隣接する2心(2本)からなる光ファイバ心線対t1~t7の、間欠連結部3が形成されている部分のテープ幅方向の両側(外側)は、連結されていない構成とされる(例えば、図3や図4に示した光ファイバ心線1cと光ファイバ心線1dからなる光ファイバ心線対t3には、2心の光ファイバ心線1c,1dを連結する間欠連結部31が形成される一方、間欠連結部3が形成されている部分のテープ幅方向の両側(外側)は、連結されていないことになる。)。
図3に示した8心の構成であれば、光ファイバ間欠テープ心線2における間欠連結部31,32の長さL1は、概ね5~35mmとすることが好ましいが、特にこの範囲には制限されない。また、テープ幅方向から見て共通する位置に形成される非連結部4の長さL2(図3に示すように、間欠連結部31と長さ方向に隣接する間欠連結部32との間の長さ。)は、概ね5~15mmとすることが好ましいが、特にこの範囲には制限されない。1対の光ファイバ心線対(例えば、光ファイバ心線対t1。)における非連結部4の長さ(2つの間欠連結部31の間の長さ方向における長さ。)L3は、概ね、15~65mmとすることが好ましいが、特にこの範囲には制限されない。
また、光ファイバ間欠テープ心線2におけるピッチP(長さ方向に隣り合う間欠連結部31から間欠連結部31(あるいは間欠連結部32から間欠連結部32)の長さを指す。図3では間欠連結部31から間欠連結部31で示している。)は、100mm以下とすることが好ましく、概ね20~90mmとすることが好ましいが、特にこの範囲には制限されない。
(II-a)テープ心線化工程:
本実施形態にあって、テープ心線化工程は、レーザー波長を吸収するレーザー光吸収成分(吸収成分)を含有する樹脂組成物により、並列に配置された光ファイバ心線1の周囲等を一括被覆して光ファイバテープ心線21を製造する工程である。テープ心線化工程により、隣接する光ファイバ心線1の間に、レーザー光吸収成分を含有する樹脂組成物により一括被覆された部分7が存在する(隣接する光ファイバ心線1の間におけるレーザー光吸収成分を含有する樹脂組成物により一括被覆された部分7については、以下、「レーザー光吸収成分を含有する部分7」とする場合もある。)一方、後工程のパルスレーザー光の照射で、かかる部分7のうち非連結部4に対応する部分を切り抜くことにより非連結部4及び間欠連結部3(隣接する光ファイバ心線1の間におけるレーザー光吸収成分を含有する部分7のうち、切り抜かれずに残った部分。)を形成することができる。
本実施形態にあって、テープ心線化工程は、レーザー波長を吸収するレーザー光吸収成分(吸収成分)を含有する樹脂組成物により、並列に配置された光ファイバ心線1の周囲等を一括被覆して光ファイバテープ心線21を製造する工程である。テープ心線化工程により、隣接する光ファイバ心線1の間に、レーザー光吸収成分を含有する樹脂組成物により一括被覆された部分7が存在する(隣接する光ファイバ心線1の間におけるレーザー光吸収成分を含有する樹脂組成物により一括被覆された部分7については、以下、「レーザー光吸収成分を含有する部分7」とする場合もある。)一方、後工程のパルスレーザー光の照射で、かかる部分7のうち非連結部4に対応する部分を切り抜くことにより非連結部4及び間欠連結部3(隣接する光ファイバ心線1の間におけるレーザー光吸収成分を含有する部分7のうち、切り抜かれずに残った部分。)を形成することができる。
レーザー光吸収成分としては、例えば、従来公知の顔料等を用いることができ、シアニン化合物、フタロシアニン化合物、ジチオール金属錯体、ナフトキノン化合物、ジインモニウム化合物、アゾ化合物、ナフタロシアニン化合物、ニッケルジチオレン錯体、スクアリウム色素、キノン系化合物、アゾ化合物、キナクリドン、ジオキザン、ベンスイミダゾロン、カーボンブラック、酸化チタン、ニッケル-鉄フェライト、マンガン-亜鉛フェライト、ニッケル-亜鉛フェライト、銅-亜鉛フェライト等のフェライト化合物、フタロシアニン化合物、ニッケル、鉄粒子、金粒子、銅粒子等を用いることができる。これらの成分は、その1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
レーザー光吸収成分を含有する樹脂組成物にあって、マトリックス材料となる樹脂は、可視光や近赤外領域には吸収がないことから、パルスレーザー光として可視光領域(概ね380nm~780nm)を使用する場合は、例えば、フタロシアニン化合物、キナクリドン、ジオキザン、ベンスイミダゾロン、酸化チタン、金粒子、銅粒子等を用いることが好ましい。近赤外領域(概ね1000nm~2000nm)を使用する場合は、例えば、フタロシアニン化合物、ニッケル、鉄粒子、マンガン-亜鉛フェライト、ニッケル-亜鉛フェライト、銅-亜鉛フェライト、酸化チタン等を用いることが好ましい。
レーザー光吸収成分は、粒子状のほか、球状、粉状、顆粒状等の任意の形状のものを使用することができる、また、レーザー光吸収成分の平均粒子径は、概ね0.01~2μmの範囲内であることが好ましい。平均粒子径の測定は、例えば、透過型電子顕微鏡を用い、所定の倍率(例えば、10万倍。)での観察試料中のレーザー光吸収成分の一次粒子径を測定して、その平均値を用いるようにしてもよい。なお、レーザー光吸収成分の形状が球状でない場合は、長径と短径を測定し、(長径と短径の和)/2により求められる値を平均粒子径としてもよい。
かかるレーザー光吸収成分を含有する樹脂組成物としては、テープ心線化にあって光ファイバ心線1を被覆又は連結する材料の主材料であり、レーザー光吸収成分を含有するマトリックスとなるが、使用可能な樹脂組成物としては、前記した光ファイバ心線1の一次被覆層11等の構成材料等と同様、従来公知の樹脂組成物及びその添加剤混合組成物を使用することができ、例えば、紫外線硬化樹脂等の樹脂等を含む紫外線硬化性樹脂組成物等を使用することができる。具体的には、例えば、オリゴマー、希釈モノマー、光開始剤、シランカップリング剤、増感剤、顔料(及び顔料と樹脂等を混合した着色材)、滑剤等、各種の添加剤等のうち必要な成分を含有した樹脂組成物を好ましく使用することができる。なお、樹脂組成物を紫外線硬化樹脂組成物とすると、テープ心線化工程中の紫外線照射によって容易に樹脂組成物を硬化させることができるため好ましい。
樹脂組成物に対するレーザー光吸収成分の含有量は、樹脂組成物の他の成分の種類等により適宜決定すればよいが、加工対象物(レーザー波長を吸収する成分を含有する樹脂組成物の硬化物等。)を切り抜くためにレーザー光を吸収するために有効となる量であれば特に制限はない。目安として、かかる樹脂組成物の硬化物におけるレーザー波長の吸収率が10%以上になるように含有量を調整することが好ましい。
レーザー加工は、加工対象物がレーザー光を吸収することにより実施されるが、一般に、対象物のレーザー光の吸収率が高いほど、レーザー光が効率よく対象物に吸収され、同様に加工も効率よく実施される。一方、吸収率が低いと、吸収されないレーザー光は、加工対象物の表面上で反射もしくは加工領域で熱的なダメージを発生しやすくなるため好ましくない。レーザー波長の吸収率を10%以上とすることにより、線速を上昇させても光ファイバテープ心線の非連結部4に対応する部分を加工することができる。なお、レーザー波長の吸収率は、15%以上にするのが特に好ましい。
10%以上の吸収率は、例えば、加工対象物について波長が1550nmや1060nmのパルスレーザー光を所定の条件で照射して、吸収率が10%となるような含有量を選定すればよい。レーザー波長の吸収率が10%以上とするには、レーザー光吸収成分を、概ね、レーザー光吸収成分を含有する樹脂組成物全体に対して0.3~5.0質量%とすることが好ましい。含有量が0.3質量%より小さいと、レーザー波長の吸収率を10%以上とするのが困難となり、パルスレーザー光の吸収が良好になされない場合がある。一方、含有量が5.0質量%を超えると、レーザー光の吸収が横ばいとなる一方で、比較的高価なレーザー光吸収成分に起因したコスト高となることが考えられる。また、不必要に着色されることから好ましくない。レーザー光吸収成分は、樹脂組成物全体に対して、1.0~5.0質量%とすることが特に好ましい。
レーザー光吸収成分を含有する樹脂組成物のレーザー波長の吸収率として、例えば、オリゴマーとして、ポリプロピレングリコールを使用したポリオールに芳香族系イソシアネートとヒドロキシエチルアクリレートを付加したオリゴマーを使用し、中間ブロックのポリオール(ポリプロピレングリコール)の分子量を適宜変化させ、二官能モノマーや多官能モノマーを使用した樹脂に下記表1に示した含有量のレーザー光吸収成分を含有させた樹脂組成物を紫外線照射により硬化させたシート硬化物(厚さ:40μm)に対して、レーザー光の波長が1550nmと1060nmのパルスレーザー光を所定の条件で照射した場合の吸収率を表1に示した。
図6は、第1実施形態に係るテープ心線化工程により得られた光ファイバテープ心線21の一態様を示した正面図である。図6に示した構成の光ファイバテープ心線21(間欠連結部3及び非連結部4が形成される前の光ファイバテープ心線を指す。以下同じ。)を製造するテープ心線化工程は、所定の整列手段により、複数本の光ファイバ心線1を集合させて並列させた後、ニップル及びダイスを通過させて、隣接する光ファイバ心線1の間に、レーザー光吸収成分を含有する樹脂組成物(例えば、紫外線硬化樹脂組成物等。)からなる部分を存在させた状態で、当該樹脂組成物を周囲等に塗布した後、かかる樹脂組成物を紫外線照射等の硬化手段によって硬化させることにより行えばよい。
隣接する光ファイバ心線1に対して、レーザー光吸収成分を含有する樹脂組成物により一括被覆を行うことで、断面視でテープ面が平坦形状となるような光ファイバテープ心線21が製造される。なお、樹脂組成物は、図4等に示すように、断面視でテープ面が平坦形状となるように被覆されるようにしてもよく、また、後記する図15等に示すように、各光ファイバ心線1間にくぼみが形成されるように被覆されるようにしてもよい。
(II-b)間欠連結部及び非連結部形成工程:
間欠連結部及び非連結部形成工程(以下、単に「間欠連結部等形成工程」とする場合がある。)では、図6に示すような、テープ心線化された光ファイバテープ心線21(間欠連結部3、非連結部4が形成されていない光ファイバテープ心線。)の隣接する光ファイバ心線1の間に存在する、レーザー光吸収成分を含有する部分7に対してパルスレーザー光を照射して、隣接する光ファイバ心線1が長さ方向に連結されない非連結部4を間欠的に形成する。これにより、切り抜かれずに残った部分は、隣接する光ファイバ心線1を間欠的に連結する間欠連結部3となる。このように、パルスレーザー光の照射によるレーザー加工により、隣接した光ファイバ心線1の間に非連結部4及び間欠連結部3を簡便に形成することにより、光ファイバ心線1の線速や、隣り合う光ファイバ心線1同士を連結するために塗布される樹脂組成物の塗布速度を高速に維持しつつ、間欠連結部3や非連結部4を高速で形成でき、その結果、光ファイバ間欠テープ心線2を高速に製造することができる。
間欠連結部及び非連結部形成工程(以下、単に「間欠連結部等形成工程」とする場合がある。)では、図6に示すような、テープ心線化された光ファイバテープ心線21(間欠連結部3、非連結部4が形成されていない光ファイバテープ心線。)の隣接する光ファイバ心線1の間に存在する、レーザー光吸収成分を含有する部分7に対してパルスレーザー光を照射して、隣接する光ファイバ心線1が長さ方向に連結されない非連結部4を間欠的に形成する。これにより、切り抜かれずに残った部分は、隣接する光ファイバ心線1を間欠的に連結する間欠連結部3となる。このように、パルスレーザー光の照射によるレーザー加工により、隣接した光ファイバ心線1の間に非連結部4及び間欠連結部3を簡便に形成することにより、光ファイバ心線1の線速や、隣り合う光ファイバ心線1同士を連結するために塗布される樹脂組成物の塗布速度を高速に維持しつつ、間欠連結部3や非連結部4を高速で形成でき、その結果、光ファイバ間欠テープ心線2を高速に製造することができる。
本工程にあっては、パルスレーザー光を、レーザー光吸収成分を含有する部分7に対して照射し、かかる部分7のパルスレーザー光の吸収により、光ファイバ間欠テープ心線2の長さ方向と直交方向に切り抜くというレーザー加工を実施する。本発明にあっては、レーザー加工のレーザー光としてパルスレーザー光(例えば、時間幅が0.1~100nsec(秒)程度のレーザー光を指す。以下同じ。)を用いる。一方、パルスレーザー光でなくCO2レーザー光を使用した場合、CO2レーザー光の波長は一般に10.6μmであり遠赤外領域(概ね3~1000μm)になるため、樹脂組成物や光ファイバのガラスに吸収されることになる。加えて、CO2レーザー光を使用した場合は、レーザー光のビームスポットが70~120μmと大きく、光ファイバ心線1間のみではなく、光ファイバ10自体にダメージを与えてしまうため好ましくない。一方、レーザー光としてパルスレーザー光を用いた場合、ビームスポット(切り抜き幅にも対応する。)は概ね8~15μmに抑えられ、加工幅(切り抜き幅)の細幅化を図ることができ、また、これらの調整も容易となる。
パルスレーザー光の照射は、レーザー光吸収成分によるパルスレーザー光の吸収による切り抜き(レーザー加工)による非連結部4の形成が効率よく実施されるよう、波長としては、概ね500~2000nmの波長を有するのが好ましい。なお、前記したCO2レーザー光によるレーザー加工は、一般に遠赤外線領域であり、パルスレーザー光の範囲より長い波長を用いている。本発明にあっては、例えば、波長が1550nmや、1060nm等のパルスレーザー光等を好ましく用いることができる。
パルスレーザー光の照射による加工幅(切り抜き幅)は、非連結部4の幅とも対応するが、概ね8~15μmとすることが好ましい。切り抜き幅をかかる範囲とすることにより、非連結部4の形成を効率よく実施することができるとともに、光ファイバ心線1等の損傷を抑えることができる。なお、パルスレーザー光の照射に必要な諸条件としては、例えば、下記の範囲内にすることができるが、これには限定されない。
パルス出力:1~100W
パルス幅:0.1~100ns
周波数(繰り返し周波数):10~1000kHz
パルス出力:1~100W
パルス幅:0.1~100ns
周波数(繰り返し周波数):10~1000kHz
パルスレーザー光の照射は、従来公知のパルスレーザー光照射装置を用いることができるが、本発明にあっては、ファイバ型パルスレーザーを備えた装置を使用することが好ましい。ファイバ型パルスレーザーは、半導体レーザーからの出力光パルスを図示しないファイバ型光増幅器により増幅するMOPA(Master Oscillator Power Amplifier)構成等が採用される。シード光源を選択及び制御することで、レーザーの出力特性(パルス幅、繰り返し周波数等。)を広範囲に可変できることや、また、ファイバ型増幅器を多段に繋げることで高出力化できる、等の利点がある。
なお、ファイバ型パルスレーザーとしては、例えば、「レーザー学会第482回研究会ファイバレーザー技術」において、「1.5μm帯ナノ秒パルスレーザーの開発」で報告しているファイバ型パルスレーザーや、古河電工時報131号、「ナノ秒ファイバ型パルスレーザーの開発」等で報告されている(ナノ秒)ファイバ型パルスレーザーを使用するようにしてもよい。
ファイバ型パルスレーザー等は、波長が1550nmや1060nmの半導体レーザーを専用の駆動回路を用いて直接変調駆動させた光パルスを生成し、半導体レーザーから出力された光パルスは、2段のエルビウム添加ファイバ増幅器により増幅される。ブースターアンプには、ファイバ中の非線形現象の影響を抑えるため、高次モード伝搬を活用するエルビウム添加HOM(High Order Mode)ファイバを採用している。
図7は、第1実施形態に係る間欠連結部等形成工程の実施を模式的に示した説明図である(図の上段が「パルスレーザー光照射前」、下段が「パルスレーザー光照射後」を示している。後記する図9及び図14も同様。)。なお、図7では、便宜上、光ファイバ心線1が4心の光ファイバテープ心線21及び光ファイバ間欠テープ心線2を例示し、長さ方向に対して所定の断面に対して形成される非連結部4や間欠連結部3、及びかかる非連結部4等の形成に対応するパルスレーザー光照射装置5等を示している(これも、後記する図9及び図14も同様。)。
間欠連結部等形成工程を実施するには、例えば、テープ心線化された光ファイバテープ心線21(間欠連結部3及び非連結部4が形成されていない。)を長さ方向に進行させ、光ファイバテープ心線21のテープ面法線方向から、パルスレーザー光照射装置5により、隣接する光ファイバ心線1の間に存在するレーザー光吸収成分を含有する部分における非連結部4を形成しようとする部分に対して、パルスレーザー光を照射するようにすればよい。
光ファイバテープ心線21は、レーザー光吸収成分を含有する樹脂組成物で一括被覆されてテープ心線化されているため、長さ方向に進行させながら隣接する光ファイバ心線1の間のレーザー光吸収成分を含有する部分7のうち非連結部4を形成しようとする部分に対してパルスレーザー光を照射することにより、かかる部分がパルスレーザー光を吸収し、長さ方向と直交方向に切り抜きが入るようにレーザー加工される。この結果、図3に示したように、隣接する光ファイバ心線1が長さ方向に連結されない部分である非連結部4が形成され、光ファイバ間欠テープ心線2となる。
また、このように非連結部4が形成されることにより、隣接する光ファイバ心線1の間の非連結部4が形成されていない部分は、隣接する光ファイバ心線1を長さ方向に間欠的に連結する間欠連結部3となる。
なお、図6に示すように、レーザー光吸収成分を含有する樹脂組成物により一括被覆された部分7(レーザー光吸収成分を含有する部分7)は、光ファイバテープ心線21の長さ方向(光ファイバ心線1の長さ方向とも共通。)に連続して形成されているので、光ファイバテープ心線21を長さ方向に進行させながら、非連結部4を形成するためのパルスレーザー光の照射は、非連結部4を形成する部分を狙って間欠的に実施することが好ましい。この点、後記する実施形態の変形について説明する、非連結部4を形成するためのパルスレーザー光の照射も同様である。
(III)発明の効果:
以上説明した本発明に係る光ファイバ間欠テープ心線2の製造方法は、間欠接着されていない光ファイバテープ心線21に対し、パルスレーザー光の照射によるレーザー加工により、テープ心線化された隣接した光ファイバ心線1の間に非連結部4及び間欠連結部3を簡便に形成することができるため、光ファイバ心線1の線速や隣り合う光ファイバ心線1同士を連結するために塗布される樹脂組成物の塗布速度を高速に維持しつつ、間欠連結部3や非連結部4を高速で形成可能な、間欠連結型の光ファイバ間欠テープ心線2の製造方法を提供することができる。
以上説明した本発明に係る光ファイバ間欠テープ心線2の製造方法は、間欠接着されていない光ファイバテープ心線21に対し、パルスレーザー光の照射によるレーザー加工により、テープ心線化された隣接した光ファイバ心線1の間に非連結部4及び間欠連結部3を簡便に形成することができるため、光ファイバ心線1の線速や隣り合う光ファイバ心線1同士を連結するために塗布される樹脂組成物の塗布速度を高速に維持しつつ、間欠連結部3や非連結部4を高速で形成可能な、間欠連結型の光ファイバ間欠テープ心線2の製造方法を提供することができる。
また、前記の製造方法で得られた光ファイバテープ心線1は、パルスレーザー光の照射によって非連結部4及び間欠連結部3が形成されており、高密度実装時のケーブル特性を損なうことなく、中間分岐を確実に実行できるとともに一括接続時の作業性を確保できる間欠連結型の光ファイバ間欠テープ心線2となる。
(IV)光ファイバ間欠テープ心線2の構成及びその製造(第2実施形態):
次に、本発明の第2実施形態について説明する。本実施形態の製造対象となる光ファイバ間欠テープ心線2も、第1実施形態と同様、光ファイバ心線1を複数本並列に配置して、隣接する光ファイバ心線1を長さ方向に間欠的に連結する間欠連結部3、及び隣接する光ファイバ心線1が長さ方向に間欠的に連結されない非連結部4、を形成することにより製造されるものである。前記した第1実施形態では、レーザー光吸収成分を含有する部分の形成として、テープ心線化工程において、並列に配置された光ファイバ心線1の周囲やその間を、レーザー光吸収成分を含有する樹脂組成物で一括被覆した態様を用いて説明した。
次に、本発明の第2実施形態について説明する。本実施形態の製造対象となる光ファイバ間欠テープ心線2も、第1実施形態と同様、光ファイバ心線1を複数本並列に配置して、隣接する光ファイバ心線1を長さ方向に間欠的に連結する間欠連結部3、及び隣接する光ファイバ心線1が長さ方向に間欠的に連結されない非連結部4、を形成することにより製造されるものである。前記した第1実施形態では、レーザー光吸収成分を含有する部分の形成として、テープ心線化工程において、並列に配置された光ファイバ心線1の周囲やその間を、レーザー光吸収成分を含有する樹脂組成物で一括被覆した態様を用いて説明した。
一方、第2実施形態にあっては、並列に配置された光ファイバ心線1を、樹脂組成物によってテープ心線化し(テープ心線化工程)、レーザー光吸収成分を含有しない樹脂組成物によって一括被覆された部分7’を形成した後、少なくとも隣接する光ファイバ心線1の間に、レーザー光吸収成分を含有する樹脂組成物が存在するレーザー光吸収部6(第1実施形態における、隣接する光ファイバ心線1の間に存在される、レーザー光吸収成分を含有する部分7に相当する。)を形成する(レーザー光吸収部形成工程)点で、第1実施形態と相違する。
そして、第2実施形態では、レーザー光吸収部6が形成された後、レーザー光吸収部6に対してパルスレーザー光を照射し、隣接する光ファイバ心線1が長さ方向に連結されない非連結部4を間欠的に形成することにより、切り抜かれずに残った部分となる間欠連結部3を形成する(間欠連結部等形成工程)。
なお、前記した第1実施形態と略共通する効果を奏する本実施形態及び後記する変形態様等の説明に際して、前記した第1実施形態と同様の構造及び共通する部材には共通する符号を付して、その詳細な説明は省略または簡略化する。また、本実施形態で製造される光ファイバ間欠テープ心線2は、図3から図5に示した光ファイバ間欠テープ心線2と外見上は共通し、レーザー光吸収成分を含有する樹脂組成物によって一括被覆された部分7が、レーザー光吸収成分を含有しない樹脂組成物によって一括被覆された部分7’となる点が相違している。
テープ心線化工程に関し、並列に配置された光ファイバ心線1を被覆する材料としては、光ファイバ間欠テープ心線2の製造に用いられる従来公知の樹脂組成物を使用することができ、例えば、第1実施形態で説明したレーザー光吸収成分を含有する樹脂組成物を構成する樹脂等を好ましく使用することができる。また、樹脂組成物に添加される添加剤についても、同様に、第1実施形態で挙げた添加剤を使用することができる。なお、「レーザー光吸収成分を含有しない樹脂組成物」は、レーザー光吸収成分を積極的に含有させようとしないことを指し、レーザー光の吸収を目的としない等により、前記した吸収成分と共通又は類似する成分を含有させることを排除するものではない。
また、レーザー光吸収部6は、前記した第1実施形態で示したレーザー光吸収成分及び樹脂組成物等を好ましく使用することができる。また、樹脂組成物に添加される添加剤についても、同様に、第1実施形態で挙げた添加剤を使用することができる。
レーザー光吸収部6は、レーザー光吸収成分を含有する樹脂組成物を、少なくとも隣接する光ファイバ心線1の間を形成することによりなる。かかるレーザー光吸収部6は、光ファイバ心線1の長さ方向に連続的に形成するようにしてもよいが、非連結部4が形成される部分に相当する部分に形成すればよく、例えば、光ファイバ心線1の長さ方向に間欠的に形成することが好ましい。レーザー光吸収部6を長さ方向に間欠的に形成することにより、レーザー光吸収成分を含有する樹脂組成物の使用を最小限に抑えることができる等、コストダウンを図ることができる。
図8は、第2実施形態に係るレーザー光吸収部形成工程により得られた光ファイバテープ心線21を示した正面図である。なお、図8には、レーザー光吸収部6は、光ファイバ心線1(光ファイバテープ心線21)の長さ方向に間欠的に形成されている構成を示している。
本実施形態に係る光ファイバ間欠テープ心線2の製造は、まず、レーザー光吸収成分を含有しない樹脂組成物を用いて、前記した第1実施形態と同様な方法で、光ファイバ心線1をテープ心線化し、レーザー光吸収成分を含有しない樹脂組成物によって一括被覆された部分7’を形成する。次いで、塗布ロール等により、レーザー光吸収成分を含有した紫外線硬化樹脂組成物等の樹脂組成物を、非連結部4を形成しようとする部分を含む所望の部分に塗布等させ、必要により塗布等された樹脂組成物を紫外線照射等で硬化させる。これにより、図8に正面図を示した、レーザー光吸収部6が形成された光ファイバテープ心線21となる。
レーザー光吸収部6の形成は、このように、レーザー光吸収成分を含有する樹脂組成物を塗布することによって形成されることが好ましい。レーザー光吸収部6を塗布によって形成することにより、作業が簡便となり、かつ、確実に効率よくレーザー光吸収部6を形成することができる。
図9は、第2実施形態に係る間欠連結部等形成工程の実施を模式的に示した説明図である。間欠連結部等形成工程を実施するには、例えば、図9に示したような、レーザー光吸収成分を含有しない樹脂組成物によって一括被覆された部分7’及びレーザー光吸収部6が形成された光ファイバテープ心線21を長さ方向に進行させ、光ファイバテープ心線21のテープ面法線方向から、パルスレーザー光照射装置5により、隣接する光ファイバ心線1の間の、レーザー光吸収部6(非連結部4を形成しようとする部分となる。)に対してパルスレーザー光を照射するようにすればよい。
隣接する光ファイバ心線1の間のレーザー光吸収部6に対してパルスレーザー光を照射することにより、レーザー光吸収部6に沿って長さ方向と直交方向に切り抜きが入るようにレーザー加工される。これにより、第1実施形態と同様、図3から図5に示すような、隣接する光ファイバ心線1が長さ方向に連結されない部分である非連結部4が形成される(図3から図5に示すように、非連結部4が形成される。)。なお、実際の製造に際しては、レーザー光吸収部6が光ファイバ間欠テープ心線2の表面に残存している場合もあるが、図3から図5、図9の下段ではかかる残存したレーザー光吸収部6は図示していない。
また、このように非連結部4が形成されることにより、隣接する光ファイバ心線1の間の非連結部4が形成されていない部分は、隣接する光ファイバ心線1を長さ方向に間欠的に連結する間欠連結部3となり、これは第1実施形態と同様である(図3から図5に示すように、間欠連結部3が形成される。)。
なお、間欠連結部等形成工程で実施されるパルスレーザー光の照射に関する諸条件等については、第1実施形態の(II―b)と内容を共通するので、説明を省略する。
また、図8に示すように、レーザー光吸収部6は光ファイバテープ心線21の長さ方向に間欠的に形成されているが、光ファイバテープ心線21のその他の部分は、レーザー光吸収成分が存在せずパルスレーザー光を吸収しない。したがって、パルスレーザー光の照射は、長さ方向に対して連続的に照射するようにしても光ファイバ間欠テープ心線2を製造することができる。
(V)実施形態の変形(変形態様):
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。本発明は前記した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本発明に含まれるものである。
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。本発明は前記した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本発明に含まれるものである。
例えば、前記した第1実施形態では、レーザー光吸収成分を含有する部分7の形成として、テープ心線化工程において、並列に配置された光ファイバ心線1の周囲やその間を、レーザー光吸収成分を含有する樹脂組成物で一括被覆した態様を用いて説明した。
一方、第1実施形態に係る製造方法にあっては、テープ心線化工程において、並列に配置された光ファイバ心線1の周囲等を、レーザー光吸収成分を含有する樹脂組成物で一括被覆することは必須でなく、例えば、隣接する光ファイバ心線1を、レーザー光吸収成分を含有する樹脂組成物で連結された部分7aを形成することによりテープ心線化する下記の変形態様も、第1実施形態に係る製造方法に含まれる。
図10は、第1実施形態の変形態様に係る製造方法により製造された光ファイバ間欠テープ心線2を示した正面図である。また、図11は、図10のA-A断面図、図12は、図10のB-B断面図、をそれぞれ示す。
図10から図12に示す光ファイバ間欠テープ心線2は、並列に配置された光ファイバ心線1について、隣接する光ファイバ心線1の間に、レーザー光吸収成分を含有する樹脂組成物により連結された部分7a(レーザー光吸収成分を含有する部分)(かかる連結された部分7aについては後記する図13や図14の上段を参照。)が介在され、かかる連結された部分7aによって隣接する光ファイバ心線1を連結する間欠連結部3と、パルスレーザー光の照射によって、長さ方向に間欠的に切り抜かれた非連結部4が形成されている。
また、図13は、第1実施形態の変形態様に係るテープ心線化工程により得られた光ファイバテープ心線21の一態様を示した正面図である。
本変形態様に係るテープ心線化工程では、並列に配置された光ファイバ心線1について、隣接する光ファイバ心線1の間に、レーザー光吸収成分を含有した紫外線硬化樹脂組成物等の樹脂組成物を塗布した後、所定の条件で硬化させることにより、図13に示した構成の光ファイバテープ心線21を得ることができる。
例えば、複数本の光ファイバ心線1を、それぞれの塗布ロールに接触させて、光ファイバ心線1の側面にレーザー光吸収成分を含有する紫外線硬化樹脂組成物等樹脂組成物に塗布する一方、整列手段で、側面にかかる樹脂組成物が塗布された光ファイバ心線1の側面同士が接触するように整列し、樹脂組成物を紫外線照射等で硬化させることにより、並列に配置された光ファイバ心線1について、隣接する光ファイバ心線1の間が、レーザー光吸収成分を含有した樹脂組成物により連結された部分7aを有する光ファイバテープ心線21を得ることができる。
図14は、第1実施形態の変形態様に係る間欠連結部等形成工程の実施を模式的に示した説明図である。本変形態様で間欠連結部等形成工程を実施するには、第1実施形態と同様、図13に示す構成の、テープ心線化された光ファイバテープ心線21を長さ方向に進行させ、光ファイバテープ心線21のテープ面法線方向から、パルスレーザー光照射装置5により、レーザー光吸収成分を含有した樹脂組成物により連結された部分7aの、非連結部4を形成しようとする部分に対してパルスレーザー光を照射するようにすればよい。
隣接する光ファイバ心線1の間における、かかる連結された部分7aの非連結部4を形成しようとする部分に対してパルスレーザー光を照射することにより、かかる部分が長さ方向と直交方向に切り抜きが入るようにレーザー加工され、隣接する光ファイバ心線1が長さ方向に連結されない部分である非連結部4が形成されることになる。
また、このように非連結部4が形成されることにより、レーザー光吸収成分を含有した樹脂組成物により連結された部分7aのうち、非連結部4が形成されていない部分は、隣接する光ファイバ心線1を長さ方向に間欠的に連結する間欠連結部3となる。
なお、以上に説明した実施形態では、光ファイバ間欠テープ心線2を構成する光ファイバ心線1の例として、図2に示した構成の光ファイバ着色心線1を図4等に図示して説明したが、光ファイバ心線1として、図1に示した、着色層13が形成された構成の光ファイバ着色心線1を用いてもよい。
前記した実施形態では、光ファイバテープ心線21や光ファイバ間欠テープ心線2は、図4等に示すように、樹脂組成物により断面視でテープ面が平坦形状となるように被覆され、レーザー光吸収成分を含有する樹脂組成物により一括被覆された部分7等が形成される態様を示して説明した。一方、光ファイバテープ心線21等については、図4等に示した構造に限定されず、例えば、樹脂組成物により、隣接する光ファイバ心線1間にくぼみが形成されるように被覆されるようにしてもよい。
図15は、光ファイバテープ心線21の他の態様の断面構造を示した図、図16は、光ファイバ間欠テープ心線2の他の態様の断面構造を示した図、である。なお、図15や図16にあっては、便宜上、4心の光ファイバ心線1として説明している。
図15に示した光ファイバテープ心線21は、図4等に示した光ファイバテープ心線21と比較して、レーザー加工される長さ(深さ)が短くなるので、加工がより簡便に実施され、図16に示した光ファイバ間欠テープ心線2を効率よく製造することが可能となる。また、被覆のために使用される樹脂組成物の量を少なくすることができるため、コスト削減にも繋がる。なお、図15に示した光ファイバテープ心線21について、レーザー光吸収成分を含有する樹脂組成物により一括被覆された部分7を、レーザー光吸収成分を含有しない樹脂組成物により一括被覆された部分7’とした上で、隣接する光ファイバ心線1の間に図示しないレーザー光吸収部6を形成して、第2実施形態で説明した製造方法で使用して、図16に示す光ファイバ間欠テープ心線2を得るようにしてもよい。
その他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
その他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
本発明は、高密度実装時のケーブル特性を損なうことがない光ファイバテープ心線を提供する手段として有効に利用することができ、産業上の利用可能性は高い。
1 …… 光ファイバ心線(光ファイバ着色心線)
1a~1h …… 光ファイバ心線(光ファイバ着色心線)
10 …… 光ファイバ(ガラス光ファイバ)
11 …… 一次被覆層(プライマリ層)
12 …… 二次被覆層(セカンダリ層)
12a …… 着色された二次被覆層
13 …… 着色層
2 …… 光ファイバ間欠テープ心線
21 …… 光ファイバテープ心線
3 …… 間欠連結部
31,32 …… 間欠連結部
4 …… 非連結部(単心部)
5 …… パルスレーザー光照射装置
6 …… レーザー光吸収部
7 …… レーザー光吸収成分を含有する樹脂組成物により一括被覆された部分(レーザー光吸収成分を含有する部分)
7’ …… レーザー光吸収成分を含有しない樹脂組成物により一括被覆された部分
7a …… レーザー光吸収成分を含有する樹脂組成物により連結された部分
t1~t7 …… 光ファイバ心線対
1a~1h …… 光ファイバ心線(光ファイバ着色心線)
10 …… 光ファイバ(ガラス光ファイバ)
11 …… 一次被覆層(プライマリ層)
12 …… 二次被覆層(セカンダリ層)
12a …… 着色された二次被覆層
13 …… 着色層
2 …… 光ファイバ間欠テープ心線
21 …… 光ファイバテープ心線
3 …… 間欠連結部
31,32 …… 間欠連結部
4 …… 非連結部(単心部)
5 …… パルスレーザー光照射装置
6 …… レーザー光吸収部
7 …… レーザー光吸収成分を含有する樹脂組成物により一括被覆された部分(レーザー光吸収成分を含有する部分)
7’ …… レーザー光吸収成分を含有しない樹脂組成物により一括被覆された部分
7a …… レーザー光吸収成分を含有する樹脂組成物により連結された部分
t1~t7 …… 光ファイバ心線対
Claims (8)
- 複数本の光ファイバ心線が並列に配置され、隣接する前記光ファイバ心線を長さ方向に間欠的に連結する間欠連結部が形成された光ファイバ間欠テープ心線の製造方法であって、
前記光ファイバ心線をテープ心線化する工程と、
隣接する前記光ファイバ心線の間に対して、パルスレーザー光を照射し、隣接する前記光ファイバ心線が長さ方向に連結されない非連結部を間欠的に形成することにより、前記間欠連結部を形成する工程と、
を含むことを特徴とする光ファイバ間欠テープ心線の製造方法。 - 前記光ファイバ心線をテープ心線化する工程が、前記光ファイバ心線を、レーザー波長を吸収するレーザー光吸収成分を含有する樹脂組成物によってテープ心線化する工程であることを特徴とする請求項1に記載の光ファイバ間欠テープ心線の製造方法。
- 複数本の光ファイバ心線が並列に配置され、隣接する前記光ファイバ心線を長さ方向に間欠的に連結する間欠連結部が形成された光ファイバ間欠テープ心線の製造方法であって、
前記光ファイバ心線をテープ心線化する工程と、
少なくとも隣接する前記光ファイバ心線の間に、レーザー波長を吸収するレーザー光吸収成分を含有する樹脂組成物が存在するレーザー光吸収部を形成する工程と、
前記レーザー光吸収部に対してパルスレーザー光を照射し、隣接する前記光ファイバ心線が長さ方向に連結されない非連結部を間欠的に形成することにより、前記間欠連結部を形成する工程と、
を含むことを特徴とする光ファイバ間欠テープ心線の製造方法。 - 前記レーザー光吸収部を、前記光ファイバ心線の長さ方向に間欠的に形成することを特徴とする請求項3に記載の光ファイバ間欠テープ心線の製造方法。
- 前記レーザー光吸収部は、レーザー波長を吸収するレーザー光吸収成分を含有する樹脂組成物を塗布することによって形成されることを特徴とする請求項3または請求項4に記載の光ファイバ間欠テープ心線の製造方法。
- 前記レーザー波長を吸収するレーザー光吸収成分の含有量が、前記レーザー光吸収成分を含有する樹脂組成物全体に対して0.3~5.0質量%であることを特徴とする請求項2ないし請求項5のいずれかに記載の光ファイバ間欠テープ心線の製造方法。
- 前記パルスレーザー光の波長が500~2000nmであることを特徴とする請求項1ないし請求項6のいずれかに記載の光ファイバ間欠テープ心線の製造方法。
- 請求項1ないし請求項7のいずれかに記載の光ファイバ間欠テープ心線の製造方法によって製造され、パルスレーザー光の照射によって非連結部が間欠的に形成されていることを特徴とする光ファイバ間欠テープ心線。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780064491.8A CN109844597B (zh) | 2016-12-20 | 2017-12-19 | 光纤间歇带芯线的制造方法和光纤间歇带芯线 |
JP2018557987A JP7097303B2 (ja) | 2016-12-20 | 2017-12-19 | 光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線 |
EP17882406.6A EP3561564A4 (en) | 2016-12-20 | 2017-12-19 | FIBER OPTIC INTERMITTENT BAND CORE AND FIBER OPTIC INTERMITTENT BAND CORE MANUFACTURING PROCESS |
US16/428,739 US11036024B2 (en) | 2016-12-20 | 2019-05-31 | Method for manufacturing intermittent bonding type optical fiber ribbon and intermittent bonding type optical fiber ribbon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016246995 | 2016-12-20 | ||
JP2016-246995 | 2016-12-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/428,739 Continuation US11036024B2 (en) | 2016-12-20 | 2019-05-31 | Method for manufacturing intermittent bonding type optical fiber ribbon and intermittent bonding type optical fiber ribbon |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018117068A1 true WO2018117068A1 (ja) | 2018-06-28 |
Family
ID=62626417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045432 WO2018117068A1 (ja) | 2016-12-20 | 2017-12-19 | 光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11036024B2 (ja) |
EP (1) | EP3561564A4 (ja) |
JP (1) | JP7097303B2 (ja) |
CN (1) | CN109844597B (ja) |
WO (1) | WO2018117068A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020003620A (ja) * | 2018-06-27 | 2020-01-09 | 株式会社フジクラ | 間欠連結型光ファイバテープ、及び間欠連結型光ファイバテープの製造方法 |
WO2021019908A1 (ja) * | 2019-07-26 | 2021-02-04 | 住友電気工業株式会社 | 光ファイバリボン及び光ファイバケーブル |
WO2021084640A1 (ja) * | 2019-10-30 | 2021-05-06 | 株式会社フジクラ | 間欠連結型光ファイバテープ、及び間欠連結型光ファイバテープの製造方法 |
WO2022025116A1 (ja) * | 2020-07-29 | 2022-02-03 | 住友電気工業株式会社 | 間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線 |
JP7052100B1 (ja) | 2021-01-25 | 2022-04-11 | 古河電気工業株式会社 | 光ファイバテープ心線 |
JP2022108476A (ja) * | 2021-01-13 | 2022-07-26 | 古河電気工業株式会社 | 光ファイバテープ心線及び光ファイバケーブル |
WO2023195131A1 (ja) * | 2022-04-07 | 2023-10-12 | 古河電気工業株式会社 | 光ファイバテープ心線 |
US11914186B2 (en) | 2018-04-16 | 2024-02-27 | Sumitomo Electric Industries, Ltd. | Optical fiber |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7157026B2 (ja) * | 2019-09-12 | 2022-10-19 | 株式会社フジクラ | 光ファイバ整列方法、光ファイバ融着方法、コネクタ付き光ファイバテープの製造方法及び間欠連結型の光ファイバテープ |
TWI739195B (zh) * | 2019-11-04 | 2021-09-11 | 日商藤倉股份有限公司 | 間斷連結型光纖膠帶,及間斷連結型光纖膠帶的製造方法 |
US11592631B2 (en) * | 2020-03-04 | 2023-02-28 | Sterlite Technologies Limited | Optical fibre ribbon having bond shape |
EP4237893A1 (en) * | 2020-10-29 | 2023-09-06 | Corning Research & Development Corporation | Intermittently bonded optical fiber ribbon with joining ribbon matrices |
WO2023091302A1 (en) * | 2021-11-18 | 2023-05-25 | Corning Research & Development Corporation | Intermittently bonded optical fiber ribbon and method of preparing same |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5117519B1 (ja) | 1975-02-28 | 1976-06-02 | ||
JPH01138516A (ja) * | 1987-11-26 | 1989-05-31 | Sumitomo Electric Ind Ltd | テープ状光ファイバ心線の製造装置 |
JP2001264604A (ja) | 2000-03-21 | 2001-09-26 | Fujikura Ltd | 光ファイバテープ心線の製造装置 |
US20010048797A1 (en) * | 2000-03-14 | 2001-12-06 | Van Dijk Saskia I. | Fully indentifiable optical fiber assemblies |
US20040001678A1 (en) * | 2002-06-28 | 2004-01-01 | Chiasson David W. | Optical components having improved print permanence |
JP2008505360A (ja) * | 2004-06-30 | 2008-02-21 | コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー | 断続的プロファイルを備えた光ファイバアレイ及びその製造方法 |
JP2008311120A (ja) * | 2007-06-15 | 2008-12-25 | Hitachi Cable Fine Tech Ltd | 信号伝送用ケーブル及び多心ケーブル |
JP2010033010A (ja) | 2008-06-23 | 2010-02-12 | Fujikura Ltd | 光ファイバテープ心線の製造方法及びその製造装置 |
JP2012252196A (ja) | 2011-06-03 | 2012-12-20 | Fujikura Ltd | 光ファイバテープ心線の製造方法 |
JP2012252815A (ja) * | 2011-06-01 | 2012-12-20 | Nissei Electric Co Ltd | 同軸ケーブル |
JP2016142948A (ja) * | 2015-02-03 | 2016-08-08 | 住友電気工業株式会社 | 光ケーブル及びその製造方法 |
JP2018010239A (ja) * | 2016-07-15 | 2018-01-18 | 住友電気工業株式会社 | 間欠連結型光ファイバテープ心線の製造方法および製造装置 |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751613A (en) * | 1986-05-28 | 1988-06-14 | Adc Telecommunications, Inc. | Low RF emission fiber optic transmission system |
US4980007A (en) * | 1989-07-14 | 1990-12-25 | At&T Bell Laboratories | Methods of fabricating an optical fiber ribbon |
US5076881A (en) * | 1989-07-14 | 1991-12-31 | At&T Bell Laboratories | Apparatus for fabricating an optical fiber ribbon |
US5412497A (en) * | 1992-02-24 | 1995-05-02 | Fujitsu Limited | Optical communication device with optical modules and optical fiber supporting plates |
FR2694417B1 (fr) * | 1992-07-31 | 1994-09-16 | Alcatel Cable | Ruban de fibres optiques individualisées. |
DK0842446T3 (da) * | 1995-08-01 | 2002-03-04 | Dsm Nv | Båndenhed, fremgangsmåde til fremstilling af båndenheden samt fremgangsmåde til tilvejebringelse af midterspændende adgang |
US5920664A (en) * | 1996-06-03 | 1999-07-06 | Nippon Telegraph And Telephone Corporation | Board-to-board and unit-to-unit optical interconnection system |
US6392241B1 (en) * | 1996-07-10 | 2002-05-21 | Packard Instrument Company, Inc. | Fiber optic coupling device for detecting fluorescence samples |
WO2000013054A1 (en) * | 1998-09-02 | 2000-03-09 | The Whitaker Corporation | Transceiver housing and ejection mechanism therefore |
US20020030872A1 (en) * | 1999-05-27 | 2002-03-14 | Edwin Dair | Method and apparatus for multiboard fiber optic modules and fiber optic module arrays |
US20040069997A1 (en) * | 1999-05-27 | 2004-04-15 | Edwin Dair | Method and apparatus for multiboard fiber optic modules and fiber optic module arrays |
US7116912B2 (en) * | 1999-05-27 | 2006-10-03 | Jds Uniphase Corporation | Method and apparatus for pluggable fiber optic modules |
US6952532B2 (en) * | 1999-05-27 | 2005-10-04 | Jds Uniphase Corporation | Method and apparatus for multiboard fiber optic modules and fiber optic module arrays |
US20020033979A1 (en) * | 1999-05-27 | 2002-03-21 | Edwin Dair | Method and apparatus for multiboard fiber optic modules and fiber optic module arrays |
JP2001159722A (ja) * | 1999-12-02 | 2001-06-12 | Sumitomo Electric Ind Ltd | 多心光ファイバおよび多心光ファイバ製造方法 |
US6305848B1 (en) * | 2000-06-19 | 2001-10-23 | Corona Optical Systems, Inc. | High density optoelectronic transceiver module |
US20020008463A1 (en) * | 2000-06-22 | 2002-01-24 | Roach William R. | Display device and module therefor |
US6584257B1 (en) * | 2000-12-27 | 2003-06-24 | Corning Cable Systems, Llc | Fiber optic assembly and method of making same |
US6731844B2 (en) * | 2001-06-21 | 2004-05-04 | Corning Cable Systems Llc | Identification of optical ribbons |
US6678449B2 (en) * | 2001-07-10 | 2004-01-13 | Alcatel | Visibly distinguishable colored optical fiber ribbons |
US6654515B2 (en) * | 2001-09-17 | 2003-11-25 | Aica Kogyo Co., Ltd. | Photoelectric back plane board and information processing system |
US6850671B2 (en) * | 2002-03-15 | 2005-02-01 | Sharon Carnevale | Optical circuit having legs in a stacked configuration and an associated fabrication method |
TW587181B (en) * | 2002-04-19 | 2004-05-11 | Alliance Fiber Optic Prod Inc | Manufacturing method and device of array fiber module |
US6958908B2 (en) * | 2003-05-30 | 2005-10-25 | Hubbell Incorporated | Compact enclosure for interchangeable SONET multiplexer cards and methods for using same |
US6868219B2 (en) * | 2003-05-30 | 2005-03-15 | Hubbell Incorporated | SONET multiplexer having front panel access to electrical and optical connectors and method for using same |
US7130498B2 (en) * | 2003-10-16 | 2006-10-31 | 3M Innovative Properties Company | Multi-layer optical circuit and method for making |
US7216512B2 (en) * | 2003-10-31 | 2007-05-15 | Corning Cable Systems, Llc | Method of making an optical fiber by laser cleaving |
JP4555631B2 (ja) * | 2004-08-27 | 2010-10-06 | 富士通株式会社 | 光伝送回路装置 |
CN101779152A (zh) * | 2007-05-31 | 2010-07-14 | 莫列斯公司 | 光带及其形成方法 |
CN102057309B (zh) * | 2008-06-30 | 2014-04-16 | 日本电信电话株式会社 | 光纤缆线以及光纤带 |
EP2459343B1 (en) | 2009-07-28 | 2020-06-17 | 3M Innovative Properties Company | Coated abrasive article and methods of ablating coated abrasive articles |
JP5117519B2 (ja) | 2010-02-16 | 2013-01-16 | 古河電気工業株式会社 | 光ファイバテープ心線及び光ファイバケーブル |
JP5227996B2 (ja) * | 2010-04-05 | 2013-07-03 | 株式会社フジクラ | 光ファイバテープ心線、光ファイバケーブル及び配線形態 |
JP5309098B2 (ja) * | 2010-08-19 | 2013-10-09 | 株式会社フジクラ | 光ファイバテープの製造方法及びこの製造方法を実行する光ファイバテープの製造装置並びにこの製造方法により製造された光ファイバテープ |
JP5789381B2 (ja) * | 2011-02-23 | 2015-10-07 | 株式会社フジクラ | 光ファイバテープ心線の製造方法、製造装置、及びその製造方法で製造された光ファイバテープ心線並びに光ファイバケーブル |
JP4968754B1 (ja) * | 2011-03-30 | 2012-07-04 | 昭和電線ケーブルシステム株式会社 | 光ファイバテープ心線および光ケーブル |
JP5564026B2 (ja) * | 2011-10-18 | 2014-07-30 | 株式会社フジクラ | 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル |
JP2014059479A (ja) * | 2012-09-18 | 2014-04-03 | Fujitsu Ltd | 光コネクタの製造方法及び光コネクタ |
US20150030296A1 (en) | 2012-10-03 | 2015-01-29 | Sumitomo Electric Industries, Ltd. | Optical fiber ribbon |
JP2014211512A (ja) * | 2013-04-18 | 2014-11-13 | 住友電気工業株式会社 | 光ファイバコード |
JP6264832B2 (ja) * | 2013-10-24 | 2018-01-24 | 富士通株式会社 | 光コネクタ、これを用いた電子機器、及び光コネクタの実装方法 |
US9389382B2 (en) * | 2014-06-03 | 2016-07-12 | Corning Optical Communications LLC | Fiber optic ribbon cable and ribbon |
US9405086B2 (en) * | 2014-09-25 | 2016-08-02 | Tyco Electronics Corporation | Organizer tray, fiber-routing assembly, and electro-optical module |
JP6412779B2 (ja) * | 2014-11-20 | 2018-10-24 | 株式会社フジクラ | 光ファイバテープ心線、光ファイバケーブル、および、光ファイバテープ心線の製造方法 |
WO2017095541A1 (en) * | 2015-11-30 | 2017-06-08 | Corning Optical Communications LLC | Flexible optical fiber ribbon with ribbon body flexibility recesses |
CN108369324B (zh) * | 2015-12-01 | 2021-06-18 | 古河电气工业株式会社 | 光纤带芯线和光纤线缆 |
JP6144371B1 (ja) * | 2016-01-14 | 2017-06-07 | 株式会社フジクラ | 間欠連結型光ファイバテープの検査方法、検査装置及び製造方法 |
US9880368B2 (en) * | 2016-02-02 | 2018-01-30 | Ofs Fitel, Llc | Method for high speed processing of partially bonded ribbon structures |
US10989888B2 (en) * | 2016-02-02 | 2021-04-27 | Ofs Fitel, Llc | Flexible ribbon structure and method for making |
WO2017145955A1 (ja) * | 2016-02-23 | 2017-08-31 | 住友電気工業株式会社 | 間欠連結型光ファイバテープ心線、間欠連結型光ファイバテープ心線の製造方法、光ファイバケーブルおよび光ファイバコード |
CN108885323B (zh) * | 2016-05-10 | 2020-06-09 | 莫列斯有限公司 | 光纤线缆组件以及承载装置 |
US10444435B2 (en) * | 2016-05-19 | 2019-10-15 | Ofs Fitel, Llc | Ribbon transition tool |
PL3497498T3 (pl) * | 2016-08-08 | 2020-11-16 | Corning Optical Communications LLC | Elastyczna taśma światłowodowa z nieciągłymi warstwami polimeru |
EP3548947A1 (en) * | 2016-11-29 | 2019-10-09 | Corning Optical Communications LLC | Laser sintered flexible ribbon |
-
2017
- 2017-12-19 WO PCT/JP2017/045432 patent/WO2018117068A1/ja unknown
- 2017-12-19 CN CN201780064491.8A patent/CN109844597B/zh active Active
- 2017-12-19 EP EP17882406.6A patent/EP3561564A4/en active Pending
- 2017-12-19 JP JP2018557987A patent/JP7097303B2/ja active Active
-
2019
- 2019-05-31 US US16/428,739 patent/US11036024B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5117519B1 (ja) | 1975-02-28 | 1976-06-02 | ||
JPH01138516A (ja) * | 1987-11-26 | 1989-05-31 | Sumitomo Electric Ind Ltd | テープ状光ファイバ心線の製造装置 |
US20010048797A1 (en) * | 2000-03-14 | 2001-12-06 | Van Dijk Saskia I. | Fully indentifiable optical fiber assemblies |
JP2001264604A (ja) | 2000-03-21 | 2001-09-26 | Fujikura Ltd | 光ファイバテープ心線の製造装置 |
US20040001678A1 (en) * | 2002-06-28 | 2004-01-01 | Chiasson David W. | Optical components having improved print permanence |
JP2008505360A (ja) * | 2004-06-30 | 2008-02-21 | コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー | 断続的プロファイルを備えた光ファイバアレイ及びその製造方法 |
JP2008311120A (ja) * | 2007-06-15 | 2008-12-25 | Hitachi Cable Fine Tech Ltd | 信号伝送用ケーブル及び多心ケーブル |
JP2010033010A (ja) | 2008-06-23 | 2010-02-12 | Fujikura Ltd | 光ファイバテープ心線の製造方法及びその製造装置 |
JP2012252815A (ja) * | 2011-06-01 | 2012-12-20 | Nissei Electric Co Ltd | 同軸ケーブル |
JP2012252196A (ja) | 2011-06-03 | 2012-12-20 | Fujikura Ltd | 光ファイバテープ心線の製造方法 |
JP2016142948A (ja) * | 2015-02-03 | 2016-08-08 | 住友電気工業株式会社 | 光ケーブル及びその製造方法 |
JP2018010239A (ja) * | 2016-07-15 | 2018-01-18 | 住友電気工業株式会社 | 間欠連結型光ファイバテープ心線の製造方法および製造装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3561564A4 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11914186B2 (en) | 2018-04-16 | 2024-02-27 | Sumitomo Electric Industries, Ltd. | Optical fiber |
JP2020003620A (ja) * | 2018-06-27 | 2020-01-09 | 株式会社フジクラ | 間欠連結型光ファイバテープ、及び間欠連結型光ファイバテープの製造方法 |
JP7509147B2 (ja) | 2019-07-26 | 2024-07-02 | 住友電気工業株式会社 | 光ファイバリボン及び光ファイバケーブル |
WO2021019908A1 (ja) * | 2019-07-26 | 2021-02-04 | 住友電気工業株式会社 | 光ファイバリボン及び光ファイバケーブル |
KR102408811B1 (ko) | 2019-10-30 | 2022-06-14 | 가부시키가이샤후지쿠라 | 간헐 연결형 광파이버 테이프 및 간헐 연결형 광파이버 테이프의 제조 방법 |
KR20210153749A (ko) * | 2019-10-30 | 2021-12-17 | 가부시키가이샤후지쿠라 | 간헐 연결형 광파이버 테이프 및 간헐 연결형 광파이버 테이프의 제조 방법 |
AU2019472715B2 (en) * | 2019-10-30 | 2022-11-03 | Fujikura Ltd. | Intermittently connected optical fiber ribbon and method for manufacturing intermittently connected optical fiber ribbon |
US11536922B2 (en) | 2019-10-30 | 2022-12-27 | Fujikura Ltd. | Intermittently connected optical fiber ribbon and method for manufacturing intermittently connected optical fiber ribbon |
WO2021084640A1 (ja) * | 2019-10-30 | 2021-05-06 | 株式会社フジクラ | 間欠連結型光ファイバテープ、及び間欠連結型光ファイバテープの製造方法 |
WO2022025116A1 (ja) * | 2020-07-29 | 2022-02-03 | 住友電気工業株式会社 | 間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線 |
US11860438B2 (en) | 2020-07-29 | 2024-01-02 | Sumitomo Electric Industries, Ltd. | Method for manufacturing intermittent connection-type optical fiber tape core wire and intermittent connection-type optical fiber tape core wire |
JP2022108476A (ja) * | 2021-01-13 | 2022-07-26 | 古河電気工業株式会社 | 光ファイバテープ心線及び光ファイバケーブル |
JP7335903B2 (ja) | 2021-01-13 | 2023-08-30 | 古河電気工業株式会社 | 光ファイバテープ心線及び光ファイバケーブル |
JP2022113420A (ja) * | 2021-01-25 | 2022-08-04 | 古河電気工業株式会社 | 光ファイバテープ心線 |
JP7052100B1 (ja) | 2021-01-25 | 2022-04-11 | 古河電気工業株式会社 | 光ファイバテープ心線 |
WO2023195131A1 (ja) * | 2022-04-07 | 2023-10-12 | 古河電気工業株式会社 | 光ファイバテープ心線 |
Also Published As
Publication number | Publication date |
---|---|
US20190285823A1 (en) | 2019-09-19 |
US11036024B2 (en) | 2021-06-15 |
EP3561564A4 (en) | 2020-07-22 |
CN109844597B (zh) | 2020-11-20 |
CN109844597A (zh) | 2019-06-04 |
JPWO2018117068A1 (ja) | 2019-10-24 |
JP7097303B2 (ja) | 2022-07-07 |
EP3561564A1 (en) | 2019-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018117068A1 (ja) | 光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線 | |
JP3733000B2 (ja) | 光ファイバーアレイ | |
CN103560382B (zh) | 一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统 | |
CN201774137U (zh) | 激光模式净化装置 | |
JP4052121B2 (ja) | 光導波体 | |
CN105980894B (zh) | 剩余光除去构造以及光纤激光器 | |
JP2005503008A (ja) | 少なくとも2層のガラスクラッドを有するガラスファイバ | |
CN103056513A (zh) | 一种激光加工系统 | |
WO2013064481A1 (de) | Optische transportfaser und verfahren zu deren herstellung | |
DE60003736T2 (de) | Laservorrichtung und zugehöriger Verstärker für optische Signale | |
Feuer et al. | Single-pass laser separation of 8 mm thick glass with a millijoule picosecond pulsed Gaussian–Bessel beam | |
CN211361033U (zh) | 一种多波长高功率激光加工系统 | |
CN202984911U (zh) | 一种激光加工系统 | |
DE102009009367A1 (de) | Lichtleiter zur Übertragung von Strahlung sowie Herstellverfahren | |
CN210924014U (zh) | 一种激光合束器 | |
CN204790068U (zh) | 一种大功率光纤准直器 | |
CN206322993U (zh) | 一种双波长光纤激光器 | |
JP7502073B2 (ja) | レーザ加工装置 | |
US6684015B2 (en) | Method of self-aligning optical waveguides | |
JP2005148575A (ja) | 光ヒューズおよび光ヒューズ作製用部品 | |
WO2018237048A1 (en) | HIGH POWER INTEGRATED DISTRIBUTION CABLE | |
CN217316395U (zh) | 一种激光焊接装置 | |
JP7402024B2 (ja) | レーザ装置 | |
US8217311B2 (en) | Method for laser induced fusion pigtailing of optical fiber to optical waveguide | |
JPS615211A (ja) | 光テ−プ型ユニツトの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882406 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018557987 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017882406 Country of ref document: EP Effective date: 20190722 |