CN103560382B - 一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统 - Google Patents

一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统 Download PDF

Info

Publication number
CN103560382B
CN103560382B CN201310472100.XA CN201310472100A CN103560382B CN 103560382 B CN103560382 B CN 103560382B CN 201310472100 A CN201310472100 A CN 201310472100A CN 103560382 B CN103560382 B CN 103560382B
Authority
CN
China
Prior art keywords
fiber
fibre
optical
pumping
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310472100.XA
Other languages
English (en)
Other versions
CN103560382A (zh
Inventor
史伟
房强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANDONG HAIFU PHOTON TECHNOLOGY Co Ltd
Original Assignee
SHANDONG HAIFU PHOTON TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANDONG HAIFU PHOTON TECHNOLOGY Co Ltd filed Critical SHANDONG HAIFU PHOTON TECHNOLOGY Co Ltd
Priority to CN201310472100.XA priority Critical patent/CN103560382B/zh
Publication of CN103560382A publication Critical patent/CN103560382A/zh
Application granted granted Critical
Publication of CN103560382B publication Critical patent/CN103560382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

本发明公开了一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,包含主振荡器,半导体激光泵浦下的光纤放大器,同带泵浦光纤放大器,泵浦滤除器和输出光缆,主振荡器包括泵浦半导体激光器,第一泵浦合束器,第一光纤泵浦信号合束器,高反射率光纤布拉格光栅,双包层掺镱光纤,低反射率光纤布拉格光栅,第二光纤泵浦信号合束器,半导体激光器泵浦下的光纤放大器包括泵浦半导体激光器,第二泵浦合束器,光纤泵浦信号合束器,双包层掺镱光纤;同带泵浦光纤放大器包括光纤激光器,第一同带泵浦信号合束器,第一掺镱多包层光纤,第二同带泵浦信号合束器、第二掺镱多包层光纤,本发明实现了一种高光束质量、单纤万瓦级全光纤激光器系统。

Description

一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统
技术领域
本发明涉及一种光纤激光器,尤其是一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,属于光纤及激光技术领域。
背景技术
光纤激光器是以掺杂稀土元素的光纤为增益介质的激光器,通过掺杂不同的稀土元素,如饵(Er),镒(Yb),铥(Tm),钬(Ho),钕(Nd)等,光纤激光器的工作波段覆盖了从紫外到中红外。与其他激光器相比,光纤激光器具有激光工作阈值低,能量转化率高、输出光束质量好、结构紧凑稳定、无需光路调整、散热性能好、寿命长和无需维护等鲜明特点,因此得到快速发展以及广泛地应用。
近年来,光纤激光器输出功率得到不断提升,应用领域也得到不断拓展,高性能、大功率光纤激光器已逐渐装备于精密加工设备、高端制造设备上,成为先进制造设备的心脏,成为保证国防、尖端工业发展的战略性基础装备,体现了一个国家先进制造技术的综合水平。目前,美国IPG公司代表着大功率光纤激光器研制及产业化的最高水平,早在2009年,IPG就成功研制出了1万瓦单模光纤激光器,并广泛应用于全世界先进制造、先进加工领域。2012年又成功研制出了功率高达10万瓦的多模光纤激光器系统。目前,IPG公司占据了全球大功率光纤激光器市场70%的份额。国内光纤激光器公司只是在低功率脉冲光纤激光器市场上占有一定份额,在高性能、大功率光纤激光器研制及产业化方面远远落后于美国,国内千瓦级、万瓦级光纤激光器的市场几乎被IPG公司垄断。因此,研制一种高性能、大功率光纤激光器,打破国外技术垄断具有重要意义。
发明内容
本发明的目的是提供一种高光束质量,单纤万瓦级全光纤激光器系统。
本发明是通过以下技术方案加以实现的。
一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,其特征在于包含主振荡器1、半导体激光泵浦下的光纤放大器2、同带泵浦光纤放大器3、泵浦滤除器4、输出光缆5,其中主振荡器1、半导体激光泵浦下的光纤放大器2、同带泵浦光纤放大器3和泵浦滤除器4依次相连并由输出光缆5光纤激光。
所述的主振荡器是一种连续型掺镱双包层光纤激光器,它包括泵浦半导体激光器11,尾纤与第一7×1泵浦合束器12的输入光纤连接,六个泵浦合束器12的输出光纤分别与第一(6+1)×1光纤泵浦信号合束器13的泵浦输入光纤相连,第一(6+1)×1光纤泵浦信号合束器13的输出光纤与高反射率光纤布拉格光栅14连接,光栅另一端与双包层掺镱光纤15连接,掺镱光纤另一端与低反射率光纤布拉格光栅16相连,光栅另一端与用于反向泵浦的第二(6+1)×1光纤泵浦信号合束器17信号光纤相连,泵浦光纤与另外六个泵浦合束器12的输出光纤相连,第二(6+1)×1光纤泵浦信号合束器17的信号光纤另一端作为主振荡器输出光纤。
所述的半导体激光泵浦下的光纤放大器2包括:泵浦半导体激光器21,尾纤与第二7×1泵浦合束器22的泵浦输入端连接,泵浦合束器输出端与(2+1)×1光纤泵浦信号合束器23的泵浦输入端连接,(2+1)×1光纤泵浦信号合束器23信号输入端与主振荡器输出光纤连接,信号输出端与双包层掺镱光纤24连接,掺镱光纤另一端作为光纤放大器输出端输出约3000瓦光纤激光。
所述的同带泵浦光纤放大器包括用作泵浦的350瓦1018nm光纤激光器31,1018nm光纤激光器输出光纤与第一同带泵浦信号合束器32泵浦输入端相连,第一同带泵浦信号合束器的信号输入端与半导体激光泵浦下的光纤放大器2的输出端相连,信号输出端与第一掺镱多包层光纤33,相连,第一掺镱多包层光纤另一端与第二同带泵浦信号合束器34信号输入端相连,信号输出端与第二掺镱多包层光纤35连接。
所述的主振荡器1中,使用的泵浦激光11是带尾纤的半导体激光器,工作波长是915纳米,940纳米或者978纳米,输出尾纤为105/125um(纤芯/内包层)多模光纤;使用的双包层掺镱光纤为大模场掺镱光纤,纤芯/内包层尺寸为20/400um,内包层为八角形;使用的高反光纤光栅14,反射率大于99%。
使用的低反光纤光栅16,反射率为10%;使用的第一7×1泵浦合束器12,泵浦输入光纤为105/125um(纤芯/内包层)多模光纤,单臂可承受100W,输出光纤为200/220um(纤芯/内包层)多模光纤;使用的第一(6+1)×1光纤泵浦信号合束器13,泵浦光纤为200/220um(纤芯/内包层)多模光纤,单臂可承受200W。
使用的第二(6+1)×1光纤泵浦信号合束器17,可应用于反向泵浦,泵浦光纤为200/220um(纤芯/内包层)多模光纤,单臂可承受100W;主振荡器1可输出超过1000W的光纤激光。
所述的半导体激光泵浦下的光纤放大器2中,使用的泵浦激光21是带尾纤的半导体激光器,工作波长是915纳米,940纳米或者978纳米,输出尾纤为200/220um(纤芯/内包层)多模光纤;使用的双包层掺镱光纤24为大模场掺镱光纤,纤芯/内包层尺寸为30/400um,内包层为八角形;使用的第二7×1泵浦合束器22,泵浦输入光纤为200/220um(纤芯/内包层)多模光纤,单臂可承受功率超过400W,输出光纤为400/440um(纤芯/内包层)多模光纤;使用的(2+1)×1泵浦信号合束器22,泵浦输入光纤为400/440um(纤芯/内包层)多模光纤,单臂可承受功率超过2000W;半导体激光泵浦下的光纤放大器2可输出超过3000W的光纤激光。
所述的同带泵浦光纤放大器3中,使用的泵浦激光31是工作与1018nm的光纤激光器,输出功率为350W,输出光纤为30/250um(纤芯/内包层)光纤;使用的泵浦激光31是工作与1018nm的光纤激光器,输出功率为350W,输出光纤为30/250um(纤芯/内包层)光纤;使用的第一同带泵浦信号合束器32,泵浦输入光纤为30/250um(纤芯/内包层)光纤,信号输入光纤为30/400(纤芯/内包层)光纤,信号输出光纤为40/200/400(纤芯/内包层/外包层)光纤;使用的第一掺镱多包层光纤33,为40/200/400(纤芯/内包层/外包层)多包层光纤;使用的第二同带泵浦信号合束器34,泵浦输入光纤为30/250um(纤芯/内包层)光纤,信号输入光纤为40/200/400(纤芯/内包层/外包层)光纤,信号输出光纤为50/300/600(纤芯/内包层/外包层)光纤;使用的第二掺镱多包层光纤35,为50/300/600(纤芯/内包层/外包层)多包层光纤。
所述的泵浦滤除器4,与第二掺镱多包层光纤35连接,将在内包层中传输的剩余泵浦滤除。
所述的输出光缆5,为商用的QD输出光缆,输出万瓦级光纤激光。
本发明的优点在于实现了一种高光束质量、单纤万瓦级全光纤激光器系统。
附图说明
图1是本发明的结构图示图。
图中标记:主振荡器1、半导体激光泵浦下的光纤放大器2、同带泵浦光纤放大器3、泵浦滤除器4、输出光缆5、泵浦半导体激光器11(中心波长:915nm,输出功率:25W,105/125um尾纤)、第一7×1泵浦合束器12、第一(6+1)×1光纤泵浦信号合束器13、高反射率光纤布拉格光栅14、双包层掺镱光纤(纤芯/内包层:20/400)15、低反射率光纤布拉格光栅16、用于反向泵浦的第二(6+1)×1光纤泵浦信号合束器17、泵浦半导体激光器21(中心波长:915nm,输出功率:200W,200/220um尾纤) 、第二7×1泵浦合束器22、(2+1)×1光纤泵浦信号合束器23、双包层掺镱光纤(纤芯/内包层:30/400um)24、350瓦1018nm光纤激光器31、第一同带泵浦信号合束器32、第一掺镱多包层光纤33(纤芯/内包层/外包层:40/200/400um)、第二同带泵浦信号合束器34、第二掺镱多包层光纤35(纤芯/内包层/外包层:50/300/600um)。
具体实施方式
下面结合附图对本发明作进一步的描述:
如图1所示,一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,其特征在于包含主振荡器1,半导体激光泵浦下的光纤放大器2,同带泵浦光纤放大器3,泵浦滤除器4,和输出光缆5。
所述的主振荡器是一种连续型掺镱双包层光纤激光器,它包括泵浦半导体激光器11,尾纤与第一7×1泵浦合束器12的输入光纤连接,六个泵浦合束器12的输出光纤分别与第一(6+1)×1光纤泵浦信号合束器13的泵浦输入光纤相连,第一(6+1)×1光纤泵浦信号合束器13的输出光纤与高反射率光纤布拉格光栅14连接,光栅另一端与双包层掺镱光纤15连接,掺镱光纤另一端与低反射率光纤布拉格光栅16相连,光栅另一端与用于反向泵浦的第二(6+1)×1光纤泵浦信号合束器17信号光纤相连,泵浦光纤与另外六个泵浦合束器12的输出光纤相连,第二(6+1)×1光纤泵浦信号合束器17的信号光纤另一端作为主振荡器输出光纤。
所述的半导体激光泵浦下的光纤放大器2包括:泵浦半导体激光器21,尾纤与第二7×1泵浦合束器22的泵浦输入端连接,泵浦合束器输出端与(2+1)×1光纤泵浦信号合束器23的泵浦输入端连接,(2+1)×1光纤泵浦信号合束器23信号输入端与主振荡器输出光纤连接,信号输出端与双包层掺镱光纤24连接,掺镱光纤另一端作为光纤放大器输出端输出约3000瓦光纤激光。
所述的同带泵浦光纤放大器包括用作泵浦的350瓦1018nm光纤激光器31,1018nm光纤激光器输出光纤与第一同带泵浦信号合束器32泵浦输入端相连,第一同带泵浦信号合束器的信号输入端与半导体激光泵浦下的光纤放大器2的输出端相连,信号输出端与第一掺镱多包层光纤33,相连,第一掺镱多包层光纤另一端与第二同带泵浦信号合束器34信号输入端相连,信号输出端与第二掺镱多包层光纤35连接。
所述的主振荡器1中,使用的泵浦激光11是带尾纤的半导体激光器,工作波长是915纳米,940纳米或者978纳米,输出尾纤为105/125um(纤芯/内包层)多模光纤;使用的双包层掺镱光纤为大模场掺镱光纤,纤芯/内包层尺寸为20/400um,内包层为八角形;使用的高反光纤光栅14,反射率大于99%;使用的低反光纤光栅16,反射率为10%;使用的第一7×1泵浦合束器12,泵浦输入光纤为105/125um(纤芯/内包层)多模光纤,单臂可承受100W,输出光纤为200/220um(纤芯/内包层)多模光纤;使用的第一(6+1)×1光纤泵浦信号合束器13,泵浦光纤为200/220um(纤芯/内包层)多模光纤,单臂可承受200W;使用的第二(6+1)×1光纤泵浦信号合束器17,可应用于反向泵浦,泵浦光纤为200/220um(纤芯/内包层)多模光纤,单臂可承受100W;主振荡器1可输出超过1000W的光纤激光。
所述的半导体激光泵浦下的光纤放大器2中,使用的泵浦激光21是带尾纤的半导体激光器,工作波长是915纳米,940纳米或者978纳米,输出尾纤为200/220um(纤芯/内包层)多模光纤;使用的双包层掺镱光纤24为大模场掺镱光纤,纤芯/内包层尺寸为30/400um,内包层为八角形;使用的第二7×1泵浦合束器22,泵浦输入光纤为200/220um(纤芯/内包层)多模光纤,单臂可承受功率超过400W,输出光纤为400/440um(纤芯/内包层)多模光纤;使用的(2+1)×1泵浦信号合束器22,泵浦输入光纤为400/440um(纤芯/内包层)多模光纤,单臂可承受功率超过2000W;半导体激光泵浦下的光纤放大器2可输出超过3000W的光纤激光。
所述的同带泵浦光纤放大器3中,使用的泵浦激光31是工作与1018nm的光纤激光器,输出功率为350W,输出光纤为30/250um(纤芯/内包层)光纤;使用的泵浦激光31是工作于1018nm的光纤激光器,输出功率为350W,输出光纤为30/250um(纤芯/内包层)光纤;使用的第一同带泵浦信号合束器 32,泵浦输入光纤为30/250um(纤芯/内包层)光纤,信号输入光纤为30/400(纤芯/内包层)光纤,信号输出光纤为40/200/400(纤芯/内包层/外包层)光纤;使用的第一掺镱多包层光纤33,为40/200/400(纤芯/内包层/外包层)多包层光纤;使用的第二同带泵浦信号合束器 34,泵浦输入光纤为30/250um(纤芯/内包层)光纤,信号输入光纤为40/200/400(纤芯/内包层/外包层)光纤,信号输出光纤为50/300/600(纤芯/内包层/外包层)光纤;使用的第二掺镱多包层光纤35,为50/300/600(纤芯/内包层/外包层)多包层光纤。
所述的泵浦滤除器4,与第二掺镱多包层光纤35连接,将在内包层中传输的剩余泵浦滤除。
所述的输出光缆5,为商用的QD输出光缆,输出万瓦级光纤激光。

Claims (5)

1.一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,其特征在于包含主振荡器、半导体激光泵浦下的光纤放大器、同带泵浦光纤放大器、泵浦滤除器和输出光缆,所述主振荡器、半导体激光泵浦下的光纤放大器、同带泵浦光纤放大器、泵浦滤除器和输出光缆依次相连并由输出光缆输出光纤激光,
所述的主振荡器是一种连续型掺镱双包层光纤激光器,它包括主振荡器输入光缆、泵浦半导体激光器、第一光纤泵浦信号合束器、高反射率光纤布拉格光栅、双包层掺镱光纤、低反射率光纤布拉格光栅、第二光纤泵浦信号合束器和主振荡器输出光纤,7*1个泵浦半导体激光器的输出光纤相连接组成泵浦合束器,光缆和6*1个泵浦合束器的输出光纤分别与7*1个第一光纤泵浦信号合束器的泵浦输入光纤相连,7*1个第一光纤泵浦信号合束器的输出光纤与高反射率光纤布拉格光栅连接,高反射率光纤布拉格光栅的另一端与双包层掺镱光纤连接,双包层掺镱光纤另一端与低反射率光纤布拉格光栅相连,低反射率光纤布拉格光栅另一端与7*1个第二光纤泵浦信号合束器的信号光纤相连,第二光纤泵浦信号合束器分别与6*1个泵浦合束器的输出光纤相连,第二光纤泵浦信号合束器接主振荡器输出光缆,
所述的半导体激光泵浦下的光纤放大器包括:主振荡器输出光纤、泵浦半导体激光器、第三光纤泵浦信号合束器、双包层掺镱光纤和光纤放大器电缆输出端,7*1个泵浦半导体激光器的输出光纤相连接成泵浦合束器,主振荡器输出光缆和2*1个泵浦合束器的输出光纤分别与个第三光纤泵浦信号合束器的泵浦输入光纤相连,第三光纤泵浦信号合束器的光纤输出端与双包层掺镱光纤连接,双包层掺镱光纤另一端作为光纤放大器的输出光缆,
所述的同带泵浦光纤放大器包括光纤放大器输出光缆、泵浦半导体激光器、第四光纤泵浦信号合束器,双包层掺镱光纤和第五光纤泵浦信号合束器、泵浦滤除器和输出光缆,7*1个泵浦半导体激光器的输出光纤相连接组成泵浦合束器,光纤放大器输出光缆和6个泵浦合束器的输出光纤分别与7*1个第四光纤泵浦信号合束器的泵浦输入光纤相连,7*1个第四光纤泵浦信号合束器的输出光纤与双包层掺镱光纤连接,双包层掺镱光纤另一端作为下一级光缆输入端与6*1个泵浦合束器的输出光纤分别与7*1个第五光纤泵浦信号合束器的泵浦输入光纤相连,7*1个第五光纤泵浦信号合束器的输出光纤与双包层掺镱光纤连接,双包层掺镱光纤另一端经泵浦滤除器与输出光缆相连接,输出光缆输出万瓦级光纤激光。
2.根据权利要求1所述的一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,其特征在于主振荡器中使用的泵浦激光是带尾纤的半导体激光器,工作波长是915纳米,940纳米或者978纳米,输出尾纤为105/125um多模光纤;使用的双包层掺镱光纤为大模场掺镱光纤,纤芯/内包层尺寸为20/400um,内包层为八角形;使用的高反光纤光栅,反射率大于99%;使用的低反光纤光栅,反射率为10%;使用的第一7×1泵浦合束器,泵浦输入光纤为105/125um多模光纤,单臂可承受100W,输出光纤为200/220um多模光纤;使用的第一(6+1)×1光纤泵浦信号合束器,泵浦光纤为200/220um多模光纤,单臂可承受200W;使用的第二(6+1)×1光纤泵浦信号合束器,可应用于反向泵浦,泵浦光纤为200/220um多模光纤,单臂可承受100W;主振荡器可输出超过1000W的光纤激光。
3.根据权利要求1所述的一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,其特征在于所述的半导体激光泵浦下的光纤放大器中,使用的泵浦激光是带尾纤的半导体激光器,工作波长是915纳米,940纳米或者978纳米,输出尾纤为200/220um多模光纤;使用的双包层掺镱光纤为大模场掺镱光纤,纤芯/内包层尺寸为30/400um,内包层为八角形;使用的第二7×1泵浦合束器,泵浦输入光纤为200/220um多模光纤,单臂可承受功率超过400W,输出光纤为400/440um多模光纤;使用的(2+1)×1泵浦信号合束器,泵浦输入光纤为400/440um多模光纤,单臂可承受功率超过2000W;半导体激光泵浦下的光纤放大器可输出超过3000W的光纤激光。
4.根据权利要求1所述的一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,其特征在于所述的同带泵浦光纤放大器中,使用的泵浦激光是工作与1018nm的光纤激光器,输出功率为350W,输出光纤为30/250um光纤;使用的泵浦激光是工作与1018nm的光纤激光器,输出功率为350W,输出光纤为30/250um光纤;使用的第一同带泵浦信号合束器,泵浦输入光纤为30/250um光纤,信号输入光纤为30/400光纤,信号输出光纤为40/200/400光纤;使用的第一掺镱多包层光纤,为40/200/400多包层光纤;使用的第二同带泵浦信号合束光纤,信号输入光纤为40/200/400光纤,信号输出光纤为50/300/600光纤;使用的第二掺镱多包层光纤,为50/300/600多包层光纤。
5.根据权利要求1所述的一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统,其特征在于所述的泵浦滤除器,与第二掺镱多包层光纤连接,将在内包层中传输的剩余泵浦滤除。
CN201310472100.XA 2013-10-11 2013-10-11 一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统 Active CN103560382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310472100.XA CN103560382B (zh) 2013-10-11 2013-10-11 一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310472100.XA CN103560382B (zh) 2013-10-11 2013-10-11 一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统

Publications (2)

Publication Number Publication Date
CN103560382A CN103560382A (zh) 2014-02-05
CN103560382B true CN103560382B (zh) 2017-09-19

Family

ID=50014577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310472100.XA Active CN103560382B (zh) 2013-10-11 2013-10-11 一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统

Country Status (1)

Country Link
CN (1) CN103560382B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986046A (zh) * 2014-04-14 2014-08-13 中国电子科技集团公司第十一研究所 一种窄线宽光纤激光器
CN104852261A (zh) * 2015-06-05 2015-08-19 中国人民解放军国防科学技术大学 基于同带抽运的高功率全光纤mopa结构超荧光光纤光源
CN107623246B (zh) * 2016-07-14 2020-11-17 中国兵器装备研究院 纤芯同带泵浦光纤激光器
CN107621672A (zh) * 2016-07-14 2018-01-23 中国兵器装备研究院 一种集成高功率包层光滤除器
WO2018071712A1 (en) * 2016-10-13 2018-04-19 Nlight, Inc. Tandem pumped fiber amplifier
US11211765B2 (en) 2016-10-13 2021-12-28 Nlight, Inc. Tandem pumped fiber amplifier
WO2018186920A2 (en) 2017-01-12 2018-10-11 Nlight, Inc. Tandem pumped fiber laser or fiber amplifier
CN107453194A (zh) * 2017-09-18 2017-12-08 珠海光恒科技有限公司 一种1064泵浦大功率窄线宽C‑band掺铒光纤放大器
CN109256662A (zh) * 2018-09-03 2019-01-22 华南理工大学 基于增益竞争和同带泵浦的l波段大功率光纤激光器
CN112290364B (zh) * 2020-11-20 2024-05-24 中国人民解放军国防科技大学 一种全光纤结构980nm波段高功率光纤振荡器
CN112563869A (zh) * 2020-12-09 2021-03-26 光惠(上海)激光科技有限公司 一种复合全光纤激光器系统
CN115377784B (zh) * 2022-10-24 2023-03-24 中国航天三江集团有限公司 一种同带泵浦光纤放大器及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136669A (zh) * 2009-12-08 2011-07-27 韩国电子通信研究院 双包层光纤装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2791719B1 (en) * 2011-12-13 2021-09-22 OFS Fitel, LLC Multi-core erbium-doped fiber amplifier
US8848285B2 (en) * 2012-01-12 2014-09-30 Corning Incorporated Few mode optical fibers for Er doped amplifiers, and amplifiers using such
WO2013145840A1 (ja) * 2012-03-28 2013-10-03 株式会社フジクラ ファイバ光学系、及び、その製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136669A (zh) * 2009-12-08 2011-07-27 韩国电子通信研究院 双包层光纤装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High power fiber lasers: current status and future perspective;D. J. Richardson et. al.;《Journal of Optical Society of America B》;20101101;第27卷(第11期);B63-B92 *
High power tendem pumping fibre amplifier;肖虎 等;《Chin. Phys. B》;20111115;第20卷(第11期);114208-1-114208-4 *

Also Published As

Publication number Publication date
CN103560382A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
CN103560382B (zh) 一种基于同带泵浦技术的单纤万瓦级全光纤激光器系统
US8947768B2 (en) Master oscillator—power amplifier systems
CN101946377B (zh) 光纤激光器
CN107623246B (zh) 纤芯同带泵浦光纤激光器
CN110073557B (zh) 串联泵浦光纤放大器
CN201774137U (zh) 激光模式净化装置
CN103199420A (zh) 单纤单振千瓦量级全光纤激光器
CN102522682B (zh) 多段级联式1064nm波段高功率ASE光源
CN102292883A (zh) 双级亮度变换器
EP1866680A4 (en) OPTICAL SYSTEMS WITH A HIGH-PERFORMANCE SIGNAL TRANSMITTING OPTICAL FIBERS AND METHOD FOR OPERATING SUCH SYSTEMS
CN102570269A (zh) 高功率全光纤激光器的环形反向泵浦结构
CN100587528C (zh) 一种增益光子晶体光纤波导及其器件
CN202373839U (zh) 多段级联式1064nm波段高功率ASE光源
CN102244351B (zh) 基于单壁碳纳米管的被动锁模器件的制备方法
CN103503251B (zh) 波长在2μm范围内工作的高功率单模光纤激光器系统
CN107370011A (zh) 大功率光纤放大器
CN205427234U (zh) 一种模场匹配器及光纤激光器
CN103701024A (zh) 一种多模泵浦激光器及其构成的光纤放大器
CN102081195A (zh) 一种双包层光纤激光耦合装置及方法
JP2013522928A (ja) 高出力ネオジム・ファイバレーザおよび増幅器
CN102299475A (zh) 全光纤结构的窄线宽单横模百瓦级2微米掺铥光纤激光器
CN112117628A (zh) 一种高受激布里渊散射阈值高转换效率的光纤激光放大器
CN103872559A (zh) 输出高功率2微米激光的掺铥全光纤激光器
CN105896250A (zh) 一种多波长多芯光纤激光器
CN110112637A (zh) 一种1.0μm波段千瓦级保偏单频磷酸盐光纤激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant