WO2022025116A1 - 間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線 - Google Patents

間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線 Download PDF

Info

Publication number
WO2022025116A1
WO2022025116A1 PCT/JP2021/027906 JP2021027906W WO2022025116A1 WO 2022025116 A1 WO2022025116 A1 WO 2022025116A1 JP 2021027906 W JP2021027906 W JP 2021027906W WO 2022025116 A1 WO2022025116 A1 WO 2022025116A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core wire
fiber core
connecting resin
core wires
Prior art date
Application number
PCT/JP2021/027906
Other languages
English (en)
French (fr)
Inventor
文昭 佐藤
圭吾 山本
文一 吉澤
健 高橋
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022539530A priority Critical patent/JPWO2022025116A1/ja
Priority to US17/998,882 priority patent/US11860438B2/en
Priority to CN202180059216.3A priority patent/CN116134358A/zh
Priority to EP21849845.9A priority patent/EP4191310A4/en
Publication of WO2022025116A1 publication Critical patent/WO2022025116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure

Definitions

  • the present disclosure relates to a method for manufacturing an intermittently connected optical fiber tape core wire and an intermittently connected optical fiber tape core wire.
  • Patent Documents 1 and 4 describe the distance between optical fiber cores (distance between centers) of the tape cores having an intermittent structure.
  • Japanese Patent Application Laid-Open No. 2004-206048 Japanese Patent Application Laid-Open No. 2014-157382 Japanese Patent Application Laid-Open No. 2013-08617 Japanese Patent Application Laid-Open No. 2012-208310
  • the method for manufacturing the intermittently connected optical fiber tape core wire of the present disclosure is as follows.
  • a plurality of optical fiber core wires are arranged in parallel in a direction orthogonal to the longitudinal direction of the plurality of optical fiber core wires. All of the plurality of optical fiber core wires are covered with a connecting resin, and the plurality of optical fiber core wires are covered with a connecting resin.
  • the outer diameter of each optical fiber core wire is 220 ⁇ m or less, and the outer diameter is 220 ⁇ m or less.
  • the distance between the optical fiber core wires into which the cutting blade is inserted is 10 ⁇ m or more and 100 ⁇ m or less.
  • the intermittently connected optical fiber tape core wire of the present disclosure is Multiple optical fiber core wires arranged in parallel in the direction orthogonal to the longitudinal direction, It has a connecting resin that covers all of the plurality of optical fiber core wires, and has.
  • the outer diameter of each optical fiber core wire is 220 ⁇ m or less, and the outer diameter is 220 ⁇ m or less.
  • the distance between the optical fiber core wires into which the cutting blade is inserted is 10 ⁇ m or more and 100 ⁇ m or less.
  • FIG. 1 is a configuration diagram of an intermittently connected optical fiber tape core wire manufacturing apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view perpendicular to the longitudinal direction of the optical fiber tape core wire manufactured by the manufacturing apparatus of FIG.
  • FIG. 3 is a partially developed view showing the intermittently connected optical fiber tape core wire in the longitudinal direction.
  • FIG. 4 is a schematic view of a printing device used as a modification of the device for manufacturing an intermittently connected optical fiber tape core wire.
  • each optical fiber core wire In order to mount multiple optical fiber tape cores in a cable at high density, each optical fiber core wire should have a distance between adjacent optical fiber core wires as small as possible in each optical fiber tape core wire. It is preferable to arrange. However, if the distance is too small, the cutting edge may damage the fiber optic core wire when the slit is formed.
  • the coating layer of the small-diameter optical fiber core is generally thin, and the distance between adjacent small-diameter optical fiber cores. If the insertion position of the cutting blade is slightly displaced when the slit is formed, the small diameter optical fiber core wire may be damaged.
  • the present disclosure provides a method for manufacturing an intermittently connected optical fiber tape core wire and an intermittently connected optical fiber tape core wire that can be mounted at high density while preventing damage to the optical fiber core wire.
  • the method for manufacturing an intermittently connected optical fiber tape core wire is as follows.
  • a plurality of optical fiber core wires are arranged in parallel in a direction orthogonal to the longitudinal direction of the plurality of optical fiber core wires. All of the plurality of optical fiber core wires are covered with a connecting resin, and the plurality of optical fiber core wires are covered with a connecting resin.
  • each optical fiber core wire is 220 ⁇ m or less, and the outer diameter is 220 ⁇ m or less.
  • the distance between the optical fiber core wires into which the cutting blade is inserted is 10 ⁇ m or more and 100 ⁇ m or less.
  • the distance between the optical fiber core wires into which the cutting blade is inserted is 10 ⁇ m or more among the adjacent optical fiber core wires. Even if the cutting blade is inserted, the optical fiber core wire will not be damaged. Further, since the distance between the optical fiber cores into which the cutting blades are inserted is 100 ⁇ m or less, a plurality of optical fiber cores can be arranged at high density on the tape cores.
  • the breaking strength of the connecting resin may be larger than 20 MPa and 50 MPa or less. If the breaking strength of the connecting resin is too low, if the intermittently connected optical fiber tape core wire is squeezed by the rollers in the line in the manufacturing process, the connecting resin is too soft and the optical fiber core wire is separated in the tape core wire. I have something to do. However, according to the present disclosure, since the breaking strength of the connecting resin is larger than 20 MPa, separation of the optical fiber core wire due to the weak breaking strength is unlikely to occur. Further, since the breaking strength of the connecting resin is 50 MPa or less, the connecting resin is not too hard and the connecting resin can be easily broken by the cutting blade.
  • the Young's modulus of the outermost layer of each optical fiber core wire may be 800 MPa or more and 2000 MPa or less. According to the present disclosure, since the Young's modulus of the coating layer of the outermost layer of each optical fiber core wire is 800 MPa or more, the optical fiber core wire is less likely to be injured by the cutting blade. Further, since the Young's modulus of the coating layer of the outermost layer of each optical fiber core wire is 2000 MPa or less, the intermittently connected optical fiber tape core wire is not easily deformed due to the influence of the rigidity of the resin, and the cable loss characteristic is improved. It doesn't get worse.
  • the cutting blade may be inserted after the connecting resin is cured with a gel fraction of 90% or more. If the cutting blade is inserted while the connecting resin is not cured, it is difficult for the cutting blade to break the connecting resin due to the high elasticity of the connecting resin, and the strength is weak, so that the connecting resin is inside the tape core wire. Separation of optical fiber core wires may occur. According to the present disclosure, since the cutting blade is inserted after the connecting resin is cured with a gel content of 90% or more, the connecting resin can be easily broken by the cutting blade, and the optical fiber core in the tape core wire can be easily broken. No line separation occurs.
  • the connecting resin coated with the plurality of optical fiber core wires is cured.
  • the cured connecting resin is heated and softened to soften it.
  • the cutting blade may be inserted into the softened connecting resin. If the cutting blade is inserted in a state where the connecting resin is not softened, the connecting resin cannot be easily broken, and the connecting resin may be peeled from a plurality of optical fiber core wires when forming a slit. According to the present disclosure, since the cutting blade is inserted into the softened connecting resin, the connecting resin can be easily broken.
  • the connecting resin coated with the plurality of optical fiber core wires is cured.
  • the cutting blade is heated and The heated cutting blade may be inserted into the cured connecting resin. According to the present disclosure, even if the connecting resin is hardened and hard, the cutting blade is inserted into the connecting resin in a heated state, so that the connecting resin can be easily broken.
  • each optical fiber core wire Marks the surface of each optical fiber core wire to make a mark.
  • the plurality of optical fiber core wires with the mark may be covered with the connecting resin. According to the present disclosure, since the surface of each optical fiber core wire is marked, the distinguishability of the tape core wire can be enhanced.
  • the intermittently connected optical fiber tape core wire is Multiple optical fiber core wires arranged in parallel in the direction orthogonal to the longitudinal direction, It has a connecting resin that covers all of the plurality of optical fiber core wires, and has.
  • the outer diameter of each optical fiber core wire is 220 ⁇ m or less, and the outer diameter is 220 ⁇ m or less.
  • the distance between the optical fiber core wires into which the cutting blade is inserted is 10 ⁇ m or more and 100 ⁇ m or less.
  • the distance between the optical fiber core wires into which the cutting blade is inserted is 10 ⁇ m or more among the adjacent optical fiber core wires, so that the cutting blade is Even if it is inserted, it will not damage the optical fiber core wire. Further, since the distance between the optical fiber cores into which the cutting blades are inserted is 100 ⁇ m or less, a plurality of optical fiber cores can be arranged at high density on the tape cores.
  • the breaking strength of the connecting resin may be larger than 20 MPa and 50 MPa or less. If the breaking strength of the connecting resin is too low, if the intermittently connected optical fiber tape core wire is squeezed by the rollers in the line in the manufacturing process, the connecting resin is too soft and the optical fiber core wire is separated in the tape core wire. I have something to do. However, according to the present disclosure, since the breaking strength of the connecting resin is larger than 20 MPa, separation of the optical fiber core wire due to the weak breaking strength is unlikely to occur. Further, since the breaking strength of the connecting resin is 50 MPa or less, the connecting resin is not too hard and the connecting resin can be easily broken by the cutting blade.
  • the Young's modulus of the outermost layer of each optical fiber core wire may be 800 MPa or more and 2000 MPa or less. According to the present disclosure, since the Young's modulus of the coating layer of the outermost layer of each optical fiber core wire is 800 MPa or more, the optical fiber core wire is less likely to be injured by the cutting blade. Further, since the Young's modulus of the coating layer of the outermost layer of each optical fiber core wire is 2000 MPa or less, the intermittently connected optical fiber tape core wire is not easily deformed due to the influence of the rigidity of the resin, and the cable loss characteristic is improved. It doesn't get worse. [Effect of this disclosure]
  • an intermittently connected optical fiber tape core wire and an intermittently connected optical fiber tape core wire that can be mounted at high density while preventing damage to the optical fiber core wire.
  • FIG. 1 is a configuration diagram of a manufacturing apparatus 100 for an intermittently connected optical fiber tape core wire 1 according to one embodiment of the present disclosure.
  • the manufacturing apparatus 100 includes a supply 101, a covering apparatus 110, a delivery capstan 115, a cutting apparatus 116, a take-up tension control dancer 118, and a take-up apparatus 119. .. Further, the manufacturing apparatus 100 includes a concentrator roller 105 provided between the supply 101 and the covering device 110, and a turn roller 114 provided between the covering device 110 and the delivery capstan 115.
  • the supply 101 includes a plurality of reels 102, a dancer roller 103, and a transport roller 104.
  • An optical fiber core wire 11 is wound around each of the plurality of reels 102.
  • the outer diameter of each optical fiber core wire 11 is, for example, 220 ⁇ m or less.
  • the plurality of optical fiber core wires 11 are fed from the plurality of reels 102, and a predetermined tension is applied by the dancer roller 103. After that, when passing through the transport roller 104, they are arranged on one array surface and sent to the concentrator roller 105.
  • a plurality of grooves (not shown) for passing a plurality of optical fiber core wires 11 are arranged in the concentrator roller 105 at predetermined intervals. As a result, the plurality of optical fiber core wires 11 are concentrated and parallel to each other in a direction orthogonal to the longitudinal direction of the optical fiber core wires 11.
  • the plurality of optical fiber core wires 11 concentrated on the concentrator roller 105 are sent to the covering device 110.
  • the covering device 110 includes a resin storage tank 111, a coating device 112, and an ultraviolet irradiation device 113.
  • the coating device 112 inserts all the optical fiber core wires 11 and coats the periphery thereof with the connecting resin 15 supplied from the resin storage tank 111 to form the coating layer 12 (see FIG. 2).
  • the connecting resin 15 is preferably an ultraviolet curable resin, but may be a thermoplastic resin, an adhesive resin, or another coating resin.
  • the ultraviolet irradiation device 113 cures the connecting resin 15 by irradiating with ultraviolet rays. As a result, the plurality of optical fiber core wires 11 become optical fiber tape core wires 10.
  • the optical fiber tape core wire 10 is sent to the transmission capstan 115 via the turn roller 114. After that, a slit is formed in the optical fiber tape core wire 10 by the cutting device 116.
  • the cutting device 116 includes a plurality of cutting blades 117.
  • Each cutting blade 117 has a tapered shape at the tip, and the thickness of the blade is, for example, 0.2 mm.
  • a cam mechanism is connected to each cutting blade 117, and the cutting blade 117 is provided along the longitudinal direction of the optical fiber tape core wire 10 in conjunction with the cam mechanism and is configured to swing.
  • the cutting blade 117 is intermittently inserted into the connecting resin 15 between some of the adjacent optical fiber core wires in the optical fiber tape core wire 10, and a slit is formed.
  • the cutting blade 117 is inserted in a state where the connecting resin 15 is cured with a gel fraction of 90% or more.
  • the optical fiber tape core wire 10 in which the slit is intermittently formed becomes the intermittently connected optical fiber tape core wire 1.
  • the intermittently connected optical fiber tape core wire 1 is sent to the take-up tension control dancer 118 to control the tension. After that, it is wound on the take-up reel R by the take-up device 119.
  • FIG. 2 shows a cross-sectional view perpendicular to the longitudinal direction of the optical fiber tape core wire 10.
  • the periphery of a plurality of optical fiber core wires 11A to 11L (12 cores in this example) arranged in parallel in the direction orthogonal to the longitudinal direction is covered with a coating layer 12.
  • the breaking strength of the connecting resin 15 forming the coating layer 12 is larger than 20 MPa and 50 MPa or less.
  • Each of the optical fiber core wires 11A to 11L includes a glass fiber 16 in the center and an outer layer 17 (outermost layer) that covers the periphery of the glass fiber 16.
  • the diameter of the glass fiber 16 is, for example, 200 ⁇ m, and the thickness of the outer layer 17 is 37.5 ⁇ m.
  • the Young's modulus of the outer layer 17 is 800 MPa or more and 2000 MPa or less.
  • the two optical fiber cores are substantially in contact with each other to form an optical fiber core set, and a distance g is provided between the adjacent optical fiber core sets. ..
  • a distance g is provided between the adjacent optical fiber core sets. ..
  • FIG. 2 between the set of optical fiber cores 11A and 11B and the set of optical fiber cores 11C and 11D, between the set of optical fiber cores 11C and 11D and the set of optical fiber cores 11E and 11F, Between the set of fiber optic cores 11E and 11F and the set of fiber optic cores 11G and 11H, between the set of fiber optic cores 11G and 11H and the set of fiber optic cores 11I and 11J, fiber optic cores A distance g is provided between the set of 11I and 11J and the set of optical fiber core wires 11L and 11L. In this example, the distance g is provided for each of the two optical fiber cores, but it may be provided for each of the one optical fiber cores.
  • the distance g is a parallel direction of a plurality of optical fiber core wires 11A to 11L, and is an optical fiber adjacent to the set of optical fiber core wires (for example, 11A and 11B) on a straight line L passing through the center of the core wire.
  • the distance g is 10 ⁇ m or more and 100 ⁇ m or less.
  • a slit is formed by inserting the cutting blade 117 into the connecting resin 15 portion where the distance g is provided. As a result, the slit becomes the non-connecting portion 14 (see FIG. 3) of the intermittently connected optical fiber tape core wire 1.
  • FIG. 3 shows a partially developed view showing the intermittently connected optical fiber tape core wire 1 in the longitudinal direction thereof.
  • the optical fiber tape core wires 10 that have passed through the cutting device 116 are arranged in parallel in a direction orthogonal to the longitudinal direction of the plurality of optical fiber core wires 11A to 11L, and a plurality of optical fibers are arranged in parallel.
  • the connecting portion 13 in which the adjacent optical fiber cores are connected and the non-connecting portion 14 in which the adjacent optical fiber cores are not connected are longitudinal.
  • the optical fiber core wire 11 is arranged so that the distance g is 10 ⁇ m or more and 100 ⁇ m or less, and the connecting resin 15 is cured.
  • the glass fiber 16 may be damaged by the cutting blade 117 when the cutting blade 117 is inserted.
  • the distance g is too large, the plurality of optical fiber core wires 11 cannot be arranged at high density as the optical fiber tape core wires 10.
  • the distance g is 10 ⁇ m or more, the risk of damaging the optical fiber core wire 11 is reduced even if the cutting blade 117 is inserted.
  • the distance g is 100 ⁇ m or less, a plurality of optical fiber core wires 11 can be arranged at high density as the optical fiber tape core wires 10. Therefore, it is possible to provide the intermittently connected optical fiber tape core wire 1 in which the optical fiber core wires 11 are arranged at high density while suppressing the possibility of trauma of the optical fiber core wires 11.
  • the breaking strength of the connecting resin 15 is not too low and not too high. If the breaking strength is too low, for example, when the optical fiber tape core wire 10 is squeezed by the turn roller 114, the connecting resin 15 is too soft, so that the plurality of optical fiber core wires 11 in the optical fiber tape core wire 10 are separated. There is a risk of doing so. On the contrary, if the breaking strength is too high, the connecting resin 15 is too hard and it becomes difficult to break the connecting resin 15 by the cutting blade 117. In the optical fiber tape core wire 10 of this example, since the breaking strength of the connecting resin 15 is larger than 20 MPa, separation of the optical fiber core wire 11 due to the weak breaking strength is unlikely to occur.
  • the breaking strength of the connecting resin 15 is 50 MPa or less, the connecting resin 15 is not too hard and the connecting resin 15 can be easily broken by the cutting blade 117. Therefore, the slit, that is, the non-connecting portion 14, can be easily formed while preventing the optical fiber core wire 11 from being separated.
  • the Young's modulus of the outer layer 17 is too low (the outer layer 17 is too soft), the glass fiber 16 may be damaged by the cutting blade 117 when the cutting blade 117 is inserted.
  • the Young's modulus of the outer layer 17 is too high (the outer layer 17 is too hard), the intermittently connected optical fiber tape core wire is less likely to be deformed due to the influence of the rigidity of the resin, and the cable loss characteristic may be deteriorated.
  • the Young's modulus of the outer layer 17 of each optical fiber core wire 11 in this example is 800 MPa or more, it is difficult for the cutting blade 117 to cause damage to the outer layer 17.
  • the intermittently connected optical fiber tape core wire 1 is not easily deformed due to the influence of the rigidity of the resin, and the possibility that the cable loss characteristic is deteriorated can be suppressed. can. Therefore, it is possible to provide the intermittently connected optical fiber tape core wire 1 having good cable loss characteristics while preventing the outer layer 17 from being damaged.
  • the cutting blade 117 is inserted after the connecting resin 15 is cured by a predetermined value or more to form a slit. If the cutting blade 117 is inserted in a state where the connecting resin 15 is not cured, it is difficult to break the connecting resin 15 because the connecting resin 15 has high elasticity. Further, if the connecting resin 15 is not cured, the strength is weak, so that a plurality of optical fiber core wires 11 in the optical fiber tape core wire 10 may be separated. In the optical fiber tape core wire 10 of this example, after the connecting resin is cured with a gel content of 90% or more, the cutting blade 117 is inserted into the connecting resin 15 to form a slit, so that the connecting resin is easily formed by the cutting blade 117. 15 can be broken, and the separation of the optical fiber core wire 11 in the tape core wire can also be prevented.
  • the optical fiber tape core wire 10 in which the connecting resin 15 is cured by the covering device 110 is intermittently inserted by inserting the cutting blade 117 of the cutting device 116 as it is, so that the optical fiber tape core wire is intermittently connected.
  • the manufacturing device 100 may include a first heating unit 121 (FIG. 1) for heating the connecting resin 15 between the covering device 110 and the cutting device 116.
  • the optical fiber tape core wire 10 in which the connecting resin 15 is cured by passing through the ultraviolet irradiation device 113 of the coating device 110 is softened by heating the connecting resin 15 by the first heating unit 121.
  • the cutting blade 117 is inserted into the softened connecting resin 15 to form a slit.
  • the connecting resin 15 cannot be easily broken. Further, when the slit is formed, the connecting resin 15 may be peeled off from the plurality of optical fiber core wires 11. According to this example, since the cutting blade 117 is inserted into the connecting resin 15 softened by the first heating unit 121, the connecting resin 15 can be easily broken.
  • the temperature of heating by the first heating unit 121 is preferably about 40 ° C. or higher. When the heating temperature is about 40 ° C., the effect of softening the connecting resin 15 is recognized. However, the heating temperature needs to be equal to or lower than the melting point of the connecting resin 15, and specifically, it is preferably about 95 ° C. or lower.
  • the cutting device 116 of the manufacturing device 100 may include a second heating unit 122 for heating the cutting blade 117 (FIG. 1).
  • the optical fiber tape core wire 10 having the connecting resin 15 cured through the ultraviolet irradiation device 113 of the covering device 110 is sent to the cutting device 116.
  • the cutting blade 117 heated by the second heating unit 122 is inserted into the cured connecting resin 15, and a slit is formed. Therefore, according to this example, even if the connecting resin 15 is cured, the cutting blade 117 is inserted into the connecting resin 15 in a heated state, so that the connecting resin 15 can be easily broken.
  • the temperature of heating by the second heating unit 122 is preferably about 40 ° C. or higher and 95 ° C. or lower. Both the first heating unit 121 and the second heating unit 122 may be provided to heat both the cutting blade 117 and the connecting resin 15.
  • FIG. 4 is a schematic view of a printing device 123 that can be provided in the manufacturing device 100 of the intermittently connected optical fiber tape core wire 1.
  • the manufacturing apparatus 100 may include a printing apparatus 123 for marking the surfaces of a plurality of optical fiber core wires 11.
  • the printing device 123 may be arranged between the supply 101 and the covering device 110, and is preferably provided between the concentrator roller 105 and the covering device 110.
  • the printing device 123 is, for example, an inkjet printer.
  • the printing device 123 prints markings on the surfaces of a plurality of optical fiber core wires 11 sent from the supply 101 to form the marks M.
  • the shape of the mark M may be, for example, a bar shape orthogonal to the longitudinal direction. Further, a ring-shaped ring mark may be provided on each optical fiber core wire 11.
  • the plurality of optical fiber core wires 11 on which the mark M is formed are then sent to the coating device 112.
  • the coating device 112 coats the connecting resin 15 from above the mark M, and the ultraviolet irradiation device 113 cures the connecting resin 15 including the mark M. Since the subsequent manufacturing process overlaps with the description of FIG. 1, the illustration and description will be omitted.
  • the printing device 123 marks the surface of the optical fiber core wire 11, the discriminability of the tape core wire can be improved.
  • the manufacturing apparatus 100 of this example may include a plasma processing apparatus 124 that performs plasma processing on the surfaces of a plurality of optical fiber core wires 11.
  • the plasma processing device 124 may be arranged between the supply 101 and the printing device 123, and is preferably provided between the concentrator roller 105 and the printing device 123.
  • the plasma treatment of the plasma processing apparatus 124 the wettability of the core wire surface is enhanced, and the degree of adhesion of the marking material to the core wire surface is improved. Therefore, when the mark M is subsequently attached by the printing device 123, it is possible to prevent the mark M from peeling off from the surface of the core wire.
  • the optical fiber cable manufactured by the manufacturing method of the present disclosure was evaluated.
  • the optical fiber cable used in this evaluation experiment is a 432-core slotless optical fiber cable on which a 12-core intermittently connected optical fiber tape core wire 1 is mounted.
  • the outer diameter of the cable is 11 mm, and the core density is 4.55 cores / mm 2 .
  • the distance g of the intermittently connected optical fiber tape core wire 1 mounted on each optical fiber cable, the breaking strength of the connecting resin 15 at 23 ° C., and the Young's modulus of the outer layer at 23 ° C. were individually set, and the sample No. 1 to No. 12 was prepared.
  • the optical fiber core wire was separated at the time of cutting. No separation was confirmed in the other samples. From the above, it was confirmed that when the breaking strength of the connecting resin 15 is larger than 20 MPa, it is possible to suppress the separation of the optical fiber core wire at the time of cutting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

間欠連結型光ファイバテープ心線(10)の製造方法は、複数の光ファイバ心線(11A~11L)を、前記複数の光ファイバ心線(11A~11L)の長手方向と直交する方向に並列させ、前記複数の光ファイバ心線(11A~11L)全てを連結樹脂(15)によって被覆し、前記複数の光ファイバ心線(11A~11L)のうち一部の隣接する光ファイバ心線の間の前記連結樹脂(15)に切断刃(117)を間欠的に挿入してスリット(14)を形成する間欠連結型光ファイバテープ心線(10)の製造方法であって、各前記光ファイバ心線(11A~11L)の外径が220μm以下であり、前記隣接する光ファイバ心線の間のうち、前記切断刃(117)が挿入される光ファイバ心線の間の距離(g)が10μm以上100μm以下である。

Description

間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線
 本開示は、間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線に関する。
 本出願は、2020年7月29日出願の日本出願第2020-128531号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 従来、間欠連結型光ファイバテープ心線の製造方法の一例として、複数の光ファイバ心線をその長手方向と直交する方向に並列させ、並列された複数の光ファイバ心線全てを樹脂によって被覆し、被覆した一部の隣接する光ファイバ心線の間に切断刃を間欠的に挿入してスリット(非連結部)を形成する方法がある(例えば特許文献1,4)。また、特許文献2,3には、間欠構造のテープ心線の、光ファイバ心線間距離(中心間距離)が記載されている。
日本国特開2004-206048号公報 日本国特開2014-157382号公報 日本国特開2013-088617号公報 日本国特開2012-208310号公報
 本開示の間欠連結型光ファイバテープ心線の製造方法は、
 複数の光ファイバ心線を、前記複数の光ファイバ心線の長手方向と直交する方向に並列させ、
 前記複数の光ファイバ心線全てを連結樹脂によって被覆し、
 前記複数の光ファイバ心線のうち一部の隣接する光ファイバ心線の間の前記連結樹脂に切断刃を間欠的に挿入してスリットを形成する間欠連結型光ファイバテープ心線の製造方法であって、
 各前記光ファイバ心線の外径が220μm以下であり、
 前記隣接する光ファイバ心線の間のうち、前記切断刃が挿入される光ファイバ心線の間の距離が10μm以上100μm以下である。
 本開示の間欠連結型光ファイバテープ心線は、
 長手方向と直交する方向に並列させた複数の光ファイバ心線と、
 前記複数の光ファイバ心線全てを被覆する連結樹脂と、を有し、
 前記複数の光ファイバ心線のうち一部の隣接する光ファイバ心線の間の前記連結樹脂に切断刃を間欠的に挿入してスリットが形成される間欠連結型光ファイバテープ心線であって、
 各前記光ファイバ心線の外径が220μm以下であり、
 前記隣接する光ファイバ心線の間のうち、前記切断刃が挿入される光ファイバ心線の間の距離が10μm以上100μm以下である。
図1は、本開示の第一実施形態に係る間欠連結型光ファイバテープ心線の製造装置の構成図である。 図2は、図1の製造装置で製造される光ファイバテープ心線の長手方向に垂直な断面図である。 図3は、間欠連結型光ファイバテープ心線を長手方向に示した部分展開図である。 図4は、間欠連結型光ファイバテープ心線の製造装置の変形例に用いられる印字装置の概要図である。
 [本開示が解決しようとする課題]
 ケーブル内へ複数の光ファイバテープ心線を高密度に実装するためには、各光ファイバテープ心線において、隣接する光ファイバ心線間の距離が可能な限り小さくなるように各光ファイバ心線を配置することが好ましい。しかしながら距離が小さ過ぎる場合には、スリットが形成される際に、切断刃によって光ファイバ心線を傷つけることがある。
 例えば、外径が200μmである細径光ファイバ心線を光ファイバテープ心線に用いる場合、一般的に細径光ファイバ心線の被膜層は薄く、隣り合う細径光ファイバ心線間の距離が小さいため、スリットが形成される際に切断刃の挿入位置が少しでもずれると、細径光ファイバ心線を外傷させるおそれがある。
 そこで本開示は、光ファイバ心線の外傷を防ぎつつ、高密度に実装可能な間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線を提供する。
(本開示の一形態の説明)
 まず本開示の実施態様を列記して説明する。
 (1)本開示の一態様に係る間欠連結型光ファイバテープ心線の製造方法は、
 複数の光ファイバ心線を、前記複数の光ファイバ心線の長手方向と直交する方向に並列させ、
 前記複数の光ファイバ心線全てを連結樹脂によって被覆し、
 前記複数の光ファイバ心線のうち一部の隣接する光ファイバ心線の間の前記連結樹脂に切断刃を間欠的に挿入してスリットを形成する間欠連結型光ファイバテープ心線の製造方法であって、
 各前記光ファイバ心線の外径が220μm以下であり、
 前記隣接する光ファイバ心線の間のうち、前記切断刃が挿入される光ファイバ心線の間の距離が10μm以上100μm以下である。
 本開示の間欠連結型光ファイバテープ心線の製造方法によれば、隣接する光ファイバ心線の間のうち、切断刃が挿入される光ファイバ心線の間の距離が10μm以上であるため、切断刃が挿入されても光ファイバ心線を傷つけることはない。また、切断刃が挿入される光ファイバ心線の間の距離が100μm以下であるため、テープ心線に複数の光ファイバ心線を高密度に配置することができる。
 (2)前記連結樹脂の破断強度が20MPaより大きく50MPa以下であってもよい。
 連結樹脂の破断強度が低すぎると、製造工程においてライン中のローラにより間欠連結型光ファイバテープ心線がしごかれた場合、連結樹脂が柔らかすぎるためテープ心線内で光ファイバ心線が分離することがある。しかし本開示によれば、連結樹脂の破断強度が20MPaより大きいため、破断強度が弱いことによる光ファイバ心線の分離が生じにくい。また、連結樹脂の破断強度が50MPa以下であるため、連結樹脂は硬すぎず、切断刃によって容易に連結樹脂を破断することができる。
 (3)各前記光ファイバ心線の最外層のヤング率が800MPa以上2000MPa以下であってもよい。
 本開示によれば、各光ファイバ心線の最外層の被覆層のヤング率が800MPa以上であるため、切断刃によって光ファイバ心線を外傷させにくい。また、各光ファイバ心線の最外層の被覆層のヤング率が2000MPa以下であるため、樹脂の剛性の影響で間欠連結型光ファイバテープ心線が変形し難くなることもなく、ケーブル損失特性が悪化することもない。
 (4)前記連結樹脂をゲル分率90%以上硬化させた後に、前記切断刃を挿入してもよい。
 連結樹脂が硬化していない状態で切断刃が挿入されると、連結樹脂の伸縮性が高いため、切断刃によって連結樹脂を破断させることが難しく、また、強度が弱いため、テープ心線内での光ファイバ心線の分離が生じることがある。本開示によれば、連結樹脂をゲル分率90%以上硬化させた後に、切断刃を挿入するため、切断刃によって容易に連結樹脂を破断することができ、テープ心線内での光ファイバ心線の分離が生じることもない。
 (5)前記複数の光ファイバ心線を被覆した前記連結樹脂を硬化させ、
 硬化した前記連結樹脂を加熱して軟化させ、
 軟化した前記連結樹脂に前記切断刃を挿入してもよい。
 連結樹脂が軟化されていない状態で切断刃が挿入されると、容易に連結樹脂を破断することができず、スリットの形成時に連結樹脂が複数の光ファイバ心線から剥離することがある。本開示によれば、軟化した連結樹脂に切断刃が挿入されるため、容易に連結樹脂を破断することができる。
 (6) 前記複数の光ファイバ心線を被覆した前記連結樹脂を硬化させ、
 前記切断刃を加熱し、
 硬化した前記連結樹脂に、加熱した前記切断刃を挿入してもよい。
 本開示によれば、たとえ連結樹脂が硬化して硬い状態であっても、加熱された状態で切断刃が連結樹脂に挿入されるため、容易に連結樹脂を破断することができる。
 (7) 各前記光ファイバ心線の表面にマークを付し、
 前記マークが付された前記複数の光ファイバ心線を前記連結樹脂によって被覆してもよい。
 本開示によれば、各光ファイバ心線の表面にマークが付されているため、テープ心線の識別性を高めることができる。
 (8)本開示の一態様に係る間欠連結型光ファイバテープ心線は、
 長手方向と直交する方向に並列させた複数の光ファイバ心線と、
 前記複数の光ファイバ心線全てを被覆する連結樹脂と、を有し、
 前記複数の光ファイバ心線のうち一部の隣接する光ファイバ心線の間の前記連結樹脂に切断刃を間欠的に挿入してスリットが形成される間欠連結型光ファイバテープ心線であって、
 各前記光ファイバ心線の外径が220μm以下であり、
 前記隣接する光ファイバ心線の間のうち、前記切断刃が挿入される光ファイバ心線の間の距離が10μm以上100μm以下である。
 本開示の間欠連結型光ファイバテープ心線によれば、隣接する光ファイバ心線の間のうち、切断刃が挿入される光ファイバ心線の間の距離が10μm以上であるため、切断刃が挿入されても光ファイバ心線を傷つけることはない。また、切断刃が挿入される光ファイバ心線の間の距離が100μm以下であるため、テープ心線に複数の光ファイバ心線を高密度に配置することができる。
 (9)前記連結樹脂の破断強度が20MPaより大きく50MPa以下であってもよい。
 連結樹脂の破断強度が低すぎると、製造工程においてライン中のローラにより間欠連結型光ファイバテープ心線がしごかれた場合、連結樹脂が柔らかすぎるためテープ心線内で光ファイバ心線が分離することがある。しかし本開示によれば、連結樹脂の破断強度が20MPaより大きいため、破断強度が弱いことによる光ファイバ心線の分離が生じにくい。また、連結樹脂の破断強度が50MPa以下であるため、連結樹脂は硬すぎず、切断刃によって容易に連結樹脂を破断することができる。
 (10)各前記光ファイバ心線の最外層のヤング率が800MPa以上2000MPa以下であってもよい。
 本開示によれば、各光ファイバ心線の最外層の被覆層のヤング率が800MPa以上であるため、切断刃によって光ファイバ心線を外傷させにくい。また、各光ファイバ心線の最外層の被覆層のヤング率が2000MPa以下であるため、樹脂の剛性の影響で間欠連結型光ファイバテープ心線が変形し難くなることもなく、ケーブル損失特性が悪化することもない。
[本開示の効果]
 本開示によれば、光ファイバ心線の外傷を防ぎつつ、高密度に実装可能な間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線を提供することができる。
(本開示の第一実施形態の詳細)
 本開示の一形態に係る間欠連結型光ファイバテープ心線1及び間欠連結型光ファイバテープ心線1の製造方法を、図面を参照しつつ説明する。
 なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1は、本開示の一形態に係る間欠連結型光ファイバテープ心線1の製造装置100の構成図である。図1に示すように、製造装置100は、サプライ101と、被覆装置110と、送出キャプスタン115と、切込装置116と、巻取張力制御ダンサ118と、巻取装置119とを備えている。さらに製造装置100は、サプライ101と被覆装置110との間に設けられた集線ローラ105と、被覆装置110と送出キャプスタン115との間に設けられたターンローラ114とを備えている。
 サプライ101は、複数のリール102と、ダンサローラ103と、搬送ローラ104を備える。複数のリール102にはそれぞれ光ファイバ心線11が巻かれている。各光ファイバ心線11の外径は例えば220μm以下である。複数の光ファイバ心線11は複数のリール102から繰り出され、ダンサローラ103によって所定の張力が付与される。その後、搬送ローラ104を通過するとき一つの配列面上に並べられ、集線ローラ105へ送られる。
 集線ローラ105には、複数の光ファイバ心線11を通過させる複数の溝部(図示せず)が所定の間隔で配列されている。これにより、複数の光ファイバ心線11は集線され、光ファイバ心線11の長手方向と直交する方向に並列される。
 集線ローラ105に集線された複数の光ファイバ心線11は、被覆装置110へ送られる。被覆装置110は、樹脂貯留タンク111と、塗布装置112と、紫外線照射装置113とを備えている。
 塗布装置112は、全ての光ファイバ心線11を挿通し、その周囲に樹脂貯留タンク111から供給される連結樹脂15を被覆して被覆層12(図2参照)を形成する。連結樹脂15は、紫外線硬化樹脂であることが好ましいが、熱可塑性樹脂や接着性樹脂、他の被覆樹脂でもよい。紫外線照射装置113は紫外線を照射することによって連結樹脂15を硬化させる。この結果、複数の光ファイバ心線11は光ファイバテープ心線10となる。
 光ファイバテープ心線10は、ターンローラ114を経て、送出キャプスタン115へ送られる。その後、切込装置116によって光ファイバテープ心線10にスリットが形成される。
 切込装置116は、複数の切断刃117を備えている。各切断刃117は、先端にテーパー形状を有しており、刃の厚みは例えば0.2mmである。各切断刃117にはカム機構が連結されており、カム機構に連動して切断刃117は光ファイバテープ心線10の長手方向に沿って設けられ、スイングするように構成されている。切断刃117のスイング動作により、光ファイバテープ心線10のうち、一部の隣接する光ファイバ心線の間の連結樹脂15に切断刃117が間欠的に挿入されてスリットが形成される。ここで切断刃117は、連結樹脂15がゲル分率90%以上硬化された状態で挿入されることが好ましい。スリットが間欠的に形成された光ファイバテープ心線10は、間欠連結型光ファイバテープ心線1となる。
 間欠連結型光ファイバテープ心線1は、巻取張力制御ダンサ118へ送られ、張力が制御される。その後、巻取装置119によって巻取リールRに巻き取られる。
 次に、光ファイバテープ心線10から間欠連結型光ファイバテープ心線1への製造工程の詳細を説明する。図2は光ファイバテープ心線10の長手方向に垂直な断面図を示す。図2に示すように光ファイバテープ心線10は、長手方向と直交する方向に並列された複数の光ファイバ心線11Aから11L(本例では12心)の周囲が被覆層12によって被覆されている。被覆層12を形成している連結樹脂15の破断強度は20MPaより大きく50MPa以下である。各光ファイバ心線11Aから11Lは、中心にガラスファイバ16と、ガラスファイバ16の周囲を覆う外層17(最外層)とを備える。ガラスファイバ16の直径は例えば200μmであり、外層17の厚みは37.5μmである。外層17のヤング率は800MPa以上2000MPa以下である。
 本例においては、2心の光ファイバ心線同士が互いにほぼ接触して光ファイバ心線セットを形成しており、隣り合う光ファイバ心線セットの間には距離gの間隔が設けられている。図2では、光ファイバ心線11Aと11Bのセットと光ファイバ心線11Cと11Dのセットの間に、光ファイバ心線11Cと11Dのセットと光ファイバ心線11Eと11Fのセットの間に、光ファイバ心線11Eと11Fのセットと光ファイバ心線11Gと11Hのセットの間に、光ファイバ心線11Gと11Hのセットと光ファイバ心線11Iと11Jのセットの間に、光ファイバ心線11Iと11Jのセットと光ファイバ心線11Lと11Lのセットの間に、距離gの間隔が設けられている。なお本例では2心の光ファイバ心線毎に距離gの間隔が設けられているが、1心の光ファイバ心線毎に設けられてもよい。
 距離gは、複数の光ファイバ心線11Aから11Lの並列方向であって、心線の中心を通過する直線L上において、光ファイバ心線(例えば11Aと11B)のセットのうち隣の光ファイバ心線セット(例えば11Cと11D)近くにある光ファイバ心線(11B)の外層17と、隣の光ファイバ心線(11C)の外層17との距離である。本例では距離gは、10μm以上100μm以下である。本例では、距離gの間隔が設けられている、連結樹脂15部分に切断刃117が挿入されることでスリットが形成される。この結果、スリットは、間欠連結型光ファイバテープ心線1の非連結部14(図3参照)となる。
 図3は、間欠連結型光ファイバテープ心線1をその長手方向に示した部分展開図を示す。図3に示すように、切込装置116を通過した光ファイバテープ心線10は、複数の光ファイバ心線11A~11Lの長手方向と直交する方向に並列に配置された状態で、複数の光ファイバ心線11A~11L間の一部、または全てにおいて、隣接する光ファイバ心線間が連結された連結部13と、隣接する光ファイバ心線間が連結されていない非連結部14とが長手方向に間欠的に設けられている、間欠連結型の光ファイバテープ心線1となる。このようにして、切込装置116へ送られた光ファイバテープ心線10は切断刃117が間欠的に挿入されることで間欠連結型光ファイバテープ心線1となる。
 以上説明したように、本例の光ファイバテープ心線10においては、距離gが10μm以上100μm以下となるように光ファイバ心線11を配置し、連結樹脂15を硬化する。一般的に距離gが小さすぎると、切断刃117の挿入時にガラスファイバ16が切断刃117によって損傷するおそれがある。距離gが大きすぎると、光ファイバテープ心線10として複数の光ファイバ心線11を高密度に配置することができない。しかしながら本例によれば距離gが10μm以上であるため、切断刃117が挿入されても光ファイバ心線11を傷つけるおそれが低減される。また距離gが100μm以下であるため、光ファイバテープ心線10として複数の光ファイバ心線11を高密度に配置することできる。したがって、光ファイバ心線11の外傷の可能性を抑制しつつ、光ファイバ心線11が高密度に配置された間欠連結型光ファイバテープ心線1を提供することができる。
 連結樹脂15の破断強度は、低すぎず、高すぎないことが好ましい。破断強度が低すぎると、例えばターンローラ114によって光ファイバテープ心線10がしごかれた場合、連結樹脂15が柔らかすぎるため、光ファイバテープ心線10内の複数の光ファイバ心線11が分離してしまうおそれがある。逆に破断強度が高すぎると、連結樹脂15が硬すぎるため切断刃117によって連結樹脂15を破断することが困難となる。本例の光ファイバテープ心線10においては、連結樹脂15の破断強度が20MPaより大きいため、破断強度が弱いことによる光ファイバ心線11の分離が生じにくい。また、連結樹脂15の破断強度が50MPa以下であるため、連結樹脂15は硬すぎず、切断刃117によって容易に連結樹脂15を破断することができる。したがって、光ファイバ心線11の分離を防ぎつつ、容易にスリット、すなわち非連結部14を形成することができる。
 外層17のヤング率が低すぎる(外層17が柔らかすぎる)と、切断刃117の挿入時にガラスファイバ16が切断刃117によって損傷するおそれがある。一方外層17のヤング率が高すぎる(外層17が硬すぎる)と、樹脂の剛性の影響で間欠連結型光ファイバテープ心線が変形し難くなり、ケーブル損失特性が悪化する可能性がある。しかしながら本例における各光ファイバ心線11の外層17のヤング率は800MPa以上であるため、切断刃117による外層17への外傷を生じさせにくい。また、外層17のヤング率は2000MPa以下であるため、樹脂の剛性の影響で間欠連結型光ファイバテープ心線1が変形し難くなることもなく、ケーブル損失特性が悪化する可能性を抑えることができる。したがって外層17の外傷を防ぎつつ、ケーブル損失特性も良好な、間欠連結型光ファイバテープ心線1を提供することができる。
 切断刃117は、連結樹脂15が所定値以上硬化された後に挿入されスリットを形成する。連結樹脂15が硬化していない状態で切断刃117が挿入されると、連結樹脂15の伸縮性が高いため、連結樹脂15を破断させることが難しい。また連結樹脂15が硬化していないと、強度が弱いため、光ファイバテープ心線10内の複数の光ファイバ心線11が分離してしまうおそれがある。本例の光ファイバテープ心線10においては、連結樹脂がゲル分率90%以上硬化された後に、切断刃117は連結樹脂15に挿入されスリットを形成するため、切断刃117によって容易に連結樹脂15を破断することができ、テープ心線内での光ファイバ心線11の分離も防ぐことができる。
 なお、本例では被覆装置110で連結樹脂15が硬化された光ファイバテープ心線10は、そのまま切込装置116の切断刃117が間欠的に挿入されることで間欠連結型光ファイバテープ心線1が形成されることを説明したが、製造工程はこれに限定されない。例えば製造装置100は、被覆装置110と切込装置116の間に、連結樹脂15を加熱する第一加熱部121(図1)を備えてもよい。被覆装置110の紫外線照射装置113を通過して連結樹脂15が硬化された光ファイバテープ心線10は、第一加熱部121によって連結樹脂15が加熱され軟化する。軟化した連結樹脂15に切断刃117が挿入されてスリットが形成される。
 連結樹脂15が軟化されていない状態で切断刃117が挿入されると、容易に連結樹脂15を破断することができない。また、スリットの形成時に連結樹脂15が複数の光ファイバ心線11から剥離することがある。本例によれば、第一加熱部121によって軟化された連結樹脂15に切断刃117が挿入されるため、容易に連結樹脂15を破断することができる。なお、第一加熱部121によって加熱する温度は、40℃程度以上であることが好ましい。加熱する温度が40℃程度であれば、連結樹脂15を軟化させる効果が認められる。但し加熱する温度は、連結樹脂15の融点以下にする必要があり、具体的には95℃程度以下であることが好ましい。
 また製造装置100の切込装置116は、切断刃117を加熱する第二加熱部122を備えてもよい(図1)。被覆装置110の紫外線照射装置113を通過して連結樹脂15が硬化された光ファイバテープ心線10は切込装置116に送られる。第二加熱部122によって加熱された切断刃117が、硬化した連結樹脂15に挿入され、スリットが形成される。したがって本例によれば、たとえ連結樹脂15が硬化していても、加熱された状態で切断刃117が連結樹脂15に挿入されるため、容易に連結樹脂15を破断することができる。本例においても、第二加熱部122によって加熱する温度は、40℃程度以上、95℃程度以下であることが好ましい。なお、第一加熱部121と第二加熱部122の両方を設け、切断刃117と連結樹脂15の両方を加熱してもよい。
(変形例)
 本例の製造装置100は、間欠連結型光ファイバテープ心線1の識別性を高めるため、複数の光ファイバ心線11にマークMを付してもよい。図4は、間欠連結型光ファイバテープ心線1の製造装置100に設けられることが可能な印字装置123の概要図である。
 図4に示すように、製造装置100は、図1に示す構成に加え、複数の光ファイバ心線11の表面に対してマークを付す印字装置123を備えていてもよい。印字装置123は、サプライ101と被覆装置110との間に配置されればよく、好ましくは集線ローラ105と被覆装置110の間に設けられる。印字装置123は例えばインクジェットプリンタである。
 印字装置123は、サプライ101から送られた複数の光ファイバ心線11表面にマーキングを印字し、マークMを形成する。マークMの形状は、例えば長手方向に対して直交するバー形状でもよい。また、各々の光ファイバ心線11に、リング状のリングマークを設けてもよい。
 マークMの形成された複数の光ファイバ心線11はその後塗布装置112へ送られる。塗布装置112はマークMの上から連結樹脂15を塗布し、紫外線照射装置113はマークMも含めて連結樹脂15を硬化させる。以降の製造工程は図1の説明と重複するため、図示及び説明を省略する。
 このように本例によれば、印字装置123によって光ファイバ心線11の表面にマークが付されるため、テープ心線の識別性を高めることができる。
 なお、本例の製造装置100は、複数の光ファイバ心線11の表面に対してプラズマ処理を行うプラズマ処理装置124を備えてもよい。プラズマ処理装置124は、サプライ101と印字装置123との間に配置されればよく、好ましくは集線ローラ105と印字装置123の間に設けられる。プラズマ処理装置124のプラズマ処理によって、心線表面の濡れ性は高められ、心線表面に対するマーキング材の密着度が向上する。したがって、その後印字装置123によりマークMが付される際に、マークMが心線表面から剥離することを防ぐことができる。
(評価実験)
 本開示の製造方法により製造された光ファイバケーブルの評価を行った。本評価実験で用いた光ファイバケーブルは、12心間欠連結型光ファイバテープ心線1が実装された432心のスロットレス型光ファイバケーブルである。ケーブル外径は11mmであり、心密度は4.55心/mmである。光ファイバケーブルそれぞれに実装される間欠連結型光ファイバテープ心線1の距離g、23℃における連結樹脂15の破断強度、23℃における外層のヤング率を個別に設定し、サンプルNo.1からNo.12を用意した。本評価実験は、各サンプルの光ファイバ心線11の外傷の有無と、切断の可否と、切断時の分離の有無と、ケーブル損失特性を評価した。ここでケーブル損失特性は、1.55μmの波長をケーブルに入射した場合における単位距離当たりの減衰量が0.3dB/km未満か否かを評価した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、サンプルNo.1からNo.3はいずれも距離gが0μmであり、光ファイバ心線の外傷が確認された。これは距離gが小さすぎたため、切断刃117によって光ファイバ心線が損傷したためである。また外層のヤング率が600MPaであるサンプルNo.10においても、光ファイバ心線の外傷が確認された。これは外層のヤング率が柔らかすぎるために、切断刃117によって光ファイバ心線が損傷したためである。他のサンプルNo.4~9、11~15には光ファイバ心線の外傷は確認されなかった。以上より、距離gが10μm以上、外層のヤング率が800MPa以上の場合、光ファイバ心線の外傷を防止できることが確認された。
 表1において、サンプルNo.9およびNo.13はいずれも連結樹脂15の破断強度が70MPaであり、切断刃117が連結樹脂15を切断できなかった(切り残しが生じた)ことが確認された。これは連結樹脂15が硬すぎるためである。一方、連結樹脂15の破断強度が50MPa以下である、他のサンプルNo.1~8、10~12、14及び15では切断刃117による切断が確認された。以上より、連結樹脂15の破断強度が50MPa以下の場合、切断刃117は連結樹脂15を切断できることが確認された。
 また、連結樹脂15の破断強度が20MPaである、サンプルNo.4では切断時において光ファイバ心線が分離されてしまっていた。他のサンプルには分離が確認されなかった。以上より、連結樹脂15の破断強度が20MPaより大きい場合、光ファイバ心線が切断時に分離されてしまうのを抑制できることが確認された。
 表1において、サンプルNo.14および15はいずれも距離gが150μmであり、ケーブル損失特性として0.3dB/km以上の減衰量が確認された。距離gが長すぎると、同じ心線の光ファイバ心線を、ケーブル内に高密度に実装することができない。つまり、間欠連結型光ファイバテープの一つ当たりの断面積が増えるため、ケーブル内の光ファイバ心線同士は互いに側圧が掛かるほど隙間なく実装された状態となる。この側圧のためケーブル損失特性が高くなる。また外層のヤング率が2500MPaであるサンプルNo.8では、樹脂の剛性の影響で間欠連結型光ファイバテープ心線が変形し難いため、ケーブル損失特性として0.3dB/km以上の減衰量が確認された。距離gが100μm以下である他のサンプルNo.1~7、9~13においては、ケーブル損失特性は0.3dB/km未満であった。特に、距離gが100μm以下であって、外層のヤング率が2000MPaであるサンプルNo.7においても、ケーブル損失特性は0.3dB/km未満であった。以上より、距離gが100μm以下であって外層のヤング率が2000MPa以下の場合、ケーブル内に高密度に光ファイバ心線を実装しつつ、ケーブル損失特性の少ない光ファイバケーブルを実現できることが確認された。
 以上、本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本開示を実施する上で好適な数、位置、形状等に変更することができる。
1:間欠連結型光ファイバテープ心線
10:光ファイバテープ心線
11、11A~11L:光ファイバ心線
12:被覆層
13:連結部
14:非連結部
15:連結樹脂
16:ガラスファイバ
17:外層(最外層)
100:製造装置
101:サプライ
102:リール
103:ダンサローラ
104:搬送ローラ
105:集線ローラ
110:被覆装置
111:樹脂貯留タンク
112:塗布装置
113:紫外線照射装置
114:ターンローラ
115:送出キャプスタン
116:切込装置
117:切断刃
118:巻取張力制御ダンサ
119:巻取装置
121:第一加熱部
122:第二加熱部
123:印字装置
124:プラズマ処理装置
R:巻取リール
M:マーク

Claims (10)

  1.  複数の光ファイバ心線を、前記複数の光ファイバ心線の長手方向と直交する方向に並列させ、
     前記複数の光ファイバ心線全てを連結樹脂によって被覆し、
     前記複数の光ファイバ心線のうち一部の隣接する光ファイバ心線の間の前記連結樹脂に切断刃を間欠的に挿入してスリットを形成する間欠連結型光ファイバテープ心線の製造方法であって、
     各前記光ファイバ心線の外径が220μm以下であり、
     前記隣接する光ファイバ心線の間のうち、前記切断刃が挿入される光ファイバ心線の間の距離が10μm以上100μm以下である、間欠連結型光ファイバテープ心線の製造方法。
  2.  前記連結樹脂の破断強度が20MPaより大きく50MPa以下である、請求項1に記載の間欠連結型光ファイバテープ心線の製造方法。
  3.  各前記光ファイバ心線の最外層のヤング率が800MPa以上2000MPa以下である、請求項1または請求項2に記載の間欠連結型光ファイバテープ心線の製造方法。
  4.  前記連結樹脂をゲル分率90%以上硬化させた後に、前記切断刃を挿入する、請求項1から請求項3の何れか一項に記載の間欠連結型光ファイバテープ心線の製造方法。
  5.  前記複数の光ファイバ心線を被覆した前記連結樹脂を硬化させ、
     硬化した前記連結樹脂を加熱して軟化させ、
     軟化した前記連結樹脂に前記切断刃を挿入する、請求項1から請求項4の何れか一項に記載の間欠連結型光ファイバテープ心線の製造方法。
  6.  前記複数の光ファイバ心線を被覆した前記連結樹脂を硬化させ、
     前記切断刃を加熱し、
     硬化した前記連結樹脂に、加熱した前記切断刃を挿入する、請求項1から請求項5の何れか一項に記載の間欠連結型光ファイバテープ心線の製造方法。
  7.  各前記光ファイバ心線の表面にマークを付し、
     前記マークが付された前記複数の光ファイバ心線を前記連結樹脂によって被覆する、請求項1から請求項6の何れか一項に記載の間欠連結型光ファイバテープ心線の製造方法。
  8.  長手方向と直交する方向に並列させた複数の光ファイバ心線と、
     前記複数の光ファイバ心線全てを被覆する連結樹脂と、を有し、
     前記複数の光ファイバ心線のうち一部の隣接する光ファイバ心線の間の前記連結樹脂に切断刃を間欠的に挿入してスリットが形成される間欠連結型光ファイバテープ心線であって、
     各前記光ファイバ心線の外径が220μm以下であり、
     前記隣接する光ファイバ心線の間のうち、前記切断刃が挿入される光ファイバ心線の間の距離が10μm以上100μm以下である、間欠連結型光ファイバテープ心線。
  9.  前記連結樹脂の破断強度が20MPaより大きく50MPa以下である、請求項8に記載の間欠連結型光ファイバテープ心線。
  10.  各前記光ファイバ心線の最外層のヤング率が800MPa以上2000MPa以下である、請求項8または請求項9に記載の間欠連結型光ファイバテープ心線。
PCT/JP2021/027906 2020-07-29 2021-07-28 間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線 WO2022025116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022539530A JPWO2022025116A1 (ja) 2020-07-29 2021-07-28
US17/998,882 US11860438B2 (en) 2020-07-29 2021-07-28 Method for manufacturing intermittent connection-type optical fiber tape core wire and intermittent connection-type optical fiber tape core wire
CN202180059216.3A CN116134358A (zh) 2020-07-29 2021-07-28 间歇连结型光纤带芯线的制造方法及间歇连结型光纤带芯线
EP21849845.9A EP4191310A4 (en) 2020-07-29 2021-07-28 METHOD FOR PRODUCING AN INTERMITTENT CONNECTION-TYPE FIBERGLASS RIBBON CORE WIRE AND INTERMITTENT CONNECTION-TYPE FIBERGLASS RIBBON CORE WIRE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020128531 2020-07-29
JP2020-128531 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022025116A1 true WO2022025116A1 (ja) 2022-02-03

Family

ID=80035738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027906 WO2022025116A1 (ja) 2020-07-29 2021-07-28 間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線

Country Status (5)

Country Link
US (1) US11860438B2 (ja)
EP (1) EP4191310A4 (ja)
JP (1) JPWO2022025116A1 (ja)
CN (1) CN116134358A (ja)
WO (1) WO2022025116A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219105A1 (ja) * 2022-05-11 2023-11-16 住友電気工業株式会社 光ファイバテープ心線
WO2024014487A1 (ja) * 2022-07-13 2024-01-18 住友電気工業株式会社 光ファイバリボンの製造方法および製造装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206048A (ja) 2002-11-06 2004-07-22 Sumitomo Electric Ind Ltd 光ファイバテープ心線及びその製造方法
JP2012208310A (ja) 2011-03-30 2012-10-25 Sumitomo Electric Ind Ltd 光ファイバテープ心線の製造装置および製造方法
JP2013088617A (ja) 2011-10-18 2013-05-13 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2013167753A (ja) * 2012-02-15 2013-08-29 Swcc Showa Cable Systems Co Ltd 光ファイバテープ心線の製造方法および光ファイバテープ心線の製造装置
JP2014157382A (ja) 2014-06-06 2014-08-28 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2016146003A (ja) * 2016-05-20 2016-08-12 日本電信電話株式会社 間欠接着型光ファイバテープおよびこれを用いた光ケーブル
JP2017026754A (ja) * 2015-07-21 2017-02-02 昭和電線ケーブルシステム株式会社 光ファイバテープ心線および光ファイバケーブル
JP2017062431A (ja) * 2015-09-25 2017-03-30 住友電気工業株式会社 光ファイバテープ心線
WO2018105424A1 (ja) * 2016-12-06 2018-06-14 住友電気工業株式会社 間欠連結型光ファイバテープ心線、その製造方法、光ファイバケーブルおよび光ファイバコード
WO2018117068A1 (ja) * 2016-12-20 2018-06-28 古河電気工業株式会社 光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線
WO2019011418A1 (en) * 2017-07-11 2019-01-17 Prysmian S.P.A. ASSEMBLY OF FIBER OPTIC RIBBONS AND METHOD FOR PRODUCING THE SAME
JP2020076916A (ja) * 2018-11-09 2020-05-21 住友電気工業株式会社 光ファイバテープ心線の製造装置および製造方法
JP2020128531A (ja) 2019-02-07 2020-08-27 ダイキン工業株式会社 トランス−1,2−ジフルオロエチレン(HFO−1132(E))と1,1,1−トリフルオロエタン(HFC−143a)とを含む組成物、並びにHFO−1132(E)とHFC−143aとを含む組成物から、HFO−1132(E)及びHFC−143aを分離する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60332260D1 (de) 2002-11-06 2010-06-02 Sumitomo Electric Industries Faseroptisches band und faseroptisches kabel damit
CN100516955C (zh) * 2002-11-06 2009-07-22 住友电气工业株式会社 光纤带和使用光纤带的光缆
JP3902201B2 (ja) * 2004-08-11 2007-04-04 古河電気工業株式会社 光ファイバ素線及び光ファイバテープ心線
EP2678726B1 (en) * 2011-02-17 2017-06-28 CommScope Connectivity Belgium BVBA Portable device for attaching a connector to an optical fiber
JP2014211512A (ja) * 2013-04-18 2014-11-13 住友電気工業株式会社 光ファイバコード
JP6270648B2 (ja) * 2014-07-15 2018-01-31 住友電気工業株式会社 光ケーブル用のスロットロッド及び光ケーブル
WO2016059727A1 (ja) * 2014-10-17 2016-04-21 住友電気工業株式会社 光ファイバ心線及び光ファイバテープ心線
WO2019088256A1 (ja) * 2017-11-02 2019-05-09 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206048A (ja) 2002-11-06 2004-07-22 Sumitomo Electric Ind Ltd 光ファイバテープ心線及びその製造方法
JP2012208310A (ja) 2011-03-30 2012-10-25 Sumitomo Electric Ind Ltd 光ファイバテープ心線の製造装置および製造方法
JP2013088617A (ja) 2011-10-18 2013-05-13 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2013167753A (ja) * 2012-02-15 2013-08-29 Swcc Showa Cable Systems Co Ltd 光ファイバテープ心線の製造方法および光ファイバテープ心線の製造装置
JP2014157382A (ja) 2014-06-06 2014-08-28 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2017026754A (ja) * 2015-07-21 2017-02-02 昭和電線ケーブルシステム株式会社 光ファイバテープ心線および光ファイバケーブル
JP2017062431A (ja) * 2015-09-25 2017-03-30 住友電気工業株式会社 光ファイバテープ心線
JP2016146003A (ja) * 2016-05-20 2016-08-12 日本電信電話株式会社 間欠接着型光ファイバテープおよびこれを用いた光ケーブル
WO2018105424A1 (ja) * 2016-12-06 2018-06-14 住友電気工業株式会社 間欠連結型光ファイバテープ心線、その製造方法、光ファイバケーブルおよび光ファイバコード
WO2018117068A1 (ja) * 2016-12-20 2018-06-28 古河電気工業株式会社 光ファイバ間欠テープ心線の製造方法及び光ファイバ間欠テープ心線
WO2019011418A1 (en) * 2017-07-11 2019-01-17 Prysmian S.P.A. ASSEMBLY OF FIBER OPTIC RIBBONS AND METHOD FOR PRODUCING THE SAME
JP2020076916A (ja) * 2018-11-09 2020-05-21 住友電気工業株式会社 光ファイバテープ心線の製造装置および製造方法
JP2020128531A (ja) 2019-02-07 2020-08-27 ダイキン工業株式会社 トランス−1,2−ジフルオロエチレン(HFO−1132(E))と1,1,1−トリフルオロエタン(HFC−143a)とを含む組成物、並びにHFO−1132(E)とHFC−143aとを含む組成物から、HFO−1132(E)及びHFC−143aを分離する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191310A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219105A1 (ja) * 2022-05-11 2023-11-16 住友電気工業株式会社 光ファイバテープ心線
WO2024014487A1 (ja) * 2022-07-13 2024-01-18 住友電気工業株式会社 光ファイバリボンの製造方法および製造装置

Also Published As

Publication number Publication date
US11860438B2 (en) 2024-01-02
EP4191310A4 (en) 2024-01-17
CN116134358A (zh) 2023-05-16
US20230213711A1 (en) 2023-07-06
EP4191310A1 (en) 2023-06-07
JPWO2022025116A1 (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2022025116A1 (ja) 間欠連結型光ファイバテープ心線の製造方法及び間欠連結型光ファイバテープ心線
JP6409080B2 (ja) 部分結合リボン構造体の高速処理のための方法
JP4049154B2 (ja) 光ファイバテープ心線
EP3282295B1 (en) Loose tube, loose tube type optical fiber cable, single fiber isolation method for loose tube optical fiber tape, loose tube manufacturing method, and method for gathering together a plurality of optical fibers
JP5450687B2 (ja) 光ファイバテープ心線の製造方法および光ファイバテープ心線の製造装置
JP5779940B2 (ja) 光ファイバテープ心線の製造装置および製造方法
JP5457528B1 (ja) 間欠型光ファイバテープ心線の製造方法および製造装置
AU2019472715B2 (en) Intermittently connected optical fiber ribbon and method for manufacturing intermittently connected optical fiber ribbon
US11635581B2 (en) Optical fiber unit and machining method for optical fiber unit
JP5691236B2 (ja) マルチコア光ファイバ及びマルチコア光ファイバの単芯分離方法
JP2950264B2 (ja) 光ファイバテープ心線の製造方法
JP3129979B2 (ja) 光ファイバテープ心線の製造方法
WO2017154297A1 (ja) 光ファイバテープ心線の製造方法及びその製造装置
JP2019049617A (ja) 光ファイバテープ心線および光ファイバテープ心線の製造方法
JP2012208312A (ja) 光ファイバテープ心線の製造装置および製造方法
TW202208911A (zh) 光纖帶心線及光纜
EP0104864B1 (en) Method of manufacturing an optical fibre ribbon structure
JP2012022061A (ja) 光ファイバユニットの製造方法及び製造装置
EP3955040A1 (en) Optical fiber ribbon, die, and manufacturing method for optical fiber ribbon
JP2000231042A (ja) 分割型光ファイバテープ心線
JPH1152202A (ja) テープ状光ファイバ
JP2001264605A (ja) 光ファイバテープ心線の製造装置
JP2000193858A (ja) 光ファイバテ―プ心線の製造方法及び製造装置
JP2005222080A (ja) 光ファイバテープ心線及び光ファイバテープ心線の製造方法
JP2022161561A (ja) 光ファイバテープ心線および光ファイバテープ心線の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539530

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021849845

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021849845

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE