WO2018116674A1 - 画像読取装置、画像記録装置及び画像読取装置の較正方法 - Google Patents

画像読取装置、画像記録装置及び画像読取装置の較正方法 Download PDF

Info

Publication number
WO2018116674A1
WO2018116674A1 PCT/JP2017/040178 JP2017040178W WO2018116674A1 WO 2018116674 A1 WO2018116674 A1 WO 2018116674A1 JP 2017040178 W JP2017040178 W JP 2017040178W WO 2018116674 A1 WO2018116674 A1 WO 2018116674A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixels
image
predetermined
image reading
Prior art date
Application number
PCT/JP2017/040178
Other languages
English (en)
French (fr)
Inventor
稲葉 康範
美幸 市原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018557599A priority Critical patent/JP6904365B2/ja
Publication of WO2018116674A1 publication Critical patent/WO2018116674A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/401Compensating positionally unequal response of the pick-up or reproducing head

Definitions

  • the present invention relates to an image reading apparatus, an image recording apparatus, and a calibration method for the image reading apparatus.
  • an image reading apparatus that emits light from a light source to a recording medium on which an image is recorded, reads an image on the recording medium by a reading unit such as a line sensor in which a plurality of imaging elements are arranged, and generates imaging data.
  • the reading unit is calibrated in order to correct variations in sensitivity of the image sensor and uneven illuminance on the recording medium due to the light source.
  • a standard reading object such as a white plate having a uniform and known reflectance is read by the reading means, and the pixel value of the obtained standard reading object imaging data is set to a value corresponding to the reflectance of the standard reading object.
  • a correction value to be matched is calculated.
  • a representative value for each pixel of the standard reading target imaging data, a representative value (for example, an average value) of pixel values in a certain number of pixel data continuously arranged including the pixel data of the pixel.
  • Patent Document 1 A technique for suppressing the influence of noise included in the standard reading target imaging data on the calibration result is known (for example, Patent Document 1).
  • An object of the present invention is to provide an image reading apparatus, an image recording apparatus, and an image reading apparatus calibration method that can be adjusted for more appropriate calibration.
  • the invention of the image reading apparatus comprises: Reading means in which a plurality of image sensors are arranged; A reading control unit configured to read a predetermined standard reading target by the reading unit and generate standard reading target imaging data including a plurality of pixels respectively corresponding to detection results by the plurality of imaging elements in the reading; , In a pixel array in which pixel data of the plurality of pixels is one-dimensionally arranged in an order corresponding to the arrangement order of the plurality of imaging elements, the pixel data of the target pixel is included for each of the plurality of pixels.
  • Corrected imaging data by determining a representative value of pixel values in a predetermined number of pixel data arranged successively in the arrangement order in the pixel arrangement, and correcting the pixel value in each of the plurality of pixels to the representative value associated with the pixel Corrected image data generation means for generating Calibration means for calibrating the reading means related to the detection values by the plurality of image sensors based on the corrected imaging data;
  • the predetermined number is different from the predetermined number related to at least one other pixel according to a distribution of pixel values in pixels within a predetermined range including the pixel in the arrangement order for each of the plurality of pixels. The number is fixed.
  • the invention according to claim 2 is the image reading apparatus according to claim 1,
  • the predetermined number is an average value of the predetermined number determined for pixels in a specific first range in the pixel array is within a second range excluding the first range in the pixel array. Determined to be smaller than the predetermined number of average values determined for the pixels,
  • an average value of pixel value differences between pixels adjacent in the arrangement order in the first range is a pixel value between pixels adjacent in the arrangement order in the second range. Is a range determined to be larger than the average value of the differences.
  • the invention according to claim 3 is the image reading apparatus according to claim 2,
  • the predetermined number is determined so as to gradually increase from a predetermined pixel within the first range to a pixel within a predetermined setting range in the arrangement order as the distance from the predetermined pixel in the arrangement order increases.
  • the predetermined pixels include pixels at both ends in the pixel array, and the setting ranges from the pixels at both ends are determined not to overlap each other.
  • the invention according to claim 5 is the image reading apparatus according to claim 3 or 4,
  • the plurality of image sensors have a plurality of sub-image sensor arrays each composed of two or more image sensors in the plurality of image sensors,
  • the predetermined pixel includes a pixel at a boundary between pixel groups corresponding to each of the plurality of sub imaging element columns in the pixel array.
  • the invention according to claim 6 is the image reading apparatus according to any one of claims 3 to 5, A plurality of imaging control units for respectively controlling the operation of a plurality of imaging element groups each composed of different parts of the plurality of imaging elements;
  • the predetermined pixel includes a pixel at a boundary between pixel groups corresponding to each of the plurality of image sensor groups in the pixel array.
  • the invention described in claim 7 is the image reading apparatus according to any one of claims 3 to 6,
  • the predetermined number corresponding to the predetermined pixel is one.
  • the invention according to claim 8 is the image reading apparatus according to claim 4,
  • the predetermined number corresponding to the predetermined pixel is 1,
  • the predetermined number is an odd number, and increases by 2 every time one pixel moves away from the predetermined pixel in the arrangement order with respect to the pixel within the setting range in the arrangement order from the predetermined pixel in the pixel arrangement.
  • the corrected imaging data generation means when the predetermined number is 3 or more, a representative value of pixel values in the predetermined number of pixel data continuously arranged in a range centered on the pixel data of the target pixel Determine.
  • the invention according to claim 9 is the image reading apparatus according to claim 1 or 2,
  • the predetermined number is a pixel value of the target pixel and a pixel adjacent to the target pixel in the arrangement order with respect to the plurality of pixels or the plurality of pixels subjected to a predetermined smoothing process. It is determined to gradually decrease as the difference from the pixel value increases.
  • the invention according to claim 10 is the image reading apparatus according to any one of claims 1 to 9, Setting means for determining the predetermined number for each of the plurality of pixels based on the standard reading target imaging data.
  • the invention according to claim 11 is the image reading apparatus according to any one of claims 1 to 10, A storage unit that stores the predetermined number corresponding to each of the plurality of pixels; The corrected imaging data generation unit generates the corrected imaging data based on the predetermined number stored in the storage unit.
  • an image recording apparatus Recording means for recording an image on a recording medium;
  • the image reading apparatus according to any one of claims 1 to 11, wherein an image recorded on the recording medium is read by the recording unit; Is provided.
  • the invention of the calibration method of the image reading device comprises: A method for calibrating an image reading apparatus provided with reading means in which a plurality of image sensors are arranged, A reading step of causing the reading unit to read the surface of a predetermined standard reading target and generating standard reading target imaging data composed of a plurality of pixels respectively corresponding to detection results by the plurality of imaging elements in the reading.
  • the pixel data of the target pixel is included for each of the plurality of pixels.
  • Corrected imaging data by determining a representative value of pixel values in a predetermined number of pixel data arranged successively in the arrangement order in the pixel arrangement, and correcting the pixel value in each of the plurality of pixels to the representative value associated with the pixel
  • a corrected imaging data generation step for generating
  • a calibration step for calibrating the reading means based on the detection values of the plurality of image sensors based on the corrected imaging data;
  • the predetermined number is different from the predetermined number related to at least one other pixel according to a distribution of pixel values in pixels within a predetermined range including the pixel in the arrangement order for each of the plurality of pixels. The number is fixed.
  • the invention according to claim 14 is the calibration method of the image reading device according to claim 13, A predetermined number setting step for determining the predetermined number corresponding to each of the plurality of pixels based on the standard reading target imaging data;
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration of an image reading unit.
  • FIG. It is a figure explaining the structure and imaging range of a line sensor.
  • It is a block diagram which shows the main function structures of an inkjet recording device.
  • It is a figure which shows the example of white board imaging data.
  • It is a figure explaining the pixel range which averages a pixel value in a moving average process.
  • It is a flowchart which shows the control procedure of an image reading part calibration process. It is a flowchart which shows the control procedure of the image reading part calibration process which concerns on a modification.
  • FIG. 1 is a diagram showing a schematic configuration of an ink jet recording apparatus 1 according to an embodiment of the present invention.
  • the ink jet recording apparatus 1 (image recording apparatus) includes a transport unit 10, a recording unit 20 (recording unit), an image reading unit 30, a control unit 40, and the like.
  • the image reading unit 30 and the control unit 40 constitute an image reading apparatus.
  • the transport unit 10 includes a drive roller 11, a driven roller 12, a transport belt 13, a transport motor 14, and the like.
  • the drive roller 11 rotates around the rotation axis by driving the transport motor 14.
  • the conveyor belt 13 is a ring-shaped belt supported on the inner side by the driving roller 11 and the driven roller 12, and moves around the driving roller 11 and the driven roller 12 as the driving roller 11 rotates.
  • the driven roller 12 rotates around a rotation axis parallel to the rotation axis of the drive roller 11 as the conveying belt 13 rotates.
  • a material that is flexibly bent at the contact surface with the driving roller 11 and the driven roller 12 and that reliably supports the recording medium M is used.
  • a belt made of resin such as rubber, A steel belt or the like can be used. Since the conveyance belt 13 has a material and / or a configuration on which the recording medium M is adsorbed, the recording medium M can be more stably placed on the conveyance belt 13.
  • the transport motor 14 rotates the drive roller 11 at a rotation speed according to a control signal from the control unit 40.
  • the conveyance unit 10 moves the conveyance medium 13 around the conveyance belt 13 at a speed corresponding to the rotation speed of the driving roller 11.
  • a transport operation for transporting in 13 movement directions (transport direction: Y direction in FIG. 1) is performed.
  • an encoder (rotary encoder) (not shown) is provided on the drive shaft of the drive roller 11 so that the circumferential movement distance of the transport belt 13 can be measured.
  • a fabric is used as the recording medium M.
  • the recording medium M is unwound from the roll (recording medium unwinding section) around which the recording medium M is wound, and is supplied onto the conveying belt 13.
  • the recording medium M is not limited to a cloth, and various media capable of fixing ink ejected to the surface, such as paper or sheet-like resin, can be used. Further, the recording medium M is not limited to one unwound from a roll, and may be one unwound from a state folded into ninety-nine folds, for example.
  • the recording medium M may be a short one such as a sheet.
  • the recording unit 20 includes four head units 21, and each head unit 21 ejects ink from nozzles on the recording medium M on the recording medium M conveyed by the conveying unit 10 based on image data.
  • each head unit 21 ejects ink from nozzles on the recording medium M on the recording medium M conveyed by the conveying unit 10 based on image data.
  • Record an image on In the ink jet recording apparatus 1 according to the present embodiment four head units 21 corresponding to four colors of ink of yellow (Y), magenta (M), cyan (C), and black (K) respectively are transported in the recording medium M. They are arranged so as to be arranged at predetermined intervals in the order of Y, M, C, and K colors from the upstream side.
  • the number of head units 21 is not limited to four, and may be three or less or five or more depending on the number of ink colors used for image recording.
  • Each head unit 21 has a plurality of recording heads 211 (FIG. 5) arranged in a direction in which a plurality of recording elements intersect the transport direction of the recording medium M (in this embodiment, the width direction orthogonal to the transport direction, that is, the X direction). 4) and a head controller 212 (FIG. 4) for controlling the ink ejection operation by the recording head 211.
  • Each of the recording elements provided in the recording head 211 includes a pressure chamber that stores ink, a piezoelectric element that is provided on a wall surface of the pressure chamber, and a nozzle that discharges ink.
  • the piezoelectric element When a drive signal is applied to the piezoelectric element from the drive circuit in the recording head 211, the piezoelectric element is deformed in accordance with the drive signal to change the pressure in the pressure chamber, and ink is ejected from the nozzle communicating with the pressure chamber.
  • the arrangement range of the recording elements included in the head unit 21 in the X direction covers the width in the X direction of an area where an image can be recorded in the recording medium M conveyed by the conveyance unit 10. Is used with its position fixed with respect to the transport unit 10 during image recording. That is, the inkjet recording apparatus 1 records an image by a single pass method.
  • the image reading unit 30 is arranged to be able to read the surface of the recording medium M placed on the conveyance surface of the conveyance belt 13 at a position downstream of the recording unit 20 in the conveyance direction. Reading of the recording medium M by the image reading unit 30 can be performed for various purposes. For example, the image recorded on the recording medium M is read by the recording unit 20 to inspect the quality of the image, or a predetermined inspection image recorded on the recording medium M is read in order to detect nozzle ejection defects, Based on the reading result, it is possible to identify a nozzle with defective ejection.
  • the image reading unit 30 is calibrated so that the pixel values in the imaging data when the surface of a predetermined standard white plate (standard reading target) having a uniform and known reflectance is read are uniform at a predetermined value. Used). A method for calibrating the image reading unit 30 will be described later.
  • the image reading unit 30 outputs imaging data obtained by reading the surface of the reading target (the recording medium M or the standard white plate) to the control unit 40.
  • FIG. 2 is a schematic cross-sectional view illustrating the configuration of the image reading unit 30.
  • FIG. 2 schematically shows a cross section in a plane perpendicular to the X direction of the image reading unit 30 that reads the standard white plate 60.
  • the image reading unit 30 includes a housing 31, a pair of light sources 32, mirrors 331 and 332, a lens optical unit 34, and line sensors 351 and 352 (each having an image sensor array 361 and 362 (sub image sensor array)). Reading means).
  • the housing 31 is a rectangular parallelepiped member disposed so that one surface thereof faces the conveyance surface of the conveyance belt 13.
  • the surface of the housing 31 that faces the conveyance surface of the conveyance belt 13 is a light transmission surface 31a (light incident surface) that is configured using a light-transmissive member such as glass.
  • the entire image reading unit 30 is movable in the Z direction so that the distance between the reading object and the light transmission surface 31a can be adjusted according to the thickness of the reading object.
  • Each of the pair of light sources 32 is a linear light source having a plurality of LEDs (Light Emitting Diodes) arranged in a range including an image recordable range by the recording unit 20 in the X direction.
  • the pair of light sources 32 are arranged at positions symmetrical with respect to a predetermined reference plane A perpendicular to the Y direction, and the reading object (here, the standard white plate 60) on the conveyor belt 13 through the light transmission surface 31a of the housing 31. ).
  • the angle of each light source 32 is on a line intersecting the reference plane A of the reading object when the distance between the light transmission surface 31a and the reading object on the conveyor belt 13 is a predetermined standard distance d. It is adjusted so that light is irradiated at the same incident angle.
  • the mirror 331 has a length corresponding to the arrangement range of the light source 32 in the X direction, and the light traveling from the light source 32 and reflected on the surface of the reading object travels on the reference plane A in the direction of the mirror 332. Reflect.
  • the mirror 332 is provided at a position closer to the light transmission surface 31 a than the mirror 331, and reflects the light reflected by the mirror 331 toward the lens optical unit 34.
  • the lens optical unit 34 includes a lens for reducing and forming incident light from the mirror 332 at the positions of the image sensor rows 361 and 362 of the line sensors 351 and 352, and a filter that selectively passes light of each wavelength of RGB. (BPF and LPF).
  • the line sensors 351 and 352 perform one-dimensional imaging using the imaging element arrays 361 and 362 in which imaging elements are arranged in the X direction, respectively.
  • Each image sensor detects the amount of charge obtained by a photoelectric conversion element that converts incident light into an amount of charge corresponding to the amount of light, or a voltage value corresponding to the amount of charge.
  • the imaging elements are arranged so as to enable one-dimensional imaging over the recordable width in the X direction with respect to each of the RGB wavelengths.
  • the imaging element for example, a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor including a photodiode as a photoelectric conversion element is used.
  • the number of imaging elements is not limited to this, and can be changed as appropriate according to the size of the imaging target, the imaging resolution, and the like.
  • Signals output from the line sensors 351 and 352 are subjected to current-voltage conversion, amplification, noise removal, analog-digital conversion, and the like in the analog front end, and are output to the control unit 40 as imaging data indicating the luminance value of the read image.
  • the pixel value of the imaging data indicates the detection intensity of light by the imaging device in 256 gradations from 0 to 255.
  • FIG. 3 is a diagram illustrating the configuration of the line sensors 351 and 352 and the imaging range.
  • the lens optical unit 34 and the line sensors 351, 352 are extracted from the image reading unit 30, and the description of the reflection of incident light by the mirrors 331, 332 is omitted.
  • the image reading unit 30 includes a line sensor 351, and a line sensor 352 that is spaced apart from the line sensor 351 on the + X direction side.
  • the lens optical unit 34 includes a lens 341 corresponding to the line sensor 351 and a lens 342 corresponding to the line sensor 352 and a predetermined distance away from the lens 341 in the + X direction side.
  • the imaging element array 361 At the position of the imaging element array 361, the reflected light from the range r1 corresponding to about half of the ⁇ X direction side of the standard white plate 60 in the X direction is reduced and imaged by the lens 341. At the position of the imaging element array 362, the reflected light from the range r2 corresponding to about half of the standard white plate 60 on the + X direction side is reduced and imaged by the lens 342. Due to such a configuration, the imaging element array 361 and the imaging element array 362 are arranged with an interval therebetween, and the arrangement of the imaging elements is separated. In addition, the range r1 and the range r2 are partially overlapped, and in the overlapped portion, reading is performed redundantly by the imaging elements in the imaging element rows 361 and 362.
  • imaging data is generated using a reading result by one of the imaging element arrays 361 and 362.
  • image data is generated by using the reading results of the imaging element rows 361 and 362 on the ⁇ X direction side and the + X direction side from the center of the overlapped portion, respectively.
  • the operation of the first image sensor group 361a including the image sensors in the + X direction half of the image sensors in the image sensor array 361 is controlled by the first image capturing control unit 371a (FIG. 4),
  • the operation of the second image sensor group 361b composed of half of the image sensors is controlled by the second image sensor 371b (FIG. 4).
  • the operation of the third imaging element group 362a including the imaging elements in the + X direction half of the imaging elements in the imaging element array 362 is controlled by the third imaging control unit 372a (FIG. 4).
  • the operation of the fourth imaging element group 362b composed of half the imaging elements is controlled by the fourth imaging control unit 372b (FIG. 4).
  • the first imaging control unit 371a to the fourth imaging control unit 372b are each an integrated circuit including the above-described analog front end.
  • the imaging device used for generating imaging data the imaging element of the first image pickup element group 361a, + imaging device from the X direction in order Ea 1, Ea 2, ..., and Ea n
  • the second imaging element group The image pickup devices 361b are image pickup devices Eb 1 , Eb 2 ,..., Eb n sequentially from the + X direction side, and the image pickup devices Ec 1 , Ec 2 ,. , and Ec n, the imaging device of the fourth imaging element group 362b, + imaging device from the X direction in order Ed 1, Ed 2, ..., and Ed n.
  • an image sensor E when referring to an arbitrary image sensor, it is referred to as an image sensor E.
  • FIG. 4 is a block diagram showing the main functional configuration of the inkjet recording apparatus 1.
  • the ink jet recording apparatus 1 includes the transport unit 10, the head unit 21, the image reading unit 30, the control unit 40, an operation display unit 51, an input / output interface 52, a bus 53, and the like.
  • the head control unit 212 of the head unit 21 has the head of the recording head 211 at an appropriate timing according to the control signal from the control unit 40 and the count number of the pulse signal input from the rotary encoder attached to the drive roller 11. Various control signals and image data are output to the drive unit.
  • the head driving unit of the recording head 211 supplies a driving signal for deforming the piezoelectric element to the recording element of the recording head 211 in accordance with the control signal and image data input from the head control unit 212, and for each nozzle. Ink is ejected from the opening.
  • the first imaging control unit 371a, the second imaging control unit 371b, the third imaging control unit 372a, and the fourth imaging control unit 372b of the image reading unit 30 respectively include a first imaging element group 361a, a second imaging element group 361b, and a first imaging element group 361b.
  • the signals output from the third image sensor group 362a and the fourth image sensor group 362b are subjected to processing such as current-voltage conversion, amplification, noise removal, analog-digital conversion, and the like, and output image data of the read image to the control unit 40. .
  • the control unit 40 includes a CPU 41 (Central Processing Unit) (reading control unit, corrected imaging data generation unit, calibration unit), a RAM 42 (Random Access Memory), a ROM 43 (Read Only Memory), and a storage unit 44.
  • CPU 41 Central Processing Unit
  • RAM 42 Random Access Memory
  • ROM 43 Read Only Memory
  • the CPU 41 reads various control programs and setting data stored in the ROM 43, stores them in the RAM 42, and executes the programs to perform various arithmetic processes.
  • the CPU 41 controls the overall operation of the inkjet recording apparatus 1.
  • the RAM 42 provides a working memory space to the CPU 41 and stores temporary data.
  • the RAM 42 may include a nonvolatile memory.
  • the ROM 43 stores various control programs executed by the CPU 41, setting data, and the like.
  • a rewritable nonvolatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory) or a flash memory may be used.
  • the storage unit 44 stores a print job (image recording command) input from the external device 2 via the input / output interface 52, image data related to the print job, imaging data output from the image reading unit 30, and the like. Is done.
  • the storage unit 44 stores moving average number setting data 44 a used for a moving average process, which will be described later, and image reading unit calibration data 44 b relating to a calibration result of the image reading unit 30.
  • an HDD Hard Disk Drive
  • DRAM Dynamic Random Access Memory
  • the operation display unit 51 includes a display device such as a liquid crystal display or an organic EL display, and operation keys and an input device such as a touch panel arranged on the screen of the display device.
  • the operation display unit 51 displays various information on the display device, converts a user input operation to the input device into an operation signal, and outputs the operation signal to the control unit 40.
  • the input / output interface 52 mediates data transmission / reception between the external device 2 and the control unit 40.
  • the input / output interface 52 is configured by any one of various serial interfaces, various parallel interfaces, or a combination thereof, for example.
  • the bus 53 is a path for transmitting and receiving signals between the control unit 40 and other components.
  • the external device 2 is a personal computer, for example, and supplies a print job, image data, and the like to the control unit 40 via the input / output interface 52.
  • the calibration of the image reading unit 30 is performed when the inkjet recording apparatus 1 is started up, when a predetermined time has elapsed since the startup of the inkjet recording apparatus 1, and when the cumulative lighting time of the light source 32 has reached the predetermined time.
  • the predetermined time related to the cumulative lighting time of the light source 32 can be a time when the rate of change (reduction rate) from the initial value of the luminance of the light source 32 reaches a predetermined value, for example.
  • the image reading unit 30 reads a linear reading range (hereinafter, also simply referred to as “line”) extending in the X direction on the surface of the standard white plate 60. Based on the detection values in the reading of the plurality of imaging elements E, white plate imaging data (standard reading target imaging data) including a plurality of pixels is generated. Each of the plurality of pixels in the white plate imaging data corresponds to a detection result by any of the plurality of imaging elements E in reading of the standard white plate 60.
  • line linear reading range
  • the standard white plate 60 is a plate-like member having a reading surface larger than the range that can be read by the line sensors 351 and 352, and the calibration operation of the image reading unit 30 is as shown in FIGS. Further, the reading surface is disposed on the conveyor belt 13 so as to face the light transmission surface 31a.
  • the reading surface of the standard white plate 60 is made of a member having a uniform reflectance and white color such as YUPO or PET (polyethylene terephthalate).
  • the reading surface is preferably made of a material that can easily remove foreign matters such as dust attached to the surface by cleaning the surface.
  • Imaging data may be generated.
  • the detection value is abnormal due to foreign matters such as dust (for example, the value is lower than the detection data related to other lines) is detected.
  • the white plate imaging data may be generated based on the average of the remaining detection data.
  • FIG. 5 is a diagram illustrating an example of white plate imaging data.
  • FIG. 5 is a diagram in which the pixel values of a plurality of pixels constituting the white plate imaging data are plotted in the order of the pixel arrangement in which the pixel data of the plurality of pixels is one-dimensionally arranged according to the arrangement order of the imaging elements E. . That is, in FIG. 5, a pixel Pb 1 corresponding to the pixel Pa 1 ... Pa n, the imaging element of the second imaging element group 361b Eb 1 ... Eb n corresponding to the imaging device Ea 1 ... Ea n of the first imaging element group 361a ... Pb n , image sensor Ec 1 of the third image sensor group 362a ...
  • This range (set range) is the first range Ra5, and the four ranges other than the first ranges Ra1 to Ra5 are the second ranges Rb1 to Rb4, respectively.
  • the setting range includes the reference pixel and within ⁇ 7 pixels in the arrangement order of the pixel arrangement from the reference pixel (within the first range Ra1 and Ra5, within +7 pixels and -7 respectively. (Within a pixel).
  • This range is an example, and may be a range of 6 pixels or less, or 8 pixels or more from the reference pixel.
  • the pixel value of the white plate imaging data decreases with a non-linearity as it approaches the end pixel. ing.
  • the decrease in the pixel value in the first range Ra3 reflects the decrease in the amount of collected light in the peripheral portions of the lenses 341 and 342.
  • the decrease in the pixel value in the first range Ra1, Ra5 reflects the decrease in illuminance in the vicinity of both ends of the light source 32 in the X direction in addition to the decrease in the amount of condensed light in the periphery of the lenses 341, 342. It is.
  • the pixel value is deviated to the boundary pixel Pa n and the pixel Pb 1. It includes a first imaging control unit 371a for controlling the operation of the pixel Pa 1 ⁇ Pa n, characteristic differences between the second imaging control unit 371b for controlling the operation of the pixel Pb 1 ⁇ Pb n, specifically These reflect the signal amplification factor (gain) in each imaging control unit, the deviation of the reference voltage in analog-digital conversion, and the like. Also in the first range Ra4, due to the difference in characteristics between the third imaging control unit 372a and the fourth imaging control unit 372b, the pixel value is deviated to the boundary pixel Pc n and pixel Pd 1 ing.
  • the change in the pixel value between adjacent pixels is large in at least a part of each range.
  • an average value of pixel value differences between adjacent pixels in the first range Ra1 to Ra5 is defined as Va.
  • the change in the pixel value is more gradual than in the first range Ra1 to Ra5, and the pixel value difference between adjacent pixels within the range of the second range Rb1 to Rb4.
  • the average value Vb is a value smaller than the above Va.
  • a predetermined smoothing process here, a moving average process is performed on the white plate image data, and corrected image data is generated.
  • pixel data of a predetermined moving average number predetermined number
  • the process which calculates the average value of the pixel value in is included.
  • corrected imaging data is generated by correcting the pixel value of each pixel to an average value corresponding to the pixel.
  • 6 and 7 are diagrams for explaining a pixel range in which pixel values are averaged in the moving average process.
  • the moving average number in the moving average process is determined in advance for each pixel of the white plate image data, and is stored in the storage unit 44 as moving average number setting data 44a.
  • the pixels whose pixel values are to be corrected by the moving average process are arranged in the vertical direction, and the range in which the moving average is performed for each pixel (the pixel range where the pixel values are averaged) is horizontal. It is indicated by a rectangle extending in the direction. The numerical value inside each rectangle indicates the number of pixels that average the pixel values, that is, the moving average number.
  • the predetermined pixel Pa 1 in the first range Ra1 ⁇ Ra5 in the pixel array Pa n, Pb 1, Pb n, Pc 1, Pc n, Pd 1, Pd n
  • the moving average number is set to 1, and in each of the first ranges Ra1 to Ra5, the moving average number is determined so as to gradually increase as the distance from the predetermined pixel increases in the pixel arrangement order.
  • each of the predetermined pixels is a pixel (pixel Pb n , Pc) at a boundary between pixel groups corresponding to each of the pixels (pixels Pa 1 , Pd n ) and the image sensor rows 361, 362 in the pixel array.
  • moving average number is a 1 in the pixel Pa 1, the moving average number 2 increased each time leaving one pixel from the pixel Pa 1 to the pixel Pa 8, pixels Pa 8
  • the moving average number of is set to 15.
  • moving average number is a 1 in the pixel Pa n and the pixel Pb 1
  • the moving average number over the pixel Pa n-7 from the pixel Pa n is increased to 15 by 2
  • pixels Pb 1 To the pixel Pb 8 the moving average number increases by 2 to 15.
  • the moving average number is set in the same manner as the first ranges Ra1 and Ra2.
  • the moving average number is 15 and is constant. Accordingly, the average value of the moving average numbers in the first ranges Ra1 to Ra5 is smaller than the average value of the moving average numbers in the second ranges Rb1 to Rb4.
  • the moving average number for the predetermined pixel having a pixel value greatly deviating or having a minimal singular value is set to 1 (that is, the moving average process for the predetermined pixel is not performed).
  • the moving average number is set to gradually increase by 2 as the distance from the predetermined pixel increases, so that the pixel value divergence in the predetermined pixel or the pixel value that is the minimum singular value is reduced in other pixels. Occurrence of a problem of improperly changing the value after moving average processing is suppressed.
  • the range of pixels whose pixel values are averaged in the moving average is a bilaterally symmetric range in the figure with the pixel to be processed as the center.
  • the moving average number is set to an odd number so that such a symmetrical range can be obtained.
  • a correction value that matches the pixel value of each pixel of the corrected imaging data with a value corresponding to the reflectance of the standard white plate 60 is calculated. That is, among the pixels of the corrected imaging data, the correction value for correcting the pixel value I (i) of the pixel corresponding to the i-th imaging element E (i is a natural number indicating the serial number in the array of the imaging element E) in the X direction. C (i) is calculated for all i by the following formula (1).
  • Ia is a constant corresponding to the reflectance of the standard white plate 60, and is a value (240 in the present embodiment) lower than the maximum pixel value 255 by a predetermined value. This is to avoid saturation (exceeding 255) of a value obtained by multiplying the pixel value I (i) by the correction value C (i) when a reading target having a reflectance higher than that of the standard white plate 60 is read. It is.
  • the calculated correction value C (i) is stored in the storage unit 44 as the image reading unit calibration data 44b.
  • the image reading unit 30 After the calibration operation of the image reading unit 30 is performed, when a reading target such as an image on the recording medium M is read by the image reading unit 30, the pixel value corresponding to the i-th imaging element E in the imaging data is set. On the other hand, the correction value C (i) is multiplied, and the obtained corrected imaging data (image data) is stored in the storage unit 44 as a read result.
  • FIG. 8 is a flowchart showing a control procedure by the control unit 40 of the image reading unit calibration process.
  • the image reading unit calibration process is performed when the inkjet recording device 1 is started up, when a predetermined time has elapsed since the startup of the inkjet recording device 1, and when the cumulative lighting time of the light source 32 has reached a predetermined time. It is started automatically under the control of 40 or in response to a predetermined input operation on the operation display unit 51 from the user.
  • the control unit 40 causes the image reading unit 30 to image the surface of the standard white plate 60 (step S101: reading step). That is, the control unit 40 first outputs a control signal to the conveyance unit 10, and moves the standard white plate 60 to a position facing the light transmission surface 31 a of the image reading unit 30 by the conveyance unit 10. Subsequently, the control unit 40 causes the image reading unit 30 to read the standard white plate 60 once at a predetermined timing (when white plate imaging data is generated from a plurality of detection values, a plurality of times at an appropriate interval). The white plate imaging data is stored in the storage unit 44.
  • the control unit 40 performs a moving average process on the white plate image data to generate corrected image data (step S102: corrected image data generation step). That is, the control unit 40 first refers to the moving average number setting data 44a in the storage unit 44, and acquires the moving average number corresponding to each pixel of the white plate imaging data. Next, with respect to each pixel of the white plate imaging data, the control unit 40 sets the pixel value in the pixel data of the moving average number acquired above, which is continuously arranged including the pixel data of the target pixel in the pixel array. An average value is obtained, and corrected imaging data including a plurality of correction pixels each having an average value relating to each pixel of the white plate imaging data as pixel values is generated and stored in the storage unit 44.
  • the control unit 40 generates image reading unit calibration data 44b based on the corrected imaging data (step S103: calibration step). That is, the CPU 41 calculates the correction value C (i) from the calibration image data based on the above-described algorithm, and stores it in the storage unit 44 as the image reading unit calibration data 44b. When the process of step S103 ends, the CPU 41 ends the image reading unit calibration process.
  • filter process such as a median filter process or a moving average process
  • an integer n having a magnitude approximately inversely proportional to the differential coefficient that is, an integer n satisfying 1 / n ⁇ k ⁇ df (x) / dx, where k is a constant, is determined as the moving average number at the position x.
  • the moving average number determined by such a method has a smaller value in a region where the change rate of the pixel value in the white plate imaging data is larger.
  • the differential coefficient df (x) / dx described above is ⁇ f (x + h) ⁇ f (x) ⁇ / h, ⁇ f (x) ⁇ f (x ⁇ h) ⁇ / h, where h is the interval between adjacent pixels. , ⁇ F (x + h) ⁇ f (x ⁇ h) ⁇ / 2h.
  • h 1 (difference in array number of adjacent pixels)
  • the differential coefficient corresponds to a difference in pixel values between adjacent pixels. Therefore, in this modification, it can be said that for each pixel, the moving average number is determined so as to gradually decrease as the difference from the pixel value of the adjacent pixel increases.
  • the moving average number may be calculated without performing the smoothing process on the white plate imaging data.
  • FIG. 9 is a flowchart showing a control procedure by the control unit 40 of the image reading unit calibration process according to this modification.
  • the image reading unit calibration process in FIG. 9 is obtained by adding step S104 to the image reading unit calibration process in FIG.
  • step S104 to the image reading unit calibration process in FIG.
  • differences from the image reading unit calibration process of FIG. 8 will be described.
  • step S101 when white plate imaging data is generated in step S101, the control unit 40 (setting means) moves corresponding to each pixel of the white plate imaging data based on the above algorithm.
  • An average number is set and stored in the storage unit 44 as moving average number setting data 44a (step S104: predetermined number setting step).
  • control unit 40 refers to the moving average number setting data 44a generated in step S104, acquires the moving average number corresponding to each pixel of the white plate imaging data, and performs the moving average process for each pixel. Execute.
  • the image reading apparatus includes the line sensors 351 and 352 in which a plurality of imaging elements E are arranged and the control unit 40, and the control unit 40 is standardized by the line sensors 351 and 352.
  • white plate imaging data composed of a plurality of pixels respectively corresponding to detection results by the plurality of imaging elements E in the reading is generated (reading control means), and a plurality of imaging is performed.
  • each of the plurality of pixels includes the pixel data of the target pixel in the arrangement order in the pixel array.
  • the average value of pixel values in a predetermined moving average number of pixel data arranged in succession is determined, and the pixel value in each of a plurality of pixels is corrected to the average value related to the pixel.
  • Corrected image data is generated (corrected image data generating means), and the calibration of the line sensors 351 and 352 related to the detection values by the plurality of image sensors E based on the corrected image data, that is, the pixels corresponding to the i-th image sensor E
  • the correction value C (i) for correcting the pixel value I (i) is calculated (calibration means), and the moving average number is a predetermined range including the pixels in the arrangement order for each of the plurality of pixels.
  • the number is determined to be different from the moving average number related to at least one other pixel according to the distribution of pixel values in the pixels.
  • the moving average number is a second value obtained by subtracting the first range Ra1 to Ra5 in the pixel array from the average value of the moving average number determined for the pixels in the specific first range Ra1 to Ra5 in the pixel array.
  • the first ranges Ra1 to Ra5 are arranged in the arrangement order in the first ranges Ra1 to Ra5.
  • the average value of the difference in pixel value between adjacent pixels is a range determined to be larger than the average value of the difference in pixel value between adjacent pixels in the arrangement order in the second ranges Rb1 to Rb4. .
  • the second range Pixel values of a smaller number of pixels than the moving average process in Rb1 to Rb4 are averaged to generate corrected imaging data.
  • pixels with greatly different pixel values are not included in the pixel range in which the pixel values are averaged. Occurrence of a problem that the value greatly deviates from the original pixel value can be suppressed.
  • the moving average number of predetermined pixels in the first range Ra1 ⁇ in Ra5 (pixel Pa 1, Pa n, Pb 1 , Pb n, Pc 1, Pc n, Pd 1, Pd n) from the pixel array It is determined that the number of pixels within a predetermined set range (within ⁇ 7 pixels) in the arrangement order gradually increases as the distance from the predetermined pixel increases in the arrangement order. According to such a configuration, when a pixel having a large difference in pixel value between adjacent pixels can be specified in advance, the pixel value before and after the moving average process is determined by setting the pixel as the predetermined pixel. An appropriate moving average number that can suppress the deviation can be determined by a simple method.
  • the predetermined pixel may include pixel Pa 1, Pd n at both ends in the pixel array, the setting range of each pixel of the two ends is determined so as not to overlap with each other.
  • the pixel Pa 1, Pd n at both ends in the pixel array the illumination by the light source 32, illumination reduction or at both the end portions of the read target range, a lens 341, 342 to shrink imaging the incident light to the imaging element E used
  • the pixel value tends to decrease due to a decrease in the amount of light collected at the periphery of the lens.
  • the pixel Pa 1 such ends, since Pd n moving average number of pixels in the set range from is set small, the pixel in the pixel Pa 1, Pd n of said ends It is possible to suppress the influence of the decrease in the value on the moving average processing of other pixels.
  • the plurality of image sensors E have a plurality of image sensor arrays 361 and 362 each including two or more image sensors E in the plurality of image sensors, and the predetermined pixels include a plurality of image sensors in a pixel array. Pixels Pb n and Pc 1 at the boundary between the pixel groups corresponding to each of the columns 361 and 362 are included. In the pixels Pb n and Pc 1 at the boundary, pixel values due to a decrease in the amount of collected light at the periphery of the lens when different lenses 341 and 342 are used for reduction imaging of incident light on the image sensor rows 361 and 362, respectively. Is likely to decrease.
  • the image reading apparatus includes a first imaging element group 361a, a second imaging element group 361b, a third imaging element group 362a, and a fourth imaging element group 361a each composed of different parts of the plurality of imaging elements E.
  • a first imaging control unit 371a, a second imaging control unit 371b, a third imaging control unit 372a, and a fourth imaging control unit 372b that respectively control the operation of the imaging element group 362b are provided.
  • pixel Pa n of the boundary between the pixel group corresponding to each of the first imaging element group 361a ⁇ fourth imaging element group 362b, Pb 1, Pb n, Pc 1, Pc n, include Pd 1.
  • the pixel value divergence is likely to occur.
  • the deviation of the pixel value at the pixel at the boundary is a moving average of other pixels. The influence on processing can be suppressed.
  • the moving average number corresponding to the predetermined pixel is 1. According to such a configuration, the moving average process is not performed on the predetermined pixel in which the pixel value greatly deviates from the adjacent pixel or the pixel value is a singular value that is extremely small. It is possible to suppress the occurrence of a problem that the pixel value of each of the pixels greatly varies due to the moving average process.
  • the moving average number corresponding to the predetermined pixel including the pixels at both ends in the pixel array of the white plate imaging data is 1, the moving average number is an odd number, and the pixels from the predetermined pixel in the pixel array are pixels.
  • a representative value of pixel values in the moving average number of pixel data arranged continuously in a range centered on the pixel data of the target pixel is determined (corrected imaging data generation means).
  • the moving average number is determined so as to increase by 2 as the distance from the predetermined pixel is within a set range from the predetermined pixel, so that in the moving average processing of each pixel, a pixel array for the predetermined pixel Only pixel values of pixels located on one side of the direction can be averaged.
  • the moving average number is determined based on the pixel value of the target pixel and the arrangement of the pixel array with respect to a plurality of pixels or a plurality of pixels subjected to a predetermined smoothing process. In order, it is determined to gradually decrease as the difference from the pixel value of the pixel adjacent to the target pixel increases. According to such a configuration, it is possible to set a small moving average number within a relatively large variation range according to the variation tendency of the pixel value in the white plate imaging data. Thereby, even when the fluctuation tendency of the pixel value of the white plate imaging data cannot be predicted, the calibration can be performed by setting an appropriate moving average number.
  • the image processing apparatus includes the control unit 40 (setting unit) that determines the moving average number for each of the plurality of pixels based on the white plate imaging data. Can be set.
  • the image reading apparatus includes a storage unit 44 that stores moving average number setting data 44 a including a moving average number corresponding to each of a plurality of pixels.
  • the control unit 40 is stored in the storage unit 44.
  • the corrected imaging data is generated based on the moving average number setting data 44a (corrected imaging data generation means). According to such a configuration, an appropriate moving average number can be acquired by a simple process referring to the moving average number setting data 44a in the storage unit 44.
  • the inkjet recording apparatus 1 includes the recording unit 20 that records an image on the recording medium M, and the image reading device that reads the image recorded on the recording medium M by the recording unit 20. According to such a configuration, an image recorded in the inkjet recording apparatus 1 can be read by an image reading apparatus that has been appropriately calibrated.
  • the calibration method of the image reading apparatus causes the surface of the standard white plate 60 to be read by the line sensors 351 and 352, and corresponds to the detection results by each of the plurality of imaging elements E in the reading.
  • a pixel array in which pixel data of a plurality of pixels is one-dimensionally arranged in a sequence corresponding to the arrangement order of the plurality of image sensors E (reading step) for generating white plate imaging data including a plurality of pixels
  • an average value of pixel values in a predetermined moving average number of pixel data arranged in the order of arrangement in the pixel array including the pixel data of the target pixel is determined, and each of the plurality of pixels A step of generating corrected imaging data by correcting the pixel value to a representative value related to the pixel (corrected imaging data generation step);
  • calibration of the line sensors 351 and 352 related to the detection values by the plurality of image sensors E that is, calculation of a correction value C (i) for
  • the moving average number is determined for each of a plurality of pixels according to a pixel value distribution in pixels within a predetermined range including the pixels in the arrangement order.
  • the number is determined to be different from the moving average number of pixels. According to such a method, it is possible to perform adjustment for performing more appropriate calibration in the image reading apparatus.
  • a step (predetermined number setting step) of determining a moving average number corresponding to each of the plurality of pixels based on the white plate imaging data is included.
  • the image reading apparatus can be calibrated by determining an appropriate moving average number according to the configuration of the image reading apparatus or according to the acquired white plate imaging data.
  • the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made.
  • the smoothing process for generating the corrected imaging data from the white plate imaging data has been described by taking the moving average process as an example, but the present invention is not limited to this.
  • smoothing processing may be used to determine a representative value, for example, a median value, of pixel values in a predetermined number of pieces of pixel data continuously arranged including the pixel data of the target pixel in the pixel arrangement of the white plate imaging data.
  • the predetermined pixel set to the smallest moving average number that is, 1 in the moving average process
  • the pixels at both ends in the pixel array of the white plate imaging data the imaging element rows 361 and 362
  • the pixel at the boundary between the pixel groups corresponding to the pixel group and the pixel at the boundary between the pixel groups corresponding to the imaging element groups 361a, 361b, 362a, 362b have been described as examples.
  • the present invention is not limited to this. Any other pixel in which the pixel value in the imaging data deviates or becomes a maximum or a minimum can be used.
  • pixels corresponding to image pickup elements that capture the boundaries of the plurality of standard white plates 60 are predetermined. It is good also as this pixel.
  • the standard white plate 60 may be attached to the casing 31 of the image reading unit 30 so as to be movable to a position facing the light transmission surface 31a.
  • the standard white plate 60 is described as an example of the standard reading target, but the present invention is not limited to this.
  • the surface of the conveyor belt 13 that is white, a white recording medium, or the like may be used as a standard reading target.
  • control unit 40 is provided separately from the image reading unit 30, and the image reading apparatus is configured by components including the image reading unit 30 and the control unit 40.
  • the image reading unit 30 may be provided with a control unit having a CPU, a RAM, a ROM, and a storage unit separately from the control unit 40 of the inkjet recording apparatus 1.
  • the control unit of the image reading unit 30 constitutes a reading control unit, a corrected imaging data generation unit, a calibration unit, and a setting unit.
  • the moving average process is performed on the white plate image data to generate the corrected image data, and the correction value is calculated based on the corrected image data to generate the image reading unit calibration data 44b.
  • the processing and the processing of calculating the moving average number based on the white plate imaging data and generating the moving average number setting data 44a have been described using the example of performing in the control unit 40, but at least some of these processes are performed. You may carry out by the information processing apparatus (for example, external device 2) provided in the exterior of the inkjet recording device 1.
  • the single-pass inkjet recording apparatus 1 has been described as an example.
  • the present invention may be applied to an inkjet recording apparatus that records an image while scanning a head unit. .
  • the piezoelectric inkjet recording apparatus 1 using a piezoelectric element as an image recording apparatus has been described as an example.
  • the present invention is not limited to this.
  • a thermal ink jet recording apparatus that discharges ink by generating bubbles in the ink by heating
  • a dry electrophotographic image recording apparatus that forms an image of toner particles on a photosensitive drum and transfers the image to a recording medium, toner
  • the present invention can be applied to various types of image recording apparatuses such as wet electrophotographic image recording apparatuses that use liquid toner instead of particles.
  • the present invention can be used for an image reading apparatus, an image recording apparatus, and a calibration method for the image reading apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Image Input (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

より適切な較正を行うための調整が可能な画像読取装置、画像記録装置及び画像読取装置の較正方法を提供する。複数の撮像素子が配列された読取手段(351、352)による標準読取対象の読取結果に基づいて、複数の画素からなる標準読取対象撮像データを生成する読取制御手段(41)と、撮像素子の配列に応じて複数の画素の画素データが一次元配列された画素配列において、対象の画素データを含んで画素配列における配列順で連続する所定数の画素データにおける画素値の代表値を定め、複数の画素の各々における画素値を当該画素に係る代表値に補正して補正撮像データを生成する補正撮像データ生成手段(41)と、補正撮像データに基づく較正を行う較正手段(41)とを備え、所定数は、複数の画素の各々に対して、上記配列順で当該画素を含む所定範囲内の画素における画素値分布に応じて他の少なくとも一の画素に係る所定数とは異なる数に定められている。

Description

画像読取装置、画像記録装置及び画像読取装置の較正方法
 本発明は、画像読取装置、画像記録装置及び画像読取装置の較正方法に関する。
 従来、画像が記録された記録媒体に対して光源から光を照射し、複数の撮像素子が配列されたラインセンサーといった読取手段により記録媒体上の画像を読み取って撮像データを生成する画像読取装置がある。この画像読取装置では、撮像素子の感度ばらつきや光源による記録媒体上の照度むらを補正するために、読取手段の較正が行われる。
 この読取手段の較正では、反射率が均一かつ既知である白色板といった標準読取対象を読取手段により読み取り、得られた標準読取対象撮像データの画素値を標準読取対象の反射率と対応する値に一致させる補正値を算出する。また、補正値の算出の前に、標準読取対象撮像データの各画素について、当該画素の画素データを含んで連続して配列された一定数の画素データにおける画素値の代表値(例えば、平均値)を求めて補正画素値とする平滑化処理を行うことで、標準読取対象撮像データに含まれるノイズが較正結果に及ぼす影響を抑制する技術が知られている(例えば、特許文献1)。
特開2001-119576号公報
 しかしながら、標準読取対象撮像データにおいて画素値が非線形性を有して変化している部分や、特定の画素を境に画素値が乖離している部分を含む範囲で上述の平滑化処理を行うと、平滑化処理後の画素値(代表値)が元の画素値に対して上方又は下方に偏ってしまうという問題がある。これに対し、代表値を求める処理における対象画素データの数(上記の一定数)を低減させることで代表値の偏りを解消させようとすると、平均化処理による所望のノイズ低減効果が得られなくなる。このように、上記従来の技術では、必ずしも適切な較正を行うことができないという課題がある。
 この発明の目的は、より適切な較正を行うための調整が可能な画像読取装置、画像記録装置及び画像読取装置の較正方法を提供することにある。
 上記目的を達成するため、請求項1に記載の画像読取装置の発明は、
 複数の撮像素子が配列された読取手段と、
 前記読取手段により所定の標準読取対象の読み取りを行わせて、当該読み取りにおける前記複数の撮像素子の各々による検出結果にそれぞれ対応する複数の画素からなる標準読取対象撮像データを生成する読取制御手段と、
 前記複数の撮像素子の配列順序に応じた順序で前記複数の画素の画素データが一次元配列された画素配列において、前記複数の画素の各々を対象として、対象の画素の画素データを含んで前記画素配列における配列順で連続して配列された所定数の画素データにおける画素値の代表値を定め、前記複数の画素の各々における画素値を当該画素に係る前記代表値に補正して補正撮像データを生成する補正撮像データ生成手段と、
 前記補正撮像データに基づいて、前記複数の撮像素子による検出値に係る前記読取手段の較正を行う較正手段と、
 を備え、
 前記所定数は、前記複数の画素の各々に対して、前記配列順で当該画素を含む所定範囲内の画素における画素値の分布に応じて他の少なくとも一の画素に係る前記所定数とは異なる数に定められている。
 請求項2に記載の発明は、請求項1に記載の画像読取装置において、
 前記所定数は、前記画素配列における特定の第1の範囲内の画素に対して定められた前記所定数の平均値が、前記画素配列における前記第1の範囲を除いた第2の範囲内の画素に対して定められた前記所定数の平均値よりも小さくなるように定められ、
 前記第1の範囲は、当該第1の範囲内において前記配列順で隣接する画素間における画素値の差分の平均値が、前記第2の範囲内において前記配列順で隣接する画素間における画素値の差分の平均値よりも大きくなるように定められた範囲である。
 請求項3に記載の発明は、請求項2に記載の画像読取装置において、
 前記所定数は、前記第1の範囲内における所定の画素から前記配列順で所定の設定範囲内の画素に対して、前記所定の画素から前記配列順で離れるに従い漸増するように定められている。
 請求項4に記載の発明は、請求項3に記載の画像読取装置において、
 前記所定の画素には、前記画素配列における両端の画素が含まれ、当該両端の画素の各々からの前記設定範囲は、互いに重複しないように定められている。
 請求項5に記載の発明は、請求項3又は4に記載の画像読取装置において、
 前記複数の撮像素子は、当該複数の撮像素子における2以上の撮像素子からそれぞれなる複数の副撮像素子列を有し、
 前記所定の画素には、前記画素配列における前記複数の副撮像素子列の各々に対応する画素群同士の境目の画素が含まれる。
 請求項6に記載の発明は、請求項3~5の何れか一項に記載の画像読取装置において、
 前記複数の撮像素子の互いに異なる一部から各々構成される複数の撮像素子群の動作をそれぞれ制御する複数の撮像制御部を備え、
 前記所定の画素には、前記画素配列における前記複数の撮像素子群の各々に対応する画素群同士の境目の画素が含まれる。
 請求項7に記載の発明は、請求項3~6の何れか一項に記載の画像読取装置において、
 前記所定の画素に対応する前記所定数は、1である。
 請求項8に記載の発明は、請求項4に記載の画像読取装置において、
 前記所定の画素に対応する前記所定数は、1であり、
 前記所定数は、奇数であり、かつ前記画素配列における前記所定の画素から前記配列順で前記設定範囲内の画素に対して、当該所定の画素から前記配列順で一画素離れるごとに2増加するように定められ、
 前記補正撮像データ生成手段は、前記所定数が3以上である場合に、前記対象の画素の画素データを中央とする範囲で連続して配列された前記所定数の画素データにおける画素値の代表値を定める。
 請求項9に記載の発明は、請求項1又は2に記載の画像読取装置において、
 前記所定数は、前記複数の画素、又は所定の平滑化処理が施された前記複数の画素に対して、前記対象の画素の画素値と、前記配列順で当該対象の画素に隣接する画素の画素値との差分が大きくなるに従い漸減するように定められている。
 請求項10に記載の発明は、請求項1~9の何れか一項に記載の画像読取装置において、
 前記標準読取対象撮像データに基づいて前記複数の画素の各々に対して前記所定数を定める設定手段を備える。
 請求項11に記載の発明は、請求項1~10の何れか一項に記載の画像読取装置において、
 前記複数の画素の各々に対応する前記所定数を記憶する記憶部を備え、
 前記補正撮像データ生成手段は、前記記憶部に記憶された前記所定数に基づいて前記補正撮像データを生成する。
 また、上記目的を達成するため、請求項12に記載の画像記録装置の発明は、
 記録媒体上に画像を記録する記録手段と、
 前記記録手段により前記記録媒体上に記録された画像を読み取る請求項1~11の何れか一項に記載の画像読取装置と、
 を備える。
 また、上記目的を達成するため、請求項13に記載の画像読取装置の較正方法の発明は、
 複数の撮像素子が配列された読取手段を備えた画像読取装置の較正方法であって、
 前記読取手段により所定の標準読取対象の表面の読み取りを行わせて、当該読み取りにおける前記複数の撮像素子の各々による検出結果にそれぞれ対応する複数の画素からなる標準読取対象撮像データを生成する読取ステップ、
 前記複数の撮像素子の配列順序に応じた順序で前記複数の画素の画素データが一次元配列された画素配列において、前記複数の画素の各々を対象として、対象の画素の画素データを含んで前記画素配列における配列順で連続して配列された所定数の画素データにおける画素値の代表値を定め、前記複数の画素の各々における画素値を当該画素に係る前記代表値に補正して補正撮像データを生成する補正撮像データ生成ステップ、
 前記補正撮像データに基づいて、前記複数の撮像素子による検出値に係る前記読取手段の較正を行う較正ステップ、
 を含み、
 前記所定数は、前記複数の画素の各々に対して、前記配列順で当該画素を含む所定範囲内の画素における画素値の分布に応じて他の少なくとも一の画素に係る前記所定数とは異なる数に定められている。
 請求項14に記載の発明は、請求項13に記載の画像読取装置の較正方法において、
 前記標準読取対象撮像データに基づいて前記複数の画素の各々に対応する前記所定数を定める所定数設定ステップを含む。
 本発明に従うと、より適切な較正を行うための調整が可能となるという効果がある。
インクジェット記録装置の概略構成を示す図である。 画像読取部の構成を説明する模式断面図である。 ラインセンサーの構成及び撮像範囲を説明する図である。 インクジェット記録装置の主要な機能構成を示すブロック図である。 白色板撮像データの例を示す図である。 移動平均処理において画素値を平均する画素範囲を説明する図である。 移動平均処理において画素値を平均する画素範囲を説明する図である。 画像読取部較正処理の制御手順を示すフローチャートである。 変形例に係る画像読取部較正処理の制御手順を示すフローチャートである。
 以下、本発明の画像読取装置、画像記録装置及び画像読取装置の較正方法に係る実施の形態を図面に基づいて説明する。
 図1は、本発明の実施形態であるインクジェット記録装置1の概略構成を示す図である。
 インクジェット記録装置1(画像記録装置)は、搬送部10と、記録部20(記録手段)と、画像読取部30と、制御部40などを備える。本実施形態では、画像読取部30及び制御部40により画像読取装置が構成される。
 搬送部10は、駆動ローラー11と、従動ローラー12と、搬送ベルト13と、搬送モーター14などを備える。
 駆動ローラー11は、搬送モーター14の駆動によって回転軸を中心に回転する。搬送ベルト13は、駆動ローラー11及び従動ローラー12により内側が支持された輪状のベルトであり、駆動ローラー11が回転動作するのに従って駆動ローラー11及び従動ローラー12の回りを周回移動する。従動ローラー12は、搬送ベルト13の周回移動に伴って駆動ローラー11の回転軸と平行な回転軸を中心に回転する。搬送ベルト13としては、駆動ローラー11及び従動ローラー12との接触面で柔軟に屈曲し、かつ確実に記録媒体Mを支持する材質のものが用いられ、例えば、ゴムなどの樹脂製のベルトや、スチールベルトなどを用いることができる。この搬送ベルト13は、記録媒体Mが吸着される材質及び/又は構成を有することで、より記録媒体Mを安定して搬送ベルト13に載置可能とすることができる。
 搬送モーター14は、制御部40からの制御信号に応じた回転速度で駆動ローラー11を回転動作させる。搬送部10は、搬送ベルト13の搬送面上に記録媒体Mが載置された状態で、駆動ローラー11の回転速度に応じた速度で搬送ベルト13が周回移動することで記録媒体Mを搬送ベルト13の移動方向(搬送方向:図1におけるY方向)に搬送する搬送動作を行う。また、駆動ローラー11の駆動軸には、図示略のエンコーダー(ロータリーエンコーダー)が設けられ、搬送ベルト13の周回移動距離を計測可能とされている。
 本実施形態では、記録媒体Mとして布帛が用いられる。記録媒体Mは、記録媒体Mが巻き取られたロール(記録媒体巻出部)から巻き出されて(繰り出されて)搬送ベルト13上に供給される。なお、記録媒体Mは、布帛に限定されず、紙やシート状の樹脂等、表面に吐出されたインクを固着させることが可能な種々の媒体を用いることができる。また、記録媒体Mは、ロールから巻き出されるものに限られず、例えば九十九折に畳まれた状態から巻き出されたものであっても良い。また、記録媒体Mは、枚葉紙などの短尺のものであっても良い。
 記録部20は、4つのヘッドユニット21を備えており、各ヘッドユニット21は、搬送部10により搬送される記録媒体Mに対して画像データに基づいてノズルからインクを吐出して記録媒体M上に画像を記録する。本実施形態のインクジェット記録装置1では、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色のインクにそれぞれ対応する4つのヘッドユニット21が記録媒体Mの搬送方向上流側からY,M,C,Kの色の順に所定の間隔で並ぶように配列されている。なお、ヘッドユニット21の数は4つに限られず、画像の記録に用いられるインクの色の数に応じて、3つ以下又は5つ以上とされても良い。
 各ヘッドユニット21は、複数の記録素子が記録媒体Mの搬送方向と交差する方向(本実施形態では搬送方向と直交する幅方向、即ちX方向)に各々配列された複数の記録ヘッド211(図4)と、記録ヘッド211によるインク吐出動作を制御するヘッド制御部212(図4)とを備える。記録ヘッド211に設けられた記録素子の各々は、インクを貯留する圧力室と、圧力室の壁面に設けられた圧電素子と、インクを吐出するノズルとを含む。記録ヘッド211内の駆動回路から圧電素子に駆動信号が印加されると、この駆動信号に応じて圧電素子が変形して圧力室内の圧力が変化し、圧力室に連通するノズルからインクが吐出される。
 ヘッドユニット21に含まれる記録素子のX方向についての配置範囲は、搬送部10により搬送される記録媒体Mのうち画像が記録可能な領域のX方向についての幅をカバーしており、ヘッドユニット21は、画像の記録時には搬送部10に対して位置が固定されて用いられる。即ち、インクジェット記録装置1は、シングルパス方式で画像を記録する。
 画像読取部30は、搬送方向について記録部20の下流側の位置において、搬送ベルト13の搬送面に載置された記録媒体Mの表面を読み取り可能に配置される。画像読取部30による記録媒体Mの読み取りは、種々の目的で行われ得る。例えば、記録部20により記録媒体Mに記録された画像を読み取って当該画像の品質を検査したり、ノズルの吐出不良を検出するために記録媒体Mに記録された所定の検査画像を読み取って、その読取結果に基づいて吐出不良のノズルを特定したりすることができる。
 また、画像読取部30は、反射率が均一かつ既知である所定の標準白色板(標準読取対象)の表面を読み取ったときの撮像データにおける画素値が所定値で均一となるように較正(キャリブレーション)がなされた上で用いられる。画像読取部30の較正の方法については後述する。
 画像読取部30は、読取対象(記録媒体Mや標準白色板)の表面を読み取って得られた撮像データを制御部40に出力する。
 図2は、画像読取部30の構成を説明する模式断面図である。図2は、標準白色板60の読み取りを行っている画像読取部30の、X方向に垂直な面における断面が模式的に示されている。
 画像読取部30は、筐体31と、一対の光源32と、ミラー331,332と、レンズ光学部34と、撮像素子列361,362(副撮像素子列)を各々有するラインセンサー351,352(読取手段)などを備えている。
 筐体31は、一の面が搬送ベルト13の搬送面に対向するように配置された直方体形状の部材である。筐体31のうち搬送ベルト13の搬送面に対向する面は、ガラス等の光透過性を有する部材を用いて構成された光透過面31a(光入射面)である。画像読取部30は、読取対象物の厚さに応じて読取対象物と光透過面31aとの距離を調整できるように、全体がZ方向に移動可能とされている。
 一対の光源32の各々は、X方向について記録部20による画像の記録可能範囲を包含する範囲に配列された複数のLED(Light Emitting Diode)を有する線光源である。一対の光源32は、Y方向に垂直な所定の基準面Aに対して対称な位置に配置され、筐体31の光透過面31aを通して搬送ベルト13上の読取対象物(ここでは標準白色板60)に光を射出する。また、各光源32の角度は、光透過面31aと搬送ベルト13上の読取対象物との距離が所定の標準距離dである場合に当該読取対象物のうち基準面Aと交差するライン上に同一の入射角で光が照射されるように調整されている。
 ミラー331は、X方向について光源32の配置範囲に対応する長さを有し、光源32から射出され読取対象物の表面において反射した光のうち基準面Aを進行する光をミラー332の方向に反射させる。ミラー332は、ミラー331よりも光透過面31aに近い位置に設けられ、ミラー331において反射した光をレンズ光学部34の方向に反射させる。このようにミラー331,332が設けられることにより、筐体31内において適切な光路長が確保される。
 レンズ光学部34は、ミラー332からの入射光をラインセンサー351,352の撮像素子列361,362の位置で縮小結像させるためのレンズと、RGB各波長の光を各々選択的に通過させるフィルター(BPFやLPF)とを有する。
 ラインセンサー351,352は、撮像素子がX方向に配列された撮像素子列361,362をそれぞれ用いて一次元撮像を行う。各撮像素子は、入射光をその光量に応じた量の電荷に変換する光電変換素子で得られた電荷量又は当該電荷量に応じた電圧値を検出する。撮像素子列361,362では、撮像素子がRGB各波長の光についてそれぞれX方向に記録可能幅に亘る一次元撮像を可能に配列されている。撮像素子としては、例えば、光電変換素子としてフォトダイオードを備えるCCD(Charge Coupled Device)センサー又はCMOS(Complementary Metal Oxide Semiconductor)センサーが用いられる。本実施形態では、撮像素子列361各々及び撮像素子列362には、それぞれ約7000個の撮像素子が配列されている。ただし、撮像素子の数は、これに限られず、撮像対象の大きさや撮像解像度などに応じて適宜変更することができる。
 ラインセンサー351,352から出力された信号は、アナログフロントエンドにおいて電流電圧変換、増幅、雑音除去、アナログデジタル変換等がなされ、読取画像の輝度値を示す撮像データとして制御部40に出力される。本実施形態では、当該撮像データの画素値は、撮像素子による光の検出強度を0から255までの256階調で示す。
 図3は、ラインセンサー351,352の構成及び撮像範囲を説明する図である。図3では、画像読取部30のうちレンズ光学部34及びラインセンサー351,352が抽出されて示されており、ミラー331,332による入射光の反射については記載が省略されている。
 図3に示されるように、画像読取部30は、ラインセンサー351と、当該ラインセンサー351に対して+X方向側に離間して配置されたラインセンサー352とを有する。また、レンズ光学部34は、ラインセンサー351に対応するレンズ341と、ラインセンサー352に対応しレンズ341に対して+X方向側に所定距離離れたレンズ342とを有している。撮像素子列361の位置では、レンズ341により標準白色板60のX方向の範囲のうち-X方向側の約半分に相当する範囲r1からの反射光が縮小結像される。また、撮像素子列362の位置では、レンズ342により標準白色板60の+X方向側の約半分に相当する範囲r2からの反射光が縮小結像される。このような構成のため、撮像素子列361と撮像素子列362とは、間隔をおいて配置されており、撮像素子の配列が離間している。
 また、範囲r1と範囲r2とは一部が重なっており、当該重なった部分では、撮像素子列361,362の撮像素子により重複して読み取りが行われる。当該重なった部分の各位置では、撮像素子列361,362の何れか一方の撮像素子による読み取り結果を用いて撮像データが生成される。本実施形態では、当該重なった部分の中央から-X方向側、+X方向側について、それぞれ撮像素子列361、撮像素子列362の撮像素子による読み取り結果が用いられて撮像データが生成される。
 また、撮像素子列361の撮像素子のうち+X方向側の半分の撮像素子からなる第1撮像素子群361aの動作は、第1撮像制御部371a(図4)により制御され、-X方向側の半分の撮像素子からなる第2撮像素子群361bの動作は、第2撮像制御部371b(図4)により制御される。また、撮像素子列362の撮像素子のうち+X方向側の半分の撮像素子からなる第3撮像素子群362aの動作は、第3撮像制御部372a(図4)により制御され、-X方向側の半分の撮像素子からなる第4撮像素子群362bの動作は、第4撮像制御部372b(図4)により制御される。ここで、第1撮像制御部371a~第4撮像制御部372bは、それぞれ上述のアナログフロントエンドを含む集積回路である。
 以下では、撮像データの生成に用いられる撮像素子のうち、第1撮像素子群361aの撮像素子を、+X方向側から順に撮像素子Ea,Ea,…,Eaとし、第2撮像素子群361bの撮像素子を、+X方向側から順に撮像素子Eb,Eb,…,Ebとし、第3撮像素子群362aの撮像素子を、+X方向側から順に撮像素子Ec,Ec,…,Ecとし、第4撮像素子群362bの撮像素子を、+X方向側から順に撮像素子Ed,Ed,…,Edとする。以下では、任意の撮像素子を指す場合には撮像素子Eと記す。
 図4は、インクジェット記録装置1の主要な機能構成を示すブロック図である。
 インクジェット記録装置1は、上述の搬送部10、ヘッドユニット21、画像読取部30、及び制御部40と、操作表示部51と、入出力インターフェース52と、バス53などを備える。
 ヘッドユニット21のヘッド制御部212は、制御部40からの制御信号や、駆動ローラー11に取り付けられたロータリーエンコーダーから入力されたパルス信号のカウント数に応じた適切なタイミングで、記録ヘッド211のヘッド駆動部に対して各種制御信号や画像データを出力する。記録ヘッド211のヘッド駆動部は、ヘッド制御部212から入力された制御信号及び画像データに応じて、記録ヘッド211の記録素子に対して圧電素子を変形動作させる駆動信号を供給し、各ノズルの開口部からインクを吐出させる。
 画像読取部30の第1撮像制御部371a、第2撮像制御部371b、第3撮像制御部372a、第4撮像制御部372bは、それぞれ第1撮像素子群361a、第2撮像素子群361b、第3撮像素子群362a、第4撮像素子群362bから出力された信号に対して電流電圧変換、増幅、雑音除去、アナログデジタル変換等の処理を行い、読取画像の撮像データを制御部40に出力する。
 制御部40は、CPU41(Central Processing Unit)(読取制御手段、補正撮像データ生成手段、較正手段)、RAM42(Random Access Memory)、ROM43(Read Only Memory)及び記憶部44を有する。
 CPU41は、ROM43に記憶された各種制御用のプログラムや設定データを読み出してRAM42に記憶させ、当該プログラムを実行して各種演算処理を行う。また、CPU41は、インクジェット記録装置1の全体動作を統括制御する。
 RAM42は、CPU41に作業用のメモリー空間を提供し、一時データを記憶する。RAM42は、不揮発性メモリーを含んでいても良い。
 ROM43は、CPU41により実行される各種制御用のプログラムや設定データ等を格納する。なお、ROM43に代えてEEPROM(Electrically Erasable Programmable Read Only Memory)やフラッシュメモリー等の書き換え可能な不揮発性メモリーが用いられても良い。
 記憶部44には、入出力インターフェース52を介して外部装置2から入力されたプリントジョブ(画像記録命令)、当該プリントジョブに係る画像データ、及び画像読取部30から出力された撮像データなどが記憶される。また、記憶部44には、後述する移動平均処理に用いられる移動平均数設定データ44aと、画像読取部30の較正結果に係る画像読取部較正データ44bとが記憶される。記憶部44としては、例えばHDD(Hard Disk Drive)が用いられ、また、DRAM(Dynamic Random Access Memory)などが併用されても良い。
 操作表示部51は、液晶ディスプレイや有機ELディスプレイといった表示装置と、操作キーや、表示装置の画面に重ねられて配置されたタッチパネルといった入力装置とを備える。操作表示部51は、表示装置において各種情報を表示させ、また入力装置に対するユーザーの入力操作を操作信号に変換して制御部40に出力する。
 入出力インターフェース52は、外部装置2と制御部40との間のデータの送受信を媒介する。入出力インターフェース52は、例えば各種シリアルインターフェース、各種パラレルインターフェースのいずれか又はこれらの組み合わせで構成される。
 バス53は、制御部40と他の構成との間で信号の送受信を行うための経路である。
 外部装置2は、例えばパーソナルコンピューターであり、入出力インターフェース52を介してプリントジョブ及び画像データ等を制御部40に供給する。
 次に、本実施形態のインクジェット記録装置1における画像読取部30の較正方法について説明する。
 インクジェット記録装置1では、画像読取部30により記録媒体M上の画像が適切に読み取られるように、所定のタイミングで、複数の撮像素子Eによる検出値に係る画像読取部30の較正を行う較正動作が行われる。本実施形態では、画像読取部30の較正は、インクジェット記録装置1の立ち上げ時、インクジェット記録装置1の立ち上げから所定時間が経過したとき、及び光源32の累積点灯時間が所定時間に達したときなどに行われる。ここで、光源32の累積点灯時間に係る上記所定時間は、例えば光源32の輝度の初期値からの変化率(低減率)が所定値に達する時間とすることができる。
 本実施形態における画像読取部30の較正動作では、まず画像読取部30により標準白色板60の表面のうちX方向に延びるライン状の読取範囲(以下では単に「ライン」とも記す)が読み取られ、複数の撮像素子Eの当該読み取りにおける検出値に基づいて、複数の画素からなる白色板撮像データ(標準読取対象撮像データ)が生成される。白色板撮像データにおける複数の画素の各々は、標準白色板60の読み取りにおける複数の撮像素子Eの何れかによる検出結果に対応する。
 ここで、標準白色板60は、ラインセンサー351,352による読取可能範囲よりも大きな読取面を有する板状の部材であり、画像読取部30の較正動作では、図2及び図3に示されるように、当該読取面が光透過面31aと対向するように搬送ベルト13上に配置される。標準白色板60の読取面は、例えばユポやPET(ポリエチレンテレフタラート)といった白色でありかつ反射率が均一な部材により構成される。また、読取面は、表面をクリーニングすることにより表面に付着した塵などの異物を容易に除去することが可能な材質であることが望ましい。
 なお、標準白色板60を搬送ベルト13により搬送させながら、標準白色板60の表面における異なる複数のラインを読み取って、各撮像素子Eによる当該複数回の読み取りに係る検出データを平均して白色板撮像データを生成しても良い。この場合、同一の撮像素子Eに対応する複数の検出データのうち、塵などの異物に起因して検出値に異常が生じている(例えば他のラインに係る検出データより値が低い)データを除外し、残りの検出データの平均に基づいて白色板撮像データを生成しても良い。
 図5は、白色板撮像データの例を示す図である。
 図5は、白色板撮像データを構成する複数の画素の画素値を、撮像素子Eの配列順序に応じて当該複数の画素の画素データが一次元配列された画素配列の順にプロットした図である。即ち、図5では、第1撮像素子群361aの撮像素子Ea…Eaに対応する画素Pa…Pa、第2撮像素子群361bの撮像素子Eb…Ebに対応する画素Pb…Pb、第3撮像素子群362aの撮像素子Ec…Ecに対応する画素Pc…Pc、第4撮像素子群362bの撮像素子Ed…Edに対応する画素Pd…Pdの順に、画素の画素値がプロットされている。以下では、画素配列における画素Paからの所定の範囲(設定範囲)を第1の範囲Ra1、画素Pa及び画素Pbからの所定の範囲(設定範囲)を第1の範囲Ra2、画素Pb及び画素Pcからの所定の範囲(設定範囲)を第1の範囲Ra3、画素Pc及び画素Pdからの所定の範囲(設定範囲)を第1の範囲Ra4、画素Pdからの所定の範囲(設定範囲)を第1の範囲Ra5とし、第1の範囲Ra1~Ra5以外の4つの範囲をそれぞれ第2の範囲Rb1~Rb4とする。本実施形態では、上記設定範囲は、基準となる画素を含んで当該基準となる画素から画素配列の配列順で±7画素以内(第1の範囲Ra1,Ra5では、それぞれ+7画素以内、-7画素以内)の範囲とされている。なお、この範囲は一例であり、基準となる画素から6画素以下、又は8画素以上の範囲としても良い。
 図5に示されるように、白色板撮像データの画素値は、画素配列の両端近傍における第1の範囲Ra1,Ra5では、端部の画素に近付くほど画素値が非線形性を有して低下している。また、画素配列の中央において隣接する画素Pb及び画素Pcの近傍における第1の範囲Ra3では、画素Pb及び画素Pcに近付くほど画素値が非線形性を有して低下している。このうち第1の範囲Ra3における画素値の低下は、レンズ341,342の周辺部における集光光量の減少が反映されたものである。また、第1の範囲Ra1,Ra5における画素値の低下は、レンズ341,342の周辺部における集光光量の減少に加えて、光源32のX方向両端部近傍における照度の低下が反映されたものである。
 また、第1の範囲Ra2では、画素Pa及び画素Pbを境に画素値が乖離している。これは、画素Pa~Paの動作を制御する第1撮像制御部371aと、画素Pb~Pbの動作を制御する第2撮像制御部371bとの間の特性の差異、具体的には、各撮像制御部における信号増幅率(ゲイン)や、アナログデジタル変換における基準電圧のずれなどが反映されたものである。また、第1の範囲Ra4においても、第3撮像制御部372aと第4撮像制御部372bとの間の特性の差異に起因して、画素Pc及び画素Pdを境に画素値が乖離している。
 このように、画素配列の第1の範囲Ra1~Ra5の範囲では、各範囲内の少なくとも一部において隣接画素間の画素値の変化が大きくなっている。以下では、第1の範囲Ra1~Ra5の範囲内での隣接画素間における画素値の差分の平均値をVaとする。他方で、第2の範囲Rb1~Rb4では、第1の範囲Ra1~Ra5よりも画素値の変化がなだらかであり、第2の範囲Rb1~Rb4の範囲内での隣接画素間における画素値の差分の平均値Vbは、上記のVaよりも小さな値となっている。
 画像読取部30の較正動作では、白色板撮像データが生成されると、白色板撮像データに対して所定の平滑化処理、ここでは移動平均処理が行われて、補正撮像データが生成される。この移動平均処理は、白色板撮像データの各画素を対象として、対象の画素の画素データを含んで画素配列における配列順で連続して配列された所定の移動平均数(所定数)の画素データにおける画素値の平均値を算出する処理を含む。そして、白色板撮像データの複数の画素の各々に係る上記平均値が算出されると、各画素の画素値を当該画素に対応する平均値に補正することにより補正撮像データが生成される。このような移動平均処理により、白色板撮像データに含まれているノイズが抑えられた補正撮像データを得ることができる。
 図6及び図7は、移動平均処理において画素値を平均する画素範囲を説明する図である。
 移動平均処理における移動平均数は、白色板撮像データの各画素に対して予め定められており、記憶部44に移動平均数設定データ44aとして記憶されている。図6及び図7では、移動平均処理により画素値を補正する対象の画素が縦方向に並べられて示され、各画素についての移動平均を行う範囲(画素値を平均する画素の範囲)が横方向に延びる矩形により示されている。また、各矩形の内部の数値は、画素値を平均する画素数、即ち移動平均数を示す。
 図6及び図7に示されているように、画素配列における第1の範囲Ra1~Ra5における所定の画素Pa,Pa,Pb,Pb,Pc,Pc,Pd,Pdについての移動平均数は、1とされ、第1の範囲Ra1~Ra5の各々において、画素配列の配列順で上記所定の画素から離れるに従い漸増するように移動平均数が定められている。ここで、上記所定の画素の各々は、画素配列における両端の画素(画素Pa,Pd)、撮像素子列361,362の各々に対応する画素群同士の境目の画素(画素Pb,Pc)、撮像素子群361a,361b,362a,362bに対応する画素群同士の境目の画素(Pa,Pb,Pb,Pc,Pc,Pd)の何れかである。
 より具体的には、第1の範囲Ra1においては、画素Paにおける移動平均数が1とされ、画素Paから画素Paまで一画素離れるごとに移動平均数が2増加し、画素Paの移動平均数は15とされている。また、第1の範囲Ra2においては、画素Pa及び画素Pbにおける移動平均数が1とされ、画素Paから画素Pan-7にかけて移動平均数が2ずつ15まで増加し、画素Pbから画素Pbにかけて移動平均数が2ずつ15まで増加している。第1の範囲Ra3~Ra5についても、第1の範囲Ra1,Ra2と同様に移動平均数が設定されている。
 他方で、第1の範囲Ra1~Ra5を除いた第2の範囲Rb1~Rb4の各画素、即ち画素Pa~Pan-8、画素Pb~Pbn-8、画素Pc~Pcn-8、画素Pd~Pdn-8では、移動平均数がいずれも15とされており一定となっている。従って、第1の範囲Ra1~Ra5における移動平均数の平均値は、第2の範囲Rb1~Rb4における移動平均数の平均値より小さくなっている。これにより、画素値が大きく変動する第1の範囲Ra1~Ra5では画素値を平均する画素範囲が狭められ、白色板撮像データにおける画素値の変動が移動平均処理後の画素値に、より正確に反映されるようになっている。とりわけ、画素値が大きく乖離しており、又は極小な特異値となっている上記所定の画素についての移動平均数が1とされ(即ち、当該所定の画素についての移動平均処理が行われず)、当該所定の画素から離れるに従い移動平均数が2ずつ漸増するように設定されることで、上記所定の画素における画素値の乖離や、極小な特異値となっている画素値が、他の画素における移動平均処理後の値を不適切に変動させる不具合の発生が抑制される。
 また、移動平均数が3以上である画素については、移動平均において画素値を平均する画素の範囲が、処理対象の画素を中央とする図中左右対称の範囲とされる。このような対称の範囲とすることが可能となるように、移動平均数は、いずれも奇数とされている。
 移動平均処理によって補正撮像データが生成されると、当該補正撮像データの各画素の画素値を標準白色板60の反射率に対応する値に一致させる補正値が算出される。即ち、補正撮像データの画素のうち、X方向についてi番目の撮像素子E(iは、撮像素子Eの配列における通し番号を示す自然数)に対応する画素の画素値I(i)を補正する補正値C(i)が、全てのiについて下記の数式(1)により算出される。
  C(i)=Ia/I(i)・・・(1)
 ここで、Iaは、標準白色板60の反射率に対応する定数であり、画素値の最大値である255よりも所定値だけ低い値(本実施形態では240)とされる。これは、標準白色板60よりも反射率が大きい読取対象を読み取った場合に、画素値I(i)に補正値C(i)を乗じた値が飽和する(255を超える)のを避けるためである。算出された補正値C(i)は、画像読取部較正データ44bとして記憶部44に記憶される。
 画像読取部30の較正動作が行われた後、画像読取部30により記録媒体M上の画像といった読取対象が読み取られる場合には、撮像データのうちi番目の撮像素子Eに対応する画素値に対して補正値C(i)が乗じられ、得られた補正後の撮像データ(画像データ)が読取結果として記憶部44に記憶される。このように、撮像データの画素値に対して補正値C(i)が乗じられることにより、撮像素子Eごとの感度ばらつき、光源32のX方向両端部近傍における照度の低下、レンズ341,342の周辺部における集光光量の減少、撮像制御部間の特性の差異など起因する画素値の誤差が補正され、読取対象が適切に読み取られる。
 続いて、画像読取部30を較正するよる画像読取部較正処理の制御部40による制御手順について説明する。
 図8は、画像読取部較正処理の制御部40による制御手順を示すフローチャートである。画像読取部較正処理は、インクジェット記録装置1の立ち上げ時、インクジェット記録装置1の立ち上げから所定時間が経過したとき、及び光源32の累積点灯時間が所定時間に達したときなどに、制御部40による制御下で自動的に、又はユーザーからの操作表示部51に対する所定の入力操作に応じて開始される。
 画像読取部較正処理が開始されると、制御部40は、画像読取部30により標準白色板60の表面を撮像させる(ステップS101:読取ステップ)。即ち、制御部40は、まず搬送部10に対して制御信号を出力して搬送部10により標準白色板60を画像読取部30の光透過面31aと対向する位置に移動させる。続いて、制御部40は、画像読取部30により所定のタイミングで1回(複数の検出値から白色板撮像データを生成する場合には、適切な間隔で複数回)標準白色板60を読み取らせ、白色板撮像データを記憶部44に記憶させる。
 制御部40は、白色板撮像データに対して移動平均処理を行って補正撮像データを生成する(ステップS102:補正撮像データ生成ステップ)。即ち、制御部40は、まず記憶部44の移動平均数設定データ44aを参照して、白色板撮像データの各画素に対応する移動平均数を取得する。次に、制御部40は、白色板撮像データの各画素を対象として、画素配列において対象画素の画素データを含んで連続して配列された上記で取得した移動平均数の画素データにおける画素値の平均値を求め、白色板撮像データの各画素に係る平均値をそれぞれ画素値とする複数の補正画素からなる補正撮像データを生成して記憶部44に記憶させる。
 制御部40は、補正撮像データに基づいて画像読取部較正データ44bを生成する(ステップS103:較正ステップ)。即ち、CPU41は、較正用画像データから上述のアルゴリズムに基づいて補正値C(i)を算出し、画像読取部較正データ44bとして記憶部44に記憶させる。
 ステップS103の処理が終了すると、CPU41は、画像読取部較正処理を終了させる。
 (変形例)
 続いて上記実施形態の変形例について説明する。本変形例は、白色板撮像データの各画素に対応する移動平均数を、当該白色板撮像データに基づいて設定する点で上記実施形態と異なる。以下では、上記実施形態との相違点について説明する。
 本変形例の画像読取部30の較正動作では、標準白色板60を撮像して得られた白色板撮像データに基づいて、移動平均処理における各画素についての移動平均数が次のようにして設定される。即ち、まず、白色板撮像データにメディアンフィルター処理や移動平均処理といった所定の平滑化処理(フィルター処理)を施して画素配列における画素値を平滑化させる。次に、フィルター処理後の画素値yを、画素配列における画素の位置xについての関数y=f(x)で表した場合における各位置xでの微分係数df(x)/dxを求める。そして、当該微分係数に略反比例する大きさの整数n、即ち、kを定数として1/n≒k・df(x)/dxを満たす整数nを、位置xにおける移動平均数として定める。このような方法で定められた移動平均数は、白色板撮像データにおける画素値の変化率が大きい領域ほど小さな値となる。
 なお、上述の微分係数df(x)/dxは、隣接画素間隔をhとして、{f(x+h)-f(x)}/h、{f(x)-f(x-h)}/h、{f(x+h)-f(x-h)}/2hといった近似式で表すことができる。ここで、hを1(隣接画素の配列番号の差)とすれば、上記微分係数は、隣接画素間における画素値の差分に相当する。従って、本変形例は、各画素について、隣接する画素の画素値との差分が大きくなるに従い漸減するように移動平均数を定めるものということもできる。
 また、白色板撮像データそのものから適切な移動平均数が算出できる場合には、白色板撮像データに対して平滑化処理を施さずに移動平均数を算出しても良い。
 図9は、本変形例に係る画像読取部較正処理の制御部40による制御手順を示すフローチャートである。図9の画像読取部較正処理は、図8の画像読取部較正処理にステップS104が追加されたものである。以下では、図8の画像読取部較正処理との差異点について説明する。
 本変形例の画像読取部較正処理では、ステップS101において白色板撮像データが生成されると、制御部40(設定手段)は、上記のアルゴリズムに基づいて白色板撮像データの各画素に対応する移動平均数を設定し、移動平均数設定データ44aとして記憶部44に記憶させる(ステップS104:所定数設定ステップ)。
 続くステップS102では、制御部40は、ステップS104で生成された移動平均数設定データ44aを参照して白色板撮像データの各画素に対応する移動平均数を取得し、各画素について移動平均処理を実行する。
 以上のように、本実施形態に係る画像読取装置は、複数の撮像素子Eが配列されたラインセンサー351,352と、制御部40とを備え、制御部40は、ラインセンサー351,352により標準白色板60の表面の読み取りを行わせて、当該読み取りにおける複数の撮像素子Eの各々による検出結果にそれぞれ対応する複数の画素からなる白色板撮像データを生成し(読取制御手段)、複数の撮像素子Eの配列順序に応じた順序で複数の画素の画素データが一次元配列された画素配列において、複数の画素の各々を対象として、対象の画素の画素データを含んで画素配列における配列順で連続して配列された所定の移動平均数の画素データにおける画素値の平均値を定め、複数の画素の各々における画素値を当該画素に係る平均値に補正して補正撮像データを生成し(補正撮像データ生成手段)、補正撮像データに基づいて複数の撮像素子Eによる検出値に係るラインセンサー351,352の較正、即ちi番目の撮像素子Eに対応する画素の画素値I(i)を補正する補正値C(i)の算出を行い(較正手段)、上記移動平均数は、複数の画素の各々に対して、上記配列順で当該画素を含む所定範囲内の画素における画素値の分布に応じて他の少なくとも一の画素に係る移動平均数とは異なる数に定められている。
 このような構成によれば、白色板撮像データにおける画素値の分布に応じて各画素に対する移動平均数を適切に調整することで、補正撮像データの画素値と、元の白色板撮像データの画素値との乖離を抑えつつ、移動平均処理によるノイズ低減効果を得ることができる。この結果、較正に係る補正値が不適切に大きくなったり小さくなったりする不具合の発生を抑制しつつ、白色板撮像データに含まれるノイズが較正結果に及ぼす影響を抑制することができる。このように、上記構成によれば、画像読取装置においてより適切な較正を行うための調整が可能となる。
 また、移動平均数は、画素配列における特定の第1の範囲Ra1~Ra5の画素に対して定められた移動平均数の平均値が、画素配列における第1の範囲Ra1~Ra5を除いた第2の範囲Rb1~Rb4の画素に対して定められた移動平均数の平均値よりも小さくなるように定められ、第1の範囲Ra1~Ra5は、当該第1の範囲Ra1~Ra5において上記配列順で隣接する画素間における画素値の差分の平均値が、第2の範囲Rb1~Rb4において上記配列順で隣接する画素間における画素値の差分の平均値よりも大きくなるように定められた範囲である。このような構成によれば、隣接画素間での画素値の変動が第2の範囲Rb1~Rb4よりも大きい第1の範囲Ra1~Ra5の画素を対象とした移動平均処理において、第2の範囲Rb1~Rb4における移動平均処理よりも少ない数の画素の画素値が平均されて、補正撮像データが生成される。これにより、第1の範囲Ra1~Ra5の画素を対象とした移動平均処理において、画素値が大きく異なる画素が画素値を平均する画素範囲に含まれることが少なくなるため、移動平均処理後の画素値が元の画素値から大きく乖離する不具合の発生を抑制することができる。
 また、上記移動平均数は、第1の範囲Ra1~Ra5内における所定の画素(画素Pa,Pa,Pb,Pb,Pc,Pc,Pd,Pd)から画素配列の配列順で所定の設定範囲内(±7画素の範囲内)の画素に対して、上記所定の画素から上記配列順で離れるに従い漸増するように定められている。このような構成によれば、隣接画素との間で画素値の差分が大きくなる画素が予め特定できる場合に、当該画素を上記所定の画素とすることで、移動平均処理前後での画素値の乖離を抑制できる適切な移動平均数を簡易な方法で定めることができる。
 また、上記所定の画素には、画素配列における両端の画素Pa,Pdが含まれ、当該両端の画素の各々からの上記設定範囲は、互いに重複しないように定められている。画素配列における両端の画素Pa,Pdでは、光源32による照明の、読取対象範囲の両端部における照度の低下や、撮像素子Eへの入射光を縮小結像させるレンズ341,342が用いられる場合におけるレンズ周辺部の集光光量の減少などによる画素値の低下が生じやすい。これに対し、上記の構成によれば、このような両端の画素Pa,Pdから設定範囲内の画素における移動平均数が小さく設定されるため、当該両端の画素Pa,Pdにおける画素値の低下が他の画素の移動平均処理に及ぼす影響を抑制することができる。
 また、複数の撮像素子Eは、当該複数の撮像素子における2以上の撮像素子Eからそれぞれなる複数の撮像素子列361,362を有し、上記所定の画素には、画素配列における複数の撮像素子列361,362の各々に対応する画素群同士の境目の画素Pb,Pcが含まれる。当該境目の画素Pb,Pcでは、撮像素子列361,362への入射光の縮小結像にそれぞれ異なるレンズ341,342が用いられる場合におけるレンズ周辺部の集光光量の減少などによる画素値の低下が生じやすい。また、上記画素Pbと画素Pcとの間では、撮像素子列361,362の動作を別個の撮像制御部により制御する場合における当該撮像制御部間の特性の差異や、撮像素子列361,362の間での撮像素子Eの感度の差異などによる画素値の乖離が生じやすい。これに対し、上記の構成によれば、このような境目の画素Pb,Pcから設定範囲内の画素における移動平均数が小さく設定されるため、当該境目の画素Pb,Pcにおける画素値の低下や乖離が他の画素の移動平均処理に及ぼす影響を抑制することができる。
 また、本実施形態に係る画像読取装置は、複数の撮像素子Eの互いに異なる一部から各々構成される第1撮像素子群361a、第2撮像素子群361b、第3撮像素子群362a、第4撮像素子群362bの動作をそれぞれ制御する第1撮像制御部371a、第2撮像制御部371b、第3撮像制御部372a、第4撮像制御部372bを備え、上記所定の画素には、画素配列における第1撮像素子群361a~第4撮像素子群362bの各々に対応する画素群同士の境目の画素Pa,Pb,Pb,Pc,Pc,Pdが含まれる。当該境目で隣接する画素Paと画素Pb、画素Pbと画素Pc、及び画素Pcと画素Pdでは、各撮像素子群の動作を各々制御する各撮像制御部間の特性の差異などによる画素値の乖離が生じやすい。これに対し、上記の構成によれば、このような境目の画素から設定範囲内の画素における移動平均数が小さく設定されるため、当該境目の画素における画素値の乖離が他の画素の移動平均処理に及ぼす影響を抑制することができる。
 また、上記所定の画素に対応する移動平均数は、1とされている。このような構成によれば、隣接画素との間で画素値が大きく乖離し、又は画素値が極小な特異値となっている上記所定の画素についての移動平均処理が行われないため、当該所定の画素の画素値が移動平均処理により大きく変動する不具合の発生を抑制することができる。
 また、白色板撮像データの画素配列における両端の画素を含む上記所定の画素に対応する移動平均数は、1であり、移動平均数は、奇数であり、かつ画素配列における上記所定の画素から画素配列の配列順で所定の設定範囲内の画素に対して、当該所定の画素から上記配列順で一画素離れるごとに2増加するように定められ、制御部40は、移動平均数が3以上である場合に、対象の画素の画素データを中央とする範囲で連続して配列された移動平均数の画素データにおける画素値の代表値を定める(補正撮像データ生成手段)。このような構成によれば、移動平均処理において、対象の画素を中央とする範囲の画素の画素データにおける画素値が平均されるため、対象の画素の近傍で画素値が漸増又は漸減している場合に、移動平均処理前後で画素値が大きく乖離する不具合の発生を抑制することができる。また、上記所定の画素からの設定範囲内で、当該所定の画素から離れるに従い2ずつ増加するように移動平均数が定められることで、各画素の移動平均処理において、上記所定の画素に対する画素配列方向の一方側に位置する画素の画素値のみが平均されるようにすることができる。よって、所定の画素を挟んで一方側と他方側とで画素値が乖離している場合において、当該乖離した画素値が平均されることに起因する移動平均処理前後での画素値の変動を抑制することができる。この結果、画素値が乖離する位置において、移動平均処理後の画素値にピークノイズが生じる不具合の発生を抑制することができる。また、上記のように移動平均数を定めることで、画素配列の両端に位置する上記所定の画素の近傍においても、対象の画素を中央とする範囲の画素の画素値を平均する移動平均処理を行うことができる。
 また、上記変形例に係る画像読取装置では、移動平均数は、複数の画素、又は所定の平滑化処理が施された複数の画素に対して、対象の画素の画素値と、画素配列の配列順で当該対象の画素に隣接する画素の画素値との差分が大きくなるに従い漸減するように定められている。このような構成によれば、白色板撮像データにおける画素値の変動傾向に応じて、相対的に変動が大きい範囲で小さい移動平均数を設定することができる。これにより、白色板撮像データの画素値の変動傾向が予測できない場合においても、適切な移動平均数を設定して較正を行うことができる。
 また、上記変形例に係る画像処理装置は、白色板撮像データに基づいて複数の画素の各々に対して移動平均数を定める制御部40(設定手段)を備えるので、画像処理装置において移動平均数の設定を行うことができる。
 また、上記実施形態の画像読取装置は、複数の画素の各々に対応する移動平均数を含む移動平均数設定データ44aを記憶する記憶部44を備え、制御部40は、記憶部44に記憶された移動平均数設定データ44aに基づいて補正撮像データを生成する(補正撮像データ生成手段)。このような構成によれば、記憶部44の移動平均数設定データ44aを参照する簡易な処理で適切な移動平均数を取得することができる。
 また、上記実施形態のインクジェット記録装置1は、記録媒体M上に画像を記録する記録部20と、記録部20により記録媒体M上に記録された画像を読み取る上記画像読取装置と、を備える。このような構成によれば、インクジェット記録装置1において記録された画像を、適切な較正がなされた画像読取装置により読み取ることができる。
 また、本実施形態の画像読取装置の較正方法は、ラインセンサー351,352により標準白色板60の表面の読み取りを行わせて、当該読み取りにおける複数の撮像素子Eの各々による検出結果にそれぞれ対応する複数の画素からなる白色板撮像データを生成するステップ(読取ステップ)、複数の撮像素子Eの配列順序に応じた順序で複数の画素の画素データが一次元配列された画素配列において、複数の画素の各々を対象として、対象の画素の画素データを含んで画素配列における配列順で連続して配列された所定の移動平均数の画素データにおける画素値の平均値を定め、複数の画素の各々における画素値を当該画素に係る代表値に補正して補正撮像データを生成するステップ(補正撮像データ生成ステップ)、補正撮像データに基づいて複数の撮像素子Eによる検出値に係るラインセンサー351,352の較正、即ちi番目の撮像素子Eに対応する画素の画素値I(i)を補正する補正値C(i)の算出を行うステップ(較正ステップ)、を含み、上記移動平均数は、複数の画素の各々に対して、上記配列順で当該画素を含む所定範囲内の画素における画素値分布に応じて他の少なくとも一の画素に係る移動平均数とは異なる数に定められている。このような方法によれば、画像読取装置においてより適切な較正を行うための調整が可能となる。
 また、白色板撮像データに基づいて複数の画素の各々に対応する移動平均数を定めるステップ(所定数設定ステップ)を含む。このような方法によれば、画像読取装置の構成に応じて、又は取得された白色板撮像データに応じて適切な移動平均数を定めて画像読取装置の較正を行うことができる。
 なお、本発明は、上記実施形態及び変形例に限られるものではなく、様々な変更が可能である。
 例えば、上記実施形態及び変形例では、白色板撮像データから補正撮像データを生成する平滑化処理として、移動平均処理を例に挙げて説明したが、これに限られない。例えば、白色板撮像データの画素配列において対象の画素の画素データを含んで連続して配列された所定数の画素データにおける画素値の代表値、例えば中央値を定める平滑化処理としても良い。
 また、上記実施形態では、移動平均処理における移動平均数が最も小さい値(即ち、1)に設定される所定の画素として、白色板撮像データの画素配列における両端の画素、撮像素子列361,362に対応する画素群同士の境目の画素、撮像素子群361a,361b,362a,362bに対応する画素群同士の境目の画素を例に挙げて説明したが、これに限定する趣旨ではなく、白色板撮像データにおける画素値が乖離し、又は極大、極小となる他の任意の画素とすることができる。例えば、複数の標準白色板60を幅方向につなぎ合わせたものを標準部材として画像読取部30の較正を行う場合において、複数の標準白色板60の境界を撮像する撮像素子に対応する画素を所定の画素としても良い。
 また、上記実施形態及び変形例では、標準白色板60を搬送ベルト13上に載置して移動させる例を用いて説明したが、標準白色板60の移動、設置の態様はこれに限られない。例えば、標準白色板60は、画像読取部30の筐体31に、光透過面31aに対向する位置に移動可能に取り付けられていても良い。
 また、上記実施形態及び変形例では、標準読取対象として標準白色板60を例に挙げて説明したが、これに限定されない。例えば、白色とされた搬送ベルト13の表面や、白色の記録媒体などを標準読取対象として用いても良い。
 また、上記実施形態及び変形例では、画像読取部30とは別個に制御部40が設けられ、画像読取部30及び制御部40を含む構成要素により画像読取装置が構成される例を用いて説明したが、これに限定する趣旨ではない。例えば、画像読取部30に、CPU、RAM、ROM、記憶部を有する制御部をインクジェット記録装置1の制御部40とは別個に設けても良い。この場合には、画像読取部30の制御部により読取制御手段、補正撮像データ生成手段、較正手段、設定手段が構成される。
 また、上記実施形態及び変形例では、白色板撮像データに対し移動平均処理を行って補正撮像データを生成する処理、補正撮像データに基づき補正値を算出して画像読取部較正データ44bを生成する処理、及び白色板撮像データに基づいて移動平均数を算出して移動平均数設定データ44aを生成する処理を制御部40において行う例を用いて説明したが、これらのうち少なくとも一部の処理をインクジェット記録装置1の外部に設けられた情報処理装置(例えば外部装置2)により行っても良い。
 また、上記実施形態及び変形例では、搬送ベルト13により記録媒体Mや標準白色板60を搬送する例を用いて説明したが、これに限られず、例えば回転する搬送ドラムの外周面上で記録媒体Mや標準白色板60を保持して搬送する構成としても良い。
 また、上記実施形態及び変形例では、シングルパス形式のインクジェット記録装置1を例に挙げて説明したが、ヘッドユニットを走査させながら画像の記録を行うインクジェット記録装置に本発明を適用しても良い。
 また、上記実施形態及び変形例では、画像記録装置として圧電素子を用いたピエゾ方式のインクジェット記録装置1を例に挙げて説明したが、これに限定する趣旨ではない。例えば、加熱によりインクに気泡を生じさせてインクを吐出するサーマル方式のインクジェット記録装置、感光体ドラム上にトナー粒子による像を形成して記録媒体に転写する乾式電子写真方式の画像記録装置、トナー粒子に代えて液体トナーを用いる湿式電子写真方式の画像記録装置といった種々の方式の画像記録装置に本発明を適用することができる。
 本発明のいくつかの実施形態を説明したが、本発明の範囲は、上述の実施の形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲とその均等の範囲を含む。
 本発明は、画像読取装置、画像記録装置及び画像読取装置の較正方法に利用することができる。
1 インクジェット記録装置
2 外部装置
10 搬送部
11 駆動ローラー
12 従動ローラー
13 搬送ベルト
14 搬送モーター
20 記録部
21 ヘッドユニット
211 記録ヘッド
212 ヘッド制御部
30 画像読取部
31 筐体
31a 光透過面
32 光源
331,332 ミラー
34 レンズ光学部
341,342 レンズ
351,352 ラインセンサー
361,362 撮像素子列
361a,361b,362a,362b 第1~第4撮像素子群
371a,371b,372a,372b 第1~第4撮像制御部
40 制御部
41 CPU
42 RAM
43 ROM
44 記憶部
44a 移動平均数設定データ
44b 画像読取部較正データ
51 操作表示部
52 入出力インターフェース
53 バス
60 標準白色板
E,Ea~Ea,Eb~Eb,Ec~Ec,Ed~Ed 撮像素子
Pa~Pa,Pb~Pb,Pc~Pc,Pd~Pd 画素
M 記録媒体
Ra1~Ra5 第1の範囲
Rb1~Rb4 第2の範囲

Claims (14)

  1.  複数の撮像素子が配列された読取手段と、
     前記読取手段により所定の標準読取対象の読み取りを行わせて、当該読み取りにおける前記複数の撮像素子の各々による検出結果にそれぞれ対応する複数の画素からなる標準読取対象撮像データを生成する読取制御手段と、
     前記複数の撮像素子の配列順序に応じた順序で前記複数の画素の画素データが一次元配列された画素配列において、前記複数の画素の各々を対象として、対象の画素の画素データを含んで前記画素配列における配列順で連続して配列された所定数の画素データにおける画素値の代表値を定め、前記複数の画素の各々における画素値を当該画素に係る前記代表値に補正して補正撮像データを生成する補正撮像データ生成手段と、
     前記補正撮像データに基づいて、前記複数の撮像素子による検出値に係る前記読取手段の較正を行う較正手段と、
     を備え、
     前記所定数は、前記複数の画素の各々に対して、前記配列順で当該画素を含む所定範囲内の画素における画素値の分布に応じて他の少なくとも一の画素に係る前記所定数とは異なる数に定められている画像読取装置。
  2.  前記所定数は、前記画素配列における特定の第1の範囲内の画素に対して定められた前記所定数の平均値が、前記画素配列における前記第1の範囲を除いた第2の範囲内の画素に対して定められた前記所定数の平均値よりも小さくなるように定められ、
     前記第1の範囲は、当該第1の範囲内において前記配列順で隣接する画素間における画素値の差分の平均値が、前記第2の範囲内において前記配列順で隣接する画素間における画素値の差分の平均値よりも大きくなるように定められた範囲である請求項1に記載の画像読取装置。
  3.  前記所定数は、前記第1の範囲内における所定の画素から前記配列順で所定の設定範囲内の画素に対して、前記所定の画素から前記配列順で離れるに従い漸増するように定められている請求項2に記載の画像読取装置。
  4.  前記所定の画素には、前記画素配列における両端の画素が含まれ、当該両端の画素の各々からの前記設定範囲は、互いに重複しないように定められている請求項3に記載の画像読取装置。
  5.  前記複数の撮像素子は、当該複数の撮像素子における2以上の撮像素子からそれぞれなる複数の副撮像素子列を有し、
     前記所定の画素には、前記画素配列における前記複数の副撮像素子列の各々に対応する画素群同士の境目の画素が含まれる請求項3又は4に記載の画像読取装置。
  6.  前記複数の撮像素子の互いに異なる一部から各々構成される複数の撮像素子群の動作をそれぞれ制御する複数の撮像制御部を備え、
     前記所定の画素には、前記画素配列における前記複数の撮像素子群の各々に対応する画素群同士の境目の画素が含まれる請求項3~5の何れか一項に記載の画像読取装置。
  7.  前記所定の画素に対応する前記所定数は、1である請求項3~6の何れか一項に記載の画像読取装置。
  8.  前記所定の画素に対応する前記所定数は、1であり、
     前記所定数は、奇数であり、かつ前記画素配列における前記所定の画素から前記配列順で前記設定範囲内の画素に対して、当該所定の画素から前記配列順で一画素離れるごとに2増加するように定められ、
     前記補正撮像データ生成手段は、前記所定数が3以上である場合に、前記対象の画素の画素データを中央とする範囲で連続して配列された前記所定数の画素データにおける画素値の代表値を定める請求項4に記載の画像読取装置。
  9.  前記所定数は、前記複数の画素、又は所定の平滑化処理が施された前記複数の画素に対して、前記対象の画素の画素値と、前記配列順で当該対象の画素に隣接する画素の画素値との差分が大きくなるに従い漸減するように定められている請求項1又は2に記載の画像読取装置。
  10.  前記標準読取対象撮像データに基づいて前記複数の画素の各々に対して前記所定数を定める設定手段を備える請求項1~9の何れか一項に記載の画像読取装置。
  11.  前記複数の画素の各々に対応する前記所定数を記憶する記憶部を備え、
     前記補正撮像データ生成手段は、前記記憶部に記憶された前記所定数に基づいて前記補正撮像データを生成する請求項1~10の何れか一項に記載の画像読取装置。
  12.  記録媒体上に画像を記録する記録手段と、
     前記記録手段により前記記録媒体上に記録された画像を読み取る請求項1~11の何れか一項に記載の画像読取装置と、
     を備える画像記録装置。
  13.  複数の撮像素子が配列された読取手段を備えた画像読取装置の較正方法であって、
     前記読取手段により所定の標準読取対象の表面の読み取りを行わせて、当該読み取りにおける前記複数の撮像素子の各々による検出結果にそれぞれ対応する複数の画素からなる標準読取対象撮像データを生成する読取ステップ、
     前記複数の撮像素子の配列順序に応じた順序で前記複数の画素の画素データが一次元配列された画素配列において、前記複数の画素の各々を対象として、対象の画素の画素データを含んで前記画素配列における配列順で連続して配列された所定数の画素データにおける画素値の代表値を定め、前記複数の画素の各々における画素値を当該画素に係る前記代表値に補正して補正撮像データを生成する補正撮像データ生成ステップ、
     前記補正撮像データに基づいて、前記複数の撮像素子による検出値に係る前記読取手段の較正を行う較正ステップ、
     を含み、
     前記所定数は、前記複数の画素の各々に対して、前記配列順で当該画素を含む所定範囲内の画素における画素値の分布に応じて他の少なくとも一の画素に係る前記所定数とは異なる数に定められている画像読取装置の較正方法。
  14.  前記標準読取対象撮像データに基づいて前記複数の画素の各々に対応する前記所定数を定める所定数設定ステップを含む請求項13に記載の画像読取装置の較正方法。
PCT/JP2017/040178 2016-12-19 2017-11-08 画像読取装置、画像記録装置及び画像読取装置の較正方法 WO2018116674A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018557599A JP6904365B2 (ja) 2016-12-19 2017-11-08 画像読取装置、画像記録装置及び画像読取装置の較正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016245186 2016-12-19
JP2016-245186 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018116674A1 true WO2018116674A1 (ja) 2018-06-28

Family

ID=62626126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040178 WO2018116674A1 (ja) 2016-12-19 2017-11-08 画像読取装置、画像記録装置及び画像読取装置の較正方法

Country Status (2)

Country Link
JP (1) JP6904365B2 (ja)
WO (1) WO2018116674A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217481A (ja) * 2005-02-07 2006-08-17 Konica Minolta Business Technologies Inc 画像読み取り装置
JP2012010320A (ja) * 2010-05-25 2012-01-12 Ricoh Co Ltd 画像読み取り装置及び画像形成装置
JP2014176022A (ja) * 2013-03-12 2014-09-22 Ricoh Co Ltd 画像読取装置、画像形成装置及び画像読取方法
JP2016208126A (ja) * 2015-04-16 2016-12-08 キヤノンファインテック株式会社 画像読取装置、及びその制御方法、プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217481A (ja) * 2005-02-07 2006-08-17 Konica Minolta Business Technologies Inc 画像読み取り装置
JP2012010320A (ja) * 2010-05-25 2012-01-12 Ricoh Co Ltd 画像読み取り装置及び画像形成装置
JP2014176022A (ja) * 2013-03-12 2014-09-22 Ricoh Co Ltd 画像読取装置、画像形成装置及び画像読取方法
JP2016208126A (ja) * 2015-04-16 2016-12-08 キヤノンファインテック株式会社 画像読取装置、及びその制御方法、プログラム

Also Published As

Publication number Publication date
JPWO2018116674A1 (ja) 2019-10-31
JP6904365B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
JP5942534B2 (ja) 撮像装置、測色装置、測色システムおよび画像形成装置
US8368002B2 (en) In-line image sensor in combination with linear variable filter based spectrophotometer
JP6536590B2 (ja) 情報処理装置、画像記録装置及び情報処理方法
WO2018168191A1 (ja) 画像検出装置及びインクジェット記録装置
US10681235B2 (en) Image recording device with a reader and processor for calibrating the reader
JP6733191B2 (ja) 測定装置、及び測定方法
US20190248154A1 (en) Detection apparatus, inkjet recording apparatus and detection method
CN112078251B (zh) 图像形成装置以及图像形成方法
WO2017006975A1 (ja) 画像読取装置及びインクジェット記録装置
WO2018116674A1 (ja) 画像読取装置、画像記録装置及び画像読取装置の較正方法
JP7087487B2 (ja) インクジェット記録装置、ずれ検出装置及びずれ検出方法
JP6895857B2 (ja) インクジェット印刷装置および濃淡補正方法
JP6759656B2 (ja) インクジェット記録装置及び不良ノズルの検出方法
JP6107199B2 (ja) 画像形成装置、測色方法及び測色プログラム
JP2019165340A (ja) 画像読取装置、画像形成装置および異常検出方法
JP7468150B2 (ja) 画像読取装置、画像形成装置及び異物検知方法
WO2017169507A1 (ja) 画像読取装置、画像記録装置及び画像読取装置の制御方法
WO2016076086A1 (ja) 画像記録装置及び画像読取方法
JP2016058908A (ja) 画像読取装置及び画像記録装置
JP6737101B2 (ja) 記録ヘッドの相対位置検出方法、及び画像形成装置
US20210048963A1 (en) Image forming apparatus, image data adjustment method, and image data adjustment program
JP2017183810A (ja) 画像読取装置、画像記録装置及び画像読取装置の較正方法
JP2017193075A (ja) インクジェット記録装置及びインクジェット画像の撮像データ処理方法
JP2017149150A (ja) 撮像装置、測色装置及びインクジェット記録装置
JP2022133690A (ja) 吐出データ補正装置、画像形成装置および吐出データ補正方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884203

Country of ref document: EP

Kind code of ref document: A1