WO2016076086A1 - 画像記録装置及び画像読取方法 - Google Patents

画像記録装置及び画像読取方法 Download PDF

Info

Publication number
WO2016076086A1
WO2016076086A1 PCT/JP2015/079636 JP2015079636W WO2016076086A1 WO 2016076086 A1 WO2016076086 A1 WO 2016076086A1 JP 2015079636 W JP2015079636 W JP 2015079636W WO 2016076086 A1 WO2016076086 A1 WO 2016076086A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
line
image
recorded
width direction
Prior art date
Application number
PCT/JP2015/079636
Other languages
English (en)
French (fr)
Inventor
飯田 優
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016558949A priority Critical patent/JP6579113B2/ja
Publication of WO2016076086A1 publication Critical patent/WO2016076086A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet

Definitions

  • the present invention relates to an image recording apparatus and an image reading method.
  • an image recording apparatus that records an image on a recording medium by ejecting ink from a plurality of nozzles provided in a recording head with respect to the recording medium conveyed by the conveying apparatus.
  • the recording head has a nozzle array arranged in a direction perpendicular to the conveyance direction of the recording medium (hereinafter referred to as a width direction) over a range wider than the width of the recording medium,
  • a width direction a direction perpendicular to the conveyance direction of the recording medium
  • a line pattern including a plurality of lines formed by ink ejection from individual nozzles is recorded on a recording medium, and the line pattern is read by a line sensor provided on the downstream side in the transport direction. Detection of defective nozzles, detection of deviation from the proper nozzle position, and the like are performed.
  • Patent Document 2 a plurality of reference line patterns having different lengths from other lines are formed at both ends in the width direction of a line pattern block including a plurality of lines, and the reference line pattern and a specific target are formed.
  • the line is identified from the positional relationship with the other line.
  • the line specifying method described in Patent Document 1 is based on the premise that the line pattern is recorded in a staircase pattern, and when applied to a line pattern that is not recorded in a staircase pattern, the line is specified. There was a problem that it was difficult.
  • the line specifying method described in Patent Document 2 if an ejection failure occurs in a nozzle for recording a reference line pattern, the reference line pattern is partially lost, and the line specifying method becomes complicated. When the reference line pattern is lost, there is a problem that the line cannot be specified.
  • An object of the present invention is to provide an image recording apparatus and an image reading method for recording an image capable of easily and surely specifying a line of a line pattern.
  • the invention of the image recording apparatus comprises: Conveying means for holding the recording medium and conveying it in the conveying direction; Recording means for recording an image on the recording medium using a plurality of recording elements arranged in a direction crossing the conveying direction over a recording width to the recording medium in a width direction orthogonal to the conveying direction; A line pattern including a plurality of lines parallel to the transport direction by the plurality of recording elements of the recording unit with respect to the recording medium transported by the transport unit, and a length in the width direction of the plurality of lines Recording control means for recording an identification mark that is larger than the length in each width direction and smaller than the recording width in the width direction of the line pattern in a predetermined positional relationship; It is characterized by having.
  • the invention according to claim 2 is the image recording apparatus according to claim 1, One line of the plurality of lines is recorded at a first arrangement interval in the width direction with respect to a reference position of the identification mark, The plurality of lines included in the line pattern are recorded at a second arrangement interval in the width direction.
  • the invention according to claim 3 is the image recording apparatus according to claim 2, Imaging means for imaging the line pattern and the identification mark recorded on the recording medium conveyed by the conveying means; A line that specifies the reference position from the image data of the line pattern and the identification mark by the imaging means, and specifies the recording element corresponding to the line by the reference position, the first arrangement interval, and the second arrangement interval.
  • Specific means It is characterized by having.
  • the invention according to claim 4 is the image recording apparatus according to claim 2,
  • the recording control unit records a plurality of the identification marks on the recording medium at different positions in the width direction.
  • the invention according to claim 5 is the image recording apparatus according to claim 4, Imaging means for imaging the line pattern and the plurality of identification marks recorded on the recording medium conveyed by the conveying means; The recording corresponding to the line by the relative position in the width direction of the line with respect to the reference position in the width direction of the plurality of identification signs from the line pattern and the imaging data of the plurality of identification signs by the imaging means.
  • the invention according to claim 6 is the image recording apparatus according to claim 3 or 5
  • the image processing apparatus includes correction means for correcting image data of an image to be recorded on the recording medium based on information relating to the recording element specified by the line specifying means.
  • the invention according to claim 7 is the image recording apparatus according to claim 6,
  • the information relating to the recording element is data indicating a position where the recording element is arranged in the recording means.
  • the invention according to claim 8 is the image recording apparatus according to claim 6, A plurality of the recording means,
  • the information relating to the recording element is data indicating an interval in the width direction between the recording element and a specific recording element included in the recording unit different from the recording unit including the recording element. Yes.
  • the invention according to claim 9 is the image recording apparatus according to any one of claims 3, 5 to 8,
  • the luminance changes between the luminances of the two uniform gradation image areas in the imaging data by the imaging unit.
  • Brightness transition range to occur
  • the length in the width direction of the identification mark recorded by the recording means by the recording control means is set to at least twice the distance on the recording medium corresponding to the length in the width direction of the luminance transition range. It is characterized by having setting means.
  • the invention according to claim 10 is the image recording apparatus according to any one of claims 3, 5 to 8,
  • the luminance changes between the luminances of the two uniform gradation image areas in the imaging data by the imaging unit.
  • Brightness transition range to occur The width in the width direction between the identification mark to be recorded by the recording means and the line adjacent to the identification mark in the width direction corresponds to the length in the width direction of the luminance transition range.
  • setting means for setting the distance to at least twice the distance on the recording medium.
  • the invention according to claim 11 is the image recording apparatus according to any one of claims 3, 5 to 8,
  • the luminance changes between the luminances of the two uniform gradation image areas in the imaging data by the imaging unit.
  • Brightness transition range to occur The interval in the width direction of the lines adjacent in the width direction that the recording control means records by the recording means is twice the distance on the recording medium corresponding to the length in the width direction of the luminance transition range. It is characterized by having setting means for setting as described above.
  • the invention according to claim 12 is the image recording apparatus according to any one of claims 3, 5 to 8,
  • the imaging unit captures two uniform gradation image areas with different brightness adjacent to each other in the transport direction
  • the brightness changes between the brightnesses of the two uniform gradation image areas in the image data captured by the imaging unit.
  • Brightness transition range to occur The conveyance direction length of the identification mark recorded by the recording unit by the recording unit is twice the conveyance direction luminance transition distance on the recording medium corresponding to the conveyance direction length of the luminance transition range.
  • the line specifying unit uses the luminance data in the range inward of the conveyance direction luminance transition distance from both ends of the conveyance direction of the identification mark in the imaging data in the conveyance direction, and the recording element corresponding to the line It is characterized by specifying.
  • the invention according to claim 13 is the image recording apparatus according to any one of claims 3, 5 to 8,
  • the imaging unit captures two uniform gradation image areas with different brightness adjacent to each other in the transport direction
  • the brightness changes between the brightnesses of the two uniform gradation image areas in the image data captured by the imaging unit.
  • Brightness transition range to occur
  • the length in the transport direction of the line to be recorded by the recording means by the recording means is at least twice the transport direction brightness transition distance on the recording medium corresponding to the transport direction length of the brightness transition range.
  • the line specifying unit uses the luminance data in the range inward of the conveyance direction luminance transition distance in the conveyance direction from both ends in the conveyance direction of the line in the imaging data, and records the recording element corresponding to the line. It is characterized by identification.
  • the invention according to claim 14 is the image recording apparatus according to any one of claims 3, 5 to 8, wherein
  • the imaging unit captures two uniform gradation image areas with different brightness adjacent to each other in the transport direction, the brightness changes between the brightnesses of the two uniform gradation image areas in the image data captured by the imaging unit. Brightness transition range to occur
  • the recording control means causes the recording means to record the identification mark at a position including at least one of the plurality of lines in the arrangement direction in the width direction, and the luminance from the identification mark to the transport direction.
  • At least one line in an area including a position that is equal to or greater than a conveyance direction luminance transition distance on the recording medium corresponding to the length in the conveyance direction of the transition range;
  • An analysis line indicating a position at which the line specifying means acquires luminance data from the imaging data is recorded at a position that is equal to or greater than the conveyance direction luminance transition distance in the conveyance direction from the identification mark, and the at least one line is recorded.
  • the invention according to claim 15 is the image recording apparatus according to claim 14,
  • the imaging means is a line sensor that captures an image on the analysis line.
  • the invention according to claim 16 is the image recording apparatus according to any one of claims 9 to 15,
  • the two uniform gradation image areas are the same as an area in which recording is not performed on the recording medium on which the line pattern and the identification mark are recorded, and a color material on which the line pattern and the identification mark are recorded. This is a region in which a solid pattern of the color material is recorded.
  • the invention according to claim 17 is the image recording apparatus according to any one of claims 1 to 16, wherein A plurality of the recording means,
  • the recording control means records each of the identification marks separately by the plurality of recording means.
  • an image reading method invention comprises: Conveying means for holding the recording medium and conveying it in the conveying direction, and a plurality of recording elements arranged in a direction intersecting the conveying direction over the recording width to the recording medium in the width direction orthogonal to the conveying direction.
  • An image reading method for reading an image recorded by an image pickup means using an image recording apparatus comprising: a recording means for recording an image on the recording medium, A line pattern including a plurality of lines parallel to the transport direction by the plurality of recording elements of the recording unit with respect to the recording medium transported by the transport unit, and a length in the width direction of the plurality of lines
  • An imaging step of imaging the line pattern and the identification mark recorded on the recording medium by the imaging means It is characterized by including.
  • FIG. 1 is a diagram illustrating a schematic configuration of an ink jet recording apparatus which is an embodiment of an image recording apparatus of the present invention. It is a schematic diagram which shows the structure of a head unit, a fixing part, and a line sensor. It is a block diagram which shows the main function structures of an inkjet recording device. It is a figure which shows an example of the image for a test
  • FIG. 1 is a diagram showing a schematic configuration of an ink jet recording apparatus 1 which is an embodiment of an image recording apparatus of the present invention.
  • the ink jet recording apparatus 1 includes a paper feeding unit 10, an image recording unit 20, a paper discharge unit 30, and a control unit 40 (FIG. 3). Under the control of the control unit 40, the inkjet recording apparatus 1 conveys the recording medium P stored in the paper feeding unit 10 to the image recording unit 20, and records (forms) an image on the recording medium P by the image recording unit 20. Then, the recording medium P on which the image is recorded is conveyed to the paper discharge unit 30.
  • As the recording medium P various media capable of fixing the ink (coloring material) discharged to the surface, such as paper, cloth, or sheet-like resin, can be used.
  • the paper feed unit 10 includes a paper feed tray 11 that stores the recording medium P, and a transport unit 12 that transports the recording medium P from the paper feed tray 11 to the image recording unit 20.
  • the transport unit 12 includes a ring-shaped belt 123 whose inner side is supported by two rollers 121 and 122. The transport unit 12 transports the recording medium P by rotating the rollers 121 and 122 while the recording medium P is placed on the belt 123.
  • the image recording unit 20 includes a conveyance drum 21 (conveying unit), a delivery unit 22, a heating unit 23, a head unit 50, a fixing unit 24, a line sensor 25 (imaging unit), and a delivery unit 26. .
  • the conveyance drum 21 holds the recording medium P on a cylindrical outer peripheral surface (conveyance surface) and rotates around a rotation axis extending in a direction perpendicular to the drawing of FIG. 1 (hereinafter referred to as X direction).
  • the recording medium P is transported in the transport direction along the outer peripheral surface (hereinafter referred to as the Y direction).
  • the transport drum 21 includes a claw portion and a suction portion (not shown) for holding the recording medium P on its outer peripheral surface.
  • the recording medium P is held on the outer peripheral surface of the conveyance drum 21 by the end being pressed by the claw portion and sucked to the outer peripheral surface by the intake portion.
  • the transport drum 21 includes a transport drum motor 21M (FIG. 3) for rotating the transport drum 21, and rotates by an angle proportional to the rotation amount of the transport drum motor 21M.
  • the delivery unit 22 delivers the recording medium P transported by the transport unit 12 of the paper feed unit 10 to the transport drum 21.
  • the delivery unit 22 is provided at a position between the transport unit 12 and the transport drum 21 of the paper feed unit 10, holds one end of the recording medium P transported from the transport unit 12 by the swing arm unit 221, and delivers the transport unit. Delivered to the transport drum 21 via the drum 222.
  • the heating unit 23 heats the recording medium P held on the transport drum 21.
  • the heating unit 23 includes, for example, an infrared heater, and the infrared heater generates heat in response to energization.
  • the heating unit 23 is provided in the vicinity of the outer peripheral surface of the transport drum 21 and on the upstream side of the head unit 50 in the transport direction of the recording medium P. Heat generation of the heating unit 23 is controlled by the control unit 40 so that the recording medium P held by the transport drum 21 and passing through the vicinity of the heating unit 23 has a predetermined temperature.
  • the head unit 50 records an image by ejecting ink onto the recording medium P held on the transport drum 21.
  • the head unit 50 is disposed with a predetermined distance so that the ink discharge surface faces the outer peripheral surface of the transport drum 21.
  • the ink jet recording apparatus 1 includes four head units 50Y, 50M, 50C, and 50K (hereinafter, corresponding to four color inks of yellow (Y), magenta (M), cyan (C), and black (K). These four head units 50 are arranged at predetermined intervals in the order of colors Y, M, C, and K from the upstream side along the conveyance direction of the recording medium P. .
  • FIG. 2 is a schematic diagram illustrating the configuration of the head unit 50, the fixing unit 24, and the line sensor 25.
  • the head unit 50Y corresponding to yellow ink has four recording heads 51Y (recording means) attached to an attachment member.
  • the head units 50M, 50C, and 50K corresponding to the magenta, cyan, and black inks respectively have four recording heads 51M, 51C, and 51K (hereinafter, the recording heads 51Y, 51M, 51C, and 51K are simply referred to as the recording head 51). Also noted).
  • Each of the recording heads 51 has a plurality of recording elements 52.
  • Each recording element 52 includes a pressure chamber for storing ink, a piezoelectric element provided on a wall surface of the pressure chamber, and a nozzle.
  • a drive voltage is applied from the drive circuit of the recording head 51 to the piezoelectric element, the pressure in the pressure chamber changes according to the magnitude of the drive voltage, and ink is ejected from the nozzles communicating with the pressure chamber.
  • the nozzles included in the recording element 52 are depicted as dots.
  • the nozzles of the recording element 52 are provided with openings on the surface (ink discharge surface) of the head unit 50 on the side of the transport drum 21.
  • the nozzles of the plurality of recording elements 52 included in the recording head 51 are arranged in the width direction (X direction) perpendicular to the conveyance direction (Y direction) of the recording medium P on the surface facing the conveyance drum 21 of the recording head 51. Are arranged over the recording width.
  • the recording elements 52 are arranged at equal intervals in the X direction.
  • the nozzle rows of the recording elements 52 need only be arranged in a direction intersecting with the conveyance direction, and need not necessarily be arranged in a direction orthogonal to the conveyance direction.
  • Each recording head 51 includes two rows of recording elements 52 arranged in the X direction, and these two rows of recording elements 52 are shifted from each other by a half of the arrangement interval of the recording elements 52 in the X direction. It may be a configuration arranged in a state.
  • the arrangement of the recording elements 52 means an arrangement of nozzle positions in the recording elements 52.
  • each recording head 51 included in each head unit 50 is arranged in a staggered pattern so that the arrangement ranges in the X direction partially overlap each other, and the first, third, and second along the X direction. And the recording element 52 of the fourth recording head 51 are located on the same line. Among the portions where the adjacent recording heads 51 overlap in the X direction, the arrangement ranges in the X direction of the recording elements 52 included in each recording head 51 overlap in the range R1 shown in FIG.
  • each recording head 51 includes about 3500 recording elements 52, of which about 50 recording elements 52 are included in the range R1. In the range R1, an image is recorded by only the recording element 52 of one of the two recording heads 51 having the recording element 52 in the range R1.
  • the arrangement range in the X direction of the recording element 52 included in the head unit 50 covers the width in the X direction of the area where the image is recorded in the recording medium P held and conveyed by the conveyance drum 21.
  • the unit 50 is used with its position fixed with respect to the transport drum 21 during image recording. That is, the inkjet recording apparatus 1 is a single-pass inkjet recording apparatus.
  • the recording resolution in the X direction and the Y direction of the head unit 50 of this embodiment is 1200 dpi, and the recording elements 52 included in the head unit 50 are arranged at a density of 1200 per inch in the X direction.
  • the recording head 51 includes an ink heating unit (not shown).
  • the ink heating unit operates under the control of the control unit 40 and heats the ink to a temperature that becomes a sol.
  • the recording element 52 ejects ink that has been heated to form a sol.
  • the fixing unit 24 includes a fluorescent tube such as a low-pressure mercury lamp, and irradiates the recording medium P held on the outer peripheral surface of the transport drum 21 with energy rays such as ultraviolet rays by the light emitted from the fluorescent tube. The ink discharged on P is cured and fixed.
  • the fixing unit 24 is disposed on the downstream side of the head unit 50 in the transport direction.
  • the line sensor 25 is disposed opposite to the outer peripheral surface of the transport drum 21 at a position downstream of the fixing unit 24 in the transport direction, and stores an image recorded on the recording medium P held and transported by the transport drum 21. Capture and output two-dimensional imaging data.
  • the line sensor 25 includes a plurality of image sensors 251 arranged at predetermined arrangement intervals in the width direction (X direction). Each image sensor 251 outputs a signal corresponding to the intensity of light emitted from a light source (not shown) and reflected from the surface of the recording medium P.
  • the imaging element for example, a CMOS (Complementary Metal Oxide Semiconductor) sensor or a CCD (Charge Coupled Device) sensor provided with a photodiode as a photoelectric conversion element can be used.
  • the line sensor 25 includes a circuit that converts an analog signal output from the image sensor 251 into a digital signal and outputs the digital signal to the control unit 40.
  • the resolution in the width direction (X direction) of the imaging data output from the line sensor 25 is 600 dpi
  • the resolution in the transport direction (Y direction) is 300 dpi.
  • the delivery unit 26 includes an annular belt 263 that is supported by two rollers 261 and 262 on the inside, and a cylindrical delivery drum 264 that delivers the recording medium P from the transport drum 21 to the belt 263.
  • the recording medium P transferred from the conveyance drum 21 to the belt 263 by the H.264 is conveyed by the belt 263 and sent to the paper discharge unit 30.
  • the paper discharge unit 30 includes a plate-shaped paper discharge tray 31 on which the recording medium P sent out from the image recording unit 20 by the delivery unit 26 is placed.
  • FIG. 3 is a block diagram showing the main functional configuration of the inkjet recording apparatus 1.
  • the inkjet recording apparatus 1 includes a CPU 41 (Central Processing Unit) (recording control means, line specifying means, setting means, analysis line setting means, correction means), a RAM 42 (Random Access Memory), a ROM 43 (Read Only Memory), and a storage unit 44.
  • a control unit 40 Including a control unit 40, a recording head control circuit 61 connected to the recording head 51, a line sensor control circuit 62 connected to the line sensor 25, and a transport drum motor control circuit 63 connected to the transport drum motor 21M.
  • an interface 64 connected to the external device 2.
  • the CPU 41 is connected to the RAM 42, the ROM 43, the recording head control circuit 61, the line sensor control circuit 62, the transport drum motor control circuit 63 and the interface 64 via the bus 65.
  • the CPU 41 performs various arithmetic processes and controls the overall operation of the inkjet recording apparatus 1. For example, the CPU 41 outputs image data of an image recorded on the recording medium P from the recording head control circuit 61 to the recording head 51, thereby ejecting ink from the recording head 51 to record an image on the recording medium P. Further, the CPU 41 causes the line sensor 25 to capture an image recorded on the recording medium P by outputting a control signal from the line sensor control circuit 62 to the line sensor 25. Further, the CPU 41 outputs a control signal from the transport drum motor control circuit 63 to the drive circuit of the transport drum motor 21M and operates the transport drum motor 21M to rotate the transport drum 21.
  • the CPU 41 acquires a correction parameter used for correcting the image data based on the image data obtained by the line sensor 25 and stores it in the RAM 42. Further, the CPU 41 corrects the image data of the image recorded on the recording medium P using the correction parameter stored in the RAM 42 and causes the storage unit 44 to store it.
  • the RAM 42 provides a working memory space to the CPU 41 and stores temporary data. Further, the RAM 42 stores correction parameters acquired in a correction parameter acquisition process described later.
  • the ROM 43 stores various control programs executed by the CPU 41, setting data, and the like. Examples of the program include a correction parameter acquisition program that acquires correction parameters used for correcting image data, and an image recording program that corrects image data and records an image on the recording medium P using the corrected image data. It is included. Instead of the ROM 43, a rewritable nonvolatile memory such as an EEPROM or a flash memory may be used.
  • the storage unit 44 is configured by a DRAM (Dynamic Random Access Memory) or the like, and uses image data input from the external device 2 via the interface 64, imaging data obtained by imaging with the line sensor 25, and correction parameters. The corrected image data and the like are stored. These image data and the like may be stored in the RAM 42.
  • DRAM Dynamic Random Access Memory
  • the recording head control circuit 61 determines the timing of the driving voltage applied from the driving circuit of the recording head 51 to the piezoelectric element of the recording element 52 based on the signal input from the CPU 41 and the image data stored in the storage unit 44 and the like. A control signal (image data) for determining the size is output to the recording head 51.
  • the line sensor control circuit 62 outputs, to the line sensor 25, a control signal for causing the line sensor 25 to perform imaging at a predetermined timing based on the signal input from the CPU 41 and the like.
  • the transport drum motor control circuit 63 outputs a control signal for operating the transport drum motor 21M to the transport drum motor 21M based on the signal input from the CPU 41.
  • the interface 64 is a means for transmitting and receiving data to and from the external device 2, and is composed of any one of various serial interfaces, various parallel interfaces, or a combination thereof.
  • the external device 2 is a personal computer, for example, and supplies image data of an image recorded by the inkjet recording device 1 to the control unit 40 via the interface 64.
  • the defective ejection recording element 52 when there is a defective ejection recording element 52 in which ink is not ejected normally, the defective ejection recording element 52 is specified, and correction for suppressing disturbance of the recorded image caused by the ejection failure of the recording element 52 is performed.
  • An image is recorded after being performed on the image data. That is, in the correction parameter acquisition process, the position of the defective ejection recording element 52 is specified, and the correction parameter related to the position of the defective ejection recording element 52 is acquired.
  • the image data is corrected using the correction parameter acquired in the correction parameter acquisition process, and image recording based on the corrected image data is performed.
  • image recording based on the corrected image data is performed.
  • a predetermined inspection image is recorded on the recording medium P, and the image data obtained by capturing the inspection image with the line sensor 25 is analyzed. Is done.
  • FIG. 4 is a diagram illustrating an example of an inspection image used in the correction parameter acquisition process.
  • This inspection image is an image recorded on the recording medium P by the recording head 51 of the head unit 50, and includes a line pattern 70 and reference marks 80a and 80h (identification marks) (hereinafter also simply referred to as a reference mark 80). It is out.
  • the line pattern 70 and the reference marks 80 a and 80 h are recorded by the first to 80th recording elements 52 included in one recording head 51.
  • the line pattern 70 is a pattern including a plurality of lines 72 parallel to the transport direction recorded by a plurality of predetermined recording elements 52 included in the recording head 51. Each line 72 is recorded by ejecting ink from the single recording element 52 to the recording medium P while conveying the recording medium P.
  • the line pattern 70 is configured by arranging eight line groups 71 (line groups 71a to 71h) each composed of a plurality of lines 72 arranged at equal intervals in the X direction in the Y direction.
  • the most downstream (+ Y direction end) line group 71a in the transport direction is the first stage line group
  • the most upstream ( ⁇ Y direction end) line group 71h is the eighth stage line group 71.
  • the line group 71 in the m-th stage (m is an integer satisfying 1 ⁇ m ⁇ 8) has 10 lines recorded by the (m + 8n) -th recording element 52 (n is an integer satisfying 0 ⁇ n ⁇ 9).
  • Line 72 Accordingly, the recording elements 52 used for recording each line 72 included in the line group 71 adjacent in the Y direction (that is, two line groups 71 different from each other by 1) are shifted one by one.
  • the line pattern 70 including such line groups 71a to 71h one line 72 is recorded by each of the first to 80th recording elements 52.
  • the recording element 52 corresponding to the missing line 72 is ejected. It can be specified as a defective recording element 52.
  • the line 72 recorded by the Nth (N is an integer satisfying 1 ⁇ N ⁇ 80) recording element 52 will be referred to as an “Nth line 72”.
  • an area of the recording medium P where the line pattern 70 is recorded is referred to as a line pattern recording area.
  • the line pattern recording area is a rectangular area that includes the line pattern 70 and has a minimum length of each side in a rectangle parallel to the X direction or the Y direction.
  • the reference mark 80 is formed by recording with a plurality of recording elements 52 in a positional relationship such that the ink ejected to the recording medium P is not separated in the X direction.
  • the reference mark 80 is a rectangular mark whose length in the X direction is larger than each line 72 and smaller than the recording width in the X direction of the line pattern 70 (the length in the X direction of the line pattern recording area).
  • the reference mark 80a is recorded between the first line 72 (the leftmost line 72) and the ninth line 72 of the line group 71a by the third to seventh recording elements 52.
  • the fiducial mark 80h is recorded between the 72nd line 72 and the 80th line 72 (right end line 72) of the line group 71h by the 74th to 78th recording elements 52.
  • the reference mark 80 Since the reference mark 80 is longer in the X direction than the line 72, the reference mark 80 is easily distinguished from the line 72 in the inspection image including a large number of lines 72, and the position of the line 72 in the X direction is determined from the imaging data of the inspection image. It can be used as a reference for calculation.
  • the position of the reference mark 80 is represented by a predetermined reference position among the reference marks 80.
  • the reference position can be any point of the reference mark 80, but in this embodiment, the center of gravity of the reference mark 80 is used as the reference position. In the example of FIG.
  • the reference position (center of gravity) in the X direction of the reference mark 80 a corresponds to the position of the fifth recording element 52
  • the reference position in the X direction of the reference mark 80 h is the position of the 76th recording element 52. Corresponds to position.
  • the line pattern 70 and the reference mark 80 are recorded in accordance with a predetermined arrangement condition so that the position can be accurately identified from the image data obtained by the line sensor 25.
  • this arrangement condition will be described.
  • FIG. 5 is a diagram for explaining the arrangement conditions of the line pattern 70 and the reference mark 80.
  • 5A shows a case where the arrangement range of the reference mark 80 in the Y direction overlaps the arrangement range of the line 72 of the line pattern 70 in the Y direction
  • FIG. 5B shows the arrangement range of the reference mark 80 in the Y direction and the line pattern 70. This shows a case where the arrangement range of the line 72 in the Y direction is different.
  • the analysis line 91 is a virtual line indicating a position where luminance is acquired and analyzed in the image data captured by the line sensor 25.
  • the length Mx indicates the width of the reference mark 80 in the X direction (width direction), and the length My indicates the length of the reference mark 80 in the Y direction (conveyance direction).
  • the interval dMx indicates the interval in the X direction between the reference mark 80 and the line 72 closest to the reference mark 80 in the X direction.
  • the length Ly indicates the length of the line 72 in the Y direction, and the interval dLx indicates the interval of the adjacent lines 72 in the X direction.
  • the lengths Mty and Mby indicate the lengths from the upper end and lower end in the Y direction of the reference mark 80 to the analysis line 91, respectively.
  • the lengths Lty and Lby indicate the lengths from the upper end and the lower end in the Y direction of the line 72 to the analysis line 91, respectively.
  • the interval dMy indicates the interval from the reference mark 80 to the analysis line 91.
  • the line pattern 70 and the reference mark 80 are recorded on the recording medium P with the above lengths and intervals set in the following ranges by the CPU 41 as setting means.
  • dx is the luminance transition distance in the X direction of the line sensor 25 (width direction luminance transition distance)
  • dy is the luminance transition distance in the Y direction of the line sensor 25 (conveyance direction luminance transition distance).
  • the length Mx in the X direction of the reference mark 80 only needs to be larger than the length in the X direction of the line 72 as described above, but it is more preferable that Mx ⁇ 2dx is satisfied as described above.
  • FIG. 6A and 6B are diagrams illustrating the luminance transition distance of the line sensor 25, FIG. 6A is a diagram illustrating the width-direction luminance transition distance dx, and FIG. 6B is a diagram illustrating the conveyance-direction luminance transition distance dy.
  • Each distance (length) in these descriptions is a value converted from a distance (number of pixels) on the imaging data to a distance on the recording medium P.
  • a first gradation image area 92ax uniform gradation image area
  • an image with a uniform gradation here, a white image
  • a second gradation image area 92bx (uniform gradation image area) in which an image having a uniform gradation (here, a black image) having a luminance different from that of the first gradation image area 92ax is recorded adjacent to the area 92ax in the X direction;
  • a portion 92x including the boundary is shown.
  • the range 93ax indicating the luminance of the first gradation image region 92ax and the range 93bx indicating the luminance of the second gradation image region 92bx are separated by a distance dx (width direction luminance transition distance). ing.
  • a distance corresponding to the distance dx hereinafter referred to as a width direction luminance transition range 93cx
  • the luminance continuously changes between the luminances corresponding to the first gradation image region 92ax and the second gradation image region 92bx.
  • the above-mentioned range 93ax is a region showing a luminance of 90 or more when the luminance of the first gradation image region 92ax is 100 and the luminance of the second gradation image region 92bx is 0.
  • the range 93bx is Similarly, it is an area showing a luminance of 10 or less.
  • FIG. 6B on the left side, a first gradation image area 92ay (uniform gradation image area) and a second gradation image area 92by (uniform gradation) adjacent to the first gradation image area 92ay in the ⁇ Y direction. A portion 92y including a boundary with the (tone image area) is shown. Further, on the right side, a graph showing the luminance at the position of the analysis line 91 in the image data obtained by imaging the portion 92y of the recording medium P by the line sensor 25 is shown.
  • the range 93ay indicating the luminance of the first gradation image region 92ay and the range 93by indicating the luminance of the second gradation image region 92by are separated by a distance dy (conveyance direction luminance transition distance). Yes.
  • a conveyance direction luminance transition range 93cy In a region corresponding to the distance dy (hereinafter referred to as a conveyance direction luminance transition range 93cy), the luminance continuously changes between the luminances according to the first gradation image region 92ay and the second gradation image region 92by.
  • the above-mentioned range 93ay is a region showing a luminance of 90 or more when the luminance of the first gradation image region 92ay is 100 and the luminance of the second gradation image region 92by is 0, and the range 93by is Similarly, it is an area showing a luminance of 10 or less.
  • the method of determining the boundaries between the range 93ax, the range 93bx and the width direction luminance transition range 93cx, and the boundary between the range 93ay, the range 93by and the conveyance direction luminance transition range 93cy is not limited to the above, and the ranges 93ax, 93bx If the brightness of the first gradation image area 92ax and the second gradation image area 92bx are shown, and the ranges 93ay and 93by show the brightness of the first gradation image area 92ay and the second gradation image area 92by, respectively.
  • the boundary may be determined by other methods.
  • the first gradation image areas 92ax and 92ay can be areas that are not recorded on the recording medium P.
  • the second gradation image areas 92bx and 92by are not limited to black images, but have a solid pattern of the same ink as the ink (coloring material) used for recording the line pattern 70 and the reference mark 80 on the recording medium P. It may be a recorded area.
  • the distance dx is required for the response to the luminance change in the width direction of the image recorded on the recording medium P
  • the distance dy is required for the response to the luminance change in the transport direction.
  • the size of the distance dx and the distance dy includes the installation state and performance of a lens that condenses the light incident on the line sensor 25 onto the image sensor 251, and the amount of incident scattered light from other than the imaging target position on the image sensor 251. Affected by.
  • the size of the distance dy is also affected by the conveyance speed of the recording medium P at the time of imaging, and increases as the conveyance speed increases.
  • FIG. 7 and 8 are diagrams for describing a mode in which the width direction luminance transition range 93cx and the conveyance direction luminance transition range 93cy are generated.
  • FIG. 7A shows the luminance of the second gradation image area 92bx in the second gradation image area 92bx, and the first gradation image area from the boundary between the first gradation image area 92ax and the second gradation image area 92bx.
  • the width direction luminance transition range 93cx of the distance dx is generated on the 92ax side.
  • FIG. 7A shows the luminance of the second gradation image area 92bx in the second gradation image area 92bx, and the first gradation image area from the boundary between the first gradation image area 92ax and the second gradation image area 92bx.
  • the width direction luminance transition range 93cx of the distance dx is generated on the 92ax side.
  • FIGS. 7A and 7B shows the luminance of the first gradation image area 92ax in the first gradation image area 92ax, and the second gradation from the boundary between the first gradation image area 92ax and the second gradation image area 92bx.
  • a width direction luminance transition range 93cx of the distance dx occurs on the image area 92bx side.
  • the width-direction luminance transition range 93cx can occur in any of the modes illustrated in FIGS. 7A and 7B and the intermediate state thereof depending on the lens arrangement of the line sensor 25, the incident state of diffused light, and the like.
  • the first gradation is used.
  • the center of gravity of each data group included in the area where the luminance is 90 or less (range R3 in FIG. 7A) (each point in the range R3)
  • the position in the X direction that equally divides the integrated value of the amount of decrease in brightness from the brightness 100) is estimated as the center position in the X direction of the second gradation image region 92bx.
  • the two width direction luminance transition ranges 93cx generated in the first gradation image area 92ax overlap to form the first gradation.
  • the luminance data in the image area 92ax does not reach the original luminance of the first gradation image area 92ax. Therefore, for example, as shown in FIG.
  • the width of the first gradation image region 92ax (that is, the interval between the adjacent second gradation image regions 92bx) is preferably equal to or greater than the distance 2dx.
  • the width of the second gradation image region 92bx is preferably equal to or greater than the distance 2dx.
  • the above-described range setting for the length Mx, the distances dMx, dLx, dMy, and the lengths My, Ly (arrangement conditions of the line pattern 70 and the reference mark 80) in FIG.
  • the luminance transition range 93 cy is determined so as not to cause any problem regardless of the mode. That is, the length Mx in the X direction of the reference mark 80 is set so that a sufficient luminance amplitude is obtained at the position corresponding to the analysis line 91 in the imaging data when the position in the X direction of the reference mark 80 and the line 72 is specified.
  • the distance My in the Y direction of the reference mark 80 and the length Ly in the Y direction of the line 72 are set to be 2 dy or more.
  • the distance dLx in the X direction between the matching lines 72 is set to a distance of 2 dx or more. 5A, when the luminance data of the reference mark 80 and the line 72 is acquired and analyzed at a position corresponding to the analysis line 91, the first gradation image region or the second gradation area adjacent to the reference mark 80 and the line 72 in the Y direction.
  • the lengths Lty and Lby up to 91 are set to be not less than the distance dy.
  • the CPU 41 serving as the analysis line setting means sets the analysis line 91 at a position that is more than the distance dy in the transport direction from the upper end and the lower end of the reference mark 80 in the Y direction.
  • the range in which the luminance data is acquired from the imaging data is not limited only to the set analysis line 91, and is within the distance dy in the Y direction from the both ends of the reference mark 80 or the line 72 in the imaging data in the Y direction. If it is within the range, the luminance data can be acquired within an arbitrary range. Further, in FIG. 5B, the distance dMy from the reference mark 80 to the analysis line 91 is a distance dy so that the influence of the reference mark 80 is not exerted when the luminance data of the line 72 is acquired and analyzed at a position corresponding to the analysis line 91. Set as above.
  • the CPU 41 as the analysis line setting means sets the analysis line 91 at a position where the line 72 is recorded at a position that is at least the distance dy in the transport direction from the reference mark 80. Also in this case, it is desirable that the above-described conditions relating to the lengths Lty and Lby are also satisfied. Accordingly, the range in which the luminance data is acquired from the imaging data is separated from the reference mark 80 in the Y direction by a distance dy or more in the Y data in the Y direction from both ends of the line 72 in the Y direction. Part. In FIG.
  • the length My and the length Ly, the length Mty and the length Lty, and the length Mby and the length Lby are drawn to be equal to each other, but they may be different from each other.
  • 5B shows an example in which the reference mark 80 is recorded away from the line 72 in the Y direction, but the reference mark 80 and the line 72 may be recorded integrally.
  • the inspection image shown in FIG. 4 is recorded on the recording medium P by the head unit 50, and the inspection image is captured by the line sensor 25 to acquire imaging data. Then, the luminance data in the imaging data is acquired and analyzed, thereby specifying the position of the recording element 52 with defective ejection.
  • the right end line 72 (79th line 72) of the line group 71g is missing in the imaging data and the recording element 52 corresponding to the missing line 72 is specified will be described as an example.
  • the arrangement interval of the recording elements 52 in the X direction is defined as a distance s.
  • each line group 71 of the line pattern 70 since the recording element 52 used for recording the line 72 is determined in advance, the relative position in the X direction where each line 72 is recorded with respect to the position of the reference mark 80 is also determined in advance.
  • the 79th line 72 has a distance 72s (that is, an arrangement interval 8s (second arrangement interval) of the lines 72) in the X direction from the position of the leftmost line 72 (seventh line 72) of the line group 71g. Double the distance).
  • the position of the seventh line 72 is a position 2s (first arrangement interval) in the X direction from the reference position of the reference mark 80a (corresponding to the position of the fifth recording element 52).
  • the 79th line 72 is recorded at a distance of 74 s in the X direction from the reference position of the reference mark 80a.
  • the Nth line 72 is recorded at a position of a distance ((N ⁇ 5) ⁇ s) in the X direction from the reference position of the reference mark 80a.
  • the CPU 41 determines whether or not each line 72 is recorded in a predetermined width range in the X direction centered on the predetermined recording position in the imaging data of the inspection image.
  • the predetermined width is an arrangement interval in the X direction of the lines 72 in each line group 71 (distance 8s in FIG. 4). That is, in the example of FIG. 4, it is determined whether or not the Nth line is recorded within a distance (((N ⁇ 5) ⁇ s) ⁇ 4 s) in the X direction with reference to the reference position of the reference mark 80. To do.
  • the CPU 41 ejects the 79th recording element 52 corresponding to the line 72 to be recorded in the range R2.
  • the defective recording element 52 is specified.
  • the detection of the positions of the reference mark 80 and the line 72 from the imaging data is obtained by analyzing and analyzing the luminance in the X direction at the position corresponding to the analysis line 91, and each line 72 and the reference mark 80 is included in the range R3 of FIG. 7A. This is done by obtaining the center of gravity of the data group.
  • the resolution in the X direction of the imaging data by the line sensor 25 is 600 dpi
  • the recording resolution in the X direction of the recording head 51 is 1200 dpi
  • one pixel in the X direction in the imaging data corresponds to a distance of 2 s. Using this relationship, conversion from the distance on the imaging data to the distance on the recording medium P is performed.
  • FIG. 4 illustrates an example in which the line pattern 70 is recorded by the 80th recording elements 52, but the line pattern 70 is formed by any part or all of the recording elements 52 of the recording head 51. May be recorded.
  • FIG. 9 is a flowchart showing the control procedure of the correction parameter acquisition process.
  • the CPU 41 controls the conveyance drum 21 holding the recording medium P and the recording head 51Y of the head unit 50Y corresponding to yellow, and performs a plurality of predetermined recording heads 51Y on the recording medium P conveyed by the conveyance drum 21.
  • Ink is ejected from the recording element 52 to record the line pattern 70 including the plurality of lines 72 parallel to the conveyance direction of the recording medium P and the reference mark 80 (step S11; recording step).
  • the line pattern 70 and the reference mark 80 have the lengths Mx, My, Ly, Mty, Mby, Lty, Lby and the intervals dMx, dLx, dMy shown in FIG. It is set in the range and recorded.
  • the CPU 41 images the inspection image including the line pattern 70 and the reference mark 80 recorded on the recording medium P by the line sensor 25 while rotating the conveying drum 21 to convey the recording medium P (step S12; imaging step). ).
  • the CPU 41 outputs the two-dimensional imaging data of the inspection image from the line sensor 25 and stores the obtained imaging data in the storage unit 44. Note that in step S12, the entire inspection image may be captured, or only a portion (reading line) including the position of the analysis line 91 from which luminance is acquired and analyzed is captured in the inspection image. It may be broken.
  • the recording medium P on which the inspection image is captured is conveyed to the paper discharge unit 30 under the control of the CPU 41.
  • step S13 determines whether there exists the missing line 72 in the line pattern 70 using the imaging data of the image for an inspection obtained at step S12 (step S13). Specifically, the luminance data is acquired and analyzed at the position of the analysis line 91 set by the CPU 41 as the analysis line setting means in each line group 71 of the line pattern 70, the reference position of the reference mark 80 is specified, and the line concerned It is determined whether or not each line 72 included in the group 71 exists within a predetermined position range from the reference mark 80. When it is determined that all the lines 72 exist in the predetermined position range and there is no missing line (“No” in step S13), the CPU 41 ends the correction parameter acquisition process.
  • Step S13 the CPU 41 acquires a correction parameter related to the missing line 72.
  • Step S14 the defective recording element 52 corresponding to the position range in which the line defect is confirmed in step S13 is specified, and the arrangement position of the recording element 52 in the recording head 51 (here, the number of the recording element 52) is determined. Obtained as a correction parameter and stored in the RAM 42.
  • the CPU 41 completes the correction parameter acquisition for all the missing lines 72, the CPU 41 ends the correction parameter acquisition process.
  • the above correction parameter acquisition processing is processing for the head unit 50Y corresponding to yellow.
  • the correction parameter acquisition process described above is executed for the head units 50M, 50C, and 50K corresponding to magenta, cyan, and black, and the acquired correction parameters are stored in the RAM 42.
  • inspection images may be recorded on the single recording medium P by the head units 50Y, 50M, 50C, and 50K, or each of these inspection images may be recorded on a separate recording medium P. Good.
  • FIG. 10 is a flowchart showing the control procedure of the image recording process.
  • CPU41 reads the correction parameter memorize
  • step S22 amends the image data of the image recorded with the inkjet recording device 1 based on a correction parameter. More specifically, the CPU 41 causes the ink to be ejected from the adjacent recording element 52 instead of the defectively ejecting recording element 52 or increases the ink ejection amount from the recording element 52 adjacent to the improperly ejecting recording element 52.
  • the image data is corrected so as to be complemented. That is, the correction of shifting the gradation value to the low luminance side is performed on the pixel data of the pixel row adjacent to the pixel row corresponding to the ejection failure recording element 52 indicated by the correction parameter. Then, the CPU 41 stores the corrected image data in the storage unit 44.
  • the CPU 41 controls the transport drum 21 to transport the recording medium P, and outputs the corrected image data stored in the storage unit 44 in step S22 from the recording head control circuit 61 to the recording head 51, thereby recording.
  • Ink is ejected from the head 51 to record an image on the recording medium P (step S23).
  • the ink ejection amount from the recording element 52 adjacent to the defective ejection recording element 52 is increased, and the image caused by the defective ejection recording element 52 is recorded. Since the defect is complemented, an appropriate image is recorded.
  • the CPU 41 ends the image recording process.
  • the ink jet recording apparatus 1 covers the transport drum 21 that holds the recording medium P and transports it in the transport direction, and the recording width onto the recording medium P in the width direction orthogonal to the transport direction.
  • a recording head that records an image on the recording medium P using the plurality of arranged recording elements 52, and the CPU 41 has a plurality of recording elements of the recording head 51 with respect to the recording medium P conveyed by the conveyance drum 21.
  • the position of the line 72 can be specified based on the reference mark 80 that is easily distinguished from the line 72, the inspection that can easily and surely specify the recording element 52 corresponding to the line 72 of the line pattern 70 is possible.
  • An image for use is obtained.
  • the analysis line 91 corresponding to the line group 71g in the image data captured by the line sensor 25 is displayed. Even if the luminance distribution is analyzed at the position, it cannot be determined whether the missing line 72 is the left end line or the right end line 72 in the line group 71g.
  • the recording element 52 corresponding to the missing line 72 can be easily specified.
  • the reference mark 80 has a length in the width direction larger than each of the lines 72 (that is, the number of recording elements 52 used for recording is larger than that of the line 72), the recording elements 52 used for recording the reference mark 80. Even if some of the recording elements 52 with defective ejection are included, the reference mark 80 itself is not lost. Therefore, it is possible to obtain an inspection image that can easily and reliably specify the recording element 52 corresponding to the line 72 of the line pattern 70.
  • One of the plurality of lines 72 is recorded at a first arrangement interval in the width direction with respect to the reference position of the reference mark 80, and the plurality of lines 72 included in the line pattern 70 are mutually in the width direction. Recorded at the second placement interval.
  • the position where the line 72 should be recorded is calculated by adding the first arrangement interval and the number of second arrangement intervals corresponding to the number of the line 72 with the reference position of the reference mark 80 as a reference. can do.
  • the inkjet recording apparatus 1 includes a line sensor 25 that captures an image of the line pattern 70 and the reference mark 80 recorded on the recording medium P conveyed by the conveyance drum, and the CPU 41 includes the line pattern 70 and the reference mark by the line sensor 25.
  • the reference position of the reference mark 80 is specified from the 80 imaging data
  • the recording element 52 corresponding to the line 72 is specified by the reference position, the first arrangement interval, and the second arrangement interval.
  • the CPU 41 corrects the image data of the image to be recorded on the recording medium P based on the information related to the recording element 52 specified as described above. Thereby, by causing the information related to the recording medium 52 indicated by the line pattern 70 to be reflected in the image data, it is possible to suppress the occurrence of problems in the image recorded on the recording medium P.
  • the information related to the recording element 52 is data indicating a position where the recording element 52 is arranged in the recording head 51. According to this, by correcting the part corresponding to the recording element 52 whose arrangement position is indicated by the information in the image data and / or the peripheral part thereof, the problem in the image recorded on the recording medium P is corrected. Occurrence can be suppressed.
  • the line sensor 25 images two uniform gradation image areas (first gradation image area 92ax and second gradation image area 92bx) adjacent to each other in the width direction
  • the CPU 41 determines the width direction length Mx of the reference mark 80 recorded by the recording head 51 as the width direction luminance.
  • the distance is set to at least twice the distance on the recording medium P corresponding to the length in the width direction of the transition range 93cx (width direction luminance transition distance dx).
  • the CPU 41 sets the width dMx between the reference mark 80 and the line 72 adjacent to the reference mark 80 in the width direction on the recording medium P corresponding to the length in the width direction of the width direction luminance transition range 93cx. Is set to be at least twice the distance (width direction luminance transition distance dx). Further, the CPU 41 sets the distance dLx in the width direction between the lines 72 adjacent in the width direction to a distance on the recording medium P corresponding to the width direction length of the width direction luminance transition range 93cx (width direction luminance transition distance dx). Set to 2 times or more. As a result, it is possible to suppress a problem that the luminance distribution becomes asymmetric when the position of the reference mark 80 and the line 72 in the X direction is specified and the accuracy of the specified position is lowered.
  • the line sensor 25 images two uniform gradation image areas (first gradation image area 92ay and second gradation image area 92by) adjacent to each other in the transport direction
  • the CPU 41 determines the conveyance direction length My of the reference mark 80 to be recorded by the recording head 51. It is set to at least twice the distance on the recording medium P corresponding to the length of the transfer range 93 cy in the transport direction (transport direction luminance transition distance dy), and from the both ends in the transport direction of the reference mark 80 in the imaging data in the transport direction.
  • the recording element 52 corresponding to the line 72 is specified by using the luminance data in the range not less than the conveyance direction luminance transition distance dy.
  • the CPU 41 sets the length Ly in the conveyance direction of the line 72 to be not less than twice the conveyance direction luminance transition distance dy, and the conveyance direction luminance transition distance dy in the conveyance direction from both ends of the conveyance direction of the line 72 in the imaging data.
  • the recording element 52 corresponding to the line 72 is specified using the luminance data in the inner range. Thereby, sufficient luminance amplitude is obtained in the imaging data when specifying the position of the reference mark 80 or the line 72 in the X direction.
  • the CPU 41 causes the recording head 51 to record the reference mark 80 at a position that includes at least one arrangement direction in the X direction among the plurality of lines 72, and from the reference mark 80 to the conveyance direction luminance transition distance in the conveyance direction.
  • the at least one line 72 is recorded in an area including a position that is greater than or equal to dy, and an analysis line 91 indicating a position at which luminance data is acquired from the imaging data is greater than or equal to the conveyance direction luminance transition distance dy from the reference mark 80 in the conveyance direction
  • the luminance data on the analysis line 91 is acquired from the imaging data by setting the position in the direction perpendicular to the line 72 through the position where the at least one line 72 is recorded. Thereby, it is possible to prevent the influence of the reference mark 80 when the luminance of the line 72 is acquired and analyzed at the position indicated by the analysis line 91.
  • a line sensor 25 that captures an image on the analysis line 91 (reading line) is used as an imaging unit. Thereby, the recording element 52 corresponding to the line 72 missing from the minimum imaging data can be specified.
  • first gradation image region 92ax and second gradation image region 92bx, or first gradation image region 92ay and second gradation image region 92by are represented by the line pattern 70 and the reference.
  • the recording medium P on which the mark 80 is recorded there are an area where no recording is performed and an area where a solid pattern of the same ink as the ink where the line pattern 70 and the reference mark 80 are recorded is recorded.
  • the width direction luminance transition distance dx or the conveyance direction luminance transition distance dy can be acquired under the same conditions as when the line pattern 70 and the reference mark 80 are recorded on the recording medium P.
  • positioning conditions can be suppressed.
  • Modification 1 Next, the modification 1 of the said embodiment is demonstrated. This modification 1 may be combined with other modifications described later.
  • the resolution in the X direction of the imaging data by the line sensor 25 is 600 dpi and the recording resolution in the X direction of the recording head 51 is 1200 dpi
  • one reference mark in the imaging data of the inspection image The example in which the number of pixels between 80 and the line 72 is converted into the distance on the recording medium P and the recording element 52 corresponding to the line 72 is specified has been described.
  • the recording medium is determined from the number of pixels of the imaging data and the resolution of the line sensor 25. An error may occur when the distance on P is obtained. Therefore, in the first modification, the recording element 52 corresponding to the line 72 is specified based on the relative position of the line 72 with respect to the position in the X direction of the two reference marks 80a and 80h in FIG. Since the other points are the same as in the above embodiment, the following description will focus on differences from the above embodiment.
  • the CPU 41 first calculates the number of pixels in the X direction between the reference positions of the reference marks 80a and 80h in the imaging data of the inspection image. Since the relative position in the X direction where each line 72 should be recorded with respect to the positions of the reference marks 80a and 80h is determined in advance, the number of pixels between the reference positions of the reference marks 80a and 80h and the relative position The number of pixels corresponding to the distance from the reference mark 80a (or the reference mark 80h) to the position in the X direction where each line 72 is to be recorded is calculated.
  • the CPU 41 obtains a ratio between the distance (number of pixels) on the image data between the reference positions of the reference marks 80a and 80h and the distance on the recording medium P between the reference positions, and calculates the ratio on the image data. By multiplying an arbitrary distance (number of pixels), the distance on the image data is converted into the distance on the recording medium P. Thereafter, the correction parameter is acquired by the same processing as in the above embodiment. Note that the CPU 41 may perform the correction parameter acquisition process based only on the distance on the image data without converting the distance on the image data into the distance on the recording medium P.
  • the CPU 41 causes the recording medium P to record the plurality of reference marks 80 at different positions in the width direction. According to the inspection image obtained as a result, the recording element 52 corresponding to the line 72 can be specified from the relative position with respect to the positions of the plurality of reference marks 80.
  • the CPU 41 changes the line 72 to the line 72 by the relative position in the width direction of the line 72 with respect to the reference position in the width direction of the plurality of different reference marks 80 from the image data of the line pattern 70 and the plurality of reference marks 80 by the line sensor 25.
  • the corresponding recording element 52 is specified. Thereby, the recording element 52 corresponding to the line 72 can be easily specified regardless of the resolution of the line sensor 25.
  • Modification 2 Modification 2 of the above embodiment will be described.
  • the ink jet recording apparatus 1 of the above-described embodiment the example in which the test image for specifying the defective ejection recording element 52 is recorded on the recording medium P has been described.
  • the ink jet recording apparatus 1 of the second modification has a different color.
  • the inspection image for detecting the positional deviation in the X direction of the recording element 52 included in the recording head 51 corresponding to is recorded on the recording medium P. Then, the inspection image is captured and analyzed, and the image data is corrected so as to cancel the positional deviation of the recording head 51 in the X direction, and then the image is recorded on the recording medium P. Since the other points are the same as in the above embodiment, the following description will focus on differences from the above embodiment.
  • FIG. 11 is a diagram illustrating an example of an inspection image according to the second modification.
  • This inspection image includes a line pattern 70Y and two reference marks 80Y recorded by the recording head 51Y, and a line pattern 70M and two reference marks 80M recorded by the recording head 51M.
  • the line pattern 70M and the reference mark 80M are recorded on the + Y direction side of the line pattern 70Y and the reference mark 80Y.
  • the line pattern 70Y includes a plurality of lines 72 parallel to the Y direction recorded by the plurality of recording elements 52 of the recording head 51Y, and the line pattern 70M extends in the Y direction recorded by the plurality of recording elements 52 of the recording head 51M.
  • a plurality of parallel lines 72 are included.
  • Each line 72 may be recorded by a single recording element 52, or may be recorded by a plurality of recording elements 52 that are in a positional relationship such that the ink ejected to the recording medium P is not separated in the X direction.
  • the two reference marks 80Y are recorded on the + X direction side and the ⁇ X direction side of the line pattern 70Y, respectively, and the two reference marks 80M are recorded on the + X direction side and the ⁇ X direction side of the line pattern 70M, respectively. .
  • the reference marks 80Y and 80M are recorded by the recording elements 52 having the same number among the recording heads 51Y and 51M.
  • the lines 72 included in the line patterns 70Y and 70M are recorded by the recording elements 52 having the same number among the recording heads 51Y and 51M. Accordingly, when the recording heads 51Y and 51M are aligned in the X direction, the lines 72 included in the line patterns 70Y and 70M are recorded at the same position in the X direction, and the recording heads 51Y and 51M When the position in the X direction is shifted by the distance d1, the lines 72 included in the line patterns 70Y and 70M are also recorded by being shifted from each other by the distance d1.
  • FIG. 11 shows an example in which the recording head 51Y is displaced from the recording head 51M by a distance d1 in the + Y direction.
  • FIG. 12 is a flowchart showing the control procedure of the correction parameter acquisition process according to the second modification.
  • step S14 is deleted from the flowchart of FIG. 9, and steps S15 and S16 are added.
  • Steps S11 and S12 are the same as those in the above embodiment except that the inspection images shown in FIG. 11 are recorded on the recording medium P by the recording heads 51Y and 51M, and thus detailed description thereof is omitted.
  • step S12 after the inspection image including the line pattern 70 and the reference mark 80 is taken by the line sensor 25, the CPU 41 sets the corresponding line 72 (recording element used for recording) between the line patterns 70Y and 70M.
  • a line 72) having the same number 52 is identified (step S15).
  • the CPU 41 specifies the recording element 52 to which each line 72 of the line pattern 70Y corresponds with the reference mark 80Y as a reference, and uses the reference mark 80M as a reference in the same manner as in the above embodiment.
  • Each line 72 identifies the corresponding recording element 52.
  • it is specified which line 72 of the line pattern 70M the line 72 corresponds to, and data related to the result is stored in the RAM 42.
  • the CPU41 acquires the correction parameter which concerns on the positional offset amount of the X direction of the recording heads 51Y and 51M (step S16). Specifically, the CPU 41 acquires information related to the corresponding line 72 in the line patterns 70Y and 70M stored in the RAM 42 in step S15, and the distance d1 in the X direction between the lines 72 (that is, the recording heads 51Y and 51M). The interval in the width direction of the recording elements 52 having the same number among the included recording elements 52 is calculated, and the calculated value is stored in the RAM 42 as a correction parameter.
  • the distance d1 in the X direction of a pair of corresponding lines 72 may be used as a correction parameter, or the average value of the distances d1 in the X direction of a plurality of pairs of corresponding lines 72 may be used as a correction parameter.
  • the CPU 41 ends the correction parameter acquisition process.
  • the above correction parameter acquisition processing is processing related to the positional deviation amount between the recording head 51Y and the recording head 51M, but the same processing is performed between the recording heads 51C and 51K and any of the other recording heads 51.
  • Each correction parameter is acquired and stored in the RAM 42.
  • the image recording process according to the second modification is the same as the image recording process shown in FIG. 10 except for the image data correction method in step S22.
  • the image data correction method in step S22 is as follows.
  • the CPU 41 corrects the image data so that the positional deviation in the X direction of the recording head 51 is canceled out. Specifically, in the image data, the data of the portion corresponding to the recording head 51 in which the positional deviation in the + X direction ( ⁇ X direction) has occurred (that is, the data relating to the color corresponding to the recording head 51), Correction is performed so that the image is shifted in the ⁇ X direction (+ X direction) in accordance with the positional deviation amount indicated by the correction parameter. Then, the CPU 41 stores the corrected image data in the storage unit 44.
  • the line pattern 70 includes the lines 72 recorded by the recording elements 52 having the same number included in the plurality of recording heads 51. Accordingly, the positional deviation amount in the width direction of the recording head 51 can be identified by identifying the recording element 52 related to the corresponding line 72 between the line patterns 70 and detecting the positional deviation amount in the width direction.
  • the CPU 41 corrects the image data of the image to be recorded on the recording medium P based on the correction parameter acquired based on the information related to the specified recording element 52, and the information related to the recording element 52 This is data indicating an interval in the width direction between the recording element 52 and a specific recording element 52 included in the recording head 51 different from the recording head 51 including the recording element 52.
  • the recording head in the image recorded on the recording medium P is performed by performing correction that shifts a part of the image data in the width direction based on the interval in the width direction between the recording elements 52 indicated by the information. It is possible to suppress the occurrence of defects due to the 51 misalignment.
  • the inkjet recording apparatus 1 includes a plurality of recording heads 51 provided with a plurality of recording elements 52, and the CPU 41 causes the plurality of recording heads 51 to record individual reference marks 80. Accordingly, the recording element 52 corresponding to the line 72 can be easily specified by using the reference mark 80 recorded by each recording head 51 as a reference, regardless of the relative positional relationship of the recording heads 51 in the width direction. .
  • Modification 3 of the above embodiment will be described.
  • an inspection image for detecting positional deviation in the X direction of the plurality of recording heads 51 included in one head unit 50 is recorded on the recording medium P.
  • the inspection image is captured and analyzed, and the image data is corrected so as to cancel the positional deviation of the recording head 51 in the X direction, and then the image is recorded on the recording medium P. Since the other points are the same as in the second modification, the differences from the second modification will be mainly described below.
  • FIG. 13 is a diagram illustrating an example of an inspection image according to the third modification.
  • line patterns 70i, 70j, 70k recorded by three adjacent recording heads 51i, 51j, 51k included in a certain head unit 50 (for example, head unit 50Y), and reference marks 80i, 80j, 80k, respectively. It is shown.
  • the line patterns 70i, 70j, and 70k include three lines 72 recorded by the recording element 52 near the ends of the recording heads 51i, 51j, and 51k, respectively.
  • the reference mark 80j includes a position adjacent to the + X direction side of the three lines 72 at the left end (end portion on the ⁇ X direction side) of the line pattern 70j, and the three lines 72 at the right end (end portion on the + X direction side). Recording is performed at a position adjacent to the ⁇ X direction side. The same applies to the reference marks 80i and 80k.
  • Three lines 72 at the right end (end in the + X direction) of the line pattern 70i and three lines 72 at the left end (end in the ⁇ X direction) of the line pattern 70j are X of the recording elements of the recording heads 51i and 51j. Recording is performed by the recording elements 52 to be arranged at the same position in the direction. Similarly, the three lines 72 at the right end of the line pattern 70j and the three lines 72 at the left end of the line pattern 70k are printing elements to be arranged at the same position in the X direction among the printing elements of the printing heads 51j and 51k. 52, respectively.
  • the recording heads 51i and 51j and the recording heads 51j and 51k are in proper positions in the X direction.
  • the relative positions of the recording heads 51i and 51j (recording heads 51j and 51k) are shifted from the proper positions by the distance d2 in the X direction, the line patterns 70i and 70j (line patterns 70j, 70k) are also recorded with a distance d2 shifted from each other in the X direction.
  • FIG. 13 shows an example in which the recording head 51k is displaced from the recording head 51j by a distance d2 in the + X direction.
  • the correction parameter acquisition process in Modification 3 is basically the same as the correction parameter acquisition process shown in FIG. However, in step S15, the CPU 41 determines that the corresponding line 72 between the three rightmost lines 72 of the line pattern 70i and the three leftmost lines 72 of the line pattern 70j (that is, the recording heads 51i and 51j are in the proper positions). The line 72) having the same position in the X direction is specified. Similarly, a corresponding line 72 is specified between the three lines 72 at the right end of the line pattern 70j and the three lines 72 at the left end of the line pattern 70k. In step S16, the distance d2 in the X direction between the corresponding lines 72 specified in step S15 is calculated, and the calculated value is stored in the RAM 42 as a correction parameter.
  • step S22 the CPU 41 corrects the image data so that the positional deviation in the X direction of the recording heads 51i and 51j is canceled, and also corrects the positional deviation in the X direction of the recording heads 51j and 51k. Correct. Specifically, in the image data, the data corresponding to the recording head 51 in which the positional deviation in the + X direction ( ⁇ X direction) has occurred is converted into the data corresponding to the positional deviation amount indicated by the correction parameter. Correction is performed so as to shift in the X direction (+ X direction).
  • the CPU 41 stores the corrected image data in the storage unit 44.
  • the example in which the positional deviation between the three recording heads 51i, 51j, and 51k is detected has been described.
  • the head unit 50 includes four or more recording heads 51, those heads 50 are included.
  • the detection of the positional deviation of the recording head 51 may be performed together.
  • the line pattern 70 and the reference mark 80 are recorded by the recording element 52 in the vicinity of the end portion of the adjacent recording head 51, and the line pattern 70 among the adjacent recording heads 51 is recorded. Recording is performed by the recording elements 52 to be arranged at the same position in the X direction. Accordingly, by identifying the corresponding line 72 between the line patterns 70 and detecting the positional deviation amount in the width direction, the positional deviation amount in the width direction of the adjacent recording heads 51 can be identified.
  • the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made.
  • an example in which an inspection image recorded by the inkjet recording apparatus 1 is captured and read by the line sensor 25 provided in the inkjet recording apparatus 1 has been described, but the present invention is not limited thereto.
  • the inspection image recorded on the recording medium P by the ink jet recording apparatus 1 may be imaged and read by an imaging unit provided in a reading device separate from the ink jet recording apparatus 1.
  • the process of acquiring the correction parameter from the imaging data and the process of correcting the image data using the correction parameter are executed in the image processing apparatus outside the ink jet recording apparatus 1 and the processing result is input to the ink jet recording apparatus 1.
  • these processes may be performed by the inkjet recording apparatus 1. Even with such a configuration, the recording element 52 corresponding to the line 72 of the line pattern 70 can be easily and reliably specified.
  • the shape of the reference mark 80 may be a shape whose length in the Y direction varies depending on the position in the X direction, such as a circle, an ellipse, a diamond, or a triangle. According to such a configuration, even when a part of the reference mark 80 is lost due to defective ejection of the recording element 52, the shape of the reference mark 80 can be easily specified, and the reference position of the reference mark 80 can be accurately calculated. it can.
  • the position where the reference mark 80 is recorded is not limited to the aspect of the above embodiment and each modified example, and can be any position on the recording medium P.
  • the interval between the reference position of the reference mark 80 and the line 72 of the line pattern 70 in the X direction is taken as the imaging data of the inspection image. Therefore, the recording element 52 corresponding to the line 72 can be specified from the inspection image. Therefore, for example, by recording the reference mark 80 in the margin of the recording medium P, the degree of freedom of arrangement of other images recorded on the recording medium P can be increased.
  • the line sensor 25 has been described as an example of the imaging unit. However, the present invention is not limited to this, and a two-dimensional image sensor or the like may be used, for example. Further, although the line sensor 25 is arranged along the direction (X direction) orthogonal to the conveyance direction of the recording medium P, it is not limited to this. The line sensor 25 suffices if it captures an image along a predetermined straight line that intersects the transport direction, and any angle can be used as long as the angle of the line sensor 25 from the X direction is known.
  • the conveyance drum 21 has been described as an example of the conveyance unit.
  • the present invention is not limited to this, and any conveyance unit that holds and conveys a recording medium on the conveyance surface may be used. it can.
  • it may be a conveying means that has a belt supported by two rollers and circulates around the two rollers according to the rotation of the rollers, and holds the recording medium P on the conveying surface of the belt.
  • the line 72 included in the line pattern 70 has been described as an example that accurately reflects the arrangement position of the recording element 52.
  • the present invention is not limited to this.
  • the line pattern The recording element 52 with a defective ejection direction may be identified by the same method as in the above-described embodiment by detecting the line 72 in which the positional deviation is generated from the image data 70.
  • the inkjet recording apparatus 1 has been described as an example of the image recording apparatus.
  • the present invention can be applied to various image recording apparatuses that record an image using a plurality of recording elements.
  • an electrostatic latent image is formed by irradiating a charged photosensitive drum with light from a print head in which an LED (Light Emitting Diode) as a recording element or a laser light emitting element is arranged, and according to the electrostatic latent image
  • the present invention may be applied to an electrophotographic image recording apparatus that forms an image by transferring toner distributed on a photosensitive drum to a recording medium.
  • the present invention can be used for an image recording apparatus and an image reading method.

Landscapes

  • Ink Jet (AREA)

Abstract

容易かつ確実にラインパターンのラインを特定することが可能な画像を記録する画像記録装置及び画像読取方法を提供する。画像記録装置は、記録媒体を保持して搬送方向に搬送する搬送手段と、搬送方向と直交する幅方向に記録媒体への記録幅に亘って搬送方向と交差する向きに配列された複数の記録素子を用いて記録媒体に画像を記録する記録手段と、搬送手段により搬送される記録媒体に対して記録手段の複数の記録素子により搬送方向に平行な複数のラインを含むラインパターンと、幅方向の長さが複数のライン各々の幅方向の長さより大きくラインパターンの幅方向の記録幅より小さい識別標識とを、予め定められた位置関係で記録させる記録制御手段と、を備える。

Description

画像記録装置及び画像読取方法
 本発明は、画像記録装置及び画像読取方法に関する。
 従来、搬送装置により搬送される記録媒体に対し、記録ヘッドに設けられた複数のノズルからインクを吐出して記録媒体に画像を記録する画像記録装置が知られている。このような画像記録装置には、記録ヘッドが記録媒体の搬送方向と直交する方向(以下、幅方向という)に記録媒体の幅よりも広い範囲に亘って配列されたノズル列を有し、当該記録ヘッドを幅方向に走査させることなく画像形成を行うシングルパス形式のものがある。
 また、この画像記録装置では、個々のノズルからのインク吐出により形成されたラインを複数含むラインパターンを記録媒体に記録し、搬送方向下流側に設けられたラインセンサーでこのラインパターンを読み取ることで、吐出不良のノズルの検出やノズル位置の適正位置からのずれの検出等が行われる。
 しかしながら、近年、解像度が上昇するにつれてラインパターンに含まれるライン数が膨大となり、吐出不良や位置ずれ等を示唆しているラインがどのノズルに対応するのかをラインセンサーによる読取結果から特定する(以下、ラインの特定という)のが困難になってきている。
 これに対し、特許文献1では、階段状に記録されたラインパターンの搬送方向の端部に当該端部の位置を示す検出バーを記録し、検出バーとの位置関係からラインの特定を行っている。
 また、特許文献2では、複数のラインを含むラインパターンブロックの幅方向の両端部に他のラインとは長さを異ならせた複数本の基準ラインパターンを形成し、当該基準ラインパターンと特定対象のラインとの位置関係から当該ラインの特定を行っている。
特開2011-201051号公報 特開2009-83141号公報
 しかしながら、特許文献1に記載のラインの特定方法では、ラインパターンが階段状に記録されていることが前提となっており、階段状に記録されていないラインパターンに適用した場合にはラインの特定が困難であるという課題があった。
 また、特許文献2に記載のラインの特定方法では、基準ラインパターンを記録するノズルに吐出不良が生じると基準ラインパターンが一部欠損してラインの特定方法が複雑になる上、一定数以上の基準ラインパターンが欠損するとラインの特定を行うことができなくなるという課題があった。
 この発明の目的は、容易かつ確実にラインパターンのラインを特定することが可能な画像を記録する画像記録装置及び画像読取方法を提供することにある。
 上記目的を達成するため、請求項1に記載の画像記録装置の発明は、
 記録媒体を保持して搬送方向に搬送する搬送手段と、
 前記搬送方向と直交する幅方向に前記記録媒体への記録幅に亘って当該搬送方向と交差する向きに配列された複数の記録素子を用いて前記記録媒体に画像を記録する記録手段と、
 前記搬送手段により搬送される前記記録媒体に対して前記記録手段の前記複数の記録素子により、前記搬送方向に平行な複数のラインを含むラインパターンと、前記幅方向の長さが前記複数のライン各々の前記幅方向の長さより大きく前記ラインパターンの前記幅方向の記録幅より小さい識別標識とを予め定められた位置関係で記録させる記録制御手段と、
 を備えることを特徴としている。
 請求項2に記載の発明は、請求項1に記載の画像記録装置において、
 前記複数のラインのうち一のラインは、前記識別標識の基準位置に対して前記幅方向に第1配置間隔で記録され、
 前記ラインパターンに含まれる前記複数のラインは、前記幅方向に互いに第2配置間隔で記録されることを特徴としている。
 請求項3に記載の発明は、請求項2に記載の画像記録装置において、
 前記搬送手段により搬送される前記記録媒体に記録された前記ラインパターン及び前記識別標識を撮像する撮像手段と、
 前記撮像手段による前記ラインパターン及び前記識別標識の撮像データから前記基準位置を特定し、当該基準位置、前記第1配置間隔及び前記第2配置間隔により前記ラインに対応する前記記録素子を特定するライン特定手段と、
 を備えることを特徴としている。
 請求項4に記載の発明は、請求項2に記載の画像記録装置において、
 前記記録制御手段は、前記記録媒体に対し、複数の前記識別標識を前記幅方向について異なる位置に記録させることを特徴としている。
 請求項5に記載の発明は、請求項4に記載の画像記録装置において、
 前記搬送手段により搬送される前記記録媒体に記録された前記ラインパターン及び前記複数の識別標識を撮像する撮像手段と、
 前記撮像手段による前記ラインパターン及び前記複数の識別標識の撮像データから前記複数の識別標識の前記幅方向についての前記基準位置に対する前記ラインの前記幅方向についての相対位置により前記ラインに対応する前記記録素子を特定するライン特定手段と、
 を備えることを特徴としている。
 請求項6に記載の発明は、請求項3又は5に記載の画像記録装置において、
 前記ライン特定手段により特定された前記記録素子に係る情報に基づいて前記記録媒体に記録する画像の画像データを補正する補正手段を備えることを特徴としている。
 請求項7に記載の発明は、請求項6に記載の画像記録装置において、
 前記記録素子に係る情報は、前記記録手段において当該記録素子が配置された位置を示すデータであることを特徴としている。
 請求項8に記載の発明は、請求項6に記載の画像記録装置において、
 前記記録手段を複数備え、
 前記記録素子に係る情報は、当該記録素子と、当該記録素子を含む前記記録手段とは異なる前記記録手段に含まれる特定の記録素子との前記幅方向の間隔を示すデータである
 ことを特徴としている。
 請求項9に記載の発明は、請求項3,5~8の何れか一項に記載の画像記録装置において、
 前記幅方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
 前記記録制御手段が前記記録手段により記録させる前記識別標識の前記幅方向の長さを、前記輝度移行範囲の前記幅方向の長さに対応する前記記録媒体上の距離の2倍以上に設定する設定手段を備える
 ことを特徴としている。
 請求項10に記載の発明は、請求項3,5~8の何れか一項に記載の画像記録装置において、
 前記幅方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
 前記記録制御手段が前記記録手段により記録させる前記識別標識と、当該識別標識に前記幅方向に隣り合う前記ラインとの前記幅方向の間隔を、前記輝度移行範囲の前記幅方向の長さに対応する前記記録媒体上の距離の2倍以上に設定する設定手段を備える
 ことを特徴としている。
 請求項11に記載の発明は、請求項3,5~8の何れか一項に記載の画像記録装置において、
 前記幅方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
 前記記録制御手段が前記記録手段により記録させる前記幅方向に隣り合う前記ラインの前記幅方向の間隔を、前記輝度移行範囲の前記幅方向の長さに対応する前記記録媒体上の距離の2倍以上に設定する設定手段を備える
 ことを特徴としている。
 請求項12に記載の発明は、請求項3,5~8の何れか一項に記載の画像記録装置において、
 前記搬送方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
 前記記録制御手段が前記記録手段により記録させる前記識別標識の前記搬送方向の長さを、前記輝度移行範囲の前記搬送方向の長さに対応する前記記録媒体上の搬送方向輝度移行距離の2倍以上に設定する設定手段を備え、
 前記ライン特定手段は、前記撮像データにおける前記識別標識の前記搬送方向の両端からそれぞれ前記搬送方向に前記搬送方向輝度移行距離以上内側の範囲での輝度データを用いて前記ラインに対応する前記記録素子を特定する
 ことを特徴としている。
 請求項13に記載の発明は、請求項3,5~8の何れか一項に記載の画像記録装置において、
 前記搬送方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
 前記記録制御手段が前記記録手段により記録させる前記ラインの前記搬送方向の長さを、前記輝度移行範囲の前記搬送方向の長さに対応する前記記録媒体上の搬送方向輝度移行距離の2倍以上に設定する設定手段を備え、
 前記ライン特定手段は、前記撮像データにおける前記ラインの前記搬送方向の両端からそれぞれ前記搬送方向に前記搬送方向輝度移行距離以上内側の範囲での輝度データを用いて前記ラインに対応する前記記録素子を特定する
 ことを特徴としている。
 請求項14に記載の発明は、請求項3,5~8の何れか一項に記載の画像記録装置において、
 前記搬送方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
 前記記録制御手段は、前記記録手段により、前記複数のラインのうち少なくとも一本の前記幅方向の配置範囲を包含する位置に前記識別標識を記録させるとともに、前記識別標識から前記搬送方向に前記輝度移行範囲の前記搬送方向の長さに対応する前記記録媒体上の搬送方向輝度移行距離以上となる位置を含む領域に前記少なくとも一本のラインを記録させ、
 前記ライン特定手段が前記撮像データから輝度データを取得する位置を示す解析線を、前記識別標識から前記搬送方向に前記搬送方向輝度移行距離以上となる位置であって前記少なくとも一本のラインが記録された位置を通り前記ラインと直交する方向に設定する解析線設定手段を備え、
 前記ライン特定手段は、前記撮像データから前記解析線上の輝度データを取得する
 ことを特徴としている。
 請求項15に記載の発明は、請求項14に記載の画像記録装置において、
 前記撮像手段は、前記解析線上の画像を撮像するラインセンサーであることを特徴としている。
 請求項16に記載の発明は、請求項9~15の何れか一項に記載の画像記録装置において、
 前記2つの均一階調画像領域は、前記ラインパターン及び前記識別標識が記録される前記記録媒体に対して、記録を行わない領域と、前記ラインパターン及び前記識別標識が記録される色材と同一の色材によるベタパターンが記録された領域であることを特徴としている。
 請求項17に記載の発明は、請求項1~16の何れか一項に記載の画像記録装置において、
 前記記録手段を複数備え、
 前記記録制御手段は、当該複数の記録手段により各々別個の前記識別標識を記録させる
 ことを特徴としている。
 また、上記目的を達成するため、請求項18に記載の画像読取方法の発明は、
 記録媒体を保持して搬送方向に搬送する搬送手段と、前記搬送方向と直交する幅方向に前記記録媒体への記録幅に亘って当該搬送方向と交差する向きに配列された複数の記録素子を用いて前記記録媒体に画像を記録する記録手段と、を備える画像記録装置を用いて記録される画像を撮像手段により撮像して読み取る画像読取方法であって、
 前記搬送手段により搬送される前記記録媒体に対して前記記録手段の前記複数の記録素子により、前記搬送方向に平行な複数のラインを含むラインパターンと、前記幅方向の長さが前記複数のライン各々の前記幅方向の長さより大きく前記ラインパターンの前記幅方向の記録幅より小さい識別標識とを予め定められた位置関係で記録する記録ステップ、
 前記記録媒体に記録された前記ラインパターン及び前記識別標識を前記撮像手段により撮像する撮像ステップ、
 を含むことを特徴としている。
 本発明に従うと、容易かつ確実にラインパターンのラインを特定することが可能な画像を記録することができるという効果がある。
本発明の画像記録装置の実施形態であるインクジェット記録装置の概略構成を示す図である。 ヘッドユニット、定着部及びラインセンサーの構成を示す模式図である。 インクジェット記録装置の主要な機能構成を示すブロック図である。 補正パラメーター取得処理に用いられる検査用画像の一例を示す図である。 ラインパターン及び基準マークの配置条件について説明する図である。 ラインパターン及び基準マークの配置条件について説明する図である。 ラインセンサーの輝度移行距離について説明する図である。 ラインセンサーの輝度移行距離について説明する図である。 幅方向輝度移行範囲及び搬送方向輝度移行範囲が生じる態様について説明する図である。 幅方向輝度移行範囲及び搬送方向輝度移行範囲が生じる態様について説明する図である。 幅方向輝度移行範囲及び搬送方向輝度移行範囲が生じる態様について説明する図である。 幅方向輝度移行範囲及び搬送方向輝度移行範囲が生じる態様について説明する図である。 補正パラメーター取得処理の制御手順を示すフローチャートである。 画像記録処理の制御手順を示すフローチャートである。 変形例2に係る検査用画像の一例を示す図である。 変形例2に係る補正パラメーター取得処理の制御手順を示すフローチャートである。 変形例3に係る検査用画像の一例を示す図である。
 以下、本発明の画像記録装置及び画像読取方法に係る実施の形態を図面に基づいて説明する。
 図1は、本発明の画像記録装置の実施形態であるインクジェット記録装置1の概略構成を示す図である。
 インクジェット記録装置1は、給紙部10と、画像記録部20と、排紙部30と、制御部40(図3)とを備える。インクジェット記録装置1は、制御部40による制御下で、給紙部10に格納された記録媒体Pを画像記録部20に搬送し、画像記録部20で記録媒体Pに画像を記録(形成)し、画像が記録された記録媒体Pを排紙部30に搬送する。記録媒体Pとしては、紙、布帛又はシート状の樹脂等、表面に吐出されたインク(色材)を固着させることが可能な種々の媒体を用いることができる。
 給紙部10は、記録媒体Pを格納する給紙トレー11と、給紙トレー11から画像記録部20へ記録媒体Pを搬送する搬送部12とを有する。
 搬送部12は、内側が2本のローラー121,122により支持された輪状のベルト123を備える。搬送部12は、ベルト123上に記録媒体Pを載置した状態でローラー121,122を回転させることで記録媒体Pを搬送する。
 画像記録部20は、搬送ドラム21(搬送手段)と、受け渡しユニット22と、加熱部23と、ヘッドユニット50と、定着部24と、ラインセンサー25(撮像手段)と、デリバリー部26とを有する。
 搬送ドラム21は、円筒状の外周面(搬送面)上に記録媒体Pを保持し、図1の図面に垂直な方向(以下X方向と記す)に延びた回転軸を中心に回転することで記録媒体Pを外周面に沿った搬送方向(以下Y方向と記す)に搬送する。搬送ドラム21は、その外周面上で記録媒体Pを保持するための図示しない爪部及び吸気部を備える。記録媒体Pは、爪部により端部が押さえられ、かつ吸気部により外周面に吸い寄せられることで搬送ドラム21の外周面に保持される。
 搬送ドラム21は、搬送ドラム21を回転させるための搬送ドラムモーター21M(図3)を備えており、当該搬送ドラムモーター21Mの回転量に比例した角度だけ回転する。
 受け渡しユニット22は、給紙部10の搬送部12により搬送された記録媒体Pを搬送ドラム21に引き渡す。受け渡しユニット22は、給紙部10の搬送部12と搬送ドラム21との間の位置に設けられ、搬送部12から搬送された記録媒体Pの一端をスイングアーム部221で保持して取り上げ、受け渡しドラム222を介して搬送ドラム21に引き渡す。
 加熱部23は、搬送ドラム21に保持された記録媒体Pを加熱する。加熱部23は、例えば、赤外線ヒーター等を有し、当該赤外線ヒーターは通電に応じて発熱する。加熱部23は、搬送ドラム21の外周面の近傍であって、記録媒体Pの搬送方向についてヘッドユニット50の上流側に位置するよう設けられる。加熱部23は、搬送ドラム21に保持されて加熱部23の近傍を通過する記録媒体Pが所定の温度となるようにその発熱を制御部40により制御される。
 ヘッドユニット50は、搬送ドラム21に保持された記録媒体Pに対してインクを吐出して画像を記録する。ヘッドユニット50は、インク吐出面が搬送ドラム21の外周面に対向して所定の距離を置いて配置される。本実施形態のインクジェット記録装置1は、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色のインクに対応する4つのヘッドユニット50Y,50M,50C,50K(以下、単にヘッドユニット50とも記す)を備え、これら4つのヘッドユニット50は、記録媒体Pの搬送方向に沿って上流側からY,M,C,Kの色の順に所定の間隔で配列されている。
 図2は、ヘッドユニット50、定着部24及びラインセンサー25の構成を示す模式図である。ここでは、ヘッドユニット50、定着部24及びラインセンサー25を搬送ドラム21の外周面と対向する側から見た場合を示す。
 イエローのインクに対応するヘッドユニット50Yは、取付部材に取り付けられた4つの記録ヘッド51Y(記録手段)を有する。マゼンタ、シアン、ブラックのインクに対応するヘッドユニット50M,50C,50Kも同様に、それぞれ4つの記録ヘッド51M,51C,51Kを有する(以下では記録ヘッド51Y,51M,51C,51Kを単に記録ヘッド51とも記す)。記録ヘッド51の各々は、複数の記録素子52を有する。各記録素子52は、インクを貯留する圧力室と、圧力室の壁面に設けられた圧電素子と、ノズルとを備える。記録ヘッド51の駆動回路から圧電素子へ駆動電圧が印加されると、駆動電圧の大きさに応じて圧力室内の圧力が変化し、圧力室に連通するノズルからインクが吐出される。図2には、記録素子52に含まれるノズルが点として描かれている。記録素子52のノズルは、ヘッドユニット50の搬送ドラム21側の面(インク吐出面)に開口部が設けられている。
 記録ヘッド51が備える複数の記録素子52のノズルは、記録ヘッド51の搬送ドラム21との対向面において、記録媒体Pの搬送方向(Y方向)と直交する幅方向(X方向)に記録媒体Pへの記録幅に亘って配列されている。本実施形態では、記録素子52は、X方向に等間隔に配列されている。なお、記録素子52のノズルの列は、搬送方向と交差する向きに配置されていればよく、必ずしも搬送方向に直交する方向に配置されていなくてもよい。また、各記録ヘッド51は、X方向に配列された記録素子52の列を2列備え、これら2列の記録素子52がX方向について記録素子52の配置間隔の2分の1だけ互いにずれた状態で配置された構成であってもよい。また、本明細書において記録素子52の配列とは、記録素子52のうちノズルの位置の配列を意味するものとする。
 各ヘッドユニット50に含まれる4つの記録ヘッド51は、X方向についての配置範囲が互いに一部重複するように千鳥格子状に配置され、X方向に沿って1番目と3番目、及び2番目と4番目の記録ヘッド51の記録素子52が同一線上に位置している。隣り合う記録ヘッド51がX方向に重複している部分のうち、図2に示す範囲R1において、各記録ヘッド51に含まれる記録素子52のX方向についての配置範囲が重複している。本実施形態のインクジェット記録装置1では、各記録ヘッド51は、約3500個の記録素子52を含み、このうち範囲R1に含まれる記録素子52は約50個である。範囲R1においては、範囲R1に記録素子52を有する2つの記録ヘッド51のうち一方の記録ヘッド51の記録素子52のみにより画像の記録が行われるように設定される。
 ヘッドユニット50に含まれる記録素子52のX方向についての配置範囲は、搬送ドラム21により保持、搬送される記録媒体Pのうち画像が記録される領域のX方向の幅をカバーしており、ヘッドユニット50は、画像の記録時には搬送ドラム21に対して位置が固定されて用いられる。即ち、インクジェット記録装置1は、シングルパス形式のインクジェット記録装置である。また、本実施形態のヘッドユニット50のX方向及びY方向の記録解像度は1200dpiであり、ヘッドユニット50に含まれる記録素子52は、X方向に1インチ当たり1200個の密度で配置されている。
 記録素子52のノズルから吐出されるインクとしては、温度によってゲル状又はゾル状に相変化する性質を有する各種公知のものが用いられる。
 記録ヘッド51は、図示しないインク加熱部を備える。当該インク加熱部は、制御部40による制御下で動作し、ゾル状となる温度にインクを加熱する。記録素子52は、加熱されてゾル状となったインクを吐出する。
 定着部24は、低圧水銀ランプ等の蛍光管を有し、搬送ドラム21の外周面に保持された記録媒体Pに対して当該蛍光管の発光により紫外線等のエネルギー線を照射して、記録媒体P上に吐出されたインクを硬化させて定着させる。定着部24は、搬送方向についてヘッドユニット50の下流側に配置される。
 ラインセンサー25は、搬送方向について定着部24の下流側の位置において、搬送ドラム21の外周面に対向して配置され、搬送ドラム21により保持、搬送される記録媒体Pに記録されている画像を撮像して二次元撮像データを出力する。ラインセンサー25は、図2に示すように、幅方向(X方向)に所定の配置間隔で配列された複数の撮像素子251を備える。各撮像素子251は、図示しない光源から射出され記録媒体Pの表面で反射した光の強度に応じた信号を出力する。撮像素子としては、例えば光電変換素子としてフォトダイオードを備えるCMOS(Complementary Metal Oxide Semiconductor)センサー又はCCD(Charge Coupled Device)センサー等を用いることができる。また、ラインセンサー25は、撮像素子251から出力されたアナログ信号をデジタル信号に変換して制御部40に出力する回路を備える。
 本実施形態では、ラインセンサー25から出力される撮像データの幅方向(X方向)の解像度は600dpi、搬送方向(Y方向)の解像度は300dpiである。
 デリバリー部26は、内側が2本のローラー261,262により支持された輪状のベルト263と、記録媒体Pを搬送ドラム21からベルト263に受け渡す円筒状の受け渡しドラム264とを有し、受け渡しドラム264により搬送ドラム21からベルト263上に受け渡された記録媒体Pをベルト263により搬送して排紙部30に送出する。
 排紙部30は、デリバリー部26により画像記録部20から送り出された記録媒体Pが載置される板状の排紙トレー31を有する。
 図3は、インクジェット記録装置1の主要な機能構成を示すブロック図である。
 インクジェット記録装置1は、CPU41(Central Processing Unit)(記録制御手段、ライン特定手段、設定手段、解析線設定手段、補正手段)、RAM42(Random Access Memory)、ROM43(Read Only Memory)及び記憶部44を含む制御部40と、記録ヘッド51に接続された記録ヘッド制御回路61と、ラインセンサー25に接続されたラインセンサー制御回路62と、搬送ドラムモーター21Mに接続された搬送ドラムモーター制御回路63と、外部装置2に接続されたインターフェース64とを備える。CPU41は、バス65を介してRAM42、ROM43、記録ヘッド制御回路61、ラインセンサー制御回路62、搬送ドラムモーター制御回路63及びインターフェース64と接続されている。
 CPU41は、各種演算処理を行い、また、インクジェット記録装置1の全体動作を統括制御する。例えば、CPU41は、記録媒体Pに記録される画像の画像データを記録ヘッド制御回路61から記録ヘッド51へ出力させることで記録ヘッド51からインクを吐出させて記録媒体Pに画像を記録させる。また、CPU41は、ラインセンサー制御回路62からラインセンサー25へ制御信号を出力させることで記録媒体P上に記録された画像をラインセンサー25に撮像させる。また、CPU41は、搬送ドラムモーター制御回路63から搬送ドラムモーター21Mの駆動回路へ制御信号を出力させて搬送ドラムモーター21Mを動作させることで搬送ドラム21を回転させる。また、CPU41は、ラインセンサー25による撮像データに基づいて画像データの補正に用いる補正パラメーターを取得してRAM42に記憶させる。また、CPU41は、RAM42に記憶された補正パラメーターを用いて記録媒体Pに記録される画像の画像データを補正して記憶部44に記憶させる。
 RAM42は、CPU41に作業用のメモリー空間を提供し、一時データを記憶する。また、RAM42には、後述する補正パラメーター取得処理において取得された補正パラメーター等が記憶される。
 ROM43は、CPU41により実行される各種制御用のプログラムや設定データ等を格納する。当該プログラムには、例えば、画像データの補正に用いる補正パラメーターを取得する補正パラメーター取得プログラムや、画像データを補正し、当該補正された画像データを用いて記録媒体Pに画像を記録させる画像記録プログラムが含まれている。なお、ROM43に代えてEEPROMやフラッシュメモリー等の書き換え可能な不揮発性メモリーが用いられてもよい。
 記憶部44は、DRAM(Dynamic Random Access Memory)等で構成され、インターフェース64を介して外部装置2から入力された画像データ、ラインセンサー25での撮像により得られた撮像データ及び補正パラメーターを用いて補正された画像データ等が記憶される。なお、これらの画像データ等はRAM42に記憶されてもよい。
 記録ヘッド制御回路61は、CPU41から入力された信号及び記憶部44等に記憶された画像データに基づいて、記録ヘッド51の駆動回路から記録素子52の圧電素子に印加される駆動電圧のタイミング及び/又は大きさを定める制御信号(画像データ)を記録ヘッド51に出力する。
 ラインセンサー制御回路62は、CPU41から入力された信号等に基づいて、ラインセンサー25に所定のタイミングで撮像を行わせるための制御信号をラインセンサー25に出力する。
 搬送ドラムモーター制御回路63は、CPU41から入力された信号に基づいて、搬送ドラムモーター21Mを動作させるための制御信号を搬送ドラムモーター21Mに出力する。
 インターフェース64は、外部装置2との間でデータの送受信を行う手段であり、各種シリアルインターフェース、各種パラレルインターフェースのいずれか又はこれらの組み合わせで構成される。
 外部装置2は、例えばパーソナルコンピューターであり、インクジェット記録装置1で記録される画像の画像データ等をインターフェース64を介して制御部40に供給する。
 次に、インクジェット記録装置1における吐出不良のノズルの検出及びその検出結果に基づく画像の補正動作について説明する。
 インクジェット記録装置1では、インクが正常に吐出されない吐出不良の記録素子52がある場合に当該吐出不良の記録素子52を特定し、記録素子52の吐出不良に起因する記録画像の乱れを抑える補正を画像データに対し行った上で画像の記録が行われる。即ち、補正パラメーター取得処理において、吐出不良の記録素子52の位置が特定され、当該吐出不良の記録素子52の位置に係る補正パラメーターが取得される。また、画像記録処理において、補正パラメーター取得処理で取得された補正パラメーターを用いて画像データが補正され、補正された画像データに基づく画像記録が行われる。
 このうち補正パラメーター取得処理における吐出不良の記録素子52の特定は、記録媒体Pに所定の検査用画像を記録し、この検査用画像をラインセンサー25で撮像して得られた撮像データを解析することにより行われる。
 図4は、補正パラメーター取得処理に用いられる検査用画像の一例を示す図である。この検査用画像は、ヘッドユニット50の記録ヘッド51により記録媒体P上に記録された画像であり、ラインパターン70及び基準マーク80a,80h(識別標識)(以下単に基準マーク80とも記す)を含んでいる。図4に示す検査用画像では、一の記録ヘッド51に含まれる1番目から80番目までの記録素子52によりラインパターン70及び基準マーク80a,80hが記録されているものとする。
 ラインパターン70は、記録ヘッド51に含まれる複数の予め定められた記録素子52により記録された搬送方向に平行な複数のライン72を含むパターンである。各ライン72は、記録媒体Pを搬送させながらそれぞれ単一の記録素子52から記録媒体Pにインクを吐出することで記録される。ラインパターン70は、X方向に等間隔に配列された複数のライン72から各々構成される8つのライン群71(ライン群71a~71h)がY方向に配列されて構成される。搬送方向における最も下流側(+Y方向の端部)のライン群71aを第1段のライン群、最も上流側(-Y方向の端部)のライン群71hを第8段のライン群71、とした場合、第m段(mは1≦m≦8を満たす整数)のライン群71は、(m+8n)番目(nは0≦n≦9を満たす整数)の記録素子52により記録された10本のライン72を含む。従って、Y方向に隣り合うライン群71(即ちmが1だけ異なる2つのライン群71)に含まれる各ライン72の記録に用いられた記録素子52は、互いに1つずつずれている。このようなライン群71a~71hを含むラインパターン70では、1番目から80番目までの各記録素子52により1つずつライン72が記録される。従って、ラインパターン70を含む検査用画像のラインセンサー25による撮像データにおいてライン72のいずれかが欠損している(記録されていない)場合に、当該欠損したライン72に対応する記録素子52を吐出不良の記録素子52として特定することができる。
 以下では、N番目(Nは1≦N≦80を満たす整数)の記録素子52により記録されたライン72を「N番目のライン72」と記す。
 また、記録媒体Pのうちラインパターン70が記録される領域をラインパターン記録領域と記す。ラインパターン記録領域は、ラインパターン70を内包し各辺がX方向又はY方向に平行な矩形のうち各辺の長さが最小となる矩形の領域である。
 基準マーク80は、記録媒体Pに吐出されたインクがX方向について分離されないような位置関係にある複数の記録素子52で記録されることにより形成される。また、基準マーク80は、X方向の長さが各ライン72より大きくラインパターン70のX方向の記録幅(ラインパターン記録領域のX方向の長さ)より小さい方形の標識である。基準マーク80aは、3番目から7番目までの記録素子52により、ライン群71aの1番目のライン72(左端のライン72)と9番目のライン72との間に記録されている。基準マーク80hは、74番目から78番目までの記録素子52により、ライン群71hの72番目のライン72と80番目のライン72(右端のライン72)との間に記録されている。
 基準マーク80は、ライン72よりX方向の長さが大きいため、多数のライン72を含む検査用画像においてライン72と容易に区別され、検査用画像の撮像データからライン72のX方向の位置を算出する際の基準として用いることができる。ここで、基準マーク80は、一定の面積を占めるマークであるため、基準マーク80の位置は、基準マーク80のうち所定の基準位置で代表させる。基準位置は、基準マーク80のうち任意の点とすることができるが、本実施形態では基準マーク80の重心を基準位置とする。図4の例では、基準マーク80aのX方向の基準位置(重心)は、5番目の記録素子52の位置に相当し、基準マーク80hのX方向の基準位置は、76番目の記録素子52の位置に相当する。
 ラインパターン70及び基準マーク80は、ラインセンサー25による撮像データからその位置を正確に特定できるよう、所定の配置条件に従って記録される。以下ではこの配置条件について説明する。
 図5は、ラインパターン70及び基準マーク80の配置条件について説明する図である。図5Aは、基準マーク80のY方向の配置範囲とラインパターン70のライン72のY方向の配置範囲とが重なる場合を示し、図5Bは、基準マーク80のY方向の配置範囲とラインパターン70のライン72のY方向の配置範囲とが異なる場合を示している。解析線91は、ラインセンサー25による撮像データにおいて輝度が取得、解析される位置を示す仮想の線である。
 図5Aにおいて、長さMxは、基準マーク80のX方向(幅方向)の幅を示し、長さMyは、基準マーク80のY方向(搬送方向)の長さを示す。また、間隔dMxは、基準マーク80とこの基準マーク80にX方向に最も近いライン72とのX方向の間隔を示す。また、長さLyは、ライン72のY方向の長さを示し、間隔dLxは、隣り合うライン72のX方向の間隔を示す。また、長さMty,Mbyは、それぞれ基準マーク80のY方向の上端部、下端部から解析線91までの長さを示す。また、長さLty,Lbyは、それぞれライン72のY方向の上端部、下端部から解析線91までの長さを示す。
 図5Bにおいて、間隔dMyは、基準マーク80から解析線91までの間隔を示す。
 ラインパターン70及び基準マーク80は、上記の各長さ及び間隔が設定手段としてのCPU41により以下の範囲に設定されて記録媒体Pに記録される。
  Mx,dMx,dLx≧2dx
  My,Ly≧2dy
  Mty,Mby,Lty,Lby,dMy≧dy
 ここで、dxはラインセンサー25のX方向の輝度移行距離(幅方向輝度移行距離)であり、dyはラインセンサー25のY方向の輝度移行距離(搬送方向輝度移行距離)である。
 なお、基準マーク80のX方向の長さMxは、既に述べたようにライン72のX方向の長さより大きければ足りるが、後述する理由により上記の通りMx≧2dxを満たすことがより好ましい。
 図6は、ラインセンサー25の輝度移行距離について説明する図であり、図6Aは、幅方向輝度移行距離dxについて説明する図、図6Bは、搬送方向輝度移行距離dyについて説明する図である。なお、これらの説明における各距離(長さ)は、撮像データ上の距離(画素数)から記録媒体P上の距離に換算された値とする。
 図6Aでは、上段に、記録媒体Pのうち均一な階調の画像(ここでは白画像)が記録された第1階調画像領域92ax(均一階調画像領域)と、当該第1階調画像領域92axにX方向に隣接し第1階調画像領域92axと輝度が異なる均一な階調の画像(ここでは黒画像)が記録された第2階調画像領域92bx(均一階調画像領域)との境界を含む部分92xが示されている。また、下段には、記録媒体Pの部分92xをラインセンサー25により撮像して得られた撮像データにおける解析線91の位置での輝度を表すグラフが示されている。ラインセンサー25の撮像データにおいては、第1階調画像領域92axの輝度を示す範囲93axと、第2階調画像領域92bxの輝度を示す範囲93bxとが距離dx(幅方向輝度移行距離)だけ離れている。当該距離dxに相当する範囲(以下では幅方向輝度移行範囲93cxと記す)では輝度が第1階調画像領域92ax及び第2階調画像領域92bxに応じた輝度間で連続的に変化する。ここで、上記の範囲93axは、第1階調画像領域92axの輝度を100、第2階調画像領域92bxの輝度を0とした場合に90以上の輝度を示す領域であり、範囲93bxは、同じく10以下の輝度を示す領域である。
 また、図6Bでは、左側に、第1階調画像領域92ay(均一階調画像領域)と、当該第1階調画像領域92ayに-Y方向に隣接する第2階調画像領域92by(均一階調画像領域)との境界を含む部分92yが示されている。また、右側には、記録媒体Pの部分92yをラインセンサー25により撮像して得られた撮像データにおける解析線91の位置での輝度を表すグラフが示されている。ラインセンサー25の撮像データにおいては、第1階調画像領域92ayの輝度を示す範囲93ayと第2階調画像領域92byの輝度を示す範囲93byとが距離dy(搬送方向輝度移行距離)だけ離れている。当該距離dyに相当する領域(以下では搬送方向輝度移行範囲93cyと記す)では第1階調画像領域92ay及び第2階調画像領域92byに応じた輝度間で連続的に輝度が変化する。ここで、上記の範囲93ayは、第1階調画像領域92ayの輝度を100、第2階調画像領域92byの輝度を0とした場合に90以上の輝度を示す領域であり、範囲93byは、同じく10以下の輝度を示す領域である。
 なお、範囲93ax、範囲93bxと幅方向輝度移行範囲93cxとの境界、及び範囲93ay、範囲93byと搬送方向輝度移行範囲93cyとの境界の定め方は上記のものに限られず、範囲93ax,93bxがそれぞれ第1階調画像領域92ax、第2階調画像領域92bxの輝度を示し、範囲93ay,93byがそれぞれ第1階調画像領域92ay、第2階調画像領域92byの輝度を示すものであれば他の方法により境界が定められてもよい。
 また、第1階調画像領域92ax,92ayは、記録媒体Pに対して記録を行わない領域とすることができる。また、第2階調画像領域92bx,92byは、黒画像に限られず、記録媒体Pに対してラインパターン70及び基準マーク80の記録に用いられるインク(色材)と同一のインクによるベタパターンが記録された領域としてもよい。
 このように、ラインセンサー25の撮像データでは、記録媒体Pに記録された画像の幅方向の輝度変化への応答に距離dxを要し、搬送方向の輝度変化への応答に距離dyを要する。距離dx及び距離dyの大きさは、ラインセンサー25への入射光を撮像素子251へ集光するレンズの設置状態や性能、及び撮像対象位置以外からの散乱光の撮像素子251への入射量などに影響される。また、距離dyの大きさは、撮像時の記録媒体Pの搬送速度にも影響され、搬送速度が大きいほど大きくなる。
 図7及び図8は、幅方向輝度移行範囲93cx及び搬送方向輝度移行範囲93cyが生じる態様について説明する図である。
 図7Aは、第2階調画像領域92bx内では第2階調画像領域92bxの輝度を示し、第1階調画像領域92axと第2階調画像領域92bxとの境界から第1階調画像領域92ax側に距離dxの幅方向輝度移行範囲93cxが生じている例を示している。
 一方、図7Bは、第1階調画像領域92ax内では第1階調画像領域92axの輝度を示し、第1階調画像領域92axと第2階調画像領域92bxとの境界から第2階調画像領域92bx側に距離dxの幅方向輝度移行範囲93cxが生じている例を示している。
 このように、幅方向輝度移行範囲93cxは、ラインセンサー25のレンズの配置や拡散光の入射状況等により、図7A、図7B及びこれらの中間のいずれの態様でも生じ得る。
 図7Aに示す態様において、撮像データを解析線91の位置で解析して第2階調画像領域92bxとしてのライン72や基準マーク80のX方向の位置を特定する際には、第1階調画像領域92axの輝度を100、第2階調画像領域92bxの輝度を0とした場合に輝度が90以下となる領域(図7Aの範囲R3)に含まれるデータ群の重心(範囲R3における各点の輝度100からの輝度低下量の積分値を等分するX方向の位置)を第2階調画像領域92bxのX方向の中心位置と推定する。ここで、図8Aに示すように第1階調画像領域92axの幅が距離2dxより小さくなると、第1階調画像領域92axに生じる2つの幅方向輝度移行範囲93cxが重なって、第1階調画像領域92axでの輝度データが本来の第1階調画像領域92axの輝度に達しないこととなる。このため、例えば図8Aに示すように、ある第2階調画像領域92bxに隣接する一方の第1階調画像領域92axの幅が距離2dxより小さくなると、第2階調画像領域92bxの位置の特定に用いられるデータ群がX方向について非対称の形となり、第2階調画像領域92bxの位置を正確に特定できなくなる不具合が生じる。よって、図7Aに示す態様では、第1階調画像領域92axの幅(即ち隣り合う第2階調画像領域92bxの間隔)は距離2dx以上であることが好ましい。
 また、図7Bに示す態様において、図8Bに示すように第2階調画像領域92bxの幅が距離2dxより小さくなると、第2階調画像領域92bxに生じる2つの幅方向輝度移行範囲93cxが重なって、第2階調画像領域92bxでの輝度データが本来の第2階調画像領域92bxの輝度まで低下しないこととなる。このため、第2階調画像領域92bxの位置を特定するための輝度データの振幅が小さくなり、第2階調画像領域92bxの位置の特定精度が低下する不具合が生じる。よって、図7Bの態様では、第2階調画像領域92bxの幅は距離2dx以上であることが好ましい。
 なお、図7及び図8では、幅方向輝度移行範囲93cxが生じる態様を示したが、搬送方向輝度移行範囲93cyが生じる態様についても同様である。
 上述した図5の長さMx、間隔dMx,dLx,dMy、及び長さMy,Lyについての範囲の設定(ラインパターン70及び基準マーク80の配置条件)は、幅方向輝度移行範囲93cx及び搬送方向輝度移行範囲93cyがどのような態様で生じても不具合が生じないように定められたものである。即ち、基準マーク80及びライン72のX方向の位置の特定の際に撮像データのうち解析線91に対応する位置において十分な輝度振幅が得られるよう、基準マーク80のX方向の長さMxは、距離2dx以上に設定され、基準マーク80のY方向の長さMy及びライン72のY方向の長さLyは、距離2dy以上に設定される。
 また、基準マーク80及びライン72のX方向の位置の特定の際に解析線91に対応する位置において輝度分布が非対称とならないよう、基準マーク80とライン72とのX方向の間隔dMx、及び隣り合うライン72のX方向の間隔dLxは、距離2dx以上に設定される。
 また、図5Aにおいて基準マーク80及びライン72の輝度データを解析線91に対応する位置で取得、解析する際に基準マーク80及びライン72のY方向に隣接する第1階調画像領域又は第2階調画像領域の影響が及ばないよう、基準マーク80のY方向の上端部、下端部から解析線91までの長さMty,Mby、及びライン72のY方向の上端部、下端部から解析線91までの長さLty,Lbyは、距離dy以上に設定される。換言すれば、解析線設定手段としてのCPU41は、基準マーク80のY方向の上端部、下端部からそれぞれ搬送方向に距離dy以上内側の位置に解析線91を設定する。なお、撮像データから輝度データを取得する範囲は、設定された解析線91上のみに限定されず、撮像データにおける基準マーク80又はライン72のY方向の両端からそれぞれY方向に距離dy以上内側の範囲であれば任意の範囲で輝度データを取得することができる。
 また、図5Bにおいてライン72の輝度データを解析線91に対応する位置で取得、解析する際に基準マーク80の影響が及ばないよう、基準マーク80から解析線91までの間隔dMyは、距離dy以上に設定される。換言すれば、解析線設定手段としてのCPU41は、基準マーク80から搬送方向に距離dy以上となる位置であってライン72が記録された位置に解析線91を設定する。この場合にも、上述した長さLty,Lbyに係る条件が併せて満たされていることが望ましい。従って、撮像データから輝度データを取得する範囲は、撮像データにおけるライン72のY方向の両端からそれぞれY方向に距離dy以上内側の範囲のうち、基準マーク80からY方向に距離dy以上離れている部分とされる。
 なお、図5Aでは長さMyと長さLy、長さMtyと長さLty、及び長さMbyと長さLbyがそれぞれ等しくなるように描かれているが、これらは互いに異なっていてもよい。
 また、図5Bでは基準マーク80がライン72とY方向に離れて記録されている例が描かれているが、基準マーク80とライン72とが一体として記録されていてもよい。
 続いて、補正パラメーター取得処理における吐出不良の記録素子52の位置の特定方法について説明する。
 この特定方法では、図4に示す検査用画像がヘッドユニット50により記録媒体Pに記録され、当該検査用画像がラインセンサー25により撮像されて撮像データが取得される。そして、撮像データにおける輝度データが取得、解析されることにより吐出不良の記録素子52の位置が特定される。以下では、撮像データにおいてライン群71gの右端のライン72(79番目のライン72)が欠損しており、この欠損したライン72に対応する記録素子52を特定する場合を例に説明する。また、記録素子52のX方向の配置間隔を距離sとする。
 ラインパターン70の各ライン群71において、ライン72の記録に用いられる記録素子52は予め決まっているため、基準マーク80の位置に対する、各ライン72が記録されるX方向の相対位置も予め決まっている。例えば、上記79番目のライン72は、ライン群71gの左端のライン72(7番目のライン72)の位置からX方向に距離72s(即ち、ライン72の配置間隔8s(第2配置間隔)の9倍の距離)の位置に記録される。ここで、7番目のライン72の位置は、基準マーク80aの基準位置(5番目の記録素子52の位置に相当)からX方向に距離2s(第1配置間隔)の位置である。よって、79番目のライン72は、基準マーク80aの基準位置からX方向に距離74sの位置に記録される。同様にして、N番目のライン72は、基準マーク80aの基準位置からX方向に距離((N-5)×s)の位置に記録される。
 CPU41は、検査用画像の撮像データにおいて、各ライン72が、上記の予め決められた記録位置を中心とするX方向の所定の幅の範囲に記録されているか否かを判別する。ここで、所定の幅は、各ライン群71におけるライン72のX方向の配置間隔(図4では距離8s)である。即ち、図4の例では、基準マーク80の基準位置を基準としてN番目のラインがX方向に距離(((N-5)×s)±4s)の範囲に記録されているか否かを判別する。例えば79番目のライン72については、基準マーク80の基準位置からのX方向の位置が距離70s~78sの範囲である範囲R2においてライン72が記録されているか否かが判別される。ここで、79番目のライン72は欠損しており、範囲R2においてライン72は検出されないため、CPU41は、当該範囲R2に記録されているべきライン72に対応する79番目の記録素子52を、吐出不良の記録素子52として特定する。
 撮像データからの基準マーク80及びライン72の位置の検出は、解析線91に対応する位置でX方向の輝度を取得、解析し、各ライン72及び基準マーク80について図7Aの範囲R3に含まれるデータ群の重心を求めることにより行われる。また、本実施形態では、ラインセンサー25による撮像データのX方向の解像度は600dpi、記録ヘッド51のX方向の記録解像度は1200dpiであり、撮像データにおけるX方向の1画素は距離2sに相当するため、この関係を用いて撮像データ上の距離から記録媒体P上の距離への換算が行われる。
 なお、上記では基準マーク80aを基準としたが、基準マーク80hを基準として同様の特定を行うことができる。また、図4では説明の便宜上、80番目までの記録素子52によりラインパターン70が記録される例で説明しているが、記録ヘッド51の任意の一部又は全ての記録素子52によりラインパターン70が記録されていてもよい。
 次に、上記の検査用画像を用いた補正パラメーター取得処理について説明する。
 図9は、補正パラメーター取得処理の制御手順を示すフローチャートである。
 CPU41は、記録媒体Pが保持された搬送ドラム21及びイエローに対応するヘッドユニット50Yの記録ヘッド51Yを制御して、搬送ドラム21により搬送される記録媒体Pに対して記録ヘッド51Yの複数の所定の記録素子52からインクを吐出させて、記録媒体Pの搬送方向に平行な複数のライン72を含むラインパターン70と、基準マーク80とを記録させる(ステップS11;記録ステップ)。ここで、ラインパターン70及び基準マーク80は、図5に示す長さMx,My,Ly,Mty,Mby,Lty,Lby、及び間隔dMx,dLx,dMyがそれぞれ設定手段としてのCPU41により上述の所定の範囲に設定されて記録される。
 CPU41は、搬送ドラム21を回転させて記録媒体Pを搬送させながら、ラインセンサー25により記録媒体Pに記録されたラインパターン70及び基準マーク80を含む検査用画像を撮像させる(ステップS12;撮像ステップ)。CPU41は、検査用画像の二次元撮像データをラインセンサー25から出力させ、得られた撮像データを記憶部44に記憶させる。
 なお、ステップS12では、検査用画像の全体について撮像が行われてもよいし、検査用画像のうち輝度が取得、解析される解析線91の位置を含む一部分(読取ライン)のみについて撮像が行われてもよい。
 検査用画像が撮像された記録媒体Pは、CPU41による制御下で排紙部30に搬送される。
 CPU41は、ステップS12で得られた検査用画像の撮像データを用いて、ラインパターン70に欠損したライン72があるか否かを判別する(ステップS13)。詳しくは、ラインパターン70の各ライン群71に解析線設定手段としてのCPU41により設定された解析線91の位置において輝度データを取得、解析し、基準マーク80の基準位置を特定して、当該ライン群71に含まれる各ライン72が基準マーク80から所定の位置範囲に存在するか否かを判別する。全てのライン72が所定の位置範囲に存在し、欠損したラインがないと判別された場合には(ステップS13で“No”)、CPU41は、補正パラメーター取得処理を終了する。
 いずれかのライン72が所定の位置範囲に存在せず、欠損したライン72があると判別された場合には(ステップS13で“Yes”)、CPU41は、欠損したライン72に係る補正パラメーターを取得する(ステップS14)。詳しくは、ステップS13においてラインの欠損が確認された位置範囲に対応する吐出不良の記録素子52を特定し、記録ヘッド51における当該記録素子52の配置位置(ここでは当該記録素子52の番号)を補正パラメーターとして取得してRAM42に記憶させる。CPU41は、全ての欠損したライン72について補正パラメーターの取得が完了した場合には、補正パラメーター取得処理を終了する。
 以上の補正パラメーター取得処理は、イエローに対応するヘッドユニット50Yについての処理である。マゼンタ、シアン、ブラックに対応するヘッドユニット50M,50C,50Kについても上述の補正パラメーター取得処理が実行され、それぞれ取得された補正パラメーターがRAM42に記憶される。その際、単一の記録媒体Pにヘッドユニット50Y,50M,50C,50Kのそれぞれにより検査用画像を記録してもよいし、これらの各検査用画像を別個の記録媒体Pに記録してもよい。
 続いて、インクジェット記録装置1において実行される画像記録処理について説明する。
 図10は、画像記録処理の制御手順を示すフローチャートである。
 CPU41は、ステップS14でRAM42に記憶させた補正パラメーターを読み出す(ステップS21)。
 CPU41は、インクジェット記録装置1で記録される画像の画像データを、補正パラメーターに基づいて補正する(ステップS22)。詳しくは、CPU41は、吐出不良の記録素子52に代えて隣接する記録素子52からインク吐出させ、又は吐出不良の記録素子52に隣接する記録素子52からのインク吐出量を増加させることで欠損箇所が補完されるように画像データを補正する。即ち、画像データのうち、補正パラメーターにより示される吐出不良の記録素子52に対応する画素列に隣接する画素列の画素データについて、階調値を低輝度側にシフトする補正を行う。そして、CPU41は、補正された画像データを記憶部44に記憶させる。
 CPU41は、搬送ドラム21を制御して記録媒体Pを搬送させるとともに、記録ヘッド制御回路61からステップS22で記憶部44に記憶された補正済みの画像データを記録ヘッド51へ出力させることで、記録ヘッド51からインクを吐出させて記録媒体Pに画像を記録させる(ステップS23)。ステップS22で補正された画像データを用いて画像を記録することにより、吐出不良の記録素子52に隣接する記録素子52からのインク吐出量が増加されて吐出不良の記録素子52に起因する画像の欠損が補完されるため、適正な画像が記録される。
 記録媒体Pへの画像の記録が終了すると、CPU41は、画像記録処理を終了する。
 以上のように、本実施形態のインクジェット記録装置1は、記録媒体Pを保持して搬送方向に搬送する搬送ドラム21と、搬送方向と直交する幅方向に記録媒体Pへの記録幅に亘って配列された複数の記録素子52を用いて記録媒体Pに画像を記録する記録ヘッドと、を備え、CPU41は、搬送ドラム21により搬送される記録媒体Pに対して記録ヘッド51の複数の記録素子52により搬送方向に平行な複数のライン72を含むラインパターン70と、幅方向の長さが複数のライン72各々の幅方向の長さより大きくラインパターン70の幅方向の記録幅より小さい基準マーク80とを予め定められた位置関係で記録させる。
 これにより、ライン72と容易に区別される基準マーク80を基準としてライン72の位置を特定できるため、容易かつ確実にラインパターン70のライン72に対応する記録素子52を特定することが可能な検査用画像が得られる。特に、本実施形態の図4に示すように、ライン群71gの端部のライン72が欠損した場合、基準マーク80がないとラインセンサー25による撮像データにおいてライン群71gに対応する解析線91の位置で輝度分布を解析しても、欠損したライン72がライン群71gのうち左端及び右端のいずれのライン72であるかを判別することができないが、本実施形態によれば、基準マーク80の位置を基準とすることで欠損したライン72に対応する記録素子52を容易に特定することができる。
 また、基準マーク80は、幅方向の長さがライン72の各々より大きい(即ち、記録に用いられる記録素子52の数がライン72より多い)ため、基準マーク80の記録に用いられる記録素子52に吐出不良の記録素子52がいくつか含まれていても基準マーク80自体が欠損することはない。このため、容易かつ確実にラインパターン70のライン72に対応する記録素子52を特定することが可能な検査用画像を得ることができる。
 また、複数のライン72のうち一のライン72は、基準マーク80の基準位置に対して幅方向に第1配置間隔で記録され、ラインパターン70に含まれる複数のライン72は、幅方向に互いに第2配置間隔で記録される。これにより、基準マーク80の基準位置を基準として、第1配置間隔と、ライン72の番号に対応した数の第2配置間隔とを足し合わせることで当該ライン72が記録されているべき位置を算出することができる。
 また、インクジェット記録装置1は、搬送ドラムにより搬送される記録媒体Pに記録されたラインパターン70及び基準マーク80を撮像するラインセンサー25を備え、CPU41は、ラインセンサー25によるラインパターン70及び基準マーク80の撮像データから基準マーク80の基準位置を特定し、当該基準位置、第1配置間隔及び第2配置間隔によりライン72に対応する記録素子52を特定する。これにより、容易かつ確実にラインパターン70のライン72に対応する記録素子52を特定することができる。
 また、CPU41は、上記のように特定された記録素子52に係る情報に基づいて記録媒体Pに記録する画像の画像データを補正する。これにより、ラインパターン70により示された記録媒体52に係る情報を画像データに反映させることで、記録媒体Pに記録される画像における不具合の発生を抑制することができる。
 また、上記記録素子52に係る情報は、記録ヘッド51において記録素子52が配置された位置を示すデータである。これによれば、画像データのうち当該情報により配置位置が示される記録素子52に対応する部分及び/又はその周辺の部分についての補正を行うことで、記録媒体Pに記録される画像における不具合の発生を抑制することができる。
 また、幅方向に隣接した2つの異なる輝度の均一階調画像領域(第1階調画像領域92ax及び第2階調画像領域92bx)をラインセンサー25により撮像した場合、ラインセンサー25による撮像データには、2つの階調画像領域の輝度の間で輝度が変化する幅方向輝度移行範囲93cxが生じ、CPU41は、記録ヘッド51により記録させる基準マーク80の幅方向の長さMxを、幅方向輝度移行範囲93cxの幅方向の長さに対応する記録媒体P上の距離(幅方向輝度移行距離dx)の2倍以上に設定する。これにより、基準マーク80のX方向の位置の特定の際に撮像データにおいて十分な輝度振幅が得られる。
 また、CPU41は、基準マーク80と、当該基準マーク80に幅方向に隣り合うライン72との幅方向の間隔dMxを、幅方向輝度移行範囲93cxの幅方向の長さに対応する記録媒体P上の距離(幅方向輝度移行距離dx)の2倍以上に設定する。また、CPU41は、幅方向に隣り合うライン72の幅方向の間隔dLxを、幅方向輝度移行範囲93cxの幅方向の長さに対応する記録媒体P上の距離(幅方向輝度移行距離dx)の2倍以上に設定する。これにより、基準マーク80及びライン72のX方向の位置の特定の際に輝度分布が非対称となり特定される位置の精度が低下する不具合を抑制することができる。
 また、搬送方向に隣接した2つの異なる輝度の均一階調画像領域(第1階調画像領域92ay及び第2階調画像領域92by)をラインセンサー25により撮像した場合、ラインセンサー25による撮像データには、2つの階調画像領域の輝度の間で輝度が変化する搬送方向輝度移行範囲93cyが生じ、CPU41は、記録ヘッド51により記録させる基準マーク80の搬送方向の長さMyを、搬送方向輝度移行範囲93cyの搬送方向の長さに対応する記録媒体P上の距離(搬送方向輝度移行距離dy)の2倍以上に設定し、撮像データにおける基準マーク80の搬送方向の両端からそれぞれ搬送方向に搬送方向輝度移行距離dy以上内側の範囲での輝度データを用いてライン72に対応する記録素子52を特定する。また、CPU41は、ライン72の搬送方向の長さLyを搬送方向輝度移行距離dyの2倍以上に設定し、撮像データにおけるライン72の搬送方向の両端からそれぞれ搬送方向に搬送方向輝度移行距離dy以上内側の範囲での輝度データを用いてライン72に対応する記録素子52を特定する。これにより、基準マーク80やライン72のX方向の位置の特定の際に撮像データにおいて十分な輝度振幅が得られる。
 また、CPU41は、記録ヘッド51により、複数のライン72のうち少なくとも一本のX方向の配置範囲を包含する位置に基準マーク80を記録させるとともに、基準マーク80から搬送方向に搬送方向輝度移行距離dy以上となる位置を含む領域に当該少なくとも一本のライン72を記録させ、撮像データから輝度データを取得する位置を示す解析線91を、基準マーク80から搬送方向に搬送方向輝度移行距離dy以上となる位置であって当該少なくとも一本のライン72が記録された位置を通りライン72と直交する方向に設定し、撮像データから解析線91上の輝度データを取得する。これにより、ライン72の輝度を解析線91に示す位置で取得、解析する際に基準マーク80の影響が及ばないようにすることができる。
 また、撮像手段として、解析線91(読取ライン)上の画像を撮像するラインセンサー25が用いられる。これにより、最小限の撮像データから欠損したライン72に対応する記録素子52を特定することができる。
 また、2つの均一階調画像領域(第1階調画像領域92ax及び第2階調画像領域92bx、又は第1階調画像領域92ay及び第2階調画像領域92by)は、ラインパターン70及び基準マーク80が記録される記録媒体Pに対して、記録を行わない領域と、ラインパターン70及び基準マーク80が記録されるインクと同一のインクによるベタパターンが記録された領域である。これにより、記録媒体Pにラインパターン70及び基準マーク80が記録される場合と同一の条件で幅方向輝度移行距離dx又は搬送方向輝度移行距離dyを取得することができ、ラインパターン70及び基準マーク80が配置条件を満たさないことによる不具合の発生を抑制することができる。
 (変形例1)
 次に、上記実施形態の変形例1について説明する。この変形例1は、後述する他の変形例と組み合わせても良い。
 上記実施形態では、ラインセンサー25による撮像データのX方向の解像度が600dpi、記録ヘッド51のX方向の記録解像度が1200dpiであるとの前提のもと、検査用画像の撮像データにおける一つの基準マーク80とライン72との間の画素数を記録媒体P上の距離に換算して、当該ライン72に対応する記録素子52を特定する例を説明した。
 しかしながら、ラインセンサー25による撮像データのX方向の解像度は、撮像時のラインセンサー25と記録媒体Pとの距離等により変動し得るため、撮像データの画素数とラインセンサー25の解像度とから記録媒体P上の距離を求めると誤差が生じる場合がある。
 そこで、本変形例1では、図4の2つの基準マーク80a,80hのX方向の位置に対するライン72の相対位置に基づいてライン72に対応する記録素子52を特定する。その他の点は上記実施形態と同様であるため、以下では上記実施形態との差異を中心に説明する。
 CPU41は、図9に示す補正パラメーター取得処理のステップS13,S14の実行に当たり、まず検査用画像の撮像データにおける基準マーク80a,80hの基準位置間のX方向の画素数を算出する。そして、基準マーク80a,80hの位置に対して各ライン72が記録されるべきX方向の相対位置は予め決められているため、基準マーク80a,80hの基準位置間の画素数と当該相対位置とに基づいて、基準マーク80a(又は基準マーク80h)から各ライン72が記録されるべきX方向の位置までの距離に相当する画素数を算出する。そして、CPU41は、基準マーク80a,80hの基準位置間の画像データ上の距離(画素数)と、当該基準位置間の記録媒体P上の距離との比率を求め、当該比率を画像データ上の任意の距離(画素数)に乗じることで、画像データ上の距離を記録媒体P上の距離に換算する。以下、上記実施形態と同様の処理により補正パラメーターが取得される。
 なお、CPU41は、画像データ上の距離を記録媒体P上の距離に換算せず、画像データ上の距離のみにより補正パラメーター取得処理を行っても良い。
 このように、本変形例1では、CPU41は、記録媒体Pに対し、複数の基準マーク80を幅方向について異なる位置に記録させる。この結果得られる検査用画像によれば、複数の基準マーク80の位置を基準とした相対位置からライン72に対応する記録素子52を特定することができる。
 また、CPU41は、ラインセンサー25によるラインパターン70及び複数の基準マーク80の撮像データから当該複数の異なる基準マーク80の幅方向についての基準位置に対するライン72の幅方向についての相対位置によりライン72に対応する記録素子52を特定する。これにより、ラインセンサー25の解像度によらずライン72に対応する記録素子52を容易に特定することができる。
 (変形例2)
 次に、上記実施形態の変形例2について説明する。
 上記実施形態のインクジェット記録装置1では、吐出不良の記録素子52を特定するための検査用画像を記録媒体Pに記録する例を説明したが、本変形例2のインクジェット記録装置1は、異なる色に対応する記録ヘッド51に含まれる記録素子52のX方向の位置ずれを検出するための検査用画像を記録媒体Pに記録する。そして、この検査用画像を撮像、解析して、記録ヘッド51のX方向の位置ずれを相殺するように画像データを補正した上で記録媒体Pに画像の記録を行う。その他の点は上記実施形態と同様であるため、以下では上記実施形態との差異を中心に説明する。
 図11は、本変形例2に係る検査用画像の一例を示す図である。この検査用画像は、記録ヘッド51Yにより記録されたラインパターン70Y及び2つの基準マーク80Yと、記録ヘッド51Mにより記録されたラインパターン70M及び2つの基準マーク80Mとを含む。ラインパターン70M及び基準マーク80Mは、ラインパターン70Y及び基準マーク80Yの+Y方向側に記録される。
 ラインパターン70Yは、記録ヘッド51Yの複数の記録素子52により記録されたY方向に平行なライン72を複数含み、ラインパターン70Mは、記録ヘッド51Mの複数の記録素子52により記録されたY方向に平行なライン72を複数含む。各ライン72は、単一の記録素子52によって記録されてもよいし、記録媒体Pに吐出されたインクがX方向について分離されないような位置関係にある複数の記録素子52により記録されてもよい。また、2つの基準マーク80Yは、ラインパターン70Yの+X方向側及び-X方向側にそれぞれ記録され、2つの基準マーク80Mは、ラインパターン70Mの+X方向側及び-X方向側にそれぞれ記録される。
 基準マーク80Y,80Mは、記録ヘッド51Y,51Mのうち同一の番号の記録素子52により記録される。
 同様に、ラインパターン70Y,70Mに含まれるライン72は、記録ヘッド51Y,51Mのうち同一の番号の記録素子52により記録される。したがって、記録ヘッド51Y,51MのX方向の位置が揃っている場合には、ラインパターン70Y,70Mに含まれる各ライン72は、互いにX方向について同一の位置に記録され、記録ヘッド51Y,51MのX方向の位置が距離d1だけずれている場合には、ラインパターン70Y,70Mに含まれる各ライン72も互いにX方向に距離d1だけずれて記録される。よって、ラインパターン70Y,70Mに含まれるライン72のX方向のずれ量を検出することで、記録ヘッド51Y,51MのX方向の位置ずれ量を求めることができる。図11では、記録ヘッド51Yが記録ヘッド51Mに対して+Y方向に距離d1だけずれている例が示されている。
 図12は、変形例2に係る補正パラメーター取得処理の制御手順を示すフローチャートである。このフローチャートは、図9のフローチャートからステップS14を削除してステップS15,S16を追加したものである。ステップS11,S12は、記録媒体Pに記録ヘッド51Y,51Mにより図11に示す検査用画像が記録される点を除いて上記実施形態と同様であるため、詳細な説明は省略する。
 ステップS12で、ラインセンサー25によりラインパターン70及び基準マーク80を含む検査用画像の撮像が行われた後、CPU41は、ラインパターン70Y,70M間で対応するライン72(記録に用いられた記録素子52の番号が同一であるライン72)を特定する(ステップS15)。具体的には、CPU41は、上記実施形態と同様の方法により、基準マーク80Yを基準としてラインパターン70Yの各ライン72が対応する記録素子52を特定し、基準マーク80Mを基準としてラインパターン70Mの各ライン72が対応する記録素子52を特定する。そして、ラインパターン70Yの少なくとも一のライン72について、当該ライン72がラインパターン70Mのどのライン72に対応するかを特定し、その結果に係るデータをRAM42に記憶させる。
 CPU41は、記録ヘッド51Y,51MのX方向の位置ずれ量に係る補正パラメーターを取得する(ステップS16)。詳しくは、CPU41は、ステップS15でRAM42に記憶されたラインパターン70Y,70Mにおいて対応するライン72に係る情報を取得し、当該ライン72間のX方向の距離d1(即ち、記録ヘッド51Y,51Mに含まれる記録素子52のうち番号が同一である記録素子52の幅方向の間隔)を算出して、算出された値を補正パラメーターとしてRAM42に記憶させる。ここでは、一対の対応するライン72のX方向の距離d1を補正パラメーターとしてもよいし、複数の対の対応するライン72のX方向の距離d1の平均値を補正パラメーターとしてもよい。CPU41は、補正パラメーターの取得が完了した場合には、補正パラメーター取得処理を終了する。
 以上の補正パラメーター取得処理は、記録ヘッド51Yと記録ヘッド51Mとの位置ずれ量に関する処理であるが、同様の処理を記録ヘッド51C,51Kと他の何れかの記録ヘッド51との間についても行い、それぞれ補正パラメーターを取得してRAM42に記憶させる。
 本変形例2に係る画像記録処理は、ステップS22の画像データの補正方法を除いて図10に示す画像記録処理と同様である。ステップS22における画像データの補正方法は以下の通りである。
 CPU41は、記録ヘッド51のX方向の位置ずれが相殺されるように画像データを補正する。具体的には、画像データのうち、+X方向(-X方向)の位置ずれが生じている記録ヘッド51に対応する部分のデータ(即ち、当該記録ヘッド51に対応する色に係るデータ)を、補正パラメーターにより示される位置ずれ量に対応して画像が-X方向(+X方向)にシフトされるように補正を行う。そして、CPU41は、補正された画像データを記憶部44に記憶させる。
 以上のように、本変形例2では、ラインパターン70は、複数の記録ヘッド51に含まれる同一の番号の記録素子52により記録されたライン72を含む。これにより、ラインパターン70間で対応するライン72に係る記録素子52を特定して幅方向の位置ずれ量を検出することで、記録ヘッド51の幅方向の位置ずれ量を特定することができる。
 また、CPU41は、特定された記録素子52に係る情報に基づいて取得された補正パラメーターに基づいて、記録媒体Pに記録する画像の画像データを補正し、当該記録素子52に係る情報は、当該記録素子52と、当該記録素子52を含む記録ヘッド51とは異なる記録ヘッド51に含まれる特定の記録素子52との幅方向の間隔を示すデータである。これによれば、当該情報により示される記録素子52間の幅方向の間隔に基づいて画像データの一部を幅方向にシフトする補正を行うことで、記録媒体Pに記録される画像における記録ヘッド51の位置ずれに起因した不具合の発生を抑制することができる。
 また、インクジェット記録装置1は、複数の記録素子52が設けられた記録ヘッド51を複数備え、CPU41は、当該複数の記録ヘッド51により各々別個の基準マーク80を記録させる。これにより、記録ヘッド51の幅方向の相対位置関係によらず、各記録ヘッド51により記録された基準マーク80を基準とすることでライン72に対応する記録素子52を容易に特定することができる。
 (変形例3)
 次に、上記実施形態の変形例3について説明する。
 本変形例3のインクジェット記録装置1では、一のヘッドユニット50に含まれる複数の記録ヘッド51のX方向の位置ずれを検出するための検査用画像を記録媒体Pに記録する。そして、この検査用画像を撮像、解析して、記録ヘッド51のX方向の位置ずれを相殺するように画像データを補正した上で記録媒体Pに画像の記録を行う。その他の点は変形例2と同様であるため、以下では変形例2との相違点を中心に説明する。
 図13は、変形例3に係る検査用画像の一例を示す図である。図13では、あるヘッドユニット50(例えばヘッドユニット50Y)に含まれる隣り合う3つの記録ヘッド51i,51j,51kによりそれぞれ記録されたラインパターン70i,70j,70kと、基準マーク80i,80j,80kとが示されている。
 ラインパターン70i,70j,70kは、それぞれ記録ヘッド51i,51j,51kの端部付近の記録素子52により記録された3つのライン72を含む。
 基準マーク80jは、ラインパターン70jのうち左端(-X方向側の端部)の3つのライン72の+X方向側に隣り合う位置、及び右端(+X方向側の端部)の3つのライン72の-X方向側に隣り合う位置に記録される。基準マーク80i,80kについても同様である。
 ラインパターン70iの右端(+X方向の端部)の3つのライン72、及びラインパターン70jの左端(-X方向の端部)の3つのライン72は、記録ヘッド51i,51jの記録素子のうちX方向について同一の位置に配置されるべき記録素子52によりそれぞれ記録される。同様に、ラインパターン70jの右端の3つのライン72、及びラインパターン70kの左端の3つのライン72は、記録ヘッド51j,51kの記録素子のうちX方向について同一の位置に配置されるべき記録素子52によりそれぞれ記録される。よって、ラインパターン70i,70j、及びラインパターン70j,70kの上記3つのライン72のX方向の位置が互いに一致する場合、記録ヘッド51i,51j、及び記録ヘッド51j,51kがX方向について適正な位置関係にあることを示し、記録ヘッド51i,51j(記録ヘッド51j,51k)の相対位置が適正な位置からX方向に距離d2だけずれている場合には、ラインパターン70i,70j(ラインパターン70j,70k)に含まれる各ライン72も互いにX方向に距離d2だけずれて記録される。よって、ラインパターン70i,70j,70kに含まれる各ライン72のX方向のずれを検出することで、記録ヘッド51i,51j,51kのX方向の位置ずれ量を求めることができる。図13では、記録ヘッド51kが記録ヘッド51jに対して+X方向に距離d2だけずれている例が示されている。
 本変形例3における補正パラメーター取得処理は、基本的に図12に示す補正パラメーター取得処理と同様である。
 ただし、ステップS15では、CPU41は、ラインパターン70iの右端の3つのライン72と、ラインパターン70jの左端の3つのライン72との間で対応するライン72(即ち、記録ヘッド51i,51jが適正位置にある場合にX方向の位置が一致するライン72)を特定する。同様に、ラインパターン70jの右端の3つのライン72と、ラインパターン70kの左端の3つのライン72との間で対応するライン72を特定する。
 また、ステップS16では、ステップS15で特定された対応するライン72の間のX方向の距離d2を算出して、算出された値を補正パラメーターとしてRAM42に記憶させる。
 また、本変形例3における画像記録処理は、ステップS22の画像データの補正方法を除いて図10に示す画像記録処理と同様である。以下では、図10と同様の点については説明を省略する。
 CPU41は、ステップS22において、記録ヘッド51i,51jのX方向の位置ずれが相殺されるように画像データを補正するとともに、記録ヘッド51j,51kのX方向の位置ずれが相殺されるように画像データを補正する。具体的には、画像データのうち、+X方向(-X方向)の位置ずれが生じている記録ヘッド51に対応する部分のデータを、補正パラメーターにより示される位置ずれ量に対応して画像が-X方向(+X方向)にシフトされるように補正を行う。そして、CPU41は、補正された画像データを記憶部44に記憶させる。
 上記の説明では、3つの記録ヘッド51i,51j,51kの間の位置ずれを検出する例を説明したが、ヘッドユニット50に4つ以上の記録ヘッド51が含まれている場合には、それらの記録ヘッド51の位置ずれの検出を併せて行ってもよい。
 以上のように、本変形例3では、隣り合う記録ヘッド51の端部付近の記録素子52によりラインパターン70及び基準マーク80が記録され、このうちラインパターン70は、隣り合う記録ヘッド51のうちX方向について同一の位置に配置されるべき記録素子52により記録される。これにより、ラインパターン70間で対応するライン72を特定して幅方向の位置ずれ量を検出することで、隣り合う記録ヘッド51の幅方向の位置ずれ量を特定することができる。
 なお、本発明は、上記実施形態及び各変形例に限られるものではなく、様々な変更が可能である。
 例えば、上記実施形態及び各変形例では、インクジェット記録装置1で記録された検査用画像をインクジェット記録装置1に備えられたラインセンサー25により撮像して読み取る例を説明したが、これに限られない。例えば、インクジェット記録装置1で記録媒体Pに記録された検査用画像を、インクジェット記録装置1とは別個の読取装置に備えられた撮像手段により撮像して読み取ってもよい。この場合、撮像データから補正パラメーターを取得する処理、及び補正パラメーターを用いて画像データを補正する処理は、インクジェット記録装置1の外部の画像処理装置において実行して処理結果をインクジェット記録装置1に入力してもよいし、これらの処理をインクジェット記録装置1で行ってもよい。このような構成によっても、容易かつ確実にラインパターン70のライン72に対応する記録素子52を特定することができる。
 また、上記実施形態及び各変形例では、基準マーク80の形状が矩形である例を説明したが、これに限られない。基準マーク80の形状は、例えば円、楕円、菱形、三角形等、X方向の位置によりY方向の長さが異なる形状としてもよい。このような構成によれば、基準マーク80の一部が記録素子52の吐出不良により欠損した場合でも基準マーク80の形状を特定しやすくなり、基準マーク80の基準位置を正確に算出することができる。
 また、基準マーク80を記録する位置は、上記実施形態及び各変形例の態様に限られず、記録媒体P上の任意の位置とすることができる。ここで、基準マーク80がラインパターン70とY方向に離れた位置に記録されていても、基準マーク80の基準位置とラインパターン70のライン72とのX方向の間隔を検査用画像の撮像データから読み取ることができるため、検査用画像からライン72に対応する記録素子52を特定することができる。よって、例えば基準マーク80を記録媒体Pの余白部等に記録することで、記録媒体Pに記録される他の画像の配置自由度を高めることができる。
 また、上記実施形態及び各変形例では、撮像手段としてラインセンサー25を例に説明したが、これに限られず、例えば二次元イメージセンサー等を使用してもよい。
 また、ラインセンサー25は記録媒体Pの搬送方向に直交する方向(X方向)に沿って配置されているものとしたが、これに限られない。ラインセンサー25は、搬送方向と交差する所定の直線に沿って撮像を行うものであれば足り、ラインセンサー25のX方向からの角度が既知であれば任意の角度とすることができる。
 また、上記実施形態及び各変形例では、搬送手段として搬送ドラム21を例に説明したが、これに限られず、搬送面上に記録媒体を保持して搬送する任意の搬送手段を使用することができる。例えば、2本のローラーに支持されローラーの回転に応じて2本のローラーの周囲を周回するベルトを有し、当該ベルトの搬送面上に記録媒体Pを保持する搬送手段であってもよい。
 また、上記実施形態及び各変形例では、ラインパターン70に含まれるライン72が記録素子52の配置位置を正確に反映している例で説明したが、これに限られない。例えば、ある記録素子52でインクの吐出方向がX方向にずれる吐出方向不良の不具合が生じており、当該記録素子52により記録されたライン72が所定の位置からX方向にずれる場合において、ラインパターン70の撮像データから位置ずれを生じているライン72を検出して吐出方向不良の記録素子52を上記実施形態と同様の方法で特定してもよい。
 また、上記実施形態及び各変形例では、画像記録装置としてインクジェット記録装置1を例に説明したが、本発明は、複数の記録素子を用いて画像を記録する種々の画像記録装置に適用できる。例えば、記録素子としてのLED(Light Emitting Diode)又はレーザー発光素子が配列されたプリントヘッドから、帯電された感光ドラムに光を照射して静電潜像を形成し、静電潜像に応じて感光ドラム上に分布されたトナーを記録媒体に転写して画像を形成する電子写真方式の画像記録装置に適用してもよい。
 本発明のいくつかの実施形態を説明したが、本発明の範囲は、上述の実施の形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲とその均等の範囲を含む。
 本発明は、画像記録装置及び画像読取方法に利用することができる。
1 インクジェット記録装置
2 外部装置
10 給紙部
 11 給紙トレー
 12 搬送部
  121,122 ローラー
  123 ベルト
20 画像記録部
 21 搬送ドラム
  21M 搬送ドラムモーター
 22 受け渡しユニット
  221 スイングアーム部
  222 ドラム
 23 加熱部
 24 定着部
 25 ラインセンサー
  251 撮像素子
 26 デリバリー部
  261,262 ローラー
  263 ベルト
  264 ドラム
30 排紙部
 31 排紙トレー
40 制御部
 41 CPU
 42 RAM
 43 ROM
 44 記憶部
50 ヘッドユニット
 51 記録ヘッド
 52 記録素子
61 記録ヘッド制御回路
62 ラインセンサー制御回路
63 搬送ドラムモーター制御回路
64 インターフェース
65 バス
70 ラインパターン
 71 ライン群
 72 ライン
80 基準マーク
91 解析線
P 記録媒体

Claims (18)

  1.  記録媒体を保持して搬送方向に搬送する搬送手段と、
     前記搬送方向と直交する幅方向に前記記録媒体への記録幅に亘って当該搬送方向と交差する向きに配列された複数の記録素子を用いて前記記録媒体に画像を記録する記録手段と、
     前記搬送手段により搬送される前記記録媒体に対して前記記録手段の前記複数の記録素子により、前記搬送方向に平行な複数のラインを含むラインパターンと、前記幅方向の長さが前記複数のライン各々の前記幅方向の長さより大きく前記ラインパターンの前記幅方向の記録幅より小さい識別標識とを予め定められた位置関係で記録させる記録制御手段と、
     を備えることを特徴とする画像記録装置。
  2.  前記複数のラインのうち一のラインは、前記識別標識の基準位置に対して前記幅方向に第1配置間隔で記録され、
     前記ラインパターンに含まれる前記複数のラインは、前記幅方向に互いに第2配置間隔で記録されることを特徴とする請求項1記載の画像記録装置。
  3.  前記搬送手段により搬送される前記記録媒体に記録された前記ラインパターン及び前記識別標識を撮像する撮像手段と、
     前記撮像手段による前記ラインパターン及び前記識別標識の撮像データから前記基準位置を特定し、当該基準位置、前記第1配置間隔及び前記第2配置間隔により前記ラインに対応する前記記録素子を特定するライン特定手段と、
     を備えることを特徴とする請求項2記載の画像記録装置。
  4.  前記記録制御手段は、前記記録媒体に対し、複数の前記識別標識を前記幅方向について異なる位置に記録させることを特徴とする請求項2記載の画像記録装置。
  5.  前記搬送手段により搬送される前記記録媒体に記録された前記ラインパターン及び前記複数の識別標識を撮像する撮像手段と、
     前記撮像手段による前記ラインパターン及び前記複数の識別標識の撮像データから前記複数の識別標識の前記幅方向についての前記基準位置に対する前記ラインの前記幅方向についての相対位置により前記ラインに対応する前記記録素子を特定するライン特定手段と、
     を備えることを特徴とする請求項4記載の画像記録装置。
  6.  前記ライン特定手段により特定された前記記録素子に係る情報に基づいて前記記録媒体に記録する画像の画像データを補正する補正手段を備えることを特徴とする請求項3又は5記載の画像記録装置。
  7.  前記記録素子に係る情報は、前記記録手段において当該記録素子が配置された位置を示すデータであることを特徴とする請求項6記載の画像記録装置。
  8.  前記記録手段を複数備え、
     前記記録素子に係る情報は、当該記録素子と、当該記録素子を含む前記記録手段とは異なる前記記録手段に含まれる特定の記録素子との前記幅方向の間隔を示すデータである
     ことを特徴とする請求項6記載の画像記録装置。
  9.  前記幅方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
     前記記録制御手段が前記記録手段により記録させる前記識別標識の前記幅方向の長さを、前記輝度移行範囲の前記幅方向の長さに対応する前記記録媒体上の距離の2倍以上に設定する設定手段を備える
     ことを特徴とする請求項3,5~8の何れか一項に記載の画像記録装置。
  10.  前記幅方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
     前記記録制御手段が前記記録手段により記録させる前記識別標識と、当該識別標識に前記幅方向に隣り合う前記ラインとの前記幅方向の間隔を、前記輝度移行範囲の前記幅方向の長さに対応する前記記録媒体上の距離の2倍以上に設定する設定手段を備える
     ことを特徴とする請求項3,5~8の何れか一項に記載の画像記録装置。
  11.  前記幅方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
     前記記録制御手段が前記記録手段により記録させる前記幅方向に隣り合う前記ラインの前記幅方向の間隔を、前記輝度移行範囲の前記幅方向の長さに対応する前記記録媒体上の距離の2倍以上に設定する設定手段を備える
     ことを特徴とする請求項3,5~8の何れか一項に記載の画像記録装置。
  12.  前記搬送方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
     前記記録制御手段が前記記録手段により記録させる前記識別標識の前記搬送方向の長さを、前記輝度移行範囲の前記搬送方向の長さに対応する前記記録媒体上の搬送方向輝度移行距離の2倍以上に設定する設定手段を備え、
     前記ライン特定手段は、前記撮像データにおける前記識別標識の前記搬送方向の両端からそれぞれ前記搬送方向に前記搬送方向輝度移行距離以上内側の範囲での輝度データを用いて前記ラインに対応する前記記録素子を特定する
     ことを特徴とする請求項3,5~8の何れか一項に記載の画像記録装置。
  13.  前記搬送方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
     前記記録制御手段が前記記録手段により記録させる前記ラインの前記搬送方向の長さを、前記輝度移行範囲の前記搬送方向の長さに対応する前記記録媒体上の搬送方向輝度移行距離の2倍以上に設定する設定手段を備え、
     前記ライン特定手段は、前記撮像データにおける前記ラインの前記搬送方向の両端からそれぞれ前記搬送方向に前記搬送方向輝度移行距離以上内側の範囲での輝度データを用いて前記ラインに対応する前記記録素子を特定する
     ことを特徴とする請求項3,5~8の何れか一項に記載の画像記録装置。
  14.  前記搬送方向に隣接した2つの異なる輝度の均一階調画像領域を前記撮像手段により撮像した場合、当該撮像手段による撮像データには、前記2つの均一階調画像領域の輝度の間で輝度が変化する輝度移行範囲が生じ、
     前記記録制御手段は、前記記録手段により、前記複数のラインのうち少なくとも一本の前記幅方向の配置範囲を包含する位置に前記識別標識を記録させるとともに、前記識別標識から前記搬送方向に前記輝度移行範囲の前記搬送方向の長さに対応する前記記録媒体上の搬送方向輝度移行距離以上となる位置を含む領域に前記少なくとも一本のラインを記録させ、
     前記ライン特定手段が前記撮像データから輝度データを取得する位置を示す解析線を、前記識別標識から前記搬送方向に前記搬送方向輝度移行距離以上となる位置であって前記少なくとも一本のラインが記録された位置を通り前記ラインと直交する方向に設定する解析線設定手段を備え、
     前記ライン特定手段は、前記撮像データから前記解析線上の輝度データを取得する
     ことを特徴とする請求項3,5~8の何れか一項に記載の画像記録装置。
  15.  前記撮像手段は、前記解析線上の画像を撮像するラインセンサーであることを特徴とする請求項14記載の画像記録装置。
  16.  前記2つの均一階調画像領域は、前記ラインパターン及び前記識別標識が記録される前記記録媒体に対して、記録を行わない領域と、前記ラインパターン及び前記識別標識が記録される色材と同一の色材によるベタパターンが記録された領域であることを特徴とする請求項9~15の何れか一項に記載の画像記録装置。
  17.  前記記録手段を複数備え、
     前記記録制御手段は、当該複数の記録手段により各々別個の前記識別標識を記録させる
     ことを特徴とする請求項1~16の何れか一項に記載の画像記録装置。
  18.  記録媒体を保持して搬送方向に搬送する搬送手段と、前記搬送方向と直交する幅方向に前記記録媒体への記録幅に亘って当該搬送方向と交差する向きに配列された複数の記録素子を用いて前記記録媒体に画像を記録する記録手段と、を備える画像記録装置を用いて記録される画像を撮像手段により撮像して読み取る画像読取方法であって、
     前記搬送手段により搬送される前記記録媒体に対して前記記録手段の前記複数の記録素子により、前記搬送方向に平行な複数のラインを含むラインパターンと、前記幅方向の長さが前記複数のライン各々の前記幅方向の長さより大きく前記ラインパターンの前記幅方向の記録幅より小さい識別標識とを予め定められた位置関係で記録する記録ステップ、
     前記記録媒体に記録された前記ラインパターン及び前記識別標識を前記撮像手段により撮像する撮像ステップ、
     を含むことを特徴とする画像読取方法。
PCT/JP2015/079636 2014-11-13 2015-10-21 画像記録装置及び画像読取方法 WO2016076086A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016558949A JP6579113B2 (ja) 2014-11-13 2015-10-21 画像記録装置及び画像読取方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-230352 2014-11-13
JP2014230352 2014-11-13

Publications (1)

Publication Number Publication Date
WO2016076086A1 true WO2016076086A1 (ja) 2016-05-19

Family

ID=55954178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079636 WO2016076086A1 (ja) 2014-11-13 2015-10-21 画像記録装置及び画像読取方法

Country Status (2)

Country Link
JP (1) JP6579113B2 (ja)
WO (1) WO2016076086A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047594A (ja) * 2016-09-21 2018-03-29 コニカミノルタ株式会社 記録ヘッドの相対位置検出方法、及び画像形成装置
JP2020044738A (ja) * 2018-09-19 2020-03-26 株式会社リコー 液滴吐出装置、ギャップ調整方法及び画像形成装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12090767B2 (en) 2022-09-29 2024-09-17 Ricoh Company, Ltd. Defective nozzle locating mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166247A (ja) * 1992-08-24 1994-06-14 Canon Inc 記録濃度むら補正機能を有する記録装置および記録濃度むら補正方法
JP4312057B2 (ja) * 2002-03-29 2009-08-12 オリンパス株式会社 幾何特性解析方法
JP2011201051A (ja) * 2010-03-24 2011-10-13 Fujifilm Corp 微細パターン位置検出方法及び装置、不良ノズル検出方法及び装置、及び液体吐出方法及び装置
JP2012176612A (ja) * 2011-01-31 2012-09-13 Canon Inc インクジェット記録装置
JP2014195897A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 補正値取得方法、及び、液体吐出装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166247A (ja) * 1992-08-24 1994-06-14 Canon Inc 記録濃度むら補正機能を有する記録装置および記録濃度むら補正方法
JP4312057B2 (ja) * 2002-03-29 2009-08-12 オリンパス株式会社 幾何特性解析方法
JP2011201051A (ja) * 2010-03-24 2011-10-13 Fujifilm Corp 微細パターン位置検出方法及び装置、不良ノズル検出方法及び装置、及び液体吐出方法及び装置
JP2012176612A (ja) * 2011-01-31 2012-09-13 Canon Inc インクジェット記録装置
JP2014195897A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 補正値取得方法、及び、液体吐出装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047594A (ja) * 2016-09-21 2018-03-29 コニカミノルタ株式会社 記録ヘッドの相対位置検出方法、及び画像形成装置
JP2020044738A (ja) * 2018-09-19 2020-03-26 株式会社リコー 液滴吐出装置、ギャップ調整方法及び画像形成装置
JP7081419B2 (ja) 2018-09-19 2022-06-07 株式会社リコー 液滴吐出装置、ギャップ調整方法及び画像形成装置

Also Published As

Publication number Publication date
JP6579113B2 (ja) 2019-09-25
JPWO2016076086A1 (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6536590B2 (ja) 情報処理装置、画像記録装置及び情報処理方法
JP6805666B2 (ja) インクジェット記録装置及びインク着弾位置調整方法
JP6344862B2 (ja) 検査装置、検査方法及びプログラム、画像記録装置
US8888225B2 (en) Method for calibrating optical detector operation with marks formed on a moving image receiving surface in a printer
US10773516B2 (en) Ink jet recording apparatus and method for detecting defective nozzle
US10889127B2 (en) Liquid discharge apparatus, defective nozzle detection method, and recording medium
JP6579113B2 (ja) 画像記録装置及び画像読取方法
WO2018168191A1 (ja) 画像検出装置及びインクジェット記録装置
JP6848963B2 (ja) 画像記録装置及び画像記録装置の制御方法
JP7367348B2 (ja) 画像形成装置および画像形成方法
JP6443449B2 (ja) 画像記録装置、画像読取方法及び画像記録方法
JP5359448B2 (ja) 露光装置及び画像形成装置
JP6895857B2 (ja) インクジェット印刷装置および濃淡補正方法
JP6107199B2 (ja) 画像形成装置、測色方法及び測色プログラム
JP2006060713A (ja) 画像形成装置
JP6891463B2 (ja) 画像形成装置、およびプログラム
JP5129539B2 (ja) 記録不良検出装置、画像記録装置及び記録不良検出方法
JP6737101B2 (ja) 記録ヘッドの相対位置検出方法、及び画像形成装置
JP6862674B2 (ja) インクジェット記録装置
JP2016058908A (ja) 画像読取装置及び画像記録装置
JP2020104434A (ja) 画像形成装置及び画像データ処理方法
JP2019181797A (ja) 情報処理装置、インクジェット記録装置及び画像記録調整方法
JP2017149150A (ja) 撮像装置、測色装置及びインクジェット記録装置
JP7459533B2 (ja) 画像形成装置、画像形成方法およびプログラム
JP6904365B2 (ja) 画像読取装置、画像記録装置及び画像読取装置の較正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858457

Country of ref document: EP

Kind code of ref document: A1