WO2018113698A1 - 一种石墨烯聚氨酯海绵及其制备方法与应用 - Google Patents

一种石墨烯聚氨酯海绵及其制备方法与应用 Download PDF

Info

Publication number
WO2018113698A1
WO2018113698A1 PCT/CN2017/117492 CN2017117492W WO2018113698A1 WO 2018113698 A1 WO2018113698 A1 WO 2018113698A1 CN 2017117492 W CN2017117492 W CN 2017117492W WO 2018113698 A1 WO2018113698 A1 WO 2018113698A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
parts
oil
polyurethane sponge
water
Prior art date
Application number
PCT/CN2017/117492
Other languages
English (en)
French (fr)
Inventor
朱英
Original Assignee
北京赛特石墨烯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京赛特石墨烯科技有限公司 filed Critical 北京赛特石墨烯科技有限公司
Publication of WO2018113698A1 publication Critical patent/WO2018113698A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • C08G18/163Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
    • C08G18/165Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22 covered by C08G18/18 and C08G18/24
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1816Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1825Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2018Heterocyclic amines; Salts thereof containing one heterocyclic ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2045Heterocyclic amines; Salts thereof containing condensed heterocyclic rings
    • C08G18/2063Heterocyclic amines; Salts thereof containing condensed heterocyclic rings having two nitrogen atoms in the condensed ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/32Materials not provided for elsewhere for absorbing liquids to remove pollution, e.g. oil, gasoline, fat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the invention belongs to the field of water pollution and oil-water separation, and in particular relates to a graphene polyurethane sponge and a preparation method and application thereof.
  • Oil absorbing materials widely used today include zeolites, activated carbon, organic clay, straw, wool, sponges and fibers. Sponges are rich in three-dimensional pores and can store large amounts of oil, but sponges generally have no oil-water selectivity and therefore cannot be used directly. Through a certain material modification, the sponge can have oil-water selectivity while maintaining a high oil absorption rate, that is, only oil absorption does not absorb water.
  • zeolites activated carbon
  • organic clay organic clay
  • straw wool
  • sponges and fibers a certain material modification
  • the sponge can have oil-water selectivity while maintaining a high oil absorption rate, that is, only oil absorption does not absorb water.
  • a variety of materials for modified sponges for oil-water separation are currently disclosed, such as the British Journal of Energy and Environmental Sciences (Energy & Environmental Science, 2012, 5, 7908), which reports a three-dimensional porous coating of sponges.
  • An oil absorbing material which first obtains a graphene nanosheet by peeling off the flexible graphite, and is dispersed in an ethanol solution, and then immersing the melamine sponge in the above solution to obtain a three-dimensional porous structure of the graphene-coated sponge, which has good hydrophobicity. Sex, but the graphene nanosheet used in this method is small, the coating ratio of the sponge skeleton is not high, and the exposed hydrophilic sponge skeleton is liable to appear, which reduces the separation effect. Germany's Advanced Functional Materials (2012, 22, p. 4421) reports a three-dimensional spongy graphite material prepared by reducing graphene oxide.
  • the graphene oxide is prepared by the Hummers method and reduced by hydrothermal method. Reducing graphene oxide, then cooling The sponge-like graphene is obtained by freeze-drying, and the nanosheet of the graphene is large, but the mechanical strength is poor, and it is necessary to remove the adsorbed oil by heat treatment during recycling, and the energy consumption is large.
  • Patent CN104163934 A discloses a method of partially carbonizing a polymeric foam material to obtain a hydrophobic lipophilic material. This method requires high temperature treatment of the foam under the protection of inert gas, high requirements on the process conditions, high energy consumption, and inevitably will produce toxic gases in the carbonization process, bringing new environmental pollution. In addition, carbonization causes the volume of the foam to shrink and partially or completely lose its elasticity, which will result in a decrease in the oil absorption rate and the reuse rate.
  • CN102660046A discloses "a preparation method of a superhydrophobic superlipophilic sponge", which comprises: sponge pretreatment, preparation of chromic acid washing solution, preparation of polyperfluoroalkylsiloxane-ethanol mixed solution, sponge immersion Corrosion in the chromic acid washing solution, the sponge is immersed in the polyperfluoroalkylsiloxane-ethanol mixed solution, and then removed and dried.
  • the preparation method forms a superhydrophobic, super-lipophilic/super-lipophilic surface on the surface of the polyurethane sponge by chromic acid etching and fluorosilane modification.
  • the invention aims to prepare a graphene polyurethane sponge with high strength, low cost, simple process, super hydrophobicity and super lipophilic property, and a preparation method thereof, aiming at the defects existing in the prior art, and realizes large-scale, continuous and efficient recovery and mixing. Oil in the liquid.
  • the graphene polyurethane sponge of the present invention the raw materials of which include:
  • polyether polyol 50-100 parts of polyether polyol, 0.1-0.5 parts of amine catalyst, 0.1-0.5 parts of tin catalyst, 0.5-3 parts of foam stabilizer, 0.5-7 parts of water, 10-50 parts of graphene modifier and 30 - 60 parts of isocyanate.
  • the graphene polyurethane sponge according to the present invention wherein the polyether polyol has a hydroxyl value of from 30 to 60 mgKOH/g.
  • the polyether polyol may be, but not limited to, polyether 3010, MN-3050, Ep-455S, Ep-553, Ep-330N, ED-28, DL-2000.
  • the graphene polyurethane sponge according to the present invention wherein the amine catalyst is one or more of bis(dimethylaminoethyl)ether, triethylenediamine and triethanolamine, and may be used in practical application. Solution containing the above substances liquid.
  • a graphene polyurethane sponge according to the present invention wherein the tin-based catalyst is stannous octoate (T 9 ) or dibutyltin dilaurate (T 12) or a mixture of the two.
  • a graphene polyurethane sponge according to the present invention characterized in that the foam stabilizer is a silicon-carbon bond Si-C copolymer.
  • the foam stabilizer may be silicone oil L580, L618, OFX-5043, Y10366.
  • a graphene polyurethane sponge according to the present invention wherein the graphene modifier is a dispersion of graphene, wherein the solvent used preferably comprises N,N-dimethylcyclohexylamine, bis(2-dimethylaminoethyl) Ether, N,N,N',N'-tetramethylalkylene diamine, triethylamine, N,N-dimethylbenzylamine, solid amine, N-ethylmorpholine, N-methyl One or more of morpholine, N,N'-diethylpiperazine, triethanolamine, N,N-dimethylethanolamine, pyridine, and N,N'-lutidine; the graphene The mass content is from 10% to 50% of the dispersion.
  • the solvent used preferably comprises N,N-dimethylcyclohexylamine, bis(2-dimethylaminoethyl) Ether, N,N,N',N'-tetramethylalkylene di
  • mechanically shear-exfoliated graphite is used in the dispersion of graphene, wherein the equipment used for the mechanical shearing includes, but is not limited to, a ball mill, an emulsifier, a disperser, a grinder, a homogenizer, and a fluid.
  • the equipment used for the mechanical shearing includes, but is not limited to, a ball mill, an emulsifier, a disperser, a grinder, a homogenizer, and a fluid.
  • the equipment used for the mechanical shearing includes, but is not limited to, a ball mill, an emulsifier, a disperser, a grinder, a homogenizer, and a fluid.
  • the equipment used for the mechanical shearing includes, but is not limited to, a ball mill, an emulsifier, a disperser, a grinder, a homogenizer, and a fluid.
  • One or more of the colliders One or more of the colliders.
  • the graphene polyurethane sponge according to the present invention is characterized in that the isocyanate is one or more of hexamethylene diisocyanate, toluene diisocyanate, cyclohexane diisocyanate, and diphenylmethylene diisocyanate.
  • the invention also includes a method for preparing any of the above graphene polyurethane sponges, comprising the following steps:
  • the invention also provides the use of any of the above graphene polyurethane sponges in the field of oil absorption.
  • a continuous device for rapidly recovering oil in an oil-water mixture including a superhydrophobic, super-lipophilic graphene polyurethane sponge, a vacuum pump, a tube and an oil reservoir; one end of the tube is inserted with graphene polyurethane In the sponge, the other end is connected to a vacuum pump, and the vacuum pump is connected to the oil reservoir.
  • the oil phase adsorbed in the graphene urethane sponge is extracted by the vacuum of the vacuum pump, and the oil of the graphene urethane sponge is introduced into the oil reservoir through the tube.
  • the self-made graphene modifier is a dispersion of graphene.
  • the solvent acts as an amine catalyst, directly participates in the polyurethane reaction, and effectively adjusts the sponge reaction rate and cell diameter.
  • Graphene is a hydrophobic group, so that the sponge has hydrophobicity, excellent chemical stability, strong acid resistance and strong resistance. Alkali and high salt solution.
  • the sponge obtained after the completion of the reaction has superhydrophobic and superlipophilic properties, and the size of the hydrophobicity can be adjusted by the amount of the additive of the graphene dispersion.
  • Graphene is directly prepared by mechanically stripping graphite, and the method is simple and the cost is low.
  • the preparation method of the superhydrophobic and superlipophilic polyurethane soft foam is simple and easy, and the cost is low; the hydrophobicity of the sponge can be arbitrarily controlled by the addition amount of the graphene dispersion.
  • the obtained sponge has good toughness, good compression effect, strong hydrophobic ability, strong acid resistance, strong alkali and high salt, and the separation efficiency reaches 99.99%, which can not only absorb oil on the water surface (light oil), but also absorb underwater oil (heavy oil) ).
  • Figure 1 is a graphene polyurethane sponge of the present invention.
  • FIG. 2 is a contact angle diagram of water droplets and oil droplets of a graphene polyurethane sponge of the present invention.
  • Figure 3 is a contact angle diagram of oil droplets of a graphene polyurethane sponge of the present invention.
  • Figure 4 is a graph showing the separation efficiency of graphene polyurethane of the present invention.
  • Figure 5 is a graph showing the stability of graphene polyurethane of the present invention.
  • the hydrophobic polyurethane sponge is foamed from the following raw materials, and the components are in parts by weight:
  • A-1 is a common commercial product, a solution of bis(dimethylaminoethyl)ether 30% dipropylene glycol (DPG) with a mass fraction of 70%;
  • A-33 is a common commercial product.
  • the foaming method is as follows:
  • the ambient temperature is controlled at 21 ° C.
  • the polyether, catalyst, water, foam stabilizer, graphene N, N-dimethylcyclohexylamine solution and other raw materials are weighed according to the formula and then added to the material barrel, using a mixer (speed 3000 rad / Min) Mix and stir for 30s, let stand for 3min, then weigh the toluene diisocyanate and pour it into the material mixing tank.
  • the temperature of the material is controlled. After stirring at 22 ° C for 5 s, the mixture was poured into a foaming box for foaming, and the reaction time was 103 s, and after aging, it was cut into a desired size.
  • the contact angle of the graphene polyurethane sponge was measured by a contact angle measuring instrument. First, the graphene polyurethane sponge was horizontally placed on the contact angle measuring instrument, and then 4 ⁇ L of water was dropped on the sponge, and the software provided by the instrument automatically simulated the water drop. Outline, calculate the contact angle. As shown in Fig. 2, the water droplet contact angle was 154°, and the oil contact angle was 0°.
  • the superhydrophobic, super-lipophilic graphene polyurethane sponge prepared in Example 1 was connected with a vacuum pump to prepare a fast and efficient continuous oil absorbing device: the superhydrophobic and super-lipophilic graphene urethane sponge was placed on the oily sea surface. Then, the vacuum pump switch is turned on, and the vacuum pump extracts the crude oil adsorbed in the graphene polyurethane sponge.
  • the bottom area of the graphene polyurethane sponge is 10cm ⁇ 10cm
  • the oil absorption speed of each graphene polyurethane sponge is about 10g/s
  • the continuous pumping rate is unchanged for 9 hours, and the separation efficiency is as high as 99.992%.
  • the hydrophobic polyurethane sponge is foamed from the following raw materials, and the components are in parts by weight:
  • polyether MN-3050 50 parts of polyether MN-3050, 0.1 parts of triethylenediamine, 0.20 parts of stannous octoate, 0.5 part of silicone oil L618, 0.5 parts of water, 10 parts of graphene in bis(2-dimethylaminoethyl)ether solution (graphene) Content of 10%), 30 parts of hexamethylene diisocyanate;
  • the foaming method is as follows:
  • the ambient temperature is controlled at 20 ° C, and the raw materials such as polyether, amine catalyst, tin catalyst, foam stabilizer, water, silicone oil, graphene bis(2-dimethylaminoethyl) ether solution are weighed according to the formula and then added to the material.
  • the barrel was stirred and stirred for 30 s with a stirrer (rotation speed of 1000 rad/min), allowed to stand for 4 min, then the toluene diisocyanate was weighed and poured into a material mixing tank.
  • the temperature of the material was controlled at 20 ° C. After rapid stirring for 5 s, the mixture was poured into the hair.
  • the foaming box is foamed, the reaction time is 90 s, and it is cut into the required size after aging.
  • the contact angle of the oil droplets and the water droplets of the graphene urethane sponge was measured in Example 1, and the oil absorbing method was used in Example 1.
  • the prepared graphene polyurethane sponge has a water droplet contact angle of 151°, an oil contact angle of 0°, a graphene polyurethane sponge oil absorption rate of about 9.9 g/s, and a separation efficiency of up to 99.991%.
  • the hydrophobic polyurethane sponge is foamed from the following raw materials, and the components are in parts by weight:
  • the foaming method is as follows:
  • the ambient temperature is controlled at 25 ° C, and the polyether, amine catalyst, tin catalyst, foam stabilizer, water, silicon
  • the raw materials such as oil and graphene triethylamine solution are weighed according to the formula and added to the material barrel. Mix and stir for 20s with a stirrer (rpm 1500rad/min), let stand for 5min, then weigh the toluene diisocyanate and pour it into the material mixing tank.
  • the temperature of the material was controlled at 25 ° C, and after rapid stirring for 8 s, the mixture was poured into a foaming box for foaming, the reaction time was 150 s, and it was cut into the required size after aging.
  • the contact angle of the oil droplets and the water droplets of the graphene urethane sponge was measured in Example 1, and the oil absorbing method was used in Example 1.
  • the prepared graphene polyurethane sponge has a water droplet contact angle of 152°, an oil contact angle of 0°, a graphene polyurethane sponge oil absorption rate of about 9.9 g/s, and a separation efficiency of up to 99.993%.
  • the hydrophobic polyurethane sponge is foamed from the following raw materials, and the components are in parts by weight:
  • the foaming method is as follows:
  • the ambient temperature is controlled at 22 ° C, and the raw materials such as polyether, amine catalyst, tin catalyst, foam stabilizer, water, silicone oil, graphene N-ethylmorpholine solution are weighed according to the formula and then added to the material barrel, using a blender ( The mixture is stirred at a speed of 3000 rad/min for 25 s, and allowed to stand for 4 min. The toluene diisocyanate is weighed and poured into a material mixing tank. The temperature of the material is controlled at 21 ° C. After rapid stirring for 6 s, the mixture is poured into a foaming box for foaming. The reaction time is 120 s, and after maturation, it is cut into the required size.
  • the raw materials such as polyether, amine catalyst, tin catalyst, foam stabilizer, water, silicone oil, graphene N-ethylmorpholine solution are weighed according to the formula and then added to the material barrel, using a blender ( The mixture is stirred at a speed of 3000
  • the contact angle of the oil droplets and the water droplets of the graphene urethane sponge was measured in Example 1, and the oil absorbing method was used in Example 1.
  • the prepared graphene polyurethane sponge has a water droplet contact angle of 150°, an oil contact angle of 0°, a graphene polyurethane sponge oil absorption rate of about 10 g/s, and a separation efficiency of up to 99.992%.
  • the hydrophobic polyurethane sponge is foamed from the following raw materials, and the components are in parts by weight:
  • the foaming method is as follows:
  • the ambient temperature is controlled at 23 ° C, and the raw materials such as polyether, amine catalyst, tin catalyst, foam stabilizer, water, silicone oil, and graphene pyridine solution are weighed according to the formula and then added to the material barrel, and the mixer is used (rotation speed 3000 rad/min). Mix and stir for 22s, let stand for 5min, then weigh the toluene diisocyanate and pour into the material mixing barrel.
  • the temperature of the material is controlled at 25 ° C. After rapid stirring for 5 s, the mixture is poured into a foaming box for foaming. The reaction time is 100 s. After ripening, cut to the required size.
  • the contact angle of the oil droplets and the water droplets of the graphene urethane sponge was measured in Example 1, and the oil absorbing method was used in Example 1.
  • the prepared graphene polyurethane sponge has a water droplet contact angle of 154°, an oil contact angle of 0°, a graphene polyurethane sponge oil absorption rate of about 9.9 g/s, and a separation efficiency of 99.994%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种石墨烯聚氨酯海绵及其制备方法与应用,其原料按重量份包括:聚醚多元醇50-100份,胺催化剂0.1-0.5份,锡类催化剂0.1-0.5份,泡沫稳定剂0.5-3份,水0.5-7份,10-50份的石墨烯改性剂和30-60份的甲苯二异氰酸酯。该石墨烯聚氨酯海绵韧性好,压缩效果好,疏水能力强,耐强酸、强碱和高盐,油水分离效率达到99.99%,不仅可吸收水面上的油(轻油),而且可吸收水下的油(重油)。

Description

一种石墨烯聚氨酯海绵及其制备方法与应用 技术领域
本发明属于水污染和油水分离领域,具体地涉及一种石墨烯聚氨酯海绵及其制备方法与应用。
背景技术
随着全球经济的日益发展,对石油及其产品的需求越来越高,在石油的开采和运输过程中,出现了许多严重的溢油污染事故。据统计,世界上每年因各种事故流入大海的溢油高达3000~5000kt,这不仅对海洋生态平衡和生态环境造成了严重的污染,也造成了资源的巨大浪费。2010年,发生在墨西哥湾,由钻井平台爆炸引起的原油溢海事故给当地环境造成了巨大的、难以恢复的伤害;2013年,发生在青岛的“11.22”黄潍输油管线爆炸事故,造成原油泄漏,部分原油溢入青岛海域,也给人民的生命财产安全带来了巨大的伤害。如何有效治理溢油一直是各个国家和机构研究的重点之一,经过长期的探索和努力,现有的主要的溢油治理措施包括:(1)通过石油烃类降解菌对海洋溢油和油渍进行降解;(2)原位燃烧;(3)投加化学处理剂,如分散剂、集油剂、凝油剂等;(4)物理方法,使用围油栏把海洋表面的油污围起来,然后再通过吸油材料将溢油收集起来。在这些现有技术中,使用吸油材料从水中去除油类物质被认为是在油污处理中最有效的对策,它具有高效、经济、油品易回收等特点。如今广泛使用的吸油材料包括沸石、活性炭、有机黏土、稻草、羊毛、海绵和纤维。海绵具有丰富的三维孔隙,能够储存大量的油,但海绵一般没有油水选择性,因此不能直接使用。通过一定的材料改性,可以让海绵在保持较高吸油倍率的同时,具有油水选择性,即只吸油不吸水。例如:目前公开了多种用于油水分离的改性海绵的材料,如英国《能源与环境科学》(Energy&Environmental Science,2012年5期7908页)报道了一种由石墨烯包覆海绵的三维多孔吸油材料,该材料首先通过剥离柔性石墨得到石墨烯纳米片,并分散在乙醇溶液中,然后将三聚氰胺海绵浸泡在上述溶液中,得到石墨烯包覆的海绵三维多孔结构,该材料具有良好的疏水性,但该方法使用的石墨烯纳米片较小,海绵骨架的包覆率不高,易出现裸露的亲水性海绵骨架,降低了其分离效果。德国《先进功能材料》(Advanced Functional Materials,2012年22期4421页)报道了一种还原氧化石墨烯制备的三维海绵状石墨材料,首先用Hummers法制备氧化石墨烯,并用水热法将其还原成还原氧化石墨烯,然后冷 冻干燥得到海绵状石墨烯,该石墨烯的纳米片较大,但是机械强度差,循环使用时需要用热处理除去吸附的油,能耗较大。
专利CN104163934 A公开了一种将聚合物泡沫材料进行部分碳化以获得疏水亲油材料的方法。这种方法要求在惰性气体保护下对泡沫材料进行高温处理,对工艺条件要求高,能耗高,而且碳化过程中不可避免将产生毒害性气体,带来新的环境污染。另外,碳化会造成泡沫的体积收缩并部分或完全丧失弹性,将导致吸油倍率和重复使用率下降。如CN102660046A公开了“一种超疏水超亲油海绵的制备方法”,该方法包括:海绵预处理、铬酸洗液的制备、聚全氟烷基硅氧烷-乙醇混合溶液的制备、海绵浸入铬酸洗液中腐蚀、海绵浸入聚全氟烷基硅氧烷-乙醇混合溶液中进行修饰后取出烘干等步骤。该制备方法通过铬酸腐蚀、氟硅烷修饰,使聚氨酯海绵表面形成超疏水、超亲油/超亲油的表面。它是通过化学反应的手段将具有聚氨酯海绵先用铬酸洗液腐蚀,然后经过聚全氟烷基硅氧烷-乙醇溶液的修饰,使其表面能降低,使其达到了超疏水、超亲油的功能,增强了油水分离的效果,汽油在其表面接触角为0°,水在其表面接触角>150°。然而,溢油事故一旦发生,往往在水面积聚大面积、高浓度油污,加之油在水体环境因素中迁移转化的复杂性,必须在最短时间内尽可能将油污清除干净。因此,迫切需要发展一种高强、成本低廉、工艺简单的超疏水、超亲油油水分离材料,并且可大规模连续的处理石油泄漏问题。
发明内容
本发明针对现有技术中存在的缺陷,提供一种制备高强、成本低廉、工艺简单,超疏水、超亲油性能的石墨烯聚氨酯海绵及其制备方法,实现大规模、连续、高效的回收混合液中的油。
本发明的目的通过以下技术方案实现:
本发明的石墨烯聚氨酯海绵,其原料按重量份包括:
聚醚多元醇50-100份,胺催化剂0.1-0.5份,锡类催化剂0.1-0.5份,泡沫稳定剂0.5-3份,水0.5-7份,10-50份的石墨烯改性剂和30-60份的异氰酸酯。
根据本发明所述的石墨烯聚氨酯海绵,其中,所述聚醚多元醇的羟值为30-60mgKOH/g。所述聚醚多元醇可以是但不限于聚醚3010、MN-3050、Ep-455S、Ep-553、Ep-330N、ED-28、DL-2000。
根据本发明所述的石墨烯聚氨酯海绵,其中,所述胺催化剂为双(二甲胺基乙基)醚、三乙烯二胺和三乙醇胺中的一种或几种,实际应用时也可以是含上述物质的溶 液。
根据本发明的石墨烯聚氨酯海绵,其中,所述锡类催化剂为辛酸亚锡(T 9)或二月桂酸二丁基锡(T 12)或二者混合物。
根据本发明的石墨烯聚氨酯海绵,其特征在于,所述泡沫稳定剂为硅-碳键Si-C共聚物。例如可以是硅油L580、L618、OFX-5043、Y10366。
根据本发明的石墨烯聚氨酯海绵,其中,所述石墨烯改性剂为石墨烯的分散液,其中,所用溶剂优选包括N,N-二甲基环己胺、双(2-二甲氨基乙基)醚、N,N,N',N'-四甲基亚烷基二胺、三乙胺、N,N-二甲基苄胺、固胺、N-乙基吗啉、N-甲基吗啉、N,N’-二乙基哌嗪、三乙醇胺、N,N-二甲基乙醇胺、吡啶和N,N’-二甲基吡啶中的一种或多种;所述石墨烯的质量含量为分散液的10%-50%。
更进一步地,所述石墨烯的分散液中采用机械剪切剥离石墨,其中,所述机械剪切采用的设备包括但不限于:球磨机、乳化机、分散机、研磨机、匀质机和流体对撞机中的一种或多种。
根据本发明的石墨烯聚氨酯海绵,其特征在于,异氰酸酯为六亚甲基二异氰酸酯、甲苯二异氰酸酯、环已烷二异氰酸酯和二苯基亚甲基二异氰酸酯中的一种或几种。
本发明还包括了上述任一石墨烯聚氨酯海绵的制备方法,包括以下步骤:
1)将环境温度控制在20-25℃,将聚醚多元醇、胺催化剂、锡类催化剂、泡沫稳定剂、水、和石墨烯改性剂按重量份加入物料桶后,用搅拌机混合搅拌20~30s,转速1000~3000rad/min,然后静置3~5min;
2)再将异氰酸酯倒入物料桶,物料温度控制在20-25℃,搅拌5~8s,转速1000~3000rad/min,将混合物料倒入发泡箱进行发泡,反应时间90-150s,熟化后制得石墨烯聚氨酯海绵。
本发明还提供了上述任一石墨烯聚氨酯海绵在吸油领域中的应用。
在应用本发明时,可以是提供一种用于快速回收油水混合液中油的连续装置,包括超疏水、超亲油石墨烯聚氨酯海绵、真空泵、管和储油器;管的一端插入石墨烯聚氨酯海绵中,另一端与真空泵相连,真空泵与储油器相连。利用真空泵的负压将被吸附在石墨烯聚氨酯海绵里的油相抽出,通过管将石墨烯聚氨酯海绵的油引入储油器中。
本发明具有以下优点:
自制的石墨烯改性剂为石墨烯的分散液。其中溶剂作为胺类催化剂,直接参与聚氨酯反应,并有效的调剂海绵反应速率和泡孔直径,石墨烯是疏水基团,从而使海绵具备了疏水性,具有优异的化学稳定性,耐强酸、强碱和高盐溶液。反应完成后得到的海绵具有超疏水、超亲油性能,疏水性的大小可通过石墨烯分散液的添加剂量的多少调节。石墨烯直接通过机械剥离石墨制备,方法简单,成本低。制备超疏水、超亲油性聚氨酯软泡操作方法简单易行,成本低;海绵的疏水性可通过石墨烯分散液的添加量随意控制。得到的海绵韧性好,压缩效果好,疏水能力强,耐强酸、强碱和高盐,分离效率达到99.99%,不仅可吸收水面上的油(轻油),而且可吸收水下的油(重油)。
附图说明
图1为本发明石墨烯聚氨酯海绵。
图2为本发明石墨烯聚氨酯海绵的水滴和油滴的接触角图。
图3为本发明石墨烯聚氨酯海绵的油滴的接触角图。
图4为本发明石墨烯聚氨酯的分离效率图。
图5为本发明石墨烯聚氨酯的稳定性图。
具体实施方式
下面结合实施例对本发明技术方案予以进一步的说明。
实施例1
疏水性聚氨酯海绵,由下列原料发泡而成,各组分按重量份数为:
100份聚醚3010、0.15份催化剂A-1、0.34份催化剂A-33、0.20份催化剂T-9、1.2份硅油L580、3份水、10份石墨烯的N,N-二甲基环己胺溶液、48.3份甲苯二异氰酸酯TDI-80;
其中:A-1是普通市售产品,由质量分数为70%的双(二甲氨基乙基)醚30%一缩二丙二醇(DPG)配成的溶液;A-33是普通市售产品,含有33%三乙烯二胺的液体催化剂;石墨烯的N,N-二甲基环己胺溶液(石墨烯的含量为10%);
发泡方法如下:
环境温度控制在21℃,将聚醚、催化剂、水、泡沫稳定剂、石墨烯的N,N-二甲基环己胺溶液等原料按配方称量后加入物料桶,用搅拌机(转速3000rad/min)混合搅拌30s,静置3min,再将甲苯二异氰酸酯称量后倒入物料混合桶,物料温度控制在 22℃,快速搅拌5s后,将混合物料倒入发泡箱进行发泡,反应时间103s,熟化后裁割成需要的尺寸。
利用接触角测量仪测石墨烯聚氨酯海绵的水滴接触角,首先将石墨烯聚氨酯海绵水平地放在接触角测量仪上,然后将4μL水滴滴在海绵上,仪器自带的软件会自动模拟出水滴轮廓,算出接触角。如图2所示,水滴接触角为154°,油的接触角为0°。
将实施例1将制备的超疏水、超亲油石墨烯聚氨酯海绵与真空泵连接,制备一种快速、高效的连续吸油装置:将超疏水、超亲油石墨烯聚氨酯海绵放在有油的海面,然后打开真空泵开关,真空泵将吸附在石墨烯聚氨酯海绵中的原油抽出。当石墨烯聚氨酯海绵底面积为10cm×10cm,每一个石墨烯聚氨酯海绵的吸油速度约为10g/s,连续抽9个小时速率不变,分离效率高达99.992%。
实施例2
疏水性聚氨酯海绵,由下列原料发泡而成,各组分按重量份数为:
50份聚醚MN-3050、0.1份三乙烯二胺、0.20份辛酸亚锡、0.5份硅油L618、0.5份水、10份石墨烯的双(2-二甲氨基乙基)醚溶液(石墨烯的含量为10%)、30份六亚甲基二异氰酸酯;
发泡方法如下:
环境温度控制在20℃,将聚醚、胺催化剂、锡类催化剂、泡沫稳定剂、水、硅油、石墨烯的双(2-二甲氨基乙基)醚溶液等原料按配方称量后加入物料桶,用搅拌机(转速1000rad/min)混合搅拌30s,静置4min,再将甲苯二异氰酸酯称量后倒入物料混合桶,物料温度控制在20℃,快速搅拌5s后,将混合物料倒入发泡箱进行发泡,反应时间90s,熟化后裁割成需要的尺寸。
石墨烯聚氨酯海绵的油滴与水滴接触角测量用实施例1,吸油方法用实施例1。制备的石墨烯聚氨酯海绵的水滴接触角为151°,油的接触角为0°,石墨烯聚氨酯海绵的吸油速度约为9.9g/s,分离效率高达99.991%。
实施例3
疏水性聚氨酯海绵,由下列原料发泡而成,各组分按重量份数为:
100份聚醚Ep-455S、0.5份三乙醇胺、0.20份二月桂酸二丁基锡、3份硅油OFX-5043、7份水、50份石墨烯的三乙胺溶液(石墨烯的含量为50%)、60份环己烷二异氰酸酯;
发泡方法如下:
环境温度控制在25℃,将聚醚、胺催化剂、锡类催化剂、泡沫稳定剂、水、硅 油、石墨烯的三乙胺溶液等原料按配方称量后加入物料桶,用搅拌机(转速1500rad/min)混合搅拌20s,静置5min,再将甲苯二异氰酸酯称量后倒入物料混合桶,物料温度控制在25℃,快速搅拌8s后,将混合物料倒入发泡箱进行发泡,反应时间150s,熟化后裁割成需要的尺寸。
石墨烯聚氨酯海绵的油滴与水滴接触角测量用实施例1,吸油方法用实施例1。制备的石墨烯聚氨酯海绵的水滴接触角为152°,油的接触角为0°,石墨烯聚氨酯海绵的吸油速度约为9.9g/s,分离效率高达99.993%。
实施例4
疏水性聚氨酯海绵,由下列原料发泡而成,各组分按重量份数为:
80份聚醚Ep-330N、0.1份三乙烯二胺、0.2份双(二甲胺基乙基)醚、0.3份辛酸亚锡、1份硅油Y10366、4份水、40份石墨烯的N-乙基吗啉溶液(石墨烯的含量为30%)、30份甲苯二异氰酸酯二苯基亚甲基二异氰酸酯;
发泡方法如下:
环境温度控制在22℃,将聚醚、胺催化剂、锡类催化剂、泡沫稳定剂、水、硅油、石墨烯的N-乙基吗啉溶液等原料按配方称量后加入物料桶,用搅拌机(转速3000rad/min)混合搅拌25s,静置4min,再将甲苯二异氰酸酯称量后倒入物料混合桶,物料温度控制在21℃,快速搅拌6s后,将混合物料倒入发泡箱进行发泡,反应时间120s,熟化后裁割成需要的尺寸。
石墨烯聚氨酯海绵的油滴与水滴接触角测量用实施例1,吸油方法用实施例1。制备的石墨烯聚氨酯海绵的水滴接触角为150°,油的接触角为0°,石墨烯聚氨酯海绵的吸油速度约为10g/s,分离效率高达99.992%。
实施例5
疏水性聚氨酯海绵,由下列原料发泡而成,各组分按重量份数为:
90份聚醚DL-2000、0.2份三乙烯二胺、0.4份辛酸亚锡、2份硅油L580、5份水、30份石墨烯的吡啶溶液(石墨烯的含量为20%)、40份甲苯二异氰酸酯;
发泡方法如下:
环境温度控制在23℃,将聚醚、胺催化剂、锡类催化剂、泡沫稳定剂、水、硅油、石墨烯的吡啶溶液等原料按配方称量后加入物料桶,用搅拌机(转速3000rad/min)混合搅拌22s,静置5min,再将甲苯二异氰酸酯称量后倒入物料混合桶,物料温度控制在25℃,快速搅拌5s后,将混合物料倒入发泡箱进行发泡,反应时间100s,熟化后裁割成需要的尺寸。
石墨烯聚氨酯海绵的油滴与水滴接触角测量用实施例1,吸油方法用实施例1。 制备的石墨烯聚氨酯海绵的水滴接触角为154°,油的接触角为0°,石墨烯聚氨酯海绵的吸油速度约为9.9g/s,分离效率高达99.994%。
当然,本发明还可以有多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明的公开做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。

Claims (10)

  1. 一种石墨烯聚氨酯海绵,其特征在于,所述石墨烯聚氨酯海绵原料按重量份包括:
    聚醚多元醇50-100份,胺催化剂0.1-0.5份,锡类催化剂0.1-0.5份,泡沫稳定剂0.5-3份,水0.5-7份,10-50份的石墨烯改性剂和30-60份的异氰酸酯。
  2. 根据权利要求1所述的石墨烯聚氨酯海绵,其特征在于,所述聚醚多元醇的羟值为30-60mg KOH/g。
  3. 根据权利要求1所述的石墨烯聚氨酯海绵,其特征在于,所述胺催化剂为三乙烯二胺、双(二甲胺基乙基)醚和三乙醇胺中的一种或几种。
  4. 根据权利要求1所述的石墨烯聚氨酯海绵,其特征在于,所述锡类催化剂为辛酸亚锡或二月桂酸二丁基锡或二者混合物。
  5. 根据权利要求1所述的石墨烯聚氨酯海绵,其特征在于,所述泡沫稳定剂为硅-碳键Si-C共聚物。
  6. 根据权利要求1所述的石墨烯聚氨酯海绵,其特征在于,所述石墨烯改性剂为石墨烯的分散液,其中,所用溶剂包括N,N-二甲基环己胺、双(2-二甲氨基乙基)醚、N,N,N',N'-四甲基亚烷基二胺、三乙胺、N,N-二甲基苄胺、固胺、N-乙基吗啉、N-甲基吗啉、N,N’-二乙基哌嗪、三乙醇胺、N,N-二甲基乙醇胺、吡啶和N,N’-二甲基吡啶中的一种或多种;所述石墨烯的质量含量为分散液的10%-50%。
  7. 根据权利要求6所述的石墨烯聚氨酯海绵,其特征在于,所述石墨烯的分散液中采用机械剪切剥离石墨,其中,所述机械剪切采用的设备包括:球磨机、乳化机、分散机、研磨机、匀质机和流体对撞机中的一种或多种。
  8. 根据权利要求1所述的石墨烯聚氨酯海绵,其特征在于,所述异氰酸酯为六亚甲基二异氰酸酯、甲苯二异氰酸酯、环已烷二异氰酸酯和二苯基亚甲基二异氰酸酯中的一种或几种。
  9. 一种权利要求1-8任一所述石墨烯聚氨酯海绵的制备方法,包括以下步骤:
    1)将环境温度控制在20-25℃,将聚醚多元醇、胺催化剂、锡类催化剂、泡沫稳定剂、水、和石墨烯改性剂按重量份加入物料桶后,用搅拌机混合搅拌20~30s,转速1000~3000rad/min,然后静置3~5min;
    2)再将异氰酸酯倒入物料桶,物料温度控制在20-25℃,搅拌5~8s后,将混合物料倒入发泡箱进行发泡,反应时间90-150s,熟化后制得石墨烯聚氨酯海绵。
  10. 权利要求1-8任一所述石墨烯聚氨酯海绵在吸油领域中的应用。
PCT/CN2017/117492 2016-12-23 2017-12-20 一种石墨烯聚氨酯海绵及其制备方法与应用 WO2018113698A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611213243.9 2016-12-23
CN201611213243.9A CN108239253B (zh) 2016-12-23 2016-12-23 一种石墨烯聚氨酯海绵及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2018113698A1 true WO2018113698A1 (zh) 2018-06-28

Family

ID=62624536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117492 WO2018113698A1 (zh) 2016-12-23 2017-12-20 一种石墨烯聚氨酯海绵及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN108239253B (zh)
WO (1) WO2018113698A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019189A (zh) * 2019-12-26 2020-04-17 常州市顺祥新材料科技股份有限公司 一种基于石墨烯水性聚氨酯的海绵改性方法
CN111319107A (zh) * 2019-11-06 2020-06-23 华南理工大学 具有电热转换能力高疏水性木质海绵及其制备方法和应用
CN113121778A (zh) * 2021-05-06 2021-07-16 福建师范大学泉港石化研究院 一种含有改性石墨烯的聚氨脂阻燃发泡材料及其制备方法
CN113142251A (zh) * 2021-04-26 2021-07-23 维尼健康(深圳)股份有限公司 一种医用泡沫消毒剂及其制备工艺
CN113150369A (zh) * 2021-03-05 2021-07-23 福建省蓝深环保技术股份有限公司 一种基于氧化石墨烯改性的吸油海绵的制备方法
CN113274989A (zh) * 2021-05-31 2021-08-20 南京信息工程大学 一种基于聚氨酯泡沫的疏水性吸附材料的制备方法
CN113429582A (zh) * 2021-08-12 2021-09-24 福州大学 一种氧化石墨烯接枝聚醚改性硅油的制备及其应用
CN113526605A (zh) * 2021-07-09 2021-10-22 天津大学 基于磁性超疏水多孔海绵的水面浮油连续吸附装置与方法
CN113637143A (zh) * 2021-07-16 2021-11-12 安徽农业大学 一种丝瓜籽油仿乳胶海绵及其制备、应用及枕头
CN114164664A (zh) * 2021-12-15 2022-03-11 盐城市恒丰海绵有限公司 一种锁水棉制备工艺
CN114395160A (zh) * 2022-02-15 2022-04-26 泗阳蓝天新材料科技股份有限公司 一种石墨烯改性聚氨酯复合材料及其制备方法
CN114835873A (zh) * 2022-04-20 2022-08-02 柳州华锡有色设计研究院有限责任公司 一种汽车内饰用高回弹聚氨酯海绵及其制备方法
CN115093226A (zh) * 2022-06-21 2022-09-23 星途(常州)碳材料有限责任公司 一种高强度多功能石墨烯弹性体泡棉及其制备方法
CN115160526A (zh) * 2022-07-19 2022-10-11 惠州展亿科技有限公司 一种导热海绵及其制备方法
CN116462825A (zh) * 2023-03-29 2023-07-21 佛山市惠安家居用品有限公司 一种抑烟阻燃聚氨酯软泡及其制备方法
CN116854889A (zh) * 2023-08-10 2023-10-10 东莞市腾崴塑胶制品有限公司 一种抹茶海绵

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265732A (zh) * 2018-08-31 2019-01-25 蒋春霞 一种吸油材料的制备方法
CN109306074A (zh) * 2018-09-05 2019-02-05 杭州嘉世宝暖通科技有限公司 一种基于石墨烯发泡防静电隔热板
CN109232858A (zh) * 2018-09-29 2019-01-18 江门市多普达实业有限公司 一种新型石墨烯海绵
CN109535367A (zh) * 2018-11-23 2019-03-29 北京赛特石墨烯科技有限公司 石墨烯聚氨酯海绵及其应用
CN109851757A (zh) * 2019-01-24 2019-06-07 天津市大邱庄泡沫塑料有限公司 一种软质聚氨酯泡沫塑料制品及其制备工艺
CN109824864A (zh) * 2019-03-16 2019-05-31 永安梦康石墨烯家居科技有限公司 一种石墨烯pu抗疲劳海绵
CN111320324B (zh) * 2020-03-02 2022-05-13 陕西科技大学 一种处理痕量抗生素废水的生物过滤装置及其工作方法
CN111320257A (zh) * 2020-03-02 2020-06-23 陕西科技大学 一种聚醚型聚氨酯-氧化石墨烯泡沫及其制备方法和应用
CN113600132B (zh) * 2021-08-31 2023-09-15 南通大学 一种吸附用的插层石墨烯共混聚氨酯开孔海绵的制备方法
CN114316186A (zh) * 2022-01-29 2022-04-12 中海油天津化工研究设计院有限公司 一种石墨烯亲油疏水材料及其制备方法
CN114479004A (zh) * 2022-02-28 2022-05-13 安徽太平海绵制品有限公司 一种防腐海绵及其制备方法
CN114605608A (zh) * 2022-04-11 2022-06-10 安徽太平海绵制品有限公司 一种高弹性阻燃海绵及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382244A (zh) * 2013-06-27 2013-11-06 哈尔滨工业大学 一种石墨烯/聚氨酯复合材料的原位制备方法
CN103408718A (zh) * 2013-08-05 2013-11-27 江苏大学 一种氧化石墨烯-聚氨酯发泡材料的制备方法及其应用
CN103641982A (zh) * 2013-11-13 2014-03-19 安徽金马海绵有限公司 一种含有石墨烯的海绵及其制备方法
CN104338519A (zh) * 2014-09-17 2015-02-11 上海大学 改性石墨烯负载聚氨酯海绵及其制备方法
CN104610728A (zh) * 2015-01-29 2015-05-13 苏州大学 一种氧化石墨烯-聚氨酯复合泡沫及其制备方法和用途
CN105504199A (zh) * 2015-11-27 2016-04-20 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚氨酯泡沫、制备方法和用途
CN105504785A (zh) * 2015-10-27 2016-04-20 营口圣泉高科材料有限公司 一种含有石墨烯的复合聚氨酯泡沫、制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059252A (zh) * 2013-01-22 2013-04-24 南京工业大学 一种疏水性高吸油软质聚氨酯泡沫材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382244A (zh) * 2013-06-27 2013-11-06 哈尔滨工业大学 一种石墨烯/聚氨酯复合材料的原位制备方法
CN103408718A (zh) * 2013-08-05 2013-11-27 江苏大学 一种氧化石墨烯-聚氨酯发泡材料的制备方法及其应用
CN103641982A (zh) * 2013-11-13 2014-03-19 安徽金马海绵有限公司 一种含有石墨烯的海绵及其制备方法
CN104338519A (zh) * 2014-09-17 2015-02-11 上海大学 改性石墨烯负载聚氨酯海绵及其制备方法
CN104610728A (zh) * 2015-01-29 2015-05-13 苏州大学 一种氧化石墨烯-聚氨酯复合泡沫及其制备方法和用途
CN105504785A (zh) * 2015-10-27 2016-04-20 营口圣泉高科材料有限公司 一种含有石墨烯的复合聚氨酯泡沫、制备方法和用途
CN105504199A (zh) * 2015-11-27 2016-04-20 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚氨酯泡沫、制备方法和用途

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111319107A (zh) * 2019-11-06 2020-06-23 华南理工大学 具有电热转换能力高疏水性木质海绵及其制备方法和应用
CN111019189A (zh) * 2019-12-26 2020-04-17 常州市顺祥新材料科技股份有限公司 一种基于石墨烯水性聚氨酯的海绵改性方法
CN113150369A (zh) * 2021-03-05 2021-07-23 福建省蓝深环保技术股份有限公司 一种基于氧化石墨烯改性的吸油海绵的制备方法
CN113142251A (zh) * 2021-04-26 2021-07-23 维尼健康(深圳)股份有限公司 一种医用泡沫消毒剂及其制备工艺
CN113121778B (zh) * 2021-05-06 2022-08-05 福建师范大学泉港石化研究院 一种含有改性石墨烯的聚氨酯阻燃发泡材料及其制备方法
CN113121778A (zh) * 2021-05-06 2021-07-16 福建师范大学泉港石化研究院 一种含有改性石墨烯的聚氨脂阻燃发泡材料及其制备方法
CN113274989A (zh) * 2021-05-31 2021-08-20 南京信息工程大学 一种基于聚氨酯泡沫的疏水性吸附材料的制备方法
CN113526605A (zh) * 2021-07-09 2021-10-22 天津大学 基于磁性超疏水多孔海绵的水面浮油连续吸附装置与方法
CN113637143B (zh) * 2021-07-16 2022-10-14 安徽农业大学 一种丝瓜籽油仿乳胶海绵及其制备、应用及枕头
CN113637143A (zh) * 2021-07-16 2021-11-12 安徽农业大学 一种丝瓜籽油仿乳胶海绵及其制备、应用及枕头
CN113429582A (zh) * 2021-08-12 2021-09-24 福州大学 一种氧化石墨烯接枝聚醚改性硅油的制备及其应用
CN114164664A (zh) * 2021-12-15 2022-03-11 盐城市恒丰海绵有限公司 一种锁水棉制备工艺
CN114395160A (zh) * 2022-02-15 2022-04-26 泗阳蓝天新材料科技股份有限公司 一种石墨烯改性聚氨酯复合材料及其制备方法
CN114835873A (zh) * 2022-04-20 2022-08-02 柳州华锡有色设计研究院有限责任公司 一种汽车内饰用高回弹聚氨酯海绵及其制备方法
CN114835873B (zh) * 2022-04-20 2023-11-03 柳州华锡有色设计研究院有限责任公司 一种汽车内饰用高回弹聚氨酯海绵及其制备方法
CN115093226A (zh) * 2022-06-21 2022-09-23 星途(常州)碳材料有限责任公司 一种高强度多功能石墨烯弹性体泡棉及其制备方法
CN115093226B (zh) * 2022-06-21 2023-07-04 星途(常州)碳材料有限责任公司 一种高强度多功能石墨烯弹性体泡棉及其制备方法
CN115160526A (zh) * 2022-07-19 2022-10-11 惠州展亿科技有限公司 一种导热海绵及其制备方法
CN116462825A (zh) * 2023-03-29 2023-07-21 佛山市惠安家居用品有限公司 一种抑烟阻燃聚氨酯软泡及其制备方法
CN116854889A (zh) * 2023-08-10 2023-10-10 东莞市腾崴塑胶制品有限公司 一种抹茶海绵
CN116854889B (zh) * 2023-08-10 2024-01-30 东莞市腾崴塑胶制品有限公司 一种抹茶海绵

Also Published As

Publication number Publication date
CN108239253A (zh) 2018-07-03
CN108239253B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2018113698A1 (zh) 一种石墨烯聚氨酯海绵及其制备方法与应用
Duong et al. Effect of foam density, oil viscosity, and temperature on oil sorption behavior of polyurethane
Shiu et al. Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions
CN104231211B (zh) 一种超疏水/超亲油聚氨酯吸油海棉及其制备方法
Yati et al. Cross-linked poly (tetrahydrofuran) as promising sorbent for organic solvent/oil spill
CN104610728B (zh) 一种氧化石墨烯‑聚氨酯复合泡沫及其制备方法和用途
Hu et al. Graphite/isobutylene-isoprene rubber highly porous cryogels as new sorbents for oil spills and organic liquids
CN106589282B (zh) 一种Mg/Al/C纤维-聚氨酯发泡材料的制备方法及其应用
CN103059252A (zh) 一种疏水性高吸油软质聚氨酯泡沫材料及其制备方法
CN107163573B (zh) 一种埃洛石纳米管与聚苯胺复合吸油材料
CN102250305B (zh) 一种疏水溶胀聚氨酯泡沫及其制备方法和应用
CN106902767A (zh) 中空MnO2@SiO2纳米材料改性聚氨酯泡沫的制备方法及应用
Demirel et al. Clean-up of oily liquids, fuels and organic solvents from the contaminated water fields using poly (propylene glycol) based organogels
CN104356335A (zh) 由聚氨酯硬质泡沫降解液制备的开孔聚氨酯硬质泡沫
CN106700121A (zh) 一种高效油水分离壳聚糖海绵及其制备方法
CN106986978A (zh) 一种疏水性高吸油聚氨酯泡沫材料及制备方法
CN109848192A (zh) 一种改性聚氨酯海绵在修复非水有机相液体污染土壤中的应用及其修复方法
US20040173536A1 (en) Method of oil spill recovery using hydrophobic sol-gels and aerogels
CN105618009B (zh) 一种纵向分布海洋溢油吸附材料及其制备方法和模拟装置
Zimmermann et al. Sorbent system based on organosilane-coated polyurethane foam for oil spill clean up
Yin et al. Magnetic chitosan‐based aerogel decorated with polydimethylsiloxane: A high‐performance scavenger for oil in water
Guo et al. The fabrication of 3D porous PDMS sponge for Oil and organic solvent absorption
Chriti et al. An extreme case of swelling of mostly cis-polydicyclopentadiene by selective solvent absorption—application in decontamination and environmental remediation
Piperopoulos et al. Sustainable reuse of char waste for oil spill recovery foams
US20120305490A1 (en) Oil absorbant polyolefin foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884827

Country of ref document: EP

Kind code of ref document: A1