WO2018105286A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2018105286A1
WO2018105286A1 PCT/JP2017/039882 JP2017039882W WO2018105286A1 WO 2018105286 A1 WO2018105286 A1 WO 2018105286A1 JP 2017039882 W JP2017039882 W JP 2017039882W WO 2018105286 A1 WO2018105286 A1 WO 2018105286A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable member
vibration
axial direction
liquid chamber
protrusion
Prior art date
Application number
PCT/JP2017/039882
Other languages
English (en)
French (fr)
Inventor
西川 慶太
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US16/347,746 priority Critical patent/US20190285132A1/en
Priority to CN201780074957.2A priority patent/CN110050143B/zh
Priority to EP17877827.0A priority patent/EP3553340A4/en
Publication of WO2018105286A1 publication Critical patent/WO2018105286A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/106Design of constituent elastomeric parts, e.g. decoupling valve elements, or of immediate abutments therefor, e.g. cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like

Definitions

  • the present invention relates to a vibration isolator that is applied to, for example, automobiles and industrial machines and absorbs and attenuates vibrations of a vibration generating unit such as an engine.
  • This application claims priority based on Japanese Patent Application No. 2016-237439 for which it applied to Japan on December 7, 2016, and uses the content here.
  • the vibration isolator includes a cylindrical first mounting member connected to one of the vibration generating unit and the vibration receiving unit, a second mounting member connected to the other, and an elastic connecting the both mounting members.
  • a partition member that divides the body and the liquid chamber in the first mounting member in which the liquid is sealed into a main liquid chamber and a sub liquid chamber whose elastic body is a part of the wall surface, and the partition member And a movable member housed in the housing chamber so as to be deformable or displaceable in the axial direction of the first mounting member.
  • the partition member is provided with a plurality of communication holes that communicate the storage chamber with the main liquid chamber and the sub liquid chamber.
  • the present invention has been made in view of the above-described circumstances, and it is an object of the present invention to suppress abnormal noise caused by a movable member coming into contact with a wall surface of a storage chamber when vibration is input from a vibration generating unit. To do.
  • the vibration isolator of the present invention includes a cylindrical first mounting member connected to one of the vibration generating unit and the vibration receiving unit, a second mounting member connected to the other, and both the mounting members.
  • a movable member housed in a housing chamber provided in the partition member so as to be deformable or displaceable in an axial direction of the first mounting member, and the partition member includes the housing chamber and the main liquid chamber.
  • a plurality of communication holes that communicate with the sub liquid chamber separately, and at least the outer peripheral edge portion of the movable member is bidirectional in the axial direction and the radial direction along the central axis of the first mounting member.
  • An inclined protrusion that protrudes in a direction inclined with respect to is formed, The radial width of the base portion of the serial inclined projection portions is smaller than the length in the axial direction to the tip portion from the base portion of the inclined projections.
  • the vibration when the vibration is input from the vibration generating unit, it is possible to suppress an abnormal noise caused by the movable member coming into contact with the wall surface of the storage chamber.
  • the vibration isolator 10 includes a cylindrical first mounting member 11 connected to one of a vibration generating unit and a vibration receiving unit, and a second mounting member 12 connected to the other.
  • An elastic body 13 that elastically connects the first mounting member 11 and the second mounting member 12, and a liquid chamber 16 that is disposed inside the first mounting member 11 and formed inside the first mounting member 11.
  • a partition member 20 is provided that partitions the main liquid chamber 16a having the elastic body 13 as a part of the wall surface and the sub liquid chamber 16b.
  • Each of these members is provided coaxially with the central axis O of the first mounting member 11.
  • the direction along the central axis O is referred to as the axial direction
  • the first mounting member 11 side is referred to as the lower side
  • the second mounting member 12 side is referred to as the upper side along the axial direction.
  • a direction orthogonal to the central axis O in a plan view viewed from the axial direction is referred to as a radial direction
  • a direction around the central axis O is referred to as a circumferential direction.
  • the aforementioned liquid chamber 16 is partitioned by the partition member 20 into an upper main liquid chamber 16a and a lower sub liquid chamber 16b.
  • the main liquid chamber 16a and the sub liquid chamber 16b are filled with a liquid L such as ethylene glycol, water, or silicone oil.
  • the vibration isolator 10 is attached to, for example, an automobile and suppresses transmission of engine vibration to the vehicle body.
  • the second mounting member 12 is connected to an engine (not shown) as a vibration generating unit, while the first mounting member 11 is connected to a vehicle body as a vibration receiving unit via a bracket (not shown).
  • the first mounting member 11 includes a first cylinder part 11a formed on the upper side, a second cylinder part 11b formed on the lower side of the first cylinder part 11a, a first cylinder part 11a, and a second cylinder part 11b.
  • the step part 11c to connect is provided.
  • the first cylinder part 11a, the second cylinder part 11b, and the step part 11c are arranged coaxially with the central axis O and are integrally formed.
  • the upper end portion of the first mounting member 11 is closed in a liquid-tight state by the elastic body 13, and the lower end portion of the first mounting member 11 is closed in a liquid-tight state by the diaphragm 14.
  • the liquid L can be sealed in.
  • the second attachment member 12 is disposed on the upper side of the first tube portion 11 a of the first attachment member 11.
  • the elastic body 13 is a member made of, for example, a rubber material.
  • the elastic body 13 protrudes upward from the upper end portion of the first mounting member 11 and gradually decreases in diameter toward the upper side, and the deformed portion 13a extends from the first mounting member 11 to the first mounting member 11.
  • a covering portion 13b extending downward along the inner peripheral surface.
  • the covering portion 13b is vulcanized and bonded to the inner peripheral surface of the first mounting member 11, and the inner peripheral surface of the first mounting member 11 is covered with the elastic body 13 over the entire region.
  • the deformation portion 13a and the covering portion 13b are integrally formed.
  • the partition member 20 described above is formed by a disk-shaped upper member 19 whose front and rear surfaces face the axial direction, and a lower member 15 disposed below the upper member 19. ing.
  • the upper member 19 and the lower member 15 are made of, for example, an aluminum alloy or resin.
  • the rigidity of the upper member 19 and the lower member 15 is set such that, for example, when the dynamic pressure of the liquid L acts on these members based on the input vibration from the vibration generating unit, these members are not deformed.
  • the partition member 20 is formed in a disk shape as a whole, and is fitted in the first attachment member 11 (inside the covering portion 13b).
  • the upper surface of the upper member 19 faces the main liquid chamber 16a, and the upper member 19 forms part of the partition wall of the main liquid chamber 16a.
  • the lower surface of the lower member 15 faces the sub liquid chamber 16b, and the lower member 15 forms part of the partition wall of the sub liquid chamber 16b.
  • the upper member 19 includes a plurality of first communication holes 19a penetrating the upper member 19 in the vertical direction, a fixing portion 19b protruding downward inward in the radial direction from the first communication hole 19a, and a radial direction from the fixing portion 19b.
  • a recess 19c that is recessed upward on the inside.
  • the lower member 15 includes an annular flange portion 15a, an inner cylinder portion 15b extending upward from the inner peripheral edge of the flange portion 15a, an outer cylinder portion 15c extending upward from the outer peripheral edge of the flange portion 15a, And a restriction passage 21 formed on the radially outer side of the cylindrical portion 15c.
  • a housing chamber 18 of the partition member 20 is defined by the upper surface of the flange portion 15a, the outer peripheral surface of the inner cylinder portion 15b, the inner peripheral surface of the outer cylinder portion 15c, and the lower surface of the upper member 19.
  • the storage chamber 18 and the restriction passage 21 are independent of each other.
  • the restriction passage 21 communicates the main liquid chamber 16a and the sub liquid chamber 16b.
  • the restriction passage 21 extends along the circumferential direction on the outer peripheral surface of the lower member 15 of the partition member 20, and is disposed so as to avoid the storage chamber 18.
  • the restriction passage 21 may be tuned so that resonance (liquid column resonance) occurs when a shake vibration having a frequency of around 10 Hz is input to the vibration isolator 10.
  • the partition member 20 is further provided with a first communication hole 19a and a second communication hole 15d.
  • the first communication hole 19a and the second communication hole 15d extend from the portion of the wall surface of the storage chamber 18 facing the movable member 40 (described later) in the axial direction toward the outside in the axial direction.
  • the chamber 16a or the auxiliary liquid chamber 16b communicates with each other.
  • the first communication hole 19a communicates the storage chamber 18 and the main liquid chamber 16a
  • the second communication hole 15d communicates the storage chamber 18 and the sub liquid chamber 16b.
  • a plurality of first communication holes 19 a are formed in the upper member 19.
  • a plurality of second communication holes 15 d are formed in the lower member 15.
  • the cross-sectional area in the cross section orthogonal to the axial direction of each first communication hole 19a changes along the axial direction.
  • On the inner peripheral surface of each first communication hole 19a there are formed a straight portion 19d having a constant cross-sectional area in the axial direction and a diameter-expanded portion 19e that gradually increases in diameter as it goes downward (in the storage chamber).
  • the direct portion 19d extends in the axial direction from the upper end opening that opens toward the main liquid chamber 16a to the central portion of the first communication hole 19a.
  • the enlarged diameter portion 19e extends in the axial direction from the central portion of the first communication hole 19a, which is the lower end of the direct portion 19d, to the lower end opening that opens to the accommodation chamber 18 side.
  • the cross-sectional area of the first communication hole 19a is the largest at the lower end opening that opens to the storage chamber 18 side.
  • a movable member 40 (movable plate, membrane) is disposed in the storage chamber 18.
  • the movable member 40 is accommodated in the storage chamber 18 so as to be deformable or displaceable in the axial direction.
  • the movable member 40 is formed in a plate shape whose front and back surfaces are directed in the axial direction by, for example, a rubber material, and can be elastically deformed.
  • the movable member 40 is deformed or displaced in the axial direction according to the pressure difference between the main liquid chamber 16a and the sub liquid chamber 16b.
  • the movable member 40 includes an annular main body 41 arranged coaxially with the central axis O.
  • the main body 41 includes an inclined protrusion 42 that protrudes from the outer peripheral edge of the main body 41 in a direction inclined with respect to both the axial direction and the radial direction.
  • a straight projecting portion 43 that is arranged at a position and projects in the axial direction, and a plurality of through holes 41 a that penetrate the main body portion 41 in the vertical direction are formed.
  • a pair of inclined protrusions 42 are formed above and below the outer peripheral edge of the main body 41 of the movable member 40.
  • Each inclined protrusion 42 is formed in an annular shape over the entire circumference of the outer peripheral edge of the main body 41.
  • the radial width (hereinafter referred to as a root width W) at the root portion of each inclined protrusion 42 is higher than the axial height (hereinafter referred to as height H) from the root to the tip of each inclined protrusion 42. Is also small.
  • the root width W is the width of the inclined protrusion 42 on a virtual straight line extending along the upper surface or the lower surface of the main body 41 and extending in the radial direction.
  • the height H is the length in the axial direction from the virtual straight line to the tip of the inclined protrusion 42.
  • a plurality of straight protrusions 43 are formed on the upper and lower surfaces of the main body 41.
  • Each straight projection 43 is formed in an annular shape coaxial with the central axis O. The width in the radial direction of each straight projection 43 is gradually reduced toward the tip.
  • Each straight protrusion 43 is formed on the outer periphery of the main body 41 that is continuous with the outer peripheral edge where the inclined protrusion 42 is formed.
  • the positions of the inclined projections 42 formed on the upper side of the main body 41 and the tip portions of the straight projections 43 in the axial direction are equal to each other.
  • the positions of the inclined protrusions 42 formed on the lower side of the main body 41 and the tips of the straight protrusions 43 in the axial direction are equal to each other.
  • a relatively small gap that is uniform in the axial direction is formed between the inclined protrusion 42 and the straight protrusion 43 and the wall surface of the storage chamber 18.
  • the inclined protrusion 42 and the straight protrusion 43 may be interrupted in the circumferential direction, and in this way, the rigidity of the entire movable member 40 can be reduced and can be easily deformed.
  • the movable member 40 further includes an inner fixed portion 44 (fixed portion) that protrudes upward and downward from the inner peripheral edge of the main body portion 41, and the inner fixed portion 44 and the direct protrusion portion 43 of the main body portion 41.
  • An outer fixed portion 45 (fixed portion) that protrudes upward and downward from the intermediate portion is formed.
  • the inner fixed portion 44 and the outer fixed portion 45 are formed in an annular shape coaxial with the central axis O. The thickness of the inner fixed portion 44 in the axial direction is larger than the thickness of the outer fixed portion 45 in the axial direction.
  • Each of the two fixed portions 44 and 45 is formed in a portion of the main body portion 41 that is located radially inward from the outer peripheral edge portion, and is sandwiched in the vertical direction by the upper member 19 and the lower member 15. Thus, it is fixed to the partition member 20. Thereby, since the movable member 40 is deformed with the fixed portions 44 and 45 as the fixed ends, the portion of the movable member 40 that is away from the fixed portions 44 and 45 in the radial direction is easily displaced and accelerated in the axial direction.
  • the volume of the inclined protrusion 42 may be smaller than the volume of the straight protrusion 43 in a longitudinal sectional view. In this case, since it is formed on the outer peripheral edge of the main body 41, the mass of the inclined protrusion 42 that is easy to accelerate is reduced, and the impact when the inclined protrusion 42 abuts against the wall surface of the storage chamber 18 is suppressed. Can do.
  • the movable member 40 when vibration is input to the vibration isolator 10 and the pressure of the liquid L in the main liquid chamber 16a fluctuates, the movable member 40 is moved into the storage chamber 18. It is deformed or displaced in the axial direction. Specifically, the movable member 40 is elastically deformed so that the outer peripheral edge portion is displaced in the axial direction with the fixed portions 44 and 45 as fixed ends. At this time, the tip of each inclined protrusion 42 formed on the outer peripheral edge of the movable member 40 comes into contact with the upper and lower wall surfaces of the storage chamber 18, and the inclined protrusion 42 is tilted from the root portion to be horizontal.
  • the root width W of the inclined protrusion portion 42 is smaller than the height H, for example, the inclined protrusion until the inclined protrusion portion 42 falls to a horizontal posture as compared with the case where the root width W is larger than the height H.
  • the amount of displacement of the portion 42 increases. In this way, by increasing the amount of displacement of the inclined protrusion 42, the time required to complete the deformation of the inclined protrusion 42 is lengthened, and when the inclined protrusion 42 contacts the wall surface of the storage chamber 18. It is possible to suppress the acceleration of the inclined projecting portion 42 and to absorb and attenuate the vibration transmitted from the movable member 40 to the partition member 20. As described above, the vibration isolator 10 is less likely to vibrate when the movable member 40 abuts against the wall surface of the storage chamber 18, and the generation of abnormal noise can be suppressed.
  • the movable member 40 is formed with a plurality of direct protrusions 43 in addition to the inclined protrusions 42, when the vibration is input to the vibration isolator 10, the inclined protrusions 42 and the plurality of direct protrusions 43 are formed. Since it contacts the wall surface of the storage chamber 18 as a whole, it is possible to suppress the generation of abnormal noise and the decrease in the durability of the movable member 40 due to the generation of a large reaction force locally on the movable member 40.
  • the movable member 40 is formed by a molding die as compared with the case where the inclined protrusion 42 is formed on the inner side in the radial direction, for example. In this case, the mold can be easily released, and the movable member 40 can be easily molded.
  • the inclined protrusion portions 42 and the straight protrusion portions 43 and the wall surfaces of the storage chamber 18 are equal to each other, the inclined protrusion portions 42 and the straight protrusion portions 43 and the wall surfaces of the storage chamber 18 The gaps between them can be made uniform. As a result, the entire tip of the inclined projection 42 and the entire tip of the straight projection 43 are likely to be in uniform contact with the wall surface of the storage chamber 18, and an abnormal noise due to a large reaction force locally generated in the movable member 40. Generation
  • the movable member 40 is difficult to accelerate in the storage chamber 18, and the inclined protrusions 42 and 42 The speed at which the straight projection 43 abuts against the wall surface of the storage chamber 18 can be suppressed to more reliably suppress the generation of abnormal noise.
  • the fixed portions 44 and 45 of the movable member 40 are fixed to the partition member 20 on the inner side in the radial direction, the inclined protrusions 42 formed on the outer peripheral edge of the movable member 40 are more reliably accommodated in the storage chamber 18. This makes it possible to more reliably improve the buffering effect by causing the inclined protrusion 42 to shear and absorb vibration energy.
  • the movable member 40 in which the plurality of direct protrusions 43 are formed is used.
  • the present invention is not limited thereto, and the movable member 40 in which the direct protrusions 43 are not formed may be employed.
  • the tip end portions of the inclined protrusion portions 42 and the tip end portions of the plurality of straight protrusion portions 43 are formed to be equal to each other in the axial direction.
  • a movable member 40 having a non-uniform position in the axial direction may be employed.
  • each projection part 42 and 43 may become small gradually as the position in which each projection part 42 and 43 is formed leaves
  • the tip portions of the protrusions 42 and 43 are more evenly distributed in the storage chamber 18. It can be brought into contact with the wall surface.
  • the fixed portions 44 and 45 of the movable member 40 are fixed to the partition member 20, but the movable member 40 may not be fixed to the partition member 20. In this case, with the input of vibration to the vibration isolator 10, the entire movable member 40 can be elastically deformed while being displaced in the axial direction.
  • the present invention is not limited to this, and may be configured to be connected in reverse, or the vibration isolator 10 may be installed in another vibration generating unit and vibration receiving unit.
  • the movable member 40 shown in FIG. 3 may be used instead of the movable member 40 shown in the embodiment.
  • the movable member 40 shown in FIG. 3 may be used.
  • a plurality of inclined protrusions 42 are formed on the radially inner side from the outer peripheral edge of the main body 41.
  • the plurality of inclined protrusions 42 abut against the wall surface of the storage chamber 18 as a whole and undergo shear deformation.
  • the ratio of the part which absorbs vibration energy by shear deformation among the movable members 40 becomes large, and the buffering effect by deformation
  • the movable member 40 shown in FIG. 4 may be used instead of the movable member 40 shown in FIG. 3, for example, the movable member 40 shown in FIG. 4 may be used.
  • the inclined protrusions 42 are formed at symmetrical positions in the vertical direction.
  • the positions where the inclined protrusions 42 are formed are It is asymmetric. Specifically, among the inclined protrusions 42 formed radially inward from the outer peripheral edge of the main body 41, the inclined protrusion 42 formed below the main body 41 is located above the main body 41 and in the radial direction. Are formed between two inclined protrusions 42 formed at adjacent positions.
  • the inclined protrusions 42 in a zigzag manner on the upper side and the lower side of the main body 41, the deformation mode and the ease of deformation of the entire movable member 40 can be adjusted.
  • the inclined protrusion is formed on the outer peripheral edge of the movable member, and the radial width at the root of the inclined protrusion is from the root to the tip of the inclined protrusion. Since the length is smaller than the length in the axial direction, when vibration is input to the vibration isolator and the inclined protrusion comes into contact with the wall surface of the storage chamber, vibration energy can be absorbed while the inclined protrusion is largely sheared.
  • the vibration isolator is less likely to vibrate when the movable member comes into contact with the wall surface of the storage chamber, and the generation of abnormal noise can be suppressed.
  • a straight protrusion that protrudes in the axial direction may be formed in a portion of the movable member that is located on the inner side in the radial direction than the inclined protrusion.
  • the positions in the axial direction of the tip portion of the inclined projection portion and the tip portion of the straight projection portion may be equal to each other.
  • the gap between the inclined protrusion and the straight protrusion and the wall surface of the storage chamber uniform, the entire tip of the inclined protrusion and the front end of the straight protrusion are uniformly distributed between the wall surface of the storage chamber. It becomes easy to contact
  • the movable member is less likely to accelerate in the storage chamber, and the inclined protrusion portion and the direct protrusion portion are the wall surfaces of the storage chamber. It is possible to suppress the generation of abnormal noise more reliably by suppressing the speed at the time of contact.
  • a fixed portion that is fixed to the partition member may be formed in a portion of the movable member that is located on the inner side in the radial direction from the outer peripheral edge portion.
  • the fixed portion of the movable member is fixed to the partition member on the inner side in the radial direction, the inclined protrusion formed on the outer peripheral edge of the movable member is more reliably brought into contact with the wall surface of the storage chamber.
  • the present invention provides an anti-vibration device that can suppress abnormal noise caused by a movable member coming into contact with a wall surface of a storage chamber when vibration is input from a vibration generating unit.

Abstract

本発明の防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これらの両取付部材同士を連結する弾性体と、液体が封入された前記第1取付部材内の液室を、弾性体を壁面の一部とする主液室と、副液室と、に区画する仕切り部材と、仕切り部材に設けられた収容室内に、前記第1取付部材の軸方向に変形可能または変位可能に収容された可動部材(40)と、を備える。可動部材(40)の外周縁部には傾斜突起部(42)が形成されている。傾斜突起部の根本部における径方向の幅(W)は、傾斜突起部の根本部から先端部までの軸方向における長さ(H)よりも小さい。

Description

防振装置
 本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。
本願は、2016年12月7日に日本に出願された特願2016-237439号に基づき優先権を主張し、その内容をここに援用する。
 この種の防振装置として、例えば下記特許文献1に記載の構成が知られている。この防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これらの両取付部材を連結する弾性体と、液体が封入された第1取付部材内の液室を、弾性体を壁面の一部とする主液室と、副液室と、に区画する仕切り部材と、仕切り部材に設けられた収容室内に、第1取付部材の軸方向に変形可能または変位可能に収容された可動部材と、を備えている。仕切り部材には、収容室と、主液室および副液室と、を各別に連通する複数の連通孔が設けられている。
日本国特開2016-3716号公報
 上記従来の防振装置では、振動発生部からの入力に基づいて主液室の液圧が変動したときに、可動部材が軸方向に変位または変形して収容室の壁面に当接することで、例えば仕切り部材が振動する等して異音が生じるという課題がある。
 本発明は、前述した事情に鑑みてなされたものであって、振動発生部から振動が入力された際に、可動部材が収容室の壁面に当接することで生じる異音を抑えることを目的とする。
 本発明の防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これらの両取付部材同士を連結する弾性体と、液体が封入された前記第1取付部材内の液室を、前記弾性体を壁面の一部とする主液室と、副液室と、に区画する仕切り部材と、前記仕切り部材に設けられた収容室内に、前記第1取付部材の軸方向に変形可能または変位可能に収容された可動部材と、を備え、前記仕切り部材には、前記収容室と、前記主液室および前記副液室と、を各別に連通する複数の連通孔が設けられ、前記可動部材のうち、少なくとも外周縁部には前記第1取付部材の中心軸線に沿う軸方向および径方向の双方向に対して傾斜した方向に突出する傾斜突起部が形成されており、前記傾斜突起部の根本部における前記径方向の幅は、前記傾斜突起部の前記根本部から先端部までの前記軸方向における長さよりも小さい。
 本発明によれば、振動発生部から振動が入力された際に、可動部材が収容室の壁面に当接することで生じる異音を抑えることができる。
本発明の一実施形態に係る防振装置の縦断面図である。 図1に示す防振装置を構成する可動部材の半縦断面図である。 図2に示す可動部材の他の実施形態を示す半縦断面図である。 図3に示す可動部材の他の実施形態を示す半縦断面図である。
 次に、この発明の実施形態を図面に基づいて説明する。
 図1に示すように、防振装置10は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材11、および他方に連結される第2取付部材12と、第1取付部材11および第2取付部材12を弾性的に連結する弾性体13と、第1取付部材11の内側に配置され、第1取付部材11の内側に形成された液室16を、弾性体13を壁面の一部とする主液室16aと、副液室16bと、に区画する仕切り部材20とを備えている。
 なお、これらの各部材はそれぞれ第1取付部材11の中心軸線Oと同軸に設けられている。以下、中心軸線Oに沿う方向を軸方向といい、軸方向に沿って、第1取付部材11側を下側といい、第2取付部材12側を上側という。また、軸方向から見た平面視で中心軸線Oに直交する方向を径方向といい、中心軸線O回りに周回する方向を周方向という。
 ここで、前述の液室16は、仕切り部材20により、上側の主液室16aと、下側の副液室16bとに区画されている。
 また、主液室16aおよび副液室16bには、例えばエチレングリコール、水、シリコーンオイルなどの液体Lが封入されている。
 防振装置10は、例えば自動車等に装着され、エンジンの振動が車体に伝達するのを抑える。防振装置10では、第2取付部材12が振動発生部としての図示されないエンジンに連結される一方、第1取付部材11が図示されないブラケットを介して振動受部としての車体に連結される。
 第1取付部材11は、上側に形成された第1筒部11aと、第1筒部11aの下側に形成された第2筒部11bと、第1筒部11aおよび第2筒部11bを連結する段部11cとを備えている。第1筒部11a、第2筒部11bおよび段部11cは、中心軸線Oと同軸に配置されて一体に形成されている。第1取付部材11の上端部が弾性体13により液密状態で閉塞され、かつ第1取付部材11の下端部がダイヤフラム14により液密状態で閉塞されることにより、第1取付部材11の内側に液体Lが封入可能となっている。
 第2取付部材12は、第1取付部材11の第1筒部11aよりも上側に配置されている。
 弾性体13は、例えばゴム材料等からなる部材である。弾性体13は、第1取付部材11の上端部から上側に向けて突出し、かつ上側に向かうに従い漸次縮径された円錐台状の変形部13aと、この変形部13aから第1取付部材11の内周面に沿って下側に向けて延びる被覆部13bとを備えている。
 被覆部13bは、第1取付部材11の内周面に加硫接着されており、第1取付部材11の内周面は、その全域に亘って弾性体13で覆われている。変形部13aと被覆部13bとは一体に形成されている。
 図1に示すように、先述の仕切り部材20は、表裏面が軸方向を向く円板状の上側部材19と、上側部材19の下側に配設された下側部材15と、により形成されている。上側部材19および下側部材15は、例えばアルミニウム合金や樹脂などにより形成されている。上側部材19および下側部材15の剛性は、例えば、振動発生部からの入力振動に基づいてこれらの部材に液体Lの動的圧力が作用したときに、これらの部材が変形しない程度に設定されている。
 仕切り部材20は、全体として円板状に形成され、第1取付部材11内(被覆部13b内)に嵌合されている。上側部材19の上面は主液室16aに面しており、上側部材19は主液室16aの隔壁の一部を形成している。下側部材15の下面は副液室16bに面しており、下側部材15は副液室16bの隔壁の一部を形成している。
 上側部材19は、上側部材19を上下方向に貫通する複数の第1連通孔19aと、第1連通孔19aより径方向内側において下方に向けて突出する固定部19bと、固定部19bより径方向内側において上方に向けて窪む凹部19cと、を有する。
 下側部材15は、環状のフランジ部15aと、フランジ部15aの内周縁から上方に向けて延びる内筒部15bと、フランジ部15aの外周縁から上方に向けて延びる外筒部15cと、外筒部15cの径方向外側に形成された制限通路21と、を有する。フランジ部15aの上面と、内筒部15bの外周面と、外筒部15cの内周面と、上側部材19の下面と、により、仕切り部材20の収容室18が画成されている。収容室18および制限通路21は、互いに独立している。
 制限通路21は、主液室16aと副液室16bとを連通する。制限通路21は、仕切り部材20の下側部材15における外周面に周方向に沿って延び、かつ収容室18を回避して配置されている。制限通路21は、例えば周波数が10Hz前後のシェイク振動が防振装置10に入力されたときに共振(液柱共振)が発生するようにチューニングされていてもよい。
 仕切り部材20にはさらに、第1連通孔19a、および第2連通孔15dが設けられている。第1連通孔19a、および第2連通孔15dは、収容室18の壁面のうち後述する可動部材40と軸方向に対向する部分から軸方向の外側に向けて延び、収容室18と、主液室16aまたは副液室16bと、を各別に連通する。第1連通孔19aは収容室18と主液室16aとを連通し、第2連通孔15dは収容室18と副液室16bとを連通している。
 第1連通孔19aは、上側部材19に複数形成されている。第2連通孔15dは、下側部材15に複数形成されている。
 各第1連通孔19aの軸方向に直交する断面における横断面積は、軸方向に沿って変化している。各第1連通孔19aの内周面には、横断面積が軸方向で一定の直行部19dと、下方(収容室側)に向かうに従い漸次拡径する拡径部19eと、が形成されている。直行部19dは軸方向において、主液室16a側に開口する上端開口から、第1連通孔19aの中央部まで延在している。拡径部19eは軸方向において、直行部19dの下端である第1連通孔19aの中央部から、収容室18側に開口する下端開口まで延在している。
第1連通孔19aの横断面積は、収容室18側に開口する下端開口において最も大きくなっている。
 ここで収容室18内には、可動部材40(可動板、メンブラン)が配置されている。可動部材40は、収容室18内に、軸方向に変形可能または変位可能に収容されている。可動部材40は、例えばゴム材料などにより表裏面が軸方向を向く板状に形成され、弾性変形可能とされている。可動部材40は、主液室16aと副液室16bとの圧力差に応じて軸方向に変形または変位する。
 図2に示すように、可動部材40は、中心軸線Oと同軸に配置された環状の本体部41を備える。本体部41には、その外周縁部から軸方向および径方向の双方向に対して傾斜した方向に突出する傾斜突起部42と、本体部41のうち傾斜突起部42よりも径方向の内側に位置する部分に配置され、軸方向に突出する直突起部43と、本体部41を上下方向に貫く複数の貫通孔41aと、が形成されている。
 傾斜突起部42は、可動部材40の本体部41における外周縁部の上方および下方に一対形成されている。各傾斜突起部42は、本体部41の外周縁部の全周にわたって環状に形成されている。各傾斜突起部42の根本部における径方向の幅(以降、根本幅Wという)は、各傾斜突起部42の根本部から先端部までの軸方向の高さ(以降、高さHという)よりも小さい。なお、根本幅Wは、本体部41の上面若しくは下面に沿い、かつ径方向に延びる仮想直線上における傾斜突起部42の幅である。また、高さHは、上記仮想直線から傾斜突起部42の先端部までの軸方向における長さである。
 直突起部43は、本体部41の上面および下面に複数形成されている。各直突起部43は、中心軸線Oと同軸の環状に形成されている。各直突起部43の径方向における幅は、先端に向かうに従い漸次小さくなっている。各直突起部43は、本体部41のうち、傾斜突起部42が形成された外周縁部に連なる外周部に形成されている。本体部41の上側に形成された傾斜突起部42および各直突起部43の先端部の軸方向における位置は、互いに同等である。同様に、本体部41の下側に形成された傾斜突起部42および各直突起部43の先端部の軸方向における位置は、互いに同等である。これにより、傾斜突起部42および直突起部43と収容室18の壁面との間には、軸方向に均一の比較的小さな隙間が形成されている。
 なお、傾斜突起部42および直突起部43は周方向において途切れていてもよく、このようにすると可動部材40全体の剛性を低下させて変形しやすくすることができる。
 可動部材40にはさらに、本体部41の内周縁部から上方および下方に突出する内側被固定部44(被固定部)と、本体部41のうち内側被固定部44と直突起部43との間の部分から上方および下方に突出する外側被固定部45(被固定部)と、が形成されている。内側被固定部44および外側被固定部45は、中心軸線Oと同軸の環状に形成されている。内側被固定部44の軸方向における厚さは、外側被固定部45の軸方向における厚さよりも大きい。2つの被固定部44、45はそれぞれ、本体部41のうち外周縁部より径方向の内側に位置する部分に形成されており、上側部材19および下側部材15によって上下方向に挟持されることで、仕切り部材20に固定されている。これにより、可動部材40は被固定部44、45を固定端として変形するため、可動部材40のうち被固定部44、45から径方向に離れた部分ほど軸方向に変位および加速しやすい。
 なお、縦断面視において、傾斜突起部42の体積を直突起部43の体積よりも小さく形成してもよい。この場合、本体部41の外周縁部に形成されているために加速しやすい傾斜突起部42の質量を低減して、傾斜突起部42が収容室18の壁面に当接する際の衝撃を抑えることができる。
 以上説明したように、本実施形態の防振装置10によれば、防振装置10に振動が入力されて、主液室16a内の液体Lの圧力が変動すると、可動部材40が収容室18内で軸方向に変形または変位する。詳しくは、可動部材40は被固定部44、45を固定端として外周縁部が最も大きく軸方向に変位するように弾性変形する。このとき、可動部材40の外周縁部に形成された各傾斜突起部42の先端部が、収容室18の上下の壁面に当接して、各傾斜突起部42が根本部から倒れて水平な姿勢に近づくようにせん断変形する。このため、例えば可動部材40を圧縮変形させて振動エネルギーを吸収する場合と比較して、可動部材40の変形量や変形に要する時間が大きくなり、可動部材40の変形に伴う反力の急激な上昇が抑えられ、可動部材40の変形による緩衝効果を強めることができる。
 また、傾斜突起部42の根本幅Wは高さHよりも小さいため、例えば根本幅Wが高さHよりも大きい場合と比較して、傾斜突起部42が水平な姿勢に倒れるまでの傾斜突起部42の変位量が大きくなる。このように、傾斜突起部42の変位量を大きくすることで、傾斜突起部42の変形が完了するまでに要する時間を長くして、傾斜突起部42が収容室18の壁面に当接した際の傾斜突起部42の加速度を抑えることが可能となり、可動部材40から仕切り部材20に伝わる振動を吸収および減衰させることができる。
 以上により、可動部材40が収容室18の壁面に当接する際に防振装置10が振動しにくくなり、異音の発生を抑制することができる。
 また、可動部材40には傾斜突起部42の他に複数の直突起部43が形成されているため、防振装置10に振動が入力されると傾斜突起部42および複数の直突起部43が全体として収容室18の壁面に当接するため、可動部材40に局所的に大きな反力が生じることによる異音の発生や可動部材40の耐久性の低下を抑制することができる。
 また、可動部材40における径方向の内側に直突起部43が形成されているため、例えば傾斜突起部42を径方向の内側に形成する場合と比較して、可動部材40を成形型により成形する際に離型させやすくなり、可動部材40を容易に成形することが可能となる。
 また、傾斜突起部42の先端部と、複数の直突起部43の先端部と、の軸方向における位置が互いに同等であるため、傾斜突起部42および直突起部43と収容室18の壁面との間の隙間を均一にすることができる。これにより、傾斜突起部42の先端部および直突起部43の先端部の全体が均一に収容室18の壁面と当接しやすくなり、可動部材40に局所的に大きな反力が生じることによる異音の発生や可動部材40の耐久性の低下をより確実に抑制することができる。
 また、傾斜突起部42および直突起部43と収容室18の壁面との間の隙間が均一に小さくなっているため、可動部材40が収容室18内で加速しにくくなり、傾斜突起部42および直突起部43が収容室18の壁面に当接する際の速度を抑えて異音の発生をより確実に抑制することができる。
 また、可動部材40の被固定部44、45が径方向の内側において仕切り部材20に固定されているため、可動部材40の外周縁部に形成された傾斜突起部42をより確実に収容室18の壁面と当接させて、傾斜突起部42がせん断変形して振動エネルギーを吸収することによる緩衝効果の向上をより確実に奏功させることができる。
 なお、防振装置10に比較的大きな振幅を有する振動が作用して、主液室16a内の液体Lの圧力が変動したときは、制限通路21を通して主液室16aおよび副液室16bの相互間で液体Lが流通し、液柱共振が生じることで、振動を吸収および減衰させることができる。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記実施形態では複数の直突起部43が形成された可動部材40を用いたが、これに限られず、直突起部43が形成されていない可動部材40を採用してもよい。
 また、前記実施形態では傾斜突起部42の先端部および複数の直突起部43の先端部の軸方向における位置が互いに同等に形成されていたが、これに限られず、各突起部の先端部の軸方向における位置が不均一な可動部材40を採用してもよい。例えば各突起部42、43が形成されている位置が、被固定部44、45から径方向に離れるに従って、各突起部42、43の高さHが漸次小さくなっていてもよい。この場合、可動部材40のうち、被固定部44、45から径方向に離れた部分ほど軸方向の変位量が大きくなるため、各突起部42、43の先端部をより均一に収容室18の壁面に当接させることができる。
 また、前記実施形態では可動部材40の被固定部44、45が仕切り部材20に固定されていたが、可動部材40は仕切り部材20に固定されていなくてもよい。この場合には、防振装置10への振動の入力に伴って、可動部材40全体を軸方向に変位させつつ弾性変形させることができる。
 また、前記実施形態では、第2取付部材12とエンジンとを接続し、第1取付部材11と車体とを接続する場合の説明をした。しかしながら、本発明はこれに限られず、逆に接続するように構成してもよいし、他の振動発生部と振動受部とに防振装置10を設置してもよい。
 また、前記実施形態で示した可動部材40に代えて、例えば図3に示す可動部材40を用いてもよい。図3に示す可動部材40では、本体部41の外周縁部より径方向の内側の部分に、複数の傾斜突起部42が形成されている。このようにすると、防振装置10に振動が入力された際、複数の傾斜突起部42が全体として収容室18の壁面に当接してせん断変形する。これにより、可動部材40のうち、せん断変形によって振動エネルギーを吸収する部分の割合が大きくなり、可動部材40の変形による緩衝効果をより高めることができる。
 また、図3で示した可動部材40に代えて、例えば図4に示す可動部材40を用いてもよい。図3で示した可動部材40では、各傾斜突起部42が上下で対称の位置に形成されていたが、図4に示す可動部材40では、各傾斜突起部42が形成されている位置が上下で非対称となっている。詳しくは、本体部41の外周縁部より径方向の内側に形成された傾斜突起部42のうち、本体部41の下側に形成された傾斜突起部42が、本体部41の上側かつ径方向において隣接する位置に形成された2つの傾斜突起部42の間に形成されている。このように、本体部41の上側と下側とで、傾斜突起部42を千鳥状に配設することで、可動部材40全体の変形の態様や変形のしやすさを調節することができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。例えば、図2および図4に示す可動部材40の形状を組み合わせて、複数の直突起部43が本体部41の上側と下側とで千鳥状に配設された可動部材40を用いてもよい。
本発明の防振装置によれば、可動部材の外周縁部に傾斜突起部が形成されており、傾斜突起部の根本部における径方向の幅が、傾斜突起部の根本部から先端部までの軸方向における長さよりも小さいため、防振装置に振動が入力されて傾斜突起部が収容室の壁面に当接する際に、傾斜突起部を大きくせん断変形させながら振動エネルギーを吸収させることができる。このため、例えば可動部材を圧縮変形させて振動エネルギーを吸収する場合と比較して、可動部材の変形量や変形が完了するまでに要する時間が大きくなり、可動部材の変形に伴う反力の急激な上昇が抑えられ、可動部材の変形による緩衝効果を強めることができる。これにより、可動部材が収容室の壁面に当接する際に防振装置が振動しにくくなり、異音の発生を抑制することができる。
 ここで、前記可動部材のうち、前記傾斜突起部よりも前記径方向の内側に位置する部分に、前記軸方向に突出する直突起部が形成されていてもよい。
 この場合、可動部材の外周縁部に形成された傾斜突起部だけでなく、その径方向の内側に形成された直突起部を含む全体が収容室の壁面に当接するため、可動部材に局所的に大きな反力が生じることによる異音の発生や可動部材の耐久性の低下を抑制することができる。
 また、例えば傾斜突起部を径方向の内側に形成する場合と比較して、可動部材を成形型により成形する際に離型させやすくなり、可動部材を容易に成形することが可能となる。
 また、前記傾斜突起部の先端部と、前記直突起部の先端部と、の前記軸方向における位置は互いに同等であってもよい。
 この場合、傾斜突起部および直突起部と収容室の壁面との間の隙間を均一にすることで、傾斜突起部の先端部および直突起部の先端部の全体が均一に収容室の壁面と当接しやすくなり、可動部材に局所的に大きな反力が生じることによる異音の発生や可動部材の耐久性の低下をより確実に抑制することができる。
 また、傾斜突起部および直突起部と収容室の壁面との間の隙間を均一に小さくすることで、可動部材が収容室内で加速しにくくなり、傾斜突起部および直突起部が収容室の壁面に当接する際の速度を抑えて異音の発生をより確実に抑制することができる。
 また、前記可動部材のうち、前記外周縁部より前記径方向の内側に位置する部分に、前記仕切り部材に固定される被固定部が形成されていてもよい。
 この場合、可動部材の被固定部が径方向の内側において仕切り部材に固定されているため、可動部材の外周縁部に形成された傾斜突起部をより確実に収容室の壁面と当接させて、傾斜突起部がせん断変形して振動エネルギーを吸収することによる緩衝効果の向上をより確実に奏功させることができる。
本発明は、振動発生部から振動が入力された際に、可動部材が収容室の壁面に当接することで生じる異音を抑えることができる防振装置を提供する。
 10 防振装置
11 第1取付部材
12 第2取付部材
13 弾性体
15d 第2連通孔
16 液室
16a 主液室
16b 副液室
18 収容室
19a 第1連通孔
20 仕切り部材
24 固定端部
40 可動部材
42 傾斜突起部
43 直突起部
44 内側被固定部
45 外側被固定部
L 液体
O 中心軸線

Claims (4)

  1.  振動発生部および振動受部のうちの一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
     これらの両取付部材同士を連結する弾性体と、
     液体が封入された前記第1取付部材内の液室を、前記弾性体を壁面の一部とする主液室と、副液室と、に区画する仕切り部材と、
     前記仕切り部材に設けられた収容室内に、前記第1取付部材の軸方向に変形可能または変位可能に収容された可動部材と、を備え、
     前記仕切り部材には、前記収容室と、前記主液室および前記副液室と、を各別に連通する複数の連通孔が設けられ、
     前記可動部材のうち、少なくとも外周縁部には前記第1取付部材の中心軸線に沿う軸方向および径方向の双方向に対して傾斜した方向に突出する傾斜突起部が形成されており、
     前記傾斜突起部の根本部における前記径方向の幅は、前記傾斜突起部の前記根本部から先端部までの前記軸方向における長さよりも小さい防振装置。
  2.  前記可動部材のうち、前記傾斜突起部よりも前記径方向の内側に位置する部分に、前記軸方向に突出する直突起部が形成されている請求項1に記載の防振装置。
  3.  前記傾斜突起部の先端部と、前記直突起部の先端部と、の前記軸方向における位置は互いに同等である請求項2に記載の防振装置。
  4.  前記可動部材のうち、前記外周縁部より前記径方向の内側に位置する部分に、前記仕切り部材に固定される被固定部が形成されている請求項1から3のいずれか1項に記載の防振装置。
PCT/JP2017/039882 2016-12-07 2017-11-06 防振装置 WO2018105286A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/347,746 US20190285132A1 (en) 2016-12-07 2017-11-06 Vibration-proof device
CN201780074957.2A CN110050143B (zh) 2016-12-07 2017-11-06 防振装置
EP17877827.0A EP3553340A4 (en) 2016-12-07 2017-11-06 VIBRATION RESISTANT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016237439A JP6807723B2 (ja) 2016-12-07 2016-12-07 防振装置
JP2016-237439 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105286A1 true WO2018105286A1 (ja) 2018-06-14

Family

ID=62491863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039882 WO2018105286A1 (ja) 2016-12-07 2017-11-06 防振装置

Country Status (5)

Country Link
US (1) US20190285132A1 (ja)
EP (1) EP3553340A4 (ja)
JP (1) JP6807723B2 (ja)
CN (1) CN110050143B (ja)
WO (1) WO2018105286A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438000B2 (ja) * 2020-04-08 2024-02-26 Toyo Tire株式会社 液封入式防振装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241047A (ja) * 2008-06-11 2008-10-09 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2010084822A (ja) * 2008-09-30 2010-04-15 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2013036513A (ja) * 2011-08-05 2013-02-21 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2016003716A (ja) 2014-06-17 2016-01-12 株式会社ブリヂストン 液封防振装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817570B2 (ja) * 1993-04-26 1998-10-30 東海ゴム工業株式会社 流体封入式防振マウント
JP4359889B2 (ja) * 2004-09-30 2009-11-11 東海ゴム工業株式会社 流体封入式防振装置
US7216857B2 (en) * 2004-10-12 2007-05-15 Toyo Tire & Rubber Co., Ltd. Hydraulic antivibration device
US7328888B2 (en) * 2004-11-24 2008-02-12 Toyo Tire & Rubber Co., Ltd. Hydraulic antivibration device and hydraulic antivibration assembly containing the same
JP5170809B2 (ja) * 2007-08-27 2013-03-27 山下ゴム株式会社 液封防振装置
US8474799B2 (en) * 2007-11-30 2013-07-02 Tokai Rubber Industries, Ltd. Fluid filled type vibration damping device
CN102149941B (zh) * 2008-09-17 2013-10-16 东洋橡胶工业株式会社 液封式防振装置
CN102265059B (zh) * 2008-12-25 2013-08-07 东海橡塑工业株式会社 流体封入式隔振装置
US8651467B2 (en) * 2010-08-31 2014-02-18 Tokai Rubber Industries, Ltd. Fluid-filled type vibration damping device
JP5248645B2 (ja) * 2011-03-31 2013-07-31 東洋ゴム工業株式会社 液封入式防振装置
JP5907782B2 (ja) * 2012-04-05 2016-04-26 住友理工株式会社 流体封入式防振装置
JP6306412B2 (ja) * 2014-04-18 2018-04-04 山下ゴム株式会社 液封防振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241047A (ja) * 2008-06-11 2008-10-09 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2010084822A (ja) * 2008-09-30 2010-04-15 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2013036513A (ja) * 2011-08-05 2013-02-21 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2016003716A (ja) 2014-06-17 2016-01-12 株式会社ブリヂストン 液封防振装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553340A4

Also Published As

Publication number Publication date
JP6807723B2 (ja) 2021-01-06
US20190285132A1 (en) 2019-09-19
EP3553340A4 (en) 2020-01-08
CN110050143B (zh) 2022-08-19
CN110050143A (zh) 2019-07-23
EP3553340A1 (en) 2019-10-16
JP2018091469A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
US8196700B2 (en) Anti-vibration device
JP5678073B2 (ja) 防振装置
JP2009275910A (ja) 流体封入式防振装置
JP4740776B2 (ja) 液封入式防振装置
JP2006258217A (ja) 流体封入式防振装置
JP4823976B2 (ja) 液体封入式防振支持装置
JP4408417B2 (ja) 防振装置
WO2013005681A1 (ja) 防振装置
WO2018105286A1 (ja) 防振装置
JP4563197B2 (ja) 防振装置
JP2019056398A (ja) 液体封入マウント
JP4989620B2 (ja) 液封入式防振装置
JP4603014B2 (ja) 液封入式防振装置
JP6388441B2 (ja) 防振装置
JP5852925B2 (ja) 流体封入式防振装置
JP4603015B2 (ja) 液封入式防振装置
JP2006144817A (ja) 防振装置
JP6572104B2 (ja) 液封入式防振装置
JP2012154420A (ja) 防振装置
JP5802472B2 (ja) 防振装置
JP5336299B2 (ja) 防振装置
JP6604825B2 (ja) 液封入式防振装置
JP2014047897A (ja) 液封入式防振装置および液封入式防振装置の製造方法
JP2016169781A (ja) 液封入式防振装置
JP2007333019A (ja) 防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017877827

Country of ref document: EP

Effective date: 20190708