WO2018099239A1 - 耐热性胶带及其制造方法 - Google Patents

耐热性胶带及其制造方法 Download PDF

Info

Publication number
WO2018099239A1
WO2018099239A1 PCT/CN2017/109235 CN2017109235W WO2018099239A1 WO 2018099239 A1 WO2018099239 A1 WO 2018099239A1 CN 2017109235 W CN2017109235 W CN 2017109235W WO 2018099239 A1 WO2018099239 A1 WO 2018099239A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
fabric
tape
heat
fluorine
Prior art date
Application number
PCT/CN2017/109235
Other languages
English (en)
French (fr)
Inventor
李旭
渡边義宣
詹必才
Original Assignee
日东电工(上海松江)有限公司
日东电工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日东电工(上海松江)有限公司, 日东电工株式会社 filed Critical 日东电工(上海松江)有限公司
Priority to KR1020197017401A priority Critical patent/KR102464625B1/ko
Priority to EP17875720.9A priority patent/EP3549991B1/en
Priority to JP2019526584A priority patent/JP7132919B2/ja
Publication of WO2018099239A1 publication Critical patent/WO2018099239A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/205Adhesives in the form of films or foils characterised by their carriers characterised by the backing impregnating composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/14Glass
    • C09J2400/143Glass in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/26Presence of textile or fabric
    • C09J2400/263Presence of textile or fabric in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2427/00Presence of halogenated polymer
    • C09J2427/006Presence of halogenated polymer in the substrate

Definitions

  • the present invention relates to a heat resistant tape, and more particularly to a tape using a glass fiber fabric impregnated with a fluorine resin as a substrate.
  • the present invention also relates to a method of producing the above tape.
  • Glass fiber fabrics are resistant to high temperatures and have high strength. Glass fiber fabrics are often used in the manufacture of substrates in order to increase strength during the manufacture of high temperature resistant tapes. Especially when used in the field of heat sealing, after the tape is attached to the hot plate, abrasion occurs due to contact between the tape and the heat seal. Since the surface of the existing heat-resistant adhesive tape is uneven, the wear is uneven during use, and some of the glass fibers are easily exposed, and the service life is lowered.
  • the base material fluororesin layer is thickened in order to increase the life.
  • the reverse force is large after the bending, so that it is not easy to stick and is easily separated from the adherend, resulting in easy adhesion.
  • the life of the tape is reduced.
  • An object of the present invention is to provide a heat-resistant adhesive tape which has good flatness, strong abrasion resistance, is easy to adhere, and which is not easily detached from the adherend, and has high production efficiency, and a method for producing the same.
  • the present invention provides a heat resistant tape comprising a substrate layer and a first side of the substrate layer
  • the adhesive layer, the substrate layer further includes a second surface opposite to the first surface, the substrate layer being a glass fiber fabric impregnated with a fluorine-containing resin, wherein the second surface
  • the surface roughness was Rz ⁇ 2.5 ⁇ m or Ra ⁇ 1.0 ⁇ m.
  • the heat resistant tape according to the present invention wherein the thinnest thickness between the second side of the base material layer and the glass fiber woven fabric is 10 to 30 ⁇ m.
  • a heat resistant tape according to the present invention wherein a thinnest thickness between the second face of the base material layer and the glass fiber fabric and the first face of the base material layer are The ratio of the thinnest thickness between the glass fiber fabrics is 0.8 to 1.3.
  • the heat resistant tape according to the present invention wherein the fluorine-containing resin is polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), perfluoroethylene-propylene copolymer (FEP), ethylene- One or more of tetrafluoroethylene copolymer (ETFE) and polyvinylidene fluoride (PVdF).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy alkane
  • FEP perfluoroethylene-propylene copolymer
  • ETFE ethylene- One or more of tetrafluoroethylene copolymer
  • PVdF polyvinylidene fluoride
  • the present invention also provides a method of manufacturing the heat resistant tape, which comprises the following steps:
  • the glass fiber fabric is treated with a silicon-containing agent
  • the glass fiber fabric after the treatment is impregnated with the fluorine-containing resin
  • the adhesive layer is formed on the first side of the substrate layer.
  • the method for producing a heat-resistant adhesive tape according to the present invention wherein after the glass fiber fabric is impregnated with the fluorine-containing resin, and before the substrate layer is heated to form, the blade is impregnated with the fluorine-containing resin.
  • a method of producing a heat-resistant adhesive tape according to the present invention wherein the first surface of the substrate is surface-treated after the base material layer is formed and before the adhesive layer is formed.
  • a method of producing a heat-resistant adhesive tape according to the present invention wherein the surface treatment is carried out using a SiO 2 /PFA mixed solution, the PFA being a perfluoroalkoxy alkane.
  • the step of impregnating the glass fiber woven fabric with the fluororesin and the step of heating the base material layer are repeated two to four times.
  • the amount of the silicon-containing chemical agent is 0.05 to 0.2% by weight based on the total weight of the glass fiber fabric.
  • the abrasion resistance of the tape can be improved, the production efficiency can be improved, and the cost can be reduced.
  • FIG. 1 is a schematic cross-sectional structural view showing an example of a heat resistant tape of the present invention
  • Fig. 2 is an enlarged cross-sectional view showing an example of the heat resistant tape of the present invention.
  • the heat resistant tape of the present invention comprises a base material layer 10 and an adhesive layer 20 disposed on the first surface 11 of the base material layer 10, the base material layer 10 further including a first surface opposite to the first surface 11
  • the substrate layer 10 is a glass fiber fabric 13 impregnated with a fluorine resin
  • the surface roughness of the second surface 12 is Rz ⁇ 2.5 ⁇ m or Ra ⁇ 1.0 ⁇ m. More preferably, the surface roughness of the second face 12 satisfies both Rz ⁇ 2.5 ⁇ m and Ra ⁇ 1.0 ⁇ m.
  • the glass fiber woven fabric 13 is treated with a silicon-containing chemical agent, and the treated glass fiber woven fabric is impregnated with a fluorine-containing resin, and the base material layer 10 is formed by heating a glass fiber woven fabric impregnated with a fluorine-containing resin.
  • the thickness of the base material layer 10 is, for example, 10 to 500 ⁇ m, preferably 40 to 300 ⁇ m.
  • the glass fiber woven fabric is a woven fabric obtained by weaving a glass fiber yarn.
  • the glass strand used as the glass fiber fabric is usually formed by laminating glass fibers having a diameter of about several ⁇ m in units of several hundred.
  • the properties of fiberglass fabrics are determined by fiber properties, warp and weft density, yarn structure and texture.
  • the warp and weft density is determined by the yarn structure and texture.
  • the warp and weft density plus the yarn structure determines the physical properties of the fabric, such as weight, thickness and breaking strength.
  • the basic texture is plain, twill, satin, rib and mat.
  • the type and configuration of the glass fiber woven fabric are not particularly limited.
  • a basis weight of 15 to 110 g/m 2 a yarn density of 10 to 100 / 25 mm in the warp direction and the weft direction, and a thickness of about 10 ⁇ m to about 500 ⁇ m, more preferably about 30 ⁇ m to about 250 ⁇ m.
  • Fiberglass plain weave The fiberglass fabric can be opened before use to improve the effect of the subsequent silicon-containing treatment process.
  • the fluorine-containing resin is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), perfluoroethylene-propylene copolymer (FEP), and ethylene-tetrafluoroethylene copolymer. (ETFE), one or more of polyvinylidene fluoride (PVdF).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy alkane
  • FEP perfluoroethylene-propylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PVdF polyvinylidene fluoride
  • the measurement of the surface roughness Rz was carried out in accordance with the JIS-B0601-1994 test method.
  • the surface roughness Rz ⁇ 2.5 ⁇ m of the second surface 12 of the base material layer 10 is preferably Rz ⁇ 2.0 ⁇ m.
  • the measurement of the surface roughness Ra was carried out in accordance with the JIS-B0601-1994 test method.
  • the surface roughness Ra of the second surface 12 of the base material layer 10 is 1.0 ⁇ m, preferably Ra ⁇ 0.8 ⁇ m.
  • the surface roughness of the second side 12 of the substrate layer 10 is particularly important for the useful life of the tape.
  • the surface roughness greatly affects the surface abrasion performance, for example, affecting the friction coefficient, affecting the surface stress when the tape is rubbed, and thereby causing surface damage of the surface fluororesin layer. Therefore, when Rz>2.5 ⁇ m, the surface layer is more likely to form microcrystalline damage of the surface layer resin, further causing destruction of the entire surface layer resin, resulting in a low service life of the tape.
  • Ra>1.0 ⁇ m as also the mechanism discovered by the inventors as described above, since the surface roughness greatly affects the surface abrasion performance, for example, affecting the friction coefficient, affecting the surface stress of the tape when it is rubbed, and thereby causing Surface damage model of the surface fluororesin layer. Therefore, when Ra>1.0 ⁇ m, the surface layer is more likely to form microcrystalline damage of the surface layer resin, further causing destruction of the entire surface layer resin, resulting in a low service life of the tape.
  • the thinnest thickness (the outer surface of the base material layer to the thickness of the nearest glass fiber) of the fluorine-containing resin layer on both sides of the glass fiber fabric is generally 10 to 30 ⁇ m in view of manufacturability and service life.
  • it is less than 10 ⁇ m since the thickness of the fluorine-containing resin layer is too thin, it is easy to expose the inner glass fiber after being worn, resulting in irregular surface morphology of the tape, which causes the tape to lose the effects of release and chemical resistance.
  • it is more than 30 ⁇ m the thickness of the fluorine-containing resin layer is too thick, resulting in that the workability of the tape during the use is mainly deteriorated against the counter-force, and the use cost is increased.
  • the thinnest thickness 15 between the second side 12 of the substrate layer 10 and the glass fiber fabric 13 is particularly important for the service life of the tape.
  • the thinnest thickness 15 is 10 to 30 ⁇ m, preferably 12 to 25 ⁇ m.
  • the above-mentioned minimum thickness is less than 10 ⁇ m, it may cause an adverse effect as described above.
  • it is more than 30 ⁇ m, it causes an adverse effect as described above.
  • the ratio of the thinnest thickness 15 between the second face 12 of the substrate layer 10 to the glass fiber fabric 13 and the thinnest thickness 14 between the first face 11 of the substrate layer 10 and the fiberglass fabric 13 is 0.8 to 1.3.
  • the ratio is less than 0.8, the tape tends to curl in one direction during processing, resulting in a decrease in the actual use performance of the tape.
  • the ratio is more than 1.3, based on the same principle, the tape tends to curl in one direction during processing, resulting in a decrease in the actual use performance of the tape.
  • the type of the adhesive used for the pressure-sensitive adhesive layer is not particularly limited, and a pressure-sensitive adhesive material conventionally used for an adhesive layer of an adhesive tape such as acrylic, rubber or silicone can be used. From the viewpoint of heat resistance of the tape, a silicone-based pressure-sensitive adhesive is preferable.
  • the thickness of the pressure-sensitive adhesive layer is usually 5 to 100 ⁇ m, preferably 10 to 60 ⁇ m. When the thickness is less than 5 ⁇ m, the adhesion is low, and peeling easily occurs during use. When the thickness is more than 100 ⁇ m, when used as a heat seal, the thermal conductivity of the tape in the thickness direction is rather lowered, which is not preferable.
  • the method for producing a heat-resistant adhesive tape according to the present invention comprises: subjecting a glass fiber woven fabric to a silicon-containing chemical treatment (silicon-containing chemical treatment step); and impregnating the treated glass fiber woven fabric with a fluorine-containing resin (impregnation step); heating and dipping The glass fiber woven fabric of the fluorine-containing resin is permeated to form the base material layer (base material layer forming step); and the adhesive layer is formed on the first surface of the base material layer.
  • Silicon-containing agent treatment is the process of treating a fiberglass fabric with a silicon-containing agent.
  • the silicon-containing agent is a type of organosilicon compound containing two different chemical groups in the molecule, and its structural formula can be represented by the formula YSiX 3 .
  • Y is a non-hydrolyzable group, including an alkenyl group (mainly a vinyl group), and a terminal having Cl, NH 2 , -SH, an epoxy group, N 3 , a (meth)acryloyloxy group, an isocyanate a hydrocarbyl group of a functional group, i.e., a carbon functional group;
  • X is a hydrolyzable group, including Cl, OCH 3 , OCH 2 CH 3 , OC 2 H 4 OCH 3 , OSi(CH 3 ) 3 , and the like.
  • the glass fiber fabric Due to the presence of the silicon-containing agent, the glass fiber fabric has a great influence on the flattening property of the fluorine-containing resin material on the surface of the glass fiber fabric and the internal immersion property.
  • the amount of the silicon-containing agent is 0.05 to 0.2% by weight based on the total weight of the glass fiber fabric.
  • an emulsion impregnated with a fluororesin may be used to impregnate the glass fiber fabric.
  • the fluororesin emulsion is a polymer resin emulsion in which a polymer main chain is a carbon element and a carbon element is a fluorine element.
  • a polytetrafluoroethylene (PTFE) emulsion is formed by emulsion polymerization of tetrafluoroethylene (TFE).
  • the content (solid content ratio) of the fluorine-containing resin in the fluorine-containing resin emulsion is preferably from about 40 to about 60% by weight.
  • the glass fiber fabric is impregnated into the fluororesin emulsion.
  • the impregnation can be carried out, for example, by a method of impregnating a glass fiber fabric in a fluorine-containing resin emulsion, a method of coating a fluorine-containing resin emulsion on a glass fiber fabric, or a method of spraying a fluorine-containing resin emulsion on a glass fiber fabric.
  • the glass fiber fabric impregnated with the fluorine resin may be treated with a doctor blade or a doctor blade to separately control the thickness of the fluorine resin on both sides of the glass fiber fabric.
  • the dispersion medium is lost from the fluorine-containing resin emulsion impregnated into the glass fiber fabric in the impregnation step, and the fluorine-containing resin is fused to each other (the emulsion is converted into a fusion body) to form a fluorine-containing resin impregnated with the fluorine-containing resin.
  • Fiberglass fabric
  • the specific method of the heating step is not limited, and the glass fiber woven fabric impregnated with the fluororesin emulsion can be heated to a temperature equal to or higher than the melting point of the fluororesin, and is usually 15 ° C to 60 ° C above the melting point of the fluororesin.
  • the heating temperature is preferably 330 ° C to 400 ° C, and more preferably 340 ° C to 380 ° C.
  • the impregnation step and the heating step may be further repeated on the formed glass fiber fabric as needed. By this repetition, for example, the thickness of the glass fiber fabric impregnated with the fluorine-containing resin can be increased.
  • the total thickness of the base material layer formed by the above steps is, for example, 10 to 500 ⁇ m, preferably 40 to 300 ⁇ m, and more preferably 60 to 200 ⁇ m.
  • the impregnation step and the heating step are repeated two to four times, and the number of repetitions may cause the substrate layer to be too thick, and when it is attached to an angled hot plate, the back-force is large after bending. It is not easy to stick and it is easy to get rid of the adherend.
  • the method for producing the base material layer of the tape of the present invention may include any step other than the impregnation step and the heating step as long as the effects of the present invention can be obtained.
  • the surface treatment step is for improving the adhesion (anchoring force) between the surface on which the adhesive layer is provided in the tape substrate layer (the first side in the present invention) and the adhesive layer provided on the surface. deal with. This process can be carried out as needed.
  • the specific method of performing the surface treatment process is the same as the method carried out in the manufacture of a known tape.
  • the surface treatment step can be carried out, for example, by applying a surface treatment solution (adhesive treatment solution) containing a surface treatment agent (adhesive treatment agent) and a dispersant to the surface of the tape base layer to which the pressure-sensitive adhesive layer is provided.
  • the surface treatment agent is, for example, a polyester resin, a melamine resin, an acrylic resin, a silicone resin, and a fluorine-containing resin such as PTFE, PFA or ETFE.
  • the dispersing agent is, for example, toluene, xylene, ethyl acetate, butanol, water, and a mixture thereof.
  • the surface treatment solution may contain a surface treatment agent and a material other than the dispersant, such as a crosslinking agent, a curing agent, an organic filler, an inorganic filler, and a surfactant.
  • a surface treatment agent such as a crosslinking agent, a curing agent, an organic filler, an inorganic filler, and a surfactant.
  • the organic filler is, for example, a powder of a melamine resin, an epoxy resin, or an acrylic resin
  • the inorganic filler is, for example, a powder of iron oxide, aluminum oxide, or silica.
  • the surface treatment solution is preferably a solution containing a fluorine-containing resin PFA as a surface treatment agent, water as a dispersant, and silica particles as an inorganic filler.
  • an adhesive layer is disposed on the first surface 11 of the tape base layer.
  • the specific method of performing the adhesive layer forming step is the same as the method carried out in the production of a known tape.
  • the adhesive layer forming step can be carried out, for example, by applying an adhesive to the first surface of the tape substrate layer.
  • Abrasion resistance performance test was carried out by using a Taber abrasion machine, a wear wheel CS-17, a load of 500 g, and rubbing the tape for 1000 times, weighing the weight before and after the abrasion, and calculating the wear amount.
  • the thinnest thickness between the substrate layer and the glass fiber fabric is measured by the following method: taking the tape product using a cutter for section cutting, cutting it into a sample having a thinness of 20 ⁇ m, and magnifying it under an electron microscope The cross section was observed to determine the thinnest thickness between the two faces of the substrate layer and the fiberglass fabric. Take 5 points for measurement and use the average value.
  • the tape is basically not curled, and the line shape is basically evaluated as ⁇ ,
  • the tape is only slightly curled and straightened and can be used as evaluation ⁇ .
  • the tape was crimped into a plurality of circles and evaluated as ⁇ .
  • the silicon-containing chemical treatment was carried out using a glass fiber plain woven fabric having a thickness of 50 ⁇ m, and the amount of the silicon-containing agent was 0.07 wt% based on the total weight of the glass fiber plain woven fabric.
  • the glass fiber plain woven fabric treated with the silicon-containing agent was impregnated with a PTFE emulsion having a fluorine-containing resin content (solid content ratio) of about 55% by weight. After the impregnation, the thickness of the PTFE on both sides of the glass fiber was controlled by a doctor blade. After dehydration, it was sintered at a high temperature of 350 ° C for 20 seconds.
  • the above impregnation and sintering are repeated once, and the spacing between the glass fibers is adjusted by controlling the doctor blade so that the thinnest portion thickness and the adhesion surface between the non-adhesive surface (ie, the second surface 12) and the glass fiber plain weave fabric (ie, The ratio of the thickness of the thinnest portion between the first side 11) and the glass fiber plain weave is 1.2.
  • a SiO 2 /PFA mixture is then applied to the adhesive side (i.e., the first side 11) and then sintered to form a surface treated layer.
  • the thickness of the adhesive layer was 40 ⁇ m.
  • the roughness Ra of the non-adhesive surface (i.e., the second surface 12) was 0.8 ⁇ m, Rz was 3.0 ⁇ m, and the thinnest portion between the non-adhesive surface and the glass fiber plain weave was 12 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated. In addition to the obtained tape, the thinnest portion between the non-adhesive surface (ie, the second side 12) and the glass fiber plain weave and the thinnest portion between the adhesive side (ie, the first side 11) and the glass fiber plain weave The ratio of the non-adhesive surface (i.e., the second side 12) was 1.2 ⁇ m, the Rz was 1.8 ⁇ m, and the thinnest portion between the non-adhesive surface and the glass fiber plain weave was 14 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated.
  • the non-adhesive surface ie the second side 12
  • the ratio between the thinnest thickness and the thinnest portion between the glass fiber plain weave (ie, the first side 11) and the glass fiber plain weave is 1.0, and the non-adhesive surface (ie, the second side 12) is rough.
  • the degree Ra was 0.5 ⁇ m
  • Rz was 1.8 ⁇ m
  • the thinnest portion between the non-adhesive side and the glass fiber plain weave was 20 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated.
  • the amount of the silicon-containing agent was 0.12% by weight based on the total weight of the glass fiber plain weave fabric, and in the obtained tape, the thinnest thickness and the adhesive surface between the non-adhesive surface (ie, the second side 12) and the glass fiber plain weave ( That is, the ratio of the thickness of the thinnest portion between the first surface 11) and the glass fiber plain woven fabric is 1.0, and the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 0.3 ⁇ m, Rz is 1.1 ⁇ m, and the non-adhesive agent
  • the thinnest part between the face and the glass fiber plain weave has a thickness of 20 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated.
  • the amount of the silicon-containing agent was 0.12% by weight based on the total weight of the glass fiber plain weave fabric, and in the obtained tape, the thinnest thickness and the adhesive surface between the non-adhesive surface (ie, the second side 12) and the glass fiber plain weave ( That is, the ratio of the thickness of the thinnest portion between the first surface 11) and the glass fiber plain weave fabric is 1.5, and the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 0.3 ⁇ m, Rz is 1.1 ⁇ m, and the non-adhesive agent
  • the thinnest part between the face and the glass fiber plain weave has a thickness of 20 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated.
  • the amount of the silicon-containing agent was 0.18 wt% of the total weight of the glass fiber plain weave fabric, and in the obtained tape, the thinnest thickness and the adhesive surface between the non-adhesive surface (i.e., the second side 12) and the glass fiber plain weave ( That is, the ratio of the thickness of the thinnest portion between the first surface 11) and the glass fiber plain woven fabric is 1.0, and the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 0.5 ⁇ m, Rz is 1.3 ⁇ m, and the non-adhesive agent The thinnest part between the face and the fiberglass plain fabric has a thickness of 14 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated.
  • the silicon-containing dose is 0.5% by weight based on the total weight of the glass fiber plain weave fabric, and in the obtained tape, the thinnest thickness and the adhesive surface between the non-adhesive surface (ie, the second side 12) and the glass fiber plain weave ( That is, the ratio of the thickness of the thinnest portion between the first surface 11) and the glass fiber plain woven fabric is 1.0, and the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 1.2 ⁇ m, Rz is 4.5 ⁇ m, and the non-adhesive agent
  • the thinnest part between the face and the fiberglass plain fabric has a thickness of 9 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated.
  • the amount of the silicon-containing agent is 0.02% by weight based on the total weight of the glass fiber plain weave fabric, and in the obtained tape, the thinnest thickness and the adhesive surface between the non-adhesive surface (ie, the second side 12) and the glass fiber plain weave ( That is, the ratio of the thickness of the thinnest portion between the first surface 11) and the glass fiber plain woven fabric is 2.0, and the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 1.2 ⁇ m, Rz is 4.8 ⁇ m, and the non-adhesive agent
  • the thinnest part between the face and the fiberglass plain fabric has a thickness of 9 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated.
  • the amount of the silicon-containing agent is 0.02% by weight based on the total weight of the glass fiber plain weave fabric, and in the obtained tape, the thinnest thickness and the adhesive surface between the non-adhesive surface (ie, the second side 12) and the glass fiber plain weave ( That is, the ratio of the thickness of the thinnest portion between the first surface 11) and the glass fiber plain woven fabric is 1.0, and the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 1.9 ⁇ m, Rz is 6.2 ⁇ m, and the non-adhesive agent
  • the thinnest part between the face and the glass fiber plain weave has a thickness of 5 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated. Except that no silicon-containing agent is added, and in the obtained tape, the thinnest part of the non-adhesive surface (ie, the second side 12) and the glass fiber plain weave and the adhesive side (ie, the first side 11) and the glass fiber plain.
  • the ratio of the thickness of the thinnest layer between the fabrics is 1.0, and the roughness Ra of the non-adhesive surface (ie, the second side 12) is 1.5 ⁇ m, the Rz is 6.1 ⁇ m, and the thinnest between the non-adhesive surface and the glass fiber plain weave.
  • the thickness is 6 ⁇ m.
  • the abrasion amount of the obtained tape was measured, and the exposed and curled glass fibers in the obtained tape were observed. The results are shown in Table 1.
  • the adhesive tape of the present application can be made to have excellent abrasion resistance and curl by making the surface roughness Rz ⁇ 2.5 ⁇ m or Ra ⁇ 1.0 ⁇ m of the second surface in the present application. Sex, and no fibers are exposed in the tape. On the contrary, the tape which does not satisfy the surface roughness condition of the second side described in the present application has poor abrasion resistance, and the fiber portion in the tape is exposed or worn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Reinforced Plastic Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

提供一种耐热性胶带及其制造方法。该耐热性胶带包括基材层和在基材层的第一面上设置的粘着剂层,基材层还包括与所述第一面相对的第二面,所述基材层为浸渗含氟树脂的玻璃纤维织物,所述第二面的表面粗糙度为Rz≦2.5μm或Ra≦1.0μm。该耐热性胶带由于对胶带的非粘着面的表面粗糙度进行调整,具有平整度好,耐磨性强,容易粘贴并且不容易脱离被粘体,生产效率高的特点。

Description

耐热性胶带及其制造方法 技术领域
本发明涉及耐热性胶带,更具体而言涉及使用浸渗含氟树脂的玻璃纤维织物为基材的胶带。本发明还涉及上述胶带的制造方法。
背景技术
己知使用浸渗有含氟树脂的玻璃纤维织物作为基材,并在该基材的一个面上设置有粘着剂层的胶带。该胶带显示出来自玻璃纤维织物及含氟树脂的高耐热性。
玻璃纤维织物耐高温并且强度高,在耐高温胶带的制造时为了增加强度常将玻璃纤维织物用于基材的制造。特别是用在热封领域时,胶带张贴在热板上以后,由于胶带和被热封物接触,产生磨损。由于现有耐热性胶带的表面凹凸不平,导致使用时磨耗不平均,部分玻璃纤维容易裸露,使用寿命降低。
另外,现有产品为了增加寿命而将基材氟树脂层加厚,此时张贴在具有角度的热板上的时候,导致弯曲后反发力大,所以不容易粘贴,容易脱离被粘体,导致胶带的使用寿命的降低。
发明内容
发明要解决的问题
本发明的目的在于提供平整度好,耐磨性强,容易粘贴且不容易脱离被粘体,生产效率高的耐热性胶带及其制造方法。
用于解决问题的方案
本发明提供一种耐热性胶带,其包括基材层和在基材层的第一面上设置 的粘着剂层,所述基材层还包括与所述第一面相对的第二面,所述基材层为浸渗含氟树脂的玻璃纤维织物,其特征在于,所述第二面的表面粗糙度为Rz≦2.5μm或Ra≦1.0μm。
根据本发明所述的耐热性胶带,其中所述基材层的所述第二面与所述玻璃纤维织物之间的最薄厚度为10~30μm。
根据本发明所述的耐热性胶带,其中所述基材层的所述第二面与所述玻璃纤维织物之间的最薄厚度和所述基材层的所述第一面与所述玻璃纤维织物之间的最薄厚度的比例为0.8~1.3。
根据本发明所述的耐热性胶带,其中所述含氟树脂为聚四氟乙烯(PTFE)、全氟烷氧基链烷烃(PFA)、全氟乙烯-丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)、聚偏二氟乙烯(PVdF)中的一种或多种。
本发明还提供一种所述耐热性胶带的制造方法,其特征在于包括以下工序:
使玻璃纤维织物进行含硅药剂处理;
使上述处理后的玻璃纤维织物浸渗含氟树脂;
加热浸渗过含氟树脂的玻璃纤维织物以形成所述基材层;
在所述基材层的所述第一面上形成所述粘着剂层。
根据本发明所述的耐热性胶带的制造方法,其中在使所述玻璃纤维织物浸渗含氟树脂后、且在加热形成所述基材层之前,使用刮刀处理浸渗过含氟树脂的玻璃纤维织物,以控制玻璃纤维织物两侧含氟树脂的厚度。
根据本发明所述的耐热性胶带的制造方法,其中在形成所述基材层后、且在形成所述粘着剂层之前,对所述基材的所述第一面进行表面处理。
根据本发明所述的耐热性胶带的制造方法,其中使用SiO2/PFA混合液进行所述表面处理,所述PFA为全氟烷氧基链烷烃。
根据本发明所述的耐热性胶带的制造方法,其中使所述玻璃纤维织物浸渗含氟树脂的工序和加热形成所述基材层的工序重复进行2~4次。
根据本发明所述的耐热性胶带的制造方法,其中含硅药剂的量为玻璃纤维织物总重量的0.05~0.2wt%。
发明的效果
通过对本发明的耐热性胶带的非粘着面的表面粗糙度进行调整,能够提高胶带的耐磨性,能够提高生产效率,降低了成本。
附图说明
图1为本发明的耐热性胶带的一个实例的截面结构示意图;
图2为本发明的耐热性胶带的一个实例的截面放大图。
附图标记说明
10基材层
11基材层的第一面
12基材层的第二面
13玻璃纤维织物
14基材层的第一面与玻璃纤维织物之间的最薄厚度
15基材层的第二面与玻璃纤维织物之间的最薄厚度
20粘着剂层
具体实施方式
下面参考附图对本发明进行详细说明。
[耐热性胶带]
本发明的耐热性胶带,包括基材层10和在基材层10的第一面11上设置的粘着剂层20,所述基材层10还包括与所述第一面11相对的第二面12,所述基材层10为浸渗含氟树脂的玻璃纤维织物13,所述第二面12的表面粗糙度为 Rz≦2.5μm或Ra≦1.0μm。更优选地,所述第二面12的表面粗糙度同时满足Rz≦2.5μm和Ra≦1.0μm。
<基材层>
本发明中,将玻璃纤维织物13进行含硅药剂处理,处理后的玻璃纤维织物浸渗含氟树脂,通过加热浸渗过含氟树脂的玻璃纤维织物形成基材层10。基材层10的厚度例如为10~500μm,优选40~300μm。
<玻璃纤维织物>
本发明中,玻璃纤维织物是将玻璃纤维纱线进行织造而得到的织物。作为玻璃纤维织物使用的玻璃丝通常通过将直径为约几μm的玻璃纤维以几百根为单位进行拉齐而形成。玻璃纤维织物的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密度加上纱结构,决定了织物的物理性质,如重量、厚度和断裂强度等。基本的织纹为平纹、斜纹、缎纹、罗纹和席纹。玻璃纤维织物的种类及构成没有特别限定。例如可以优选使用单位面积重量为15~110g/m2、纱密度在经向、纬向均为10~100根/25mm,且厚度为约10μm~约500μm,更优选为约30μm~约250μm的玻璃纤维平纹织物。在使用之前玻璃纤维织物可以进行开纤处理,以提高后续的含硅处理工序的效果。
<含氟树脂>
本发明中,含氟树脂没有特别限定,例如为聚四氟乙烯(PTFE)、全氟烷氧基链烷烃(PFA)、全氟乙烯-丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)、聚偏二氟乙烯(PVdF)中的一种或多种。
<表面粗糙度Rz>
参照JIS-B0601-1994测试方法进行表面粗糙度Rz的测量。基材层10的第二面12的表面粗糙度Rz≦2.5μm,优选Rz≦2.0μm。
<表面粗糙度Ra>
参照JIS-B0601-1994测试方法进行表面粗糙度Ra的测量。基材层10的第二面12的表面粗糙度Ra≦1.0μm,优选Ra≦0.8μm。
基材层10的第二面12的表面粗糙度对于胶带的使用寿命尤为重要。当上述表面粗糙度Rz>2.5μm时,由于表面粗糙度大大影响表面磨耗性能,例如影响摩擦系数,影响胶带受摩擦时的表面受力情况,以及从而导致表面含氟树脂层的表面破坏现象。因此当Rz>2.5μm时,表面层更容易形成表层树脂的微晶破坏,进一步导致整个表层树脂破坏,导致胶带使用寿命偏低。
另一方面,当Ra>1.0μm时,同样如上述本发明人发现的机理,由于表面粗糙度大大影响表面磨耗性能,例如影响摩擦系数,影响胶带受摩擦时的表面受力情况,以及从而导致表面含氟树脂层的表面破坏模型。因此当Ra>1.0μm时,表面层更容易形成表层树脂的微晶破坏,进一步导致整个表层树脂破坏,导致胶带使用寿命偏低。
另外,出于制造性和使用寿命的考虑,作为玻璃纤维织物两侧的含氟树脂层的最薄厚度(基材层的外表面到最近的玻璃纤维的厚度),一般为10~30μm。当小于10μm时,由于含氟树脂层的厚度过于薄,很容易经过磨损后露出内部的玻璃纤维,造成胶带表面形态不规则,使胶带失去离型、耐药品性等功效。另一方面,当大于30μm时,含氟树脂层的厚度过于厚,导致胶带在使用过程中加工性主要是耐反发力变差,并且使用成本增加。
特别是基材层10的第二面12与玻璃纤维织物13之间的最薄厚度15对于胶带的使用寿命尤为重要,在本发明中,所述最薄厚度15为10~30μm,优选12~25μm。当上述最薄厚度小于10μm时,会导致如上所述的不利效果。另一方面,当大于30μm时,会导致如上所述的不利效果。
基材层10的第二面12与玻璃纤维织物13之间的最薄厚度15和基材层10的第一面11与玻璃纤维织物13之间的最薄厚度14的比例为0.8~1.3,优选 0.9~1.1。当该比例小于0.8时,胶带在加工时容易出现朝一个方向的卷曲现象,导致胶带的实际使用性能降低。当该比例大于1.3时,基于同样的原理,胶带在加工时容易出现朝一个方向的卷曲现象,导致胶带的实际使用性能降低。
<粘着剂层>
本发明中,用于粘着剂层的粘着剂类型没有特别限定,可以使用丙烯酸类、橡胶类、聚硅氧烷类等以往在胶带的粘着剂层中使用的压敏粘合材料。从胶带的耐热性的角度,优选为聚硅氧烷类粘合剂。
作为粘着剂层的厚度,一般为5~100μm,优选10~60μm。当厚度小于5μm时,粘着力低,使用中容易发生剥离。当厚度大于100μm时,在用作热封时,胶带的厚度方向热传导率反而下降所以是不理想的。
[耐热性胶带的制造方法]
本发明的耐热性胶带的制造方法包括:使玻璃纤维织物进行含硅药剂处理(含硅药剂处理工序);使上述处理后的玻璃纤维织物浸渗含氟树脂(浸渗工序);加热浸渗过含氟树脂的玻璃纤维织物以形成所述基材层(基材层形成工序);在所述基材层的所述第一面上形成所述粘着剂层。
<含硅药剂处理工序>
含硅药剂处理是使用含硅药剂对玻璃纤维织物进行处理的过程。含硅药剂是在分子中同时含有两种不同化学性质基团的一类有机硅化合物,其结构式可用通式YSiX3表示。式中,Y为非水解基团,包括链烯基(主要为乙烯基),以及末端带有Cl、NH2、-SH、环氧基、N3、(甲基)丙烯酰氧基、异氰酸酯基等官能团的烃基,即碳官能基团;X为可水解基团,包括Cl、OCH3、OCH2CH3、OC2H4OCH3、OSi(CH3)3等。由于含硅药剂的存在,使得玻璃纤维织物对含氟树脂材料在玻璃纤维织物表面的展平性能以及内部浸入性能有较大的影响。本申请中,含硅药剂量为玻璃纤维织物总重量的0.05~0.2wt%。
<浸渗工序>
在浸渗工序中,可使用含氟树脂的乳液浸渗玻璃纤维织物。
含氟树脂乳液是高分子主链为碳元素,与碳元素相结合的元素为氟元素的高分子树脂乳液。例如,聚四氟乙烯(PTFE)乳液通过四氟乙烯(TFE)的乳液聚合形成。含氟树脂乳液中该含氟树脂的含量(固体成分比例)优选为约40~约60重量%。
浸渗工序中,玻璃纤维织物浸渗到含氟树脂乳液中。浸渗可以通过例如使玻璃纤维织物浸渍在含氟树脂乳液中的方法、或在玻璃纤维织物上涂布含氟树脂乳液的方法、或在玻璃纤维织物上喷涂含氟树脂乳液的方法来实施。
在上述浸渗工序后,可以使用刮刀或刮板处理浸渗过含氟树脂的玻璃纤维织物,以分别控制玻璃纤维织物两侧含氟树脂的厚度。
<加热工序>
加热工序中,从在浸渗工序中浸渗于玻璃纤维织物中的含氟树脂乳液中失去分散介质,并且含氟树脂相互熔合(乳液转变为熔合体),形成浸渗有该含氟树脂的玻璃纤维织物。
对于加热工序的具体方法没有限定,只要能够将浸渗有含氟树脂乳液的玻璃纤维织物加热至该含氟树脂的熔点以上,通常为含氟树脂的熔点以上15℃~60℃。例如,在使用PTFE乳液时,加热温度优选为330℃~400℃,进一步优选为340℃~380℃。
可以根据需要进一步对所形成的玻璃纤维织物重复进行浸渗工序及加热工序。通过该重复,例如可以增大浸渗有含氟树脂的玻璃纤维织物的厚度。通过上述步骤形成基材层的总厚度例如为10~500μm,优选40~300μm,进一步优选60~200μm。一般而言,浸渗工序及加热工序步骤重复进行2~4次,重复次数过多可能导致基材层过厚,张贴在具有角度的热板上的时候,导致弯曲后反发力大,所以不容易粘贴,容易脱离被粘体。
只要可以得到本发明的效果,本发明胶带的基材层的制造方法可以包括浸渗工序及加热工序以外的任意工序。
由此,得到在玻璃纤维织物中浸渗有含氟树脂的胶带基材层。
<表面处理工序>
表面处理工序是用于提高胶带基材层中设置粘着剂层的面(在本发明中即第一面)与设置于该面上的粘合剂层之间的胶粘性(锚固力)的处理。可以根据需要进行该工序。实施表面处理工序的具体方法与在公知的胶带的制造中实施的方法相同。表面处理工序例如可以通过将含有表面处理剂(胶粘处理剂)和分散剂的表面处理溶液(胶粘处理溶液)涂布于胶带基材层中将设置粘着剂层的面来实施。
表面处理剂例如为聚酯树脂、三聚氰胺树脂、丙烯酸类树脂及聚硅氧烷树脂、以及PTFE、PFA及ETFE等含氟树脂。分散剂例如为甲苯、二甲苯、乙酸乙酯、丁醇、水及它们的混合物。
表面处理溶液可以含有表面处理剂及分散剂以外的材料,例如交联剂、固化剂、有机填充剂、无机填充剂、表面活性剂。有机填充剂例如为三聚氰胺树脂、环氧树脂、丙烯酸类树脂等的粉末,无机填充剂例如为氧化铁、氧化铝、二氧化硅等的粉末。
在本发明中,表面处理溶液优选为含有作为表面处理剂的含氟树脂PFA、作为分散剂的水、作为无机填充剂的二氧化硅粒子的溶液。
<粘着剂层形成工序>
粘着剂层形成工序中,在胶带基材层的第一面11上配置粘着剂层。实施粘着剂层形成工序的具体方法与在公知的胶带的制造中实施的方法相同。粘着剂层形成工序例如可以通过将粘着剂涂布于胶带基材层的第一面来实施。
实施例
在实施例中,
(1)表面粗糙度Rz和Ra均参照JIS-B0601-1994测试方法进行测量。
(2)耐磨耗性能测试采用以下方法进行:使用泰伯磨耗机,磨耗轮CS-17,荷重500g,对胶带进行磨耗1000回,称量磨耗前后的重量,计算出磨耗量。
(3)基材层面与玻璃纤维织物之间的最薄厚度采用以下方法进行测量:取胶带产品使用切刀进行断面切割,将其切为薄度为20μm的样品,放在电子显微镜下放大100倍观察断面,确定基材层的两个面中与玻璃纤维织物之间的最薄厚度。取点5次进行测量,使用平均值。
(4)耐热性胶带中是否有玻璃纤维露出的判断采用以下方法进行:使用泰伯磨耗机,磨耗轮CS-17,荷重500g,对胶带进行磨耗500回,使用显微镜观察胶带中1cm长x 1cm宽的区域在磨耗实验后的表面状态。
没有明显磨耗,没有玻璃纤维露出的评价为◎,
表面出现磨耗,但没有玻璃纤维露出的评价为○,
部分玻璃纤维露出的评价为×,
观察到玻璃纤维被磨损的评价为××。
(5)耐热性胶带卷曲性的评价采用以下方法进行:取1m长x 15mm宽的胶带,抓住一端并且使另一端自由悬空,观察胶带卷曲情况。
胶带基本上不卷曲、基本保持线条状评价为○,
胶带仅仅少许卷曲、拉直可以继续使用评价为△,
胶带卷曲成多个圈评价为×。
实施例1
使用50μm厚度的玻璃纤维平纹织物进行含硅药剂处理,含硅药剂量为 玻璃纤维平纹织物总重量的0.07wt%。含硅药剂处理后的玻璃纤维平纹织物使用含氟树脂的含量(固体成分比例)为约55重量%的PTFE乳液进行浸渗。浸渗后利用刮刀控制玻璃纤维两边的PTFE厚度。经过脱出水,然后在350℃高温下烧结20秒。再重复进行上述浸渗和烧结一次,通过控制刮刀调整玻璃纤维之间的间距,从而使非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.2。然后在粘着剂面(即第一面11)上涂覆SiO2/PFA混合液,然后烧结形成表面处理层。粘着剂层厚度为40μm。得到的胶带中,非粘着剂面(即第二面12)的粗糙度Ra为0.8μm,Rz为3.0μm,非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为12μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例2
重复实施例1的步骤。除了在得到的胶带中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为1.2μm,Rz为1.8μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为14μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例3
重复实施例1的步骤。除了在得到的胶带中,非粘着剂面(即第二面12) 与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为0.5μm,Rz为1.8μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为20μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例4
重复实施例1的步骤。除了含硅药剂量为玻璃纤维平纹织物总重量的0.12wt%,并且在得到的胶带中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为0.3μm,Rz为1.1μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为20μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例5
重复实施例1的步骤。除了含硅药剂量为玻璃纤维平纹织物总重量的0.12wt%,并且在得到的胶带中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.5,非粘着剂面(即第二面12)的粗糙度Ra为0.3μm,Rz为1.1μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为20μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例6
重复实施例1的步骤。除了含硅药剂量为玻璃纤维平纹织物总重量的0.18wt%,并且在得到的胶带中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为0.5μm,Rz为1.3μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为14μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
比较例1
重复实施例1的步骤。除了含硅药剂量为玻璃纤维平纹织物总重量的0.5wt%,并且在得到的胶带中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为1.2μm,Rz为4.5μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为9μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
比较例2
重复实施例1的步骤。除了含硅药剂量为玻璃纤维平纹织物总重量的0.02wt%,并且在得到的胶带中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为2.0,非粘着剂面(即第二面12)的粗糙度Ra为1.2μm,Rz为4.8μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为9μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
比较例3
重复实施例1的步骤。除了含硅药剂量为玻璃纤维平纹织物总重量的0.02wt%,并且在得到的胶带中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为1.9μm,Rz为6.2μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为5μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
比较例4
重复实施例1的步骤。除了不加入含硅药剂,并且在得到的胶带中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为1.5μm,Rz为6.1μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为6μm。
测试所得胶带的磨耗量,观察所得胶带中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
表1
Figure PCTCN2017109235-appb-000001
从以上实施例和比较例可以看出,在本申请中通过使所述第二面的表面粗糙度Rz≦2.5μm或Ra≦1.0μm,可以使得本申请的胶带具有优良的耐磨性和卷曲性,并且胶带中没有纤维露出。相反,不满足本申请中所述第二面的表面粗糙度条件的胶带具有较差的耐磨性,并且胶带中的纤维部分露出或者被磨损。

Claims (10)

  1. 一种耐热性胶带,其包括基材层和在基材层的第一面上设置的粘着剂层,所述基材层还包括与所述第一面相对的第二面,所述基材层为浸渗含氟树脂的玻璃纤维织物,其特征在于,所述第二面的表面粗糙度为Rz≦2.5μm或Ra≦1.0μm。
  2. 根据权利要求1所述的耐热性胶带,其中所述基材层的所述第二面与所述玻璃纤维织物之间的最薄厚度为10~30μm。
  3. 根据权利要求1或2所述的耐热性胶带,其中所述基材层的所述第二面与所述玻璃纤维织物之间的最薄厚度和所述基材层的所述第一面与所述玻璃纤维织物之间的最薄厚度的比例为0.8~1.3。
  4. 根据权利要求1或2所述的耐热性胶带,其中所述含氟树脂为聚四氟乙烯(PTFE)、全氟烷氧基链烷烃(PFA)、全氟乙烯-丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)、聚偏二氟乙烯(PVdF)中的一种或多种。
  5. 根据权利要求1~4中任一项所述耐热性胶带的制造方法,其特征在于包括以下工序:
    使玻璃纤维织物进行含硅药剂处理;
    使上述处理后的玻璃纤维织物浸渗含氟树脂;
    加热浸渗过含氟树脂的玻璃纤维织物以形成所述基材层;
    在所述基材层的所述第一面上形成所述粘着剂层。
  6. 根据权利要求5所述的耐热性胶带的制造方法,其中在使所述玻璃纤维织物浸渗含氟树脂后、且在加热形成所述基材层之前,使用刮刀处理浸渗过含氟树脂的玻璃纤维织物,以控制玻璃纤维织物两侧含氟树脂的厚度。
  7. 根据权利要求5或6所述的耐热性胶带的制造方法,其中在形成所述基材层后、且在形成所述粘着剂层之前,对所述基材的所述第一面进行表面处理。
  8. 根据权利要求7所述的耐热性胶带的制造方法,其中使用SiO2/PFA混合液进行所述表面处理,所述PFA为全氟烷氧基链烷烃。
  9. 根据权利要求5或6所述的耐热性胶带的制造方法,其中使所述玻璃纤维织物浸渗含氟树脂的工序和加热形成所述基材层的工序重复进行2~4次。
  10. 根据权利要求5或6所述的耐热性胶带的制造方法,其中含硅药剂的量为玻璃纤维织物总重量的0.05~0.2wt%。
PCT/CN2017/109235 2016-11-30 2017-11-03 耐热性胶带及其制造方法 WO2018099239A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197017401A KR102464625B1 (ko) 2016-11-30 2017-11-03 내열성 테이프 및 그 제조 방법
EP17875720.9A EP3549991B1 (en) 2016-11-30 2017-11-03 Heat resistant adhesive tape and manufacturing method therefor
JP2019526584A JP7132919B2 (ja) 2016-11-30 2017-11-03 耐熱性テープ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611081444.8 2016-11-30
CN201611081444.8A CN108611000B (zh) 2016-11-30 2016-11-30 耐热性胶带及其制造方法

Publications (1)

Publication Number Publication Date
WO2018099239A1 true WO2018099239A1 (zh) 2018-06-07

Family

ID=62241194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109235 WO2018099239A1 (zh) 2016-11-30 2017-11-03 耐热性胶带及其制造方法

Country Status (7)

Country Link
EP (1) EP3549991B1 (zh)
JP (1) JP7132919B2 (zh)
KR (1) KR102464625B1 (zh)
CN (1) CN108611000B (zh)
SG (1) SG10202102469UA (zh)
TW (1) TWI741039B (zh)
WO (1) WO2018099239A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429899A (zh) * 2021-05-14 2021-09-24 泰兴市凯鹏合成材料有限公司 一种聚四氟乙烯玻璃纤维布粘胶带及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066610A (zh) * 2019-04-24 2019-07-30 黄山美澳复合材料有限公司 一种特氟龙彩色玻纤布胶带及其制作方法
KR102398158B1 (ko) * 2020-08-28 2022-05-17 (주)한양 에코텍 인장강도 및 박리강도가 우수한 내열테이프용 원단의 제조방법
KR102347993B1 (ko) * 2021-08-19 2022-01-07 대한에프앤드에프(주) Ptfe 테이프 및 그 제조방법
WO2023145843A1 (ja) * 2022-01-31 2023-08-03 Agc株式会社 複合シートの製造方法、積層体の製造方法、複合シート及び積層体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320780A (ja) * 1998-05-20 1999-11-24 Dainippon Ink & Chem Inc 多層フィルム及びそれを用いた粘着テープ
CN102199317A (zh) * 2010-03-25 2011-09-28 日东电工株式会社 用于表面保护片的基材和表面保护片
CN103254819A (zh) * 2012-02-15 2013-08-21 日东电工株式会社 表面保护片
CN103374310A (zh) * 2012-04-26 2013-10-30 日东电工株式会社 粘接胶带
CN104302722A (zh) * 2012-04-27 2015-01-21 日东电工株式会社 粘合带基材、粘合带及它们的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139628A (ja) * 1987-11-26 1989-06-01 Nitto Boseki Co Ltd フッ素樹脂補強用ガラス繊維製品
JPH01314165A (ja) * 1988-06-13 1989-12-19 Nitto Denko Corp 離型性シート
JP2954768B2 (ja) * 1991-10-30 1999-09-27 日東電工株式会社 粘着テープ
US5149943A (en) * 1992-01-08 1992-09-22 Viskase Corporation Heat sealing member for making contoured heat seals
JPH0711581A (ja) * 1993-06-23 1995-01-13 Toray Ind Inc 耐熱離型シートおよびその製造方法
JPH07292332A (ja) * 1994-04-26 1995-11-07 Nitto Denko Corp 粘着テープ
JPH0848004A (ja) * 1994-08-04 1996-02-20 Toray Ind Inc 離型フィルム
KR100587441B1 (ko) * 1997-06-25 2006-09-20 미쓰비시 가가꾸 폴리에스테르 필름 가부시키가이샤 액정 표시판 표면 보호 필름
JP2001164202A (ja) 1999-12-06 2001-06-19 Nitto Denko Corp 粘着テープ巻回体及び粘着テープの製造方法
JP2002086616A (ja) 2000-09-18 2002-03-26 Nitto Denko Corp ガラス繊維複合シート及びそれを用いた粘着テープ
JP6265772B2 (ja) * 2014-02-13 2018-01-24 日東電工株式会社 シリコーン粘着剤組成物、粘着テープおよび粘着テープの製造方法
CN108127932A (zh) * 2016-11-30 2018-06-08 日东电工(上海松江)有限公司 耐热性复合片及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320780A (ja) * 1998-05-20 1999-11-24 Dainippon Ink & Chem Inc 多層フィルム及びそれを用いた粘着テープ
CN102199317A (zh) * 2010-03-25 2011-09-28 日东电工株式会社 用于表面保护片的基材和表面保护片
CN103254819A (zh) * 2012-02-15 2013-08-21 日东电工株式会社 表面保护片
CN103374310A (zh) * 2012-04-26 2013-10-30 日东电工株式会社 粘接胶带
CN104302722A (zh) * 2012-04-27 2015-01-21 日东电工株式会社 粘合带基材、粘合带及它们的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429899A (zh) * 2021-05-14 2021-09-24 泰兴市凯鹏合成材料有限公司 一种聚四氟乙烯玻璃纤维布粘胶带及其制备方法

Also Published As

Publication number Publication date
EP3549991A1 (en) 2019-10-09
EP3549991A4 (en) 2020-08-05
TWI741039B (zh) 2021-10-01
TW201821571A (zh) 2018-06-16
CN108611000B (zh) 2021-03-02
KR102464625B1 (ko) 2022-11-08
EP3549991B1 (en) 2023-09-27
JP2020513437A (ja) 2020-05-14
KR20190086724A (ko) 2019-07-23
CN108611000A (zh) 2018-10-02
SG10202102469UA (en) 2021-04-29
JP7132919B2 (ja) 2022-09-07

Similar Documents

Publication Publication Date Title
WO2018099239A1 (zh) 耐热性胶带及其制造方法
TWI410550B (zh) 改性的全氟聚合物片材料以及製造它之方法
JP2022125105A (ja) 耐熱性複合シート
EP0159942A2 (en) Fluoropolymer composites and novel method for making them
JP6110104B2 (ja) 複合体
JP2013248874A (ja) 修飾されたパーフルオロポリマー材料
US20120225602A1 (en) Fuser manufacture and apparatus
JP2013141793A (ja) 成形用離型ポリエステルフィルム
ES2542068T3 (es) Lámina para cocinar revestida de fluoropolímero
US11834761B2 (en) Adhesive tape substrate with glass cloth and fluorine resin, and adhesive tape
US7470453B1 (en) Method for forming flexible composites using polymer coating materials
JPS6046244A (ja) 新規の強化フルオロポリマ−複合材料およびその製法
WO2018174220A1 (ja) 難着雪・滑雪フィルム又はシート
TW201936836A (zh) 一種複合材料成型用之防黏膠帶及其製造方法和用途
CN109844044B (zh) 聚合物组合物、材料和制备方法
JP6277297B2 (ja) 膜構造物
JP2004284222A (ja) ふっ素系樹脂複合シート及びその製造方法
JPH07290660A (ja) 撥水性被覆層を有する物品およびその製造法
JP2018034317A (ja) 積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197017401

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017875720

Country of ref document: EP

Effective date: 20190701