WO2018096957A1 - 無機硫化物及びその製造方法 - Google Patents

無機硫化物及びその製造方法 Download PDF

Info

Publication number
WO2018096957A1
WO2018096957A1 PCT/JP2017/040652 JP2017040652W WO2018096957A1 WO 2018096957 A1 WO2018096957 A1 WO 2018096957A1 JP 2017040652 W JP2017040652 W JP 2017040652W WO 2018096957 A1 WO2018096957 A1 WO 2018096957A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
inorganic sulfide
solid electrolyte
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2017/040652
Other languages
English (en)
French (fr)
Inventor
田渕 光春
敏勝 小島
竹田 正明
彩 武中
侑 山家
靖仁 青木
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社東レリサーチセンター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社東レリサーチセンター filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018552506A priority Critical patent/JP7113513B2/ja
Publication of WO2018096957A1 publication Critical patent/WO2018096957A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to an inorganic sulfide and a method for producing the same.
  • Lithium ion secondary batteries are attracting attention as high energy density batteries, and their use is expanding not only for portable devices (small consumer applications) but also for stationary applications such as in-vehicle use and social infrastructure.
  • One of the requirements for these large-sized lithium ion secondary batteries is to improve safety.
  • Ordinary lithium ion secondary batteries (hereinafter abbreviated as liquid systems) use organic electrolytes, and flammable low-boiling solvents (carbonic acid) that fall under the category of the second class of petroleum of the Fire Service Act hazardous materials as viscosity reducing agents.
  • Solid electrolytes include polymer systems and inorganic systems, but polymer systems currently have low ionic conductivity at room temperature or lower, and sufficient battery operation close to liquid systems cannot be expected unless the temperature is 60 ° C or higher.
  • inorganic types include oxide type and sulfide type, but oxide type has high ion conductivity, but has a problem that it is difficult to construct a battery only by pressing because of low formability and brittleness.
  • a sulfide solid electrolyte composed of lithium sulfide (Li 2 S), phosphorus sulfide (P 2 S 5 ), germanium sulfide (GeS 2 ), etc. should only have a high ionic conductivity approaching that of an organic electrolyte even at room temperature. In other words, it is one of the most promising solid electrolytes because its grain boundary resistance is lower than that of oxide and its moldability is high.
  • Li 2 SP 2 S 5 solid electrolyte An example is a Li 2 SP 2 S 5 solid electrolyte.
  • this electrolyte can be easily used by mechanical milling at room temperature (hereinafter referred to as MM) using a milling device. It is the only sulfide solid electrolyte that can be synthesized. It is known that a solid electrolyte made of sulfide glass that does not contain a crystal phase and has excellent formability can be obtained by the MM method.
  • the solid electrolyte obtained in this way has the disadvantage that the rate characteristics are inferior because of its low ionic conductivity, and in order to solve the problem, it is partially crystallized by heat treatment at 300 ° C. or less.
  • a solid electrolyte called ceramics has been obtained.
  • this glass ceramic solid electrolyte is excellent in rate characteristics, there is a problem that cycle characteristics are inferior unless a glass solid electrolyte obtained only by the MM method is mixed (see, for example, Patent Document 1). That is, the glass ceramic solid electrolyte cannot be used alone. For this reason, a solid electrolyte having excellent moldability (particularly having a low Young's modulus) and excellent ion conductivity is desired. If such a solid electrolyte can be provided, it is promising not only as a solid electrolyte and a binder material for an electrolyte layer but also as a binder material for an electrode.
  • xLi 2 S- (1-x) P 2 S 5 system solid electrolyte may cause toxic hydrogen sulfide unless the x value is 0.75 or more.
  • P 2 S 7 groups, P 2 S 6 groups and the like are generated.
  • ionic conductivity is not sufficient when synthesized only by the MM method.
  • the x value is 0.80 or more, it has been reported that when synthesized only by the MM method, the raw material Li 2 S remains and hydrogen sulfide is likely to be generated (for example, see Non-Patent Document 1). It cannot be handled and the work becomes complicated.
  • xLi 2 S- (1-x) GeS 2 solid electrolyte containing Li 2 S and GeS 2 it is necessary to make only GeS 4 4- ions by setting x to 0.667 or more.
  • Li 2 S and GeS 2 Li 2 S-GeS 2 -P 2 S 5 system and containing also include Li 2 S and GeS 2 Li 2 S-GeS 2 based solid electrolyte Li 2 S and P 2 S 5 is A final product is obtained by a sealed tube method in which Li 2 S and GeS 2 and, if necessary, P 2 S 5 are enclosed in a quartz glass tube and heat-treated at a high temperature (eg, 700 ° C.) (for example, non-patent literature) 2 and 3).
  • a high temperature eg, 700 ° C.
  • the present invention has been made in view of the current state of the prior art described above, and has as its main object to provide a solid electrolyte having excellent moldability (particularly having a low Young's modulus) and excellent ion conductivity. And
  • inorganic sulfides especially solid electrolytes
  • moldability especially having a low Young's modulus
  • ionic conductivity especially having a low Young's modulus
  • the present inventors have also found that this inorganic sulfide can be obtained by subjecting a predetermined raw material powder to a high rotational speed milling process and then a low rotational speed milling process. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations. Item 1.
  • the crystalline phase is at least one selected from the group consisting of ⁇ -Li 3 PS 4 , cubic ajarodite, Li 10 MP 2 S 12 (M is Ge or Sn), and Li 4 PS 4 I.
  • Item 4. The inorganic sulfide according to Item 3, which is a crystalline phase.
  • Item 5. The inorganic sulfide according to any one of Items 1 to 4, which does not contain a crystal phase composed of Li 2 S.
  • Item 6. The inorganic sulfide according to any one of Items 1 to 5, wherein Young's modulus is 3.0 GPa or less.
  • Item 8 The inorganic sulfide according to any one of Items 1 to 6, wherein the ionic conductivity is 1.00 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 or more.
  • Item 8. The method for producing an inorganic sulfide according to any one of Items 1 to 7, A manufacturing method comprising a step of subjecting a raw powder containing Li 2 S to a milling process at a high rotational speed and then a milling process at a low rotational speed.
  • Item 9. Item 9. The manufacturing method according to Item 8, wherein the number of rotations in the high-speed milling process is 800 rpm or more, and the number of rotations in the low-speed milling process is 600 rpm or less.
  • Item 10. Item 10.
  • Item 8 The manufacturing method according to Item 8 or 9, wherein the raw material powder further contains at least one selected from the group consisting of GeS 2 , SnS 2 , TiS 2 , LiX and P 2 S 5 .
  • Item 11. Item 8. A solid electrolyte for a lithium ion secondary battery, comprising the inorganic sulfide according to any one of Items 1 to 7.
  • Item 12. Item 8.
  • Item 13 Item 8.
  • a binder material for an electrode of a lithium ion secondary battery comprising the inorganic sulfide according to any one of Items 1 to 7.
  • An electrolyte layer containing a solid electrolyte for a lithium ion secondary battery according to Item 11 or a binder material for an electrolyte layer of a lithium ion secondary battery according to Item 12, and an electrode for a lithium ion secondary battery according to Item 13 A lithium ion secondary battery comprising at least one of an electrode containing a binder material.
  • a solid electrolyte excellent in moldability (particularly having a low Young's modulus) and excellent in ion conductivity can be provided by a simple method.
  • FIG. 2 shows the X-ray diffraction pattern of the sample obtained in Example 1.
  • FIG. As reference, the peak of a known 70Li 2 S-30P 2 S 5 phase (glass phase) and Li 3 PS 4 phase (crystalline phase).
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 1 calcined at 500 ° C. are shown.
  • the X-ray diffraction patterns of the samples obtained in Examples 2 and 3 are shown.
  • the peaks of the known 70Li 2 S-30P 2 S 5 phase (glass phase), Li 3 PS 4 phase (crystal phase), and Li 7 PS 6 phase (crystal phase) are also shown.
  • the X-ray diffraction patterns of the samples obtained in Examples 4 and 5 are shown.
  • the peaks of the known 70Li 2 S-30P 2 S 5 phase (glass phase) and Li 7 PS 6 phase (crystal phase) are also shown.
  • the X-ray diffraction pattern of the sample obtained in Example 6 is shown.
  • the peaks of the known 70Li 2 S-30P 2 S 5 phase (glass phase), Li 3 PS 4 phase (crystal phase) and Li 10 GeP 2 S 12 phase (crystal phase; LGPS phase) are also shown.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 6 calcined at 500 ° C. are shown.
  • the X-ray-diffraction pattern of the sample obtained in Example 7 and 8 is shown.
  • the X-ray diffraction pattern of the sample obtained in Example 9 is shown.
  • 2 shows the X-ray diffraction pattern of the sample obtained in Example 10.
  • FIG. The numerical value in a figure shows the index
  • the X-ray diffraction patterns of the sample obtained in Example 11, the glass phase and the constituent crystal phase are shown.
  • the X-ray diffraction patterns of the sample obtained in Example 12, the glass phase and the constituent crystal phase are shown.
  • the X-ray diffraction pattern of the sample obtained in Example 13, the glass phase and the constituent crystal phase is shown.
  • the X-ray diffraction pattern of the sample obtained in Example 14, the glass phase and the constituent crystal phase is shown.
  • the X-ray diffraction pattern of the sample obtained in Example 15, the glass phase and the constituent crystal phase is shown.
  • FIG. 6 is a charge / discharge characteristic evaluation result at 30 ° C. of an all-solid-state lithium ion secondary battery using the sample obtained in Example 5.
  • FIG. The charge / discharge capacity is normalized by the amount of the positive electrode active material.
  • FIG. 10 is a charge / discharge characteristic evaluation result at 30 ° C. of an all-solid-state lithium ion secondary battery using the sample obtained in Example 13.
  • FIG. The charge / discharge capacity is normalized by the amount of the positive electrode active material.
  • FIG. 16 is a result of evaluating charge / discharge characteristics at 30 ° C. of an all-solid-state lithium ion secondary battery using the sample obtained in Example 15.
  • FIG. 16 is a result of evaluating charge / discharge characteristics at 30 ° C. of an all-solid-state lithium ion secondary battery using the sample obtained in Example 15.
  • the charge / discharge capacity is normalized by the amount of the positive electrode active material.
  • FIG. 10 is a result of evaluating charge / discharge characteristics at 30 ° C. of an all-solid-state lithium ion secondary battery using the sample obtained in Example 16.
  • FIG. The charge / discharge capacity is normalized by the amount of the positive electrode active material.
  • FIG. 6 is a result of evaluation of charge / discharge characteristics at 30 ° C. of an all solid lithium ion secondary battery using the sample obtained in Example 6.
  • FIG. The charge / discharge capacity is normalized by the amount of the positive electrode active material.
  • the inorganic sulfide (1) of the present invention has the general formula (1): xLi 2 S-yGeS 2- (1-xy) P 2 S 5 (1) [Wherein, x and y represent 0.667 ⁇ x ⁇ 0.860, 0 ⁇ y ⁇ 0.333, and 0.667 ⁇ x + y ⁇ 1. ] The crystal phase and the glass phase coexist.
  • P and Ge are present as PS 4 3 ⁇ and GeS 4 4 ⁇ ions with respect to Li ions acting as charge carriers, and thus glass phase forming or crystal lattice forming ions. Work as.
  • x that is the content of Li 2 S is 0.667 to 0.860
  • y that is the content of GeS 2 is 0 to 0.333.
  • ionic conductivity is proportional to the product of charge carrier concentration and mobility
  • increasing Li 2 S concentration can increase the charge carrier (Li ion) concentration, while x exceeds 0.860.
  • Li 2 S remains as an impurity in the inorganic sulfide (there is a crystalline phase composed of Li 2 S), and the source of hydrogen sulfide (H 2 S) Become.
  • x is 0.750 to 0.860, preferably 0.760 to 0.850, more preferably 0.770 to 0.830 in one preferred embodiment (embodiment containing P 2 S 5 ), and another preferred embodiment (P 2 S 5 is In an embodiment not containing), it is 0.667 to 0.800, preferably 0.680 to 0.770, more preferably 0.700 to 0.750.
  • y which is the content of GeS 2 , can increase the ion conductivity and widen the potential window on the high potential side as necessary, but if y exceeds 0.333, a large amount of expensive Ge Incurs an increase in cost.
  • y is 0 to 0.200, preferably 0.050 to 0.20, more preferably 0.080 to 0.150 in one preferred embodiment (embodiment containing P 2 S 5 ), and another preferred embodiment (P 2 S 5 is In an embodiment not containing), it is 0 to 0.333, preferably 0.050 to 0.30, and more preferably 0.080 to 0.250.
  • Such x and y are numerical values satisfying 0.667 ⁇ x + y ⁇ 1.
  • the crystal phase of the inorganic sulfide (1) of the present invention is not particularly limited, but preferably does not include a crystal phase composed of Li 2 S, GeS 2 , P 2 S 5, etc., which are raw material powders.
  • a crystal phase composed of Li 2 S, GeS 2 , P 2 S 5, etc. which are raw material powders.
  • the generation of hydrogen sulfide can be suppressed by not including a crystal phase composed of Li 2 S, an inorganic sulfide that is easy to handle can be obtained even in a low humidity environment.
  • the abundance ratio of each crystal phase can be quantitatively analyzed by analyzing the X-ray diffraction pattern by the Rietveld method, for example.
  • the abundance ratio of each crystal phase can be changed depending on, for example, the composition of the raw material powder, milling conditions in the manufacturing method described later, and heat treatment conditions after the milling process.
  • each crystal phase exhibits good lithium ion conductivity, but Li 3 PS 4 or Li 7 PS 6 is a total of 40% by mass (40 to 100% by mass). %) Is preferably included.
  • Such a crystalline phase of the inorganic sulfide (1) of the present invention has at least one selected from the group consisting of Li 3 PS 4 , Li 7 PS 6 , Li 4 GeS 4 and Li 10 GeP 2 S 12 .
  • a crystalline phase is preferred.
  • a crystal phase composed of Li 3 PS 4 ( ⁇ -type orthorhombic crystal of space group Pnma) phase) is easily formed, 0.755 ⁇ x ⁇ when a 0.860 consists Li 7 PS 6 crystalline phase in the general formula (1) (space group, especially made of Li 7 PS 6
  • the cubic argyrodite crystal phase is easily formed.
  • consists of the crystalline phase (especially Li 10 GeP 2 S 12 consisting of Li 10 GeP 2 S 12 when y is other than 0 (0 ⁇ y ⁇ 0.333, particularly 0.050 ⁇ y ⁇ 0.200) in the general formula (1) If the space group P42 / nmc tetragonal crystal phase) and y is large (eg 0.200 ⁇ y ⁇ 0.333, eg y 0.333), Li 4 GeS 4 (orthotropic crystal phase of the space group Pnma) Easy to form.
  • the inorganic sulfide (1) of the present invention can have high ion conductivity (particularly lithium ion conductivity) by having such a crystal phase.
  • the ionic conductivity of the inorganic sulfide (1) of the present invention is 1.00 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 or more, particularly 1.50 ⁇ 10 ⁇ 4 to 5.00 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 . It is possible.
  • the ionic conductivity is measured by an alternating current impedance method after the obtained powder is tableted.
  • the glass phase of the inorganic sulfide (1) of the present invention means a phase having a broad peak similar to the glass phase produced in a conventionally known 70Li 2 S-30P 2 S 5 based solid electrolyte. .
  • the inorganic sulfide (1) of the present invention can be made into a soft material to improve the moldability and lower the Young's modulus.
  • the Young's modulus of the inorganic sulfide (1) of the present invention can be 3.0 GPa or less, particularly 0.2 to 2.8 GPa. The Young's modulus is measured using a micro compression tester.
  • the abundance ratio between the crystal phase and the glass phase can be quantitatively analyzed, for example, by solid-state 31 P-NMR described in JP-A-2014-093262. .
  • the abundance ratio between the crystal phase and the glass phase can be changed depending on, for example, milling conditions in the production method described later, heat treatment conditions after milling, and the like.
  • the abundance ratio between the crystal phase and the glass phase is preferably 10:90 to 90:10 (mass ratio) from the viewpoint of the balance between moldability and ionic conductivity, 20:80 to 80:20 (mass ratio) is more preferable.
  • the inorganic sulfide (1) of the present invention only needs to contain the above crystal phase and glass phase, and may contain other impurity phases in a range that does not significantly affect the charge / discharge characteristics.
  • impurity phase examples include elemental sulfur, phosphorus sulfide, germanium sulfide, and lithium sulfide.
  • the ratio of the impurity phase in order to improve the ionic conductivity by the crystal phase and improve the moldability by the glass phase and lower the Young's modulus, it is preferable that the ratio of the impurity phase to be low.
  • the total amount of the inorganic sulfide (1) of the present invention is usually 100% by mass, and the impurity phase is 0.1 to 10% by mass. (Especially 0.2 to 5% by mass) is preferable.
  • the shape of the inorganic sulfide (1) of the present invention that satisfies the above conditions is not particularly limited, and for example, any shape such as powder, granule, pellet, and fiber can be adopted. In addition, according to the manufacturing method mentioned later, a powdery inorganic sulfide is easy to be produced.
  • the inorganic sulfide (1) of the present invention that satisfies the above conditions is excellent in moldability (particularly has a low Young's modulus) and excellent in ion conductivity. For this reason, it is useful as a solid electrolyte constituting an electrolyte layer for lithium ion secondary batteries, and as a binder material for a solid electrolyte (particularly a solid electrolyte with poor formability) constituting an electrolyte layer for lithium ion secondary batteries. Useful. It is also useful as a binder material for electrodes of lithium ion secondary batteries.
  • the inorganic sulfide (2) of the present invention has the general formula (2): dLi 2 S-eMS 2 -fLiX- (1-def) P 2 S 5 (2) [Wherein, X represents at least one selected from the group consisting of Cl, Br and I. M represents at least one selected from the group consisting of Ge, Sn and Ti. d, e, and f represent 0.600 ⁇ d ⁇ 0.860, 0 ⁇ e ⁇ 0.333, 0 ⁇ f ⁇ 0.300, and 0.600 ⁇ d + e + f ⁇ 1. ] The crystal phase and the glass phase coexist.
  • X is at least one selected from the group consisting of Cl, Br and I, and Cl and Br are preferable from the viewpoint of charge / discharge characteristics.
  • M is at least one selected from the group consisting of Ge, Sn and Ti, and it is preferable to use a mixture of Ge and Ti from the viewpoint of charge / discharge characteristics.
  • inorganic sulfide (2) of the present invention P, Ge, Sn, and Ti are present as PS 4 3 ⁇ and MS 4 4 ⁇ ions, and X is present as an X ⁇ ion with respect to Li ions acting as charge carriers. Both act as glass phase forming or crystal lattice forming ions.
  • the inorganic sulfide (2) of the present invention has a Li 2 S content d of 0.600 to 0.860 and an MS 2 content e of 0 to 0.333 in the general formula (2). It is important that f which is the content of is 0 to 0.300. This is summarized in the following two points. (1) Since ionic conductivity is proportional to the product of charge carrier concentration and mobility, increasing the Li 2 S and LiX concentrations can increase the charge carrier (Li ion) concentration, while d is 0.860.
  • d is 0.750 to 0.860, preferably 0.760 to 0.850, more preferably 0.770 to 0.830 in one preferred embodiment (embodiment containing P 2 S 5 ), and another preferred embodiment (P 2 S 5 is In an embodiment not containing), it is 0.667 to 0.800, preferably 0.680 to 0.770, more preferably 0.700 to 0.750.
  • f is 0.050 to 0.300, preferably 0.100 to 0.250 in a preferred embodiment (embodiment containing P 2 S 5 ).
  • e which is the content of MS 2
  • M Ge
  • a large amount of expensive Ge is required, resulting in an increase in cost.
  • e is 0 to 0.200, preferably 0.050 to 0.20, more preferably 0.080 to 0.150 in one preferred embodiment (embodiment containing P 2 S 5 ), and another preferred embodiment (P 2 S 5 is replaced by In an embodiment not containing), it is 0 to 0.333, preferably 0.050 to 0.30, and more preferably 0.080 to 0.250.
  • d, e, and f are numerical values satisfying 0.600 ⁇ d + e + f ⁇ 1.
  • the crystal phase of the inorganic sulfide (2) of the present invention is not particularly limited, but preferably does not include a crystal phase composed of Li 2 S, LiX, MS 2 , P 2 S 5 and the like as raw material powders. .
  • a crystal phase composed of Li 2 S since the generation of hydrogen sulfide can be suppressed by not including a crystal phase composed of Li 2 S, an inorganic sulfide that is easy to handle can be obtained even in a low humidity environment.
  • the abundance ratio of each crystal phase can be quantitatively analyzed by analyzing the X-ray diffraction pattern by the Rietveld method, for example.
  • the abundance ratio of each crystal phase can be changed depending on, for example, the composition of the raw material powder, milling conditions in the manufacturing method described later, and heat treatment conditions after the milling process.
  • each crystal phase exhibits good lithium ion conductivity, but ⁇ -Li 3 PS 4 or an algaroid phase (Li 7 PS 6 or Li 6 PS 5 X) is preferably contained in a total amount of 40% by mass or more (40 to 100% by mass).
  • Such a crystalline phase of the inorganic sulfide (2) of the present invention is selected from the group consisting of ⁇ -Li 3 PS 4 , cubic ajarodite, Li 10 MP 2 S 12 and Li 4 PS 4 I. At least one crystalline phase is preferred.
  • a crystal phase composed of ⁇ -Li 3 PS 4 (orthorhombic crystal phase of the space group Pnma) ) is easily formed, crystal phase comprising a Li 7 PS 6 when a 0.755 ⁇ d ⁇ 0.860 in the general formula (2) (in particular space group consisting of Li 7 PS 6
  • the cubic argyrodite crystal phase is easily formed.
  • a crystal phase space group P4 / nmm
  • the crystalline phase especially Li 10 MP 2 S 12 consisting of Li 10 MP 2 S 12 when e is other than 0 (0 ⁇ e ⁇ 0.333, particularly 0.050 ⁇ e ⁇ 0.200) in the general formula (2)
  • a tetragonal crystal phase of the space group P42 / nmc is also easily formed.
  • d is 0.222 and e is close to 0, the above-described cubic arrodite phase composed of Li 6 PS 5 X is likely to be formed.
  • the inorganic sulfide (2) of the present invention can increase ionic conductivity (particularly lithium ion conductivity) by having such a crystal phase.
  • the ionic conductivity of the inorganic sulfide (2) of the present invention is 1.00 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 or more, particularly 1.50 ⁇ 10 ⁇ 4 to 5.00 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 . It is possible.
  • the ionic conductivity is measured by an alternating current impedance method after the obtained powder is tableted.
  • the glass phase of the inorganic sulfide (2) of the present invention means a phase having a broad peak similar to the glass phase produced by a conventionally known 70Li 2 S-30P 2 S 5 based solid electrolyte. .
  • the inorganic sulfide (2) of the present invention can improve moldability as a soft material and lower the Young's modulus.
  • the Young's modulus of the inorganic sulfide (2) of the present invention can be 3.0 GPa or less, particularly 0.2 to 2.8 GPa. The Young's modulus is measured using a micro compression tester.
  • the abundance ratio between the crystal phase and the glass phase can be quantitatively analyzed, for example, by solid 31 P-NMR described in JP-A-2014-093262. .
  • the abundance ratio between the crystal phase and the glass phase can be changed depending on, for example, milling conditions in the production method described later, heat treatment conditions after milling, and the like.
  • the abundance ratio between the crystal phase and the glass phase is preferably 10:90 to 90:10 (mass ratio) from the viewpoint of the balance between moldability and ionic conductivity. 20:80 to 80:20 (mass ratio) is more preferable.
  • the inorganic sulfide (2) of the present invention only needs to contain the above crystal phase and glass phase, and may contain other impurity phases in a range that does not significantly affect the charge / discharge characteristics.
  • impurity phase examples include elemental sulfur, phosphorus sulfide, germanium sulfide, titanium sulfide, tin sulfide, lithium sulfide, lithium chloride, lithium bromide, and lithium iodide.
  • the ratio of the impurity phase in order to improve the ionic conductivity by the crystal phase and improve the moldability by the glass phase and lower the Young's modulus, it is preferable that the ratio of the impurity phase to be low.
  • the total amount of the inorganic sulfide (2) of the present invention is usually 100% by mass, and the impurity phase is 0.1 to 10% by mass. (Especially 0.2 to 5% by mass) is preferable.
  • the shape of the inorganic sulfide (2) of the present invention that satisfies the above conditions is not particularly limited, and for example, any shape such as powder, granule, pellet, and fiber can be adopted. In addition, according to the manufacturing method mentioned later, a powdery inorganic sulfide is easy to be produced.
  • the inorganic sulfide (2) of the present invention that satisfies the above conditions is excellent in moldability (particularly has a low Young's modulus) and excellent in ion conductivity. For this reason, it is useful as a solid electrolyte constituting an electrolyte layer for lithium ion secondary batteries, and as a binder material for a solid electrolyte (particularly a solid electrolyte with poor formability) constituting an electrolyte layer for lithium ion secondary batteries. Useful. It is also useful as a binder material for electrodes of lithium ion secondary batteries.
  • the inorganic sulfide of the present invention is produced, for example, by providing a process of subjecting a raw powder containing Li 2 S to a milling process at a low revolution number after a milling process at a high revolution number. It can be obtained by a method.
  • the raw material powder can be appropriately selected according to the composition of the inorganic sulfide to be finally obtained.
  • Li 2 S and P 2 S 5 can be used as the raw powder
  • Li 2 S-LiX-P 2 S 5 based solid electrolyte Li 2 S, LiX and P 2 S 5 can be used as the raw material powder.
  • the resulting inorganic sulfide has a high Li 2 S content x or d (x ⁇ 0.667, particularly x ⁇ 0.750; d ⁇ 0.600, especially d ⁇ 0.750. ),
  • x or d Li 2 S content x or d
  • a crystal phase composed of Li 2 S is contained as an impurity in the inorganic sulfide only by a high-speed milling process. Moreover, the Li 2 S content of the inorganic sulfide cannot be increased only by milling at a low rotational speed, and a crystal phase composed of Li 2 S is included as an impurity.
  • the rotational speed in the high rotational speed milling process is 800 rpm or more. 900 to 2000 rpm is more preferable.
  • the treatment time at this time is not particularly limited, and is preferably 30 minutes to 3 hours, more preferably 40 minutes to 2 hours.
  • the treatment temperature is not particularly limited, and the treatment can be performed at 0 to 50 ° C. (for example, room temperature). Such milling processing at a high rotational speed can be performed by, for example, a vibration mill or the like.
  • the rotational speed in the milling process at a low rotational speed is preferably 600 rpm or less, and more preferably 300 to 550 rpm from the viewpoint of further suppressing the generation of a crystal phase composed of Li 2 S.
  • the treatment time at this time is not particularly limited, and is preferably 10 to 100 hours, and more preferably 20 to 80 hours.
  • the treatment temperature is not particularly limited, and the treatment can be performed at 0 to 50 ° C. (for example, room temperature).
  • Such milling processing at a low rotational speed can be performed by, for example, a planetary ball mill.
  • a high-revolution milling process is performed in an airtight container (glove box, dry room, open dry chamber, etc.).
  • the raw material powder is filled in the container of the apparatus to be performed.
  • a container which can be used in this case Materials, such as meno, an alumina, a zirconia, are mentioned.
  • the raw material filling amount at this time is not particularly limited, and can be about 1 to 100 g. It is preferable to add a pulverization medium to the raw material powder as necessary, seal it, remove it from the glove box, and set it in a milling device.
  • the container Since the product may adhere strongly to the container after the milling process, the container is re-introduced into an environment (such as a glove box), for example, in an ultra-low humidity (dew point -60 ° C or less) as necessary. After scraping off the wall, the same process can be performed again.
  • an environment such as a glove box
  • ultra-low humidity dew point -60 ° C or less
  • the container is opened in an environment of ultra-low humidity (dew point -60 ° C or less) (glove box, etc.), the powder is transferred to a container for a low-speed milling device, and milling is performed at a low speed.
  • the product is taken out in an environment of ultra-low humidity (dew point -60 ° C or less) (glove box, etc.), sealed in a sealed container, and then subjected to various evaluations such as X-ray diffraction measurement and ion conductivity measurement. Can do.
  • the inorganic sulfide of the present invention can be obtained. Thereafter, heat treatment can be performed as necessary. Thereby, since it is possible to increase the ionic conductivity by increasing the number of crystal phases, it is possible to adjust the abundance ratio between the crystal phase and the glass phase according to the required characteristics.
  • the heating temperature is not particularly limited and is preferably 100 to 500 ° C, more preferably 200 to 400 ° C.
  • the heating time is not particularly limited, and is preferably 0.5 to 100 hours, more preferably 1 to 50 hours.
  • Lithium ion secondary battery A lithium ion secondary battery using the inorganic sulfide of the present invention can be produced by a known method.
  • the inorganic sulfide of the present invention when used as a positive electrode binder material, a known lithium manganese composite oxide or the like is used as a positive electrode material, and the inorganic sulfide of the present invention is used as a binder material.
  • a positive electrode can be manufactured by the technique. That is, a positive electrode can be produced using the inorganic sulfide of the present invention as an alternative material such as PTFE that is usually used as a binder material.
  • a conventionally known positive electrode can be employed.
  • the inorganic sulfide of the present invention when used as a negative electrode binder material, known metal lithium, carbon-based materials (activated carbon, graphite, etc.), silicon, silicon oxide, Si—SiO-based materials, lithium as negative electrode materials
  • a negative electrode can be manufactured by a well-known method using a titanium oxide etc. and using the inorganic sulfide of this invention as a binder material. That is, a negative electrode can be produced using the inorganic sulfide of the present invention as an alternative material such as PTFE that is usually used as a binder material.
  • a conventionally known negative electrode can be employed.
  • the inorganic sulfide of the present invention when used as the solid electrolyte of the electrolyte layer, the inorganic sulfide of the present invention can be formed into a layer by a conventional method and used as the electrolyte layer.
  • the inorganic sulfide of the present invention is used as a binder material for the electrolyte layer, a solid electrolyte is used as the solid electrolyte, and the electrolyte layer is manufactured by a known method using the inorganic sulfide of the present invention as the binder material. Can do. That is, an electrolyte layer can be produced using the inorganic sulfide of the present invention as an alternative material such as PTFE that is usually used as a binder material.
  • a lithium ion secondary battery can be assembled according to a conventional method using other known battery components.
  • the “lithium ion secondary battery” is a concept including a “lithium secondary battery” using metallic lithium as a negative electrode material.
  • Example 1 In a glove box (GB), Li 2 S and P 2 S 5 were weighed to a molar ratio of 75:25, and then mixed in a mortar. The total amount was 2 g. This was filled into a container made of meno for a vibration mill (rotation speed: 1000 rpm), a disk-shaped grinding media was put, sealed, and taken out from the GB, and set in a vibration mill. After grinding for 1 hour with a vibration mill, the powder was scraped again from the container and the media wall in the GB and ground again for 1 hour.
  • the X-ray diffraction pattern of the obtained sample is shown in FIG.
  • Example 1 An X-ray diffraction pattern of the sample obtained in Example 1 heated (baked) at 500 ° C. in a vacuum is shown in FIG.
  • Example 4 After weighing Li 2 S and P 2 S 5 in GB so as to have a molar ratio of 78:22, synthesis was performed under the same conditions as in Example 1. The X-ray diffraction pattern of the obtained sample is shown in FIG. From the obtained X-ray diffraction pattern and the result of Rietveld analysis, the sample obtained in Example 4 is a high-temperature phase Li 7 PS 6 (cubic system (cubic argyrodite), space group.
  • Example 5 After weighing Li 2 S and P 2 S 5 in GB so as to have a molar ratio of 80:20, synthesis was performed under the same conditions as in Example 1. The X-ray diffraction pattern of the obtained sample is shown in FIG. From the obtained X-ray diffraction pattern and the Rietveld analysis result, the sample obtained in Example 5 is a high-temperature phase Li 7 PS 6 (cubic system (cubic argyrodite), space group.
  • a phase of a 9.9024 (17) ⁇ ) and a glass phase having a broad peak similar to the glass phase produced in the known 70Li 2 S-30P 2 S 5 solid electrolyte It became clear that this was a glass ceramic powder. When the ionic conductivity was measured, it was 4.5 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 , and it was clear that it had sufficient characteristics as a solid electrolyte. This result is different from the previous report (A. Hayashi et al., Electrochemistry Communications 5 111-114 (2003)). In the report, sample synthesis was performed only by milling with the same composition and low rotation speed (370 rpm).
  • Example 6 After weighing Li 2 S, GeS 2 and P 2 S 5 in a molar ratio of 5: 1: 1 (71.4: 14.3: 14.3) in GB, synthesis was performed under the same conditions as in Example 1. It was. The X-ray diffraction pattern of the obtained sample is shown in FIG.
  • the glass ceramic powder is composed of two phases: a crystal phase having a peak of) ⁇ ) and a glass phase having a broad peak similar to the glass phase produced by a known 70Li 2 S-30P 2 S 5 solid electrolyte.
  • Example 6 An X-ray diffraction pattern of the sample obtained in Example 6 heated (baked) at 500 ° C. in a vacuum is shown in FIG.
  • Example 7 After weighing so that the molar ratio of Li 2 S, GeS 2 and P 2 S 5 in GB is 6: 1: 1 (75.0: 12.5: 12.5), synthesis is performed under the same conditions as in Example 1. It was. The X-ray diffraction pattern of the obtained sample is shown in FIG.
  • the peak of the crystal phase and the high-temperature phase Li 7 PS 6 (cubic system (cubic ajaroidite), space group
  • Example 8 After weighing so that the molar ratio of Li 2 S, GeS 2 and P 2 S 5 in GB is 7: 1: 1 (77.8: 11.1: 11.1), the same conditions as in Example 1 (but low rotation) Synthesis was carried out with a few planetary ball mill (500 rpm) for 30 hours once.). The X-ray diffraction pattern of the obtained sample is shown in FIG.
  • Example 9 After weighing Li 2 S and GeS 2 so as to have a molar ratio of 2: 1 (66.7: 33.3) in GB, synthesis was performed under the same conditions as in Example 1. The X-ray diffraction pattern of the obtained sample is shown in FIG.
  • the obtained sample was a soft sample as in Example 1, and was excellent in moldability.
  • Example 10 In a glove box (GB), weigh Li 2 S, LiI and P 2 S 5 to a molar ratio of 2: 3: 1 (0.333: 0.500: 0.167, Li 7 P 2 S 8 I composition), then mortar Mixed. The total amount was 2 g. This was filled into a container made of meno for a vibration mill (rotation speed: 1000 rpm), a disk-shaped grinding media was put, sealed, and taken out from the GB, and set in a vibration mill. Grinding was carried out for 0.5 hours using a vibration mill and four times with a pause of about 10 minutes for a total of 2 hours.
  • Example 11 Li 2 S, GeS 2 , TiS 2 and P 2 S 5 in the glove box (GB), Li 2 S: MS 2 (GeS 2 and TiS 2 ): P 2 S 5 molar ratio 5: 1: 1 ( 0.714: 0.143: 0.143, and the MS 2 internal ratio was measured so that the molar ratio of GeS 2 and TiS 2 was 9: 1, composition formula: Li 10 Ge 0.9 Ti 0.1 P 2 S 12 ), and then mixed in a mortar. The total amount was 2 g. Thereafter, a sample was prepared in the same manner as in Example 10. The X-ray diffraction pattern of the obtained sample is shown in FIG. From Fig.
  • Example 12 In a glove box (GB), Li 2 S, SnS 2 and P 2 S 5 were weighed to a molar ratio of 5: 1: 1 (0.714: 0.143: 0.143), and then mixed in a mortar. The total amount was 2 g. Thereafter, a sample was prepared in the same manner as in Example 10. The X-ray diffraction pattern of the obtained sample is shown in FIG. From FIG.
  • the ionic conductivity was measured, it was 4.0 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 , and it was clear that it had sufficient characteristics as a solid electrolyte.
  • Young's modulus was measured at room temperature under an Ar atmosphere and at a low dew point (-55 ° C) with a maximum load of 1000 mN, and the Poisson's ratio was calculated as 0.5. 1) GPa, a value close to that of polytetrafluoroethylene (0.5GPa), which is a binder material, and is clearly a solid electrolyte excellent in moldability.
  • Example 13 In a glove box (GB), Li 2 S, SnS 2 and P 2 S 5 were weighed to a molar ratio of 6: 1: 1 (0.750: 0.125: 0.125) and then mixed in a mortar. The total amount was 2 g. Thereafter, a sample was prepared in the same manner as in Example 10. The X-ray diffraction pattern of the obtained sample is shown in FIG. From FIG.
  • Example 14 In a glove box (GB), Li 2 S, P 2 S 5 and LiI were weighed to a molar ratio of 6: 1: 2 (0.667: 0.111: 0.222), and then mixed in a mortar. The total amount was 2 g. Thereafter, a sample was prepared in the same manner as in Example 10. The X-ray diffraction pattern of the obtained sample is shown in FIG. From Fig. 13, Li 6 PS 5 I (Cubic Argyrodite), space group
  • A 10.0705 (8) ⁇ ) and two phases: a glass phase with a broad peak similar to the glass phase produced by the known 70Li 2 S-30P 2 S 5 solid electrolyte It became clear that it was a glass ceramic powder. When the ionic conductivity was measured, it was 1.5 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 , and it was clear that it had sufficient characteristics as a solid electrolyte.
  • the obtained sample was a soft sample as in Example 1, and was excellent in moldability.
  • Example 15 In a glove box (GB), Li 2 S, P 2 S 5 and LiCl were weighed to a molar ratio of 6: 1: 2 (0.667: 0.111: 0.222), and then mixed in a mortar. The total amount was 2 g. Thereafter, a sample was prepared in the same manner as in Example 10. The X-ray diffraction pattern of the obtained sample is shown in FIG. From Fig. 14, Li 6 PS 5 Cl (Cubic Argyrodite), space group
  • Example 16 In a glove box (GB), Li 2 S, P 2 S 5 and LiBr were weighed to a molar ratio of 6: 1: 2 (0.667: 0.111: 0.222), and then mixed in a mortar. The total amount was 2 g. Thereafter, a sample was prepared in the same manner as in Example 10. The X-ray diffraction pattern of the obtained sample is shown in FIG. From Fig. 15, Li 6 PS 5 Br (Cubic Argyrodite), space group
  • Test Example 1 Battery fabrication (1) In order to confirm whether or not the obtained inorganic sulfide powder (solid electrolyte powder) was actually operable as a lithium ion secondary battery, a battery was produced in GB.
  • the solid electrolyte powders obtained in Examples 1 to 6 and the positive electrode active material (NMC: LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) were mixed at a mass ratio of 3: 7 to obtain a positive electrode mixture.
  • the negative electrode mixture was prepared by mixing the solid electrolyte powders obtained in Examples 1 to 6 with the negative electrode active material (LTO: Li 4 Ti 5 O 12 ) at a mass ratio of 4: 6.
  • a metal jig was put on one side of the metal tube, the solid electrolyte powders of Examples 1 to 6 were put, and then the metal jig was put on the opposite side and pressed to prepare an electrolyte layer.
  • the positive electrode mixture was put into one of the pressed sheets and pressed to produce a positive electrode, and then the negative electrode mixture was placed on the opposite side and pressed to produce a negative electrode.
  • An all solid lithium ion secondary battery was prepared by fixing with a thumbscrew and tightening the upper part with a wrench.
  • FIG. 16 shows the evaluation results of charge / discharge characteristics at 30 ° C. of the all-solid-state lithium ion secondary battery using the sample obtained in Example 1. It operates as a battery without problems, and the inorganic sulfide (solid electrolyte) of the present invention is utilized as a positive electrode binder material for lithium ion secondary batteries, a negative electrode binder material for lithium ion secondary batteries, and a solid electrolyte for lithium ion secondary batteries Obviously you can.
  • FIG. 17 shows the charge / discharge characteristic evaluation results at 30 ° C. of the all-solid-state lithium ion secondary battery using the sample obtained in Example 5. It operates as a battery without problems, and the inorganic sulfide (solid electrolyte) of the present invention is utilized as a positive electrode binder material for lithium ion secondary batteries, a negative electrode binder material for lithium ion secondary batteries, and a solid electrolyte for lithium ion secondary batteries Obviously you can.
  • Test example 2 Battery fabrication (2) In Test Example 1, a battery was fabricated in the same manner as described above except that the positive electrode active material was changed to NCA (LiNi 0.85 Co 0.10 Al 0.05 O 2 ) and the negative electrode was changed to In.
  • NCA LiNi 0.85 Co 0.10 Al 0.05 O 2
  • FIG. 18 shows charge / discharge characteristics when the sample obtained in Example 13 is used for the positive electrode mixture and the solid electrolyte for the electrolyte.
  • the sample obtained in Example 13 from FIG. 18 operates as a lithium ion secondary battery without problems, and the inorganic sulfide (solid electrolyte) of the present invention is a positive electrode binder material for lithium ion secondary batteries, lithium ion secondary batteries. It is clear that it can be utilized as a negative electrode binder material for batteries and a solid electrolyte for lithium ion secondary batteries.
  • FIG. 19 shows charge / discharge characteristics when the sample obtained in Example 15 is used for the positive electrode mixture and the solid electrolyte for the electrolyte.
  • the sample obtained in Example 15 operates as a lithium ion secondary battery without any problem
  • the inorganic sulfide (solid electrolyte) of the present invention is a positive electrode binder material for lithium ion secondary batteries, lithium ion secondary batteries. It is clear that it can be utilized as a negative electrode binder material for batteries and a solid electrolyte for lithium ion secondary batteries.
  • FIG. 20 shows the charge / discharge characteristics when the sample obtained in Example 16 is used for the positive electrode mixture and the solid electrolyte for the electrolyte.
  • the sample obtained in Example 16 operates as a lithium ion secondary battery without problems, and the inorganic sulfide (solid electrolyte) of the present invention is a positive electrode binder material for lithium ion secondary batteries, lithium ion secondary batteries. It is clear that it can be utilized as a negative electrode binder material for batteries and a solid electrolyte for lithium ion secondary batteries.
  • FIG. 21 shows the charge / discharge characteristics when the sample obtained in Example 6 was used for the positive electrode mixture and the solid electrolyte for the electrolyte.
  • the sample obtained in Example 6 from FIG. 21 operates as a lithium ion secondary battery without any problem, and the inorganic sulfide (solid electrolyte) of the present invention is a positive electrode binder material for lithium ion secondary batteries, lithium ion secondary batteries. It is clear that it can be utilized as a negative electrode binder material for batteries and a solid electrolyte for lithium ion secondary batteries.
  • the inorganic sulfide (solid electrolyte) of the present invention is a positive electrode binder material for lithium ion secondary batteries, a negative electrode binder material for lithium ion secondary batteries, a solid electrolyte for lithium ion secondary batteries, and a lithium ion secondary battery. It is clear that it can be utilized as a battery electrolyte layer binder material.
  • the inorganic sulfide of the present invention is used as, for example, a solid electrolyte for a large-sized lithium ion secondary battery for in-vehicle use or stationary use that requires safety, a binder material for a solid electrolyte, a binder material for a solid battery electrode, etc. Is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Glass Compositions (AREA)

Abstract

一般式(1): xLi2S-yGeS2-(1-x-y)P2S5 (1) [式中、x及びyは、0.667≦x≦0.860、0≦y≦0.333、0.667≦x+y≦1を示す。] 、又は一般式(2): dLi2S-eMS2-fLiX-(1-d-e-f)P2S5 (2) [式中、XはCl、Br及びIよりなる群から選ばれる少なくとも1種を示す。MはGe、Sn及びTiよりなる群から選ばれる少なくとも1種を示す。d、e及びfは、0.600≦d≦0.860、0≦e≦0.333、0<f≦0.300、0.600≦d+e+f≦1を示す。] で表され、結晶相とガラス相とが共存している、無機硫化物は、成形性に優れ(特に低ヤング率を有し)、且つ、イオン伝導性に優れる固体電解質である。

Description

無機硫化物及びその製造方法
 本発明は、無機硫化物及びその製造方法に関する。
 リチウムイオン二次電池は、高エネルギー密度電池として注目され、携帯機器(小型民生用途)のみならず、車載用、社会インフラ等の定置用途にも用途が拡大している。これら大型リチウムイオン二次電池への要求の一つとして、安全性の向上が挙げられる。通常のリチウムイオン二次電池(以後液系と略記)には有機電解液が使用され、粘度低下剤として消防法危険物第4類の第二石油類に該当する可燃性の低沸点溶媒(炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等)が大量に含まれるため、電池の発火、発煙の懸念がある。安全性の向上のための企業努力は行われているものの、構成部材の変更、つまり電解液をより可燃性の低い固体電解質に変更し、材料構成上、飛躍的な安全性向上が図れれば、安全性配慮のためのコスト低減がはかれ、産業上きわめて有用である。
 固体電解質には高分子系と無機系があるが、高分子系は現状室温以下でのイオン伝導度が低く、60℃以上でないと液系に近い十分な電池作動が見込めない。一方、無機系には酸化物系と硫化物系があるが、酸化物系はイオン伝導度が高いものの、成形性が低く脆いためプレスのみによる電池構築が困難という問題がある。
 ところで、硫化リチウム(Li2S)、硫化リン(P2S5)、硫化ゲルマニウム(GeS2)等からなる硫化物固体電解質は、室温においても有機電解液に迫る高いイオン伝導度を有するのみならず、粒界抵抗が酸化物に比べて低く、成形性が高いために最も有望な固体電解質の一つである。
 一例としてLi2S-P2S5系固体電解質をあげる。この電解質は、一般的な硫化物固体電解質合成法である封管法、硫化水素気流下焼成法等とは異なり、ミリング装置を用いた室温でのメカニカルミリング(以後MMと呼ぶ)法によって簡便に合成できる唯一の硫化物固体電解質である。MM法により、結晶相を含まない、成形性に優れた硫化物ガラスからなる固体電解質が得られることが知られている。しかしながら、このようにして得られた固体電解質は、イオン伝導度が低いためにレート特性が劣るという欠点があり、その問題の解決のために300℃以下で熱処理して一部結晶化させ、ガラスセラミックスと言われる固体電解質を得ている。このガラスセラミックス系固体電解質はレート特性に優れるものの、MM法のみで得られたガラス固体電解質を混合しないとサイクル特性に劣るという問題がある(例えば、特許文献1参照)。即ち、ガラスセラミックス系固体電解質は単独で使用することができない。このことから、成形性に優れ(特に低ヤング率を有し)、且つ、イオン伝導性に優れる固体電解質が求められている。このような固体電解質が提供できれば、電解質層用の固体電解質及びバインダー材料としてのみならず、電極用バインダー材料としても有望である。
 ところで、Li2S-P2S5系固体電解質として、xLi2S-(1-x)P2S5系固体電解質においては、x値を0.75以上にしないと、有毒の硫化水素を発生させる原因となるP2S7基、P2S6基等が生成する。この組成において、MM法のみで合成するとイオン伝導度は十分ではない。一方、x値が0.80以上の場合、MM法のみで合成すると原料のLi2Sが残留し、硫化水素が発生しやすいことが報告されており(例えば、非特許文献1参照)、ドライルームで扱うことができず作業が煩雑になる。一方、Li2S及びGeS2を含むxLi2S-(1-x)GeS2系固体電解質の場合は、xを0.667以上にすることによりGeS4 4-イオンのみとする必要がある。
 さらに、Li2S及びP2S5の他にGeS2も含むLi2S-GeS2-P2S5系や、Li2S及びGeS2を含むLi2S-GeS2系固体電解質は、石英ガラス管にLi2S及びGeS2、並びに必要に応じてP2S5を封入し、高温(例えば700℃)で熱処理する封管法により最終生成物を得ている(例えば、非特許文献2及び3参照)。しかしながら、この製造方法によれば、ヤング率が大きく成形性に優れた固体電解質を得ることはできない。また、一般に、封管法を採用した場合は大量合成が困難であることから、リチウムイオン伝導度が高く且つ電池作製が容易で大量合成が可能な固体電解質の製造方法の確立が求められている。また、そのような固体電解質ができれば、成形性の低い酸化物系又はリン酸塩系固体電解質との複合化による成形性改善も可能となる。
特開2008-103281号公報
A. Hayashi et al., Electrochemistry Communications, 5, 111-114 (2003). R. Kanno et al, Journal of Electrochemical Society, 148 A742-A746 (2001). M. Murayama et al, Solid State Ionics, 154, 789-794 (2002).
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、成形性に優れ(特に低ヤング率を有し)、且つ、イオン伝導性に優れる固体電解質を提供することを主な目的とする。
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、特定の組成を有し、結晶相とガラス相とが共存している無機硫化物(特に固体電解質)が、成形性に優れ(特に低ヤング率を有し)、且つ、イオン伝導性に優れることを見出した。また、本発明者らは、この無機硫化物は、所定の原料粉末に対して、高回転数のミリング処理を施した後に、低回転数のミリング処理を施すことにより得られることも見出した。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。即ち、本発明は、以下の構成を包含する。
項1.一般式(1):
xLi2S-yGeS2-(1-x-y)P2S5   (1)
[式中、x及びyは、0.667≦x≦0.860、0≦y≦0.333、0.667≦x+y≦1を示す。]
で表され、結晶相とガラス相とが共存している、無機硫化物。
項2.前記結晶相が、Li3PS4、Li7PS6、Li4GeS4及びLi10GeP2S12よりなる群から選ばれる少なくとも1種の結晶相である、項1に記載の無機硫化物。
項3.一般式(2):
dLi2S-eMS2-fLiX-(1-d-e-f)P2S5   (2)
[式中、XはCl、Br及びIよりなる群から選ばれる少なくとも1種を示す。MはGe、Sn及びTiよりなる群から選ばれる少なくとも1種を示す。d、e及びfは、0.600≦d≦0.860、0≦e≦0.333、0<f≦0.300、0.600≦d+e+f≦1を示す。]
で表され、結晶相とガラス相とが共存している、無機硫化物。
項4.前記結晶相が、β-Li3PS4、立方晶アージャロダイト、Li10MP2S12(MはGe又はSnである)、及びLi4PS4Iよりなる群から選ばれる少なくとも1種の結晶相である、項3に記載の無機硫化物。
項5.Li2Sからなる結晶相を含まない、項1~4のいずれか1項に記載の無機硫化物。
項6.ヤング率が3.0GPa以下である、項1~5のいずれか1項に記載の無機硫化物。
項7.イオン伝導度が1.00×10-4S・cm-1以上である、項1~6のいずれか1項に記載の無機硫化物。
項8.項1~7のいずれか1項に記載の無機硫化物の製造方法であって、
Li2Sを含む原料粉末に対して、高回転数のミリング処理を施した後に、低回転数のミリング処理を施す工程
を備える、製造方法。
項9.前記高回転数のミリング処理における回転数が800rpm以上であり、前記低回転数のミリング処理における回転数が600rpm以下である、項8に記載の製造方法。
項10.前記原料粉末が、さらに、GeS2、SnS2、TiS2、LiX及びP2S5よりなる群から選ばれる少なくとも1種を含む、項8又は9に記載の製造方法。
項11.項1~7のいずれか1項に記載の無機硫化物からなる、リチウムイオン二次電池用固体電解質。
項12.項1~7のいずれか1項に記載の無機硫化物からなる、リチウムイオン二次電池の電解質層用バインダー材料。
項13.項1~7のいずれか1項に記載の無機硫化物からなる、リチウムイオン二次電池の電極用バインダー材料。
項14.項11に記載のリチウムイオン二次電池用固体電解質又は項12に記載のリチウムイオン二次電池の電解質層用バインダー材料を含有する電解質層と、項13に記載のリチウムイオン二次電池の電極用バインダー材料を含有する電極との少なくとも1つを備える、リチウムイオン二次電池。
 本発明によれば、成形性に優れ(特に低ヤング率を有し)、且つ、イオン伝導性に優れる固体電解質を簡便な方法で提供することができる。
実施例1で得られた試料のX線回折パターンを示す。参考として、公知の70Li2S-30P2S5相(ガラス相)及びLi3PS4相(結晶相)のピークも示す。 実施例1で得られた試料を500℃で焼成したものの実測(+)及び計算(実線)X線回折パターンを示す。 実施例2及び3で得られた試料のX線回折パターンを示す。参考として、公知の70Li2S-30P2S5相(ガラス相)、Li3PS4相(結晶相)及びLi7PS6相(結晶相)のピークも示す。 実施例4及び5で得られた試料のX線回折パターンを示す。参考として、公知の70Li2S-30P2S5相(ガラス相)及びLi7PS6相(結晶相)のピークも示す。 実施例6で得られた試料のX線回折パターンを示す。参考として、公知の70Li2S-30P2S5相(ガラス相)、Li3PS4相(結晶相)及びLi10GeP2S12相(結晶相;LGPS相)のピークも示す。 実施例6で得られた試料を500℃で焼成したものの実測(+)及び計算(実線)X線回折パターンを示す。 実施例7及び8で得られた試料のX線回折パターンを示す。参考として、公知の70Li2S-30P2S5相(ガラス相)、Li3PS4相(結晶相)、Li10GeP2S12相(結晶相;LGPS相)、Li4GeS4(結晶相)及びLi6PS7相(結晶相)のピークも示す。 実施例9で得られた試料のX線回折パターンを示す。 実施例10で得られた試料のX線回折パターンを示す。図内の数値は対応する結晶相のピーク位置に対応する指数を示す。 実施例11で得られた試料と、ガラス相及び構成結晶相のX線回折パターンを示す。 実施例12で得られた試料と、ガラス相及び構成結晶相のX線回折パターンを示す。 実施例13で得られた試料と、ガラス相及び構成結晶相のX線回折パターンを示す。 実施例14で得られた試料と、ガラス相及び構成結晶相のX線回折パターンを示す。 実施例15で得られた試料と、ガラス相及び構成結晶相のX線回折パターンを示す。 実施例16で得られた試料と、ガラス相及び構成結晶相のX線回折パターンを示す。 実施例1で得られた試料を使用した全固体リチウムイオン二次電池の30℃における充放電特性評価結果である。充放電容量は正極活物質量で規格化している。 実施例5で得られた試料を使用した全固体リチウムイオン二次電池の30℃における充放電特性評価結果である。充放電容量は正極活物質量で規格化している。 実施例13で得られた試料を使用した全固体リチウムイオン二次電池の30℃における充放電特性評価結果である。充放電容量は正極活物質量で規格化している。 実施例15で得られた試料を使用した全固体リチウムイオン二次電池の30℃における充放電特性評価結果である。充放電容量は正極活物質量で規格化している。 実施例16で得られた試料を使用した全固体リチウムイオン二次電池の30℃における充放電特性評価結果である。充放電容量は正極活物質量で規格化している。 実施例6で得られた試料を使用した全固体リチウムイオン二次電池の30℃における充放電特性評価結果である。充放電容量は正極活物質量で規格化している。
 本明細書において、数値範囲を「A~B」と表記する場合、A以上B以下を意味する。
 1.無機硫化物(1)
 本発明の無機硫化物(1)は、一般式(1):
xLi2S-yGeS2-(1-x-y)P2S5   (1)
[式中、x及びyは、0.667≦x≦0.860、0≦y≦0.333、0.667≦x+y≦1を示す。]
で表され、結晶相とガラス相とが共存している。
 本発明の無機硫化物(1)においては、電荷担体として働くLiイオンに対して、P及びGeがPS4 3-及びGeS4 4-イオンとして存在しており、ガラス相形成又は結晶格子形成イオンとして働く。 
 本発明の無機硫化物(1)は、一般式(1)において、Li2Sの含有量であるxが0.667~0.860であり、GeS2の含有量であるyが0~0.333であることが重要である。これは、以下の2点に集約される。(1)イオン伝導度は、電荷担体濃度と移動度の積に比例するため、Li2S濃度を増大させると電荷担体(Liイオン)濃度を増大させることができる一方、xが0.860をこえるとガラス構造内に全てのLi2Sを導入できないため、無機硫化物中に不純物としてLi2Sが残留し(Li2Sからなる結晶相が存在し)、硫化水素(H2S)発生源となる。このような理由から、xは好ましい一態様(P2S5を含む態様)では0.750~0.860、好ましくは0.760~0.850、より好ましくは0.770~0.830であり、別の好ましい態様(P2S5を含まない態様)では0.667~0.800、好ましくは0.680~0.770、より好ましくは0.700~0.750である。(2)一方、GeS2の含有量であるyは、必要に応じてイオン伝導度を高め高電位側の電位窓を広げることが可能であるものの、yが0.333をこえると高価なGeが大量に必要になるためにコスト上昇を招く。このような理由から、yは好ましい一態様(P2S5を含む態様)では0~0.200、好ましくは0.050~0.20、より好ましくは0.080~0.150であり、別の好ましい態様(P2S5を含まない態様)では0~0.333、好ましくは0.050~0.30、より好ましくは0.080~0.250である。なお、このようなx及びyは、0.667≦x+y≦1を満たす数値である。
 本発明の無機硫化物(1)が有する結晶相としては、特に制限されないが、原料粉末であるLi2S、GeS2、P2S5等からなる結晶相は含まれないことが好ましい。特に、Li2Sからなる結晶相を含まないことにより、硫化水素の発生を抑制することができるため、低湿度環境下においても取扱いのしやすい無機硫化物を得ることができる。
 なお、本発明の無機硫化物(1)において、各結晶相の存在比は、例えば、X線回折パターンのリートベルト法による解析によって定量分析が可能である。各結晶相の存在比は、例えば、原料粉末の組成、後述する製造方法におけるミリングの条件、ミリング処理後の熱処理条件等によって変えることが可能である。なお、本発明の無機硫化物(1)において、各結晶相はいずれも良好なリチウムイオン伝導性を示すものの、Li3PS4又はLi7PS6が合計で40質量%以上(40~100質量%)含まれていることが好ましい。
 このような本発明の無機硫化物(1)が有する結晶相としては、Li3PS4、Li7PS6、Li4GeS4及びLi10GeP2S12よりなる群から選ばれる少なくとも1種の結晶相が好ましい。具体的には、一般式(1)において、y=0の条件下で0.750≦x≦0.775である場合にはLi3PS4からなる結晶相(空間群Pnmaのβ型の斜方晶系結晶相)が形成されやすく、一般式(1)において0.755≦x≦0.860である場合にはLi7PS6からなる結晶相(特にLi7PS6からなる空間群
Figure JPOXMLDOC01-appb-M000001
の立方晶アージャロダイト結晶相)が形成されやすい。一方、一般式(1)においてyが0以外の場合(0<y≦0.333、特に0.050≦y≦0.200)にはLi10GeP2S12からなる結晶相(特にLi10GeP2S12からなる空間群P42/nmcの正方晶系結晶相)やyが大きい(例えば0.200<y≦0.333、例えばy=0.333)の場合にはLi4GeS4(空間群Pnmaの斜方晶系結晶相)も形成されやすい。
 本発明の無機硫化物(1)は、このような結晶相を有することにより、イオン伝導度(特にリチウムイオン伝導度)を高くすることができる。具体的には、本発明の無機硫化物(1)のイオン伝導度を1.00×10-4S・cm-1以上、特に1.50×10-4~5.00×10-4 S・cm-1とすることが可能である。イオン伝導度は、得られた粉末を錠剤成形後、交流インピーダンス法により測定する。
 一方、本発明の無機硫化物(1)が有するガラス相は、従来公知の70Li2S-30P2S5系固体電解質で生成しているガラス相に類似したブロードなピークを有する相を意味する。本発明の無機硫化物(1)は、このようなガラス相を有することにより、柔らかい材料とし成形性を高め、ヤング率を低くすることができる。具体的には、本発明の無機硫化物(1)のヤング率を3.0GPa以下、特に0.2~2.8GPaとすることができる。ヤング率は、微小圧縮試験機を用いて測定する。
 なお、本発明の無機硫化物(1)において、結晶相とガラス相との存在比は、例えば、特開2014-093262号公報に記載されている固体31P-NMRによって定量分析が可能である。結晶相とガラス相との存在比は、例えば、後述する製造方法におけるミリングの条件、ミリング処理後の熱処理条件等によって変えることが可能である。なお、本発明の無機硫化物(1)において、結晶相とガラス相との存在比は、成形性とイオン伝導度のバランスの観点から、10: 90~90: 10(質量比)が好ましく、20: 80~80: 20(質量比)がより好ましい。 
 一方、本発明の無機硫化物(1)は、上記の結晶相及びガラス相を含んでいればよく、充放電特性に重大な影響を及ぼさない範囲の他の不純物相を含んでいてもよい。このような不純物相としては、単体硫黄、硫化リン、硫化ゲルマニウム、硫化リチウム等が挙げられる。ただし、本発明においては、結晶相によりイオン伝導度を向上させ、ガラス相により成形性を向上させヤング率を低くするため、不純物相の存在割合は低いことが好ましい。このような観点から、本発明の無機硫化物(1)が、不純物相を有する場合、通常、本発明の無機硫化物(1)の総量を100質量%として、不純物相は0.1~10質量%(特に0.2~5質量%)が好ましい。
 以上のような条件を満たす本発明の無機硫化物(1)の形状は特に制限されず、例えば、粉末状、粒状、ペレット状、繊維状等の任意の形状を採用することができる。なお、後述の製造方法によれば、粉末状の無機硫化物が生成されやすい。
 以上のような条件を満たす本発明の無機硫化物(1)は、成形性に優れ(特に低ヤング率を有し)、且つ、イオン伝導性に優れる。このため、リチウムイオン二次電池用電解質層を構成する固体電解質として有用であるし、リチウムイオン二次電池用電解質層を構成する固体電解質(特に成形性の乏しい固体電解質)用のバインダー材料としても有用である。また、リチウムイオン二次電池の電極用のバインダー材料としても有用である。
 2.無機硫化物(2)
 本発明の無機硫化物(2)は、一般式(2):
dLi2S-eMS2-fLiX-(1-d-e-f)P2S5   (2)
[式中、XはCl、Br及びIよりなる群から選ばれる少なくとも1種を示す。MはGe、Sn及びTiよりなる群から選ばれる少なくとも1種を示す。d、e及びfは、0.600≦d≦0.860、0≦e≦0.333、0<f≦0.300、0.600≦d+e+f≦1を示す。]
で表され、結晶相とガラス相とが共存している。
 一般式(2)において、XはCl、Br及びIよりなる群から選ばれる少なくとも1種であり、充放電特性の観点からCl及びBrが好ましい。
 一般式(2)において、MはGe、Sn及びTiよりなる群から選ばれる少なくとも1種であり、充放電特性の観点からGeとTiとを混合して使用することが好ましい。
 本発明の無機硫化物(2)においては、電荷担体として働くLiイオンに対して、P、Ge、Sn及びTiがPS4 3-及びMS4 4-イオンとして、XはX-イオンとして存在しており、いずれもガラス相形成又は結晶格子形成イオンとして働く。 
 本発明の無機硫化物(2)は、一般式(2)において、Li2Sの含有量であるdが0.600~0.860であり、MS2の含有量であるeが0~0.333であり、LiXの含有量であるfが0~0.300であることが重要である。これは、以下の2点に集約される。(1)イオン伝導度は、電荷担体濃度と移動度の積に比例するため、Li2S及びLiX濃度を増大させると電荷担体(Liイオン)濃度を増大させることができる一方、dが0.860を、fが0.300をこえるとガラス構造内に全てのLi2S及びLiXを導入できないため、無機硫化物中に不純物としてLi2S及びLiXが残留し(Li2S及びLiXからなる結晶相が存在し)、硫化水素(H2S)発生源となる。このような理由から、dは好ましい一態様(P2S5を含む態様)では0.750~0.860、好ましくは0.760~0.850、より好ましくは0.770~0.830であり、別の好ましい態様(P2S5を含まない態様)では0.667~0.800、好ましくは0.680~0.770、より好ましくは0.700~0.750である。また、fは好ましい一態様(P2S5を含む態様)では0.050~0.300、好ましくは0.100~0.250である。(2)一方、MS2の含有量であるeは、必要に応じてイオン伝導度を高め高電位側の電位窓を広げることが可能であるものの、eが0.333をこえるとM= Geの場合、高価なGeが大量に必要になるためにコスト上昇を招く。このような理由から、eは好ましい一態様(P2S5を含む態様)では0~0.200、好ましくは0.050~0.20、より好ましくは0.080~0.150であり、別の好ましい態様(P2S5を含まない態様)では0~0.333、好ましくは0.050~0.30、より好ましくは0.080~0.250である。なお、このようなd、e及びfは、0.600≦d+e+f≦1を満たす数値である。
 本発明の無機硫化物(2)が有する結晶相としては、特に制限されないが、原料粉末であるLi2S、LiX、MS2、P2S5等からなる結晶相は含まれないことが好ましい。特に、Li2Sからなる結晶相を含まないことにより、硫化水素の発生を抑制することができるため、低湿度環境下においても取扱いのしやすい無機硫化物を得ることができる。
 なお、本発明の無機硫化物(2)において、各結晶相の存在比は、例えば、X線回折パターンのリートベルト法による解析によって定量分析が可能である。各結晶相の存在比は、例えば、原料粉末の組成、後述する製造方法におけるミリングの条件、ミリング処理後の熱処理条件等によって変えることが可能である。なお、本発明の無機硫化物(1)において、各結晶相はいずれも良好なリチウムイオン伝導性を示すものの、β-Li3PS4又はアージャロダイト相(Li7PS6又はLi6PS5X)が合計で40質量%以上(40~100質量%)含まれていることが好ましい。
 このような本発明の無機硫化物(2)が有する結晶相としては、β-Li3PS4、立方晶アージャロダイト及び、Li10MP2S12及びLi4PS4Iよりなる群から選ばれる少なくとも1種の結晶相が好ましい。具体的には、一般式(2)において、e=0の条件下で0.750≦d≦0.775である場合にはβ-Li3PS4からなる結晶相(空間群Pnmaの斜方晶系結晶相)が形成されやすく、一般式(2)において0.755≦d≦0.860である場合にはLi7PS6からなる結晶相(特にLi7PS6からなる空間群
Figure JPOXMLDOC01-appb-M000002
の立方晶アージャロダイト結晶相)が形成されやすい。Xがヨウ化物イオンの場合、Li4PS4Iからなる結晶相(空間群P4/nmm)も形成されやすい。一方、一般式(2)においてeが0以外の場合(0<e≦0.333、特に0.050≦e≦0.200)にはLi10MP2S12からなる結晶相(特にLi10MP2S12からなる空間群P42/nmcの正方晶系結晶相)も形成されやすい。また、dが0.222に、eが0に近い場合にはLi6PS5Xからなる上記立方晶アージャロダイト相が形成されやすい。
 本発明の無機硫化物(2)は、このような結晶相を有することにより、イオン伝導度(特にリチウムイオン伝導度)を高くすることができる。具体的には、本発明の無機硫化物(2)のイオン伝導度を1.00×10-4S・cm-1以上、特に1.50×10-4~5.00×10-4 S・cm-1とすることが可能である。イオン伝導度は、得られた粉末を錠剤成形後、交流インピーダンス法により測定する。
 一方、本発明の無機硫化物(2)が有するガラス相は、従来公知の70Li2S-30P2S5系固体電解質で生成しているガラス相に類似したブロードなピークを有する相を意味する。本発明の無機硫化物(2)は、このようなガラス相を有することにより、柔らかい材料として成形性を高め、ヤング率を低くすることができる。具体的には、本発明の無機硫化物(2)のヤング率を3.0GPa以下、特に0.2~2.8GPaとすることができる。ヤング率は、微小圧縮試験機を用いて測定する。
 なお、本発明の無機硫化物(2)において、結晶相とガラス相との存在比は、例えば、特開2014-093262号公報に記載されている固体31P-NMRによって定量分析が可能である。結晶相とガラス相との存在比は、例えば、後述する製造方法におけるミリングの条件、ミリング処理後の熱処理条件等によって変えることが可能である。なお、本発明の無機硫化物(2)において、結晶相とガラス相との存在比は、成形性とイオン伝導度のバランスの観点から、10: 90~90: 10(質量比)が好ましく、20: 80~80: 20(質量比)がより好ましい。 
 一方、本発明の無機硫化物(2)は、上記の結晶相及びガラス相を含んでいればよく、充放電特性に重大な影響を及ぼさない範囲の他の不純物相を含んでいてもよい。このような不純物相としては、単体硫黄、硫化リン、硫化ゲルマニウム、硫化チタン、硫化スズ、硫化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等が挙げられる。ただし、本発明においては、結晶相によりイオン伝導度を向上させ、ガラス相により成形性を向上させヤング率を低くするため、不純物相の存在割合は低いことが好ましい。このような観点から、本発明の無機硫化物(2)が、不純物相を有する場合、通常、本発明の無機硫化物(2)の総量を100質量%として、不純物相は0.1~10質量%(特に0.2~5質量%)が好ましい。
 以上のような条件を満たす本発明の無機硫化物(2)の形状は特に制限されず、例えば、粉末状、粒状、ペレット状、繊維状等の任意の形状を採用することができる。なお、後述の製造方法によれば、粉末状の無機硫化物が生成されやすい。
 以上のような条件を満たす本発明の無機硫化物(2)は、成形性に優れ(特に低ヤング率を有し)、且つ、イオン伝導性に優れる。このため、リチウムイオン二次電池用電解質層を構成する固体電解質として有用であるし、リチウムイオン二次電池用電解質層を構成する固体電解質(特に成形性の乏しい固体電解質)用のバインダー材料としても有用である。また、リチウムイオン二次電池の電極用のバインダー材料としても有用である。
3.無機硫化物の製造方法
 本発明の無機硫化物は、例えば、Li2Sを含む原料粉末に対して、高回転数のミリング処理を施した後に、低回転数のミリング処理を施す工程を備える製造方法により得ることができる。
 原料粉末としては、最終的に得ようとする無機硫化物の組成に応じて適宜選択することができる。例えば、Li2S-P2S5系固体電解質を得ようとする場合は原料粉末としてLi2S及びP2S5を使用することができ、Li2S-MS2(GeS2等)系固体電解質を得ようとする場合は原料粉末としてLi2S及びMS2(GeS2等)を使用することができ、Li2S-MS2(GeS2等)-P2S5系固体電解質を得ようとする場合は原料粉末としてLi2S、MS2(GeS2等)及びP2S5を使用することができ、Li2S-LiX-P2S5系固体電解質を得ようとする場合は原料粉末としてLi2S、LiX及びP2S5を使用することができる。
 本発明においては、例えばLi2S-P2S5系の場合、得られる無機硫化物中に高いLi2S含有量x又はd(x≧0.667、特にx≧0.750;d≧0.600、特にd≧0.750)を保持するため、まず、高回転数のミリング処理を施し、この高回転数のミリング処理の後に、低回転数のミリング処理を施すことが必要である。このような処理を施すことにより、Li2Sを不純物として含まない(Li2Sからなる結晶相を含まない)高純度且つイオン導電性の高い無機硫化物を得ることができる。なお、高回転数のミリング処理のみでは無機硫化物中にLi2Sからなる結晶相が不純物として含まれてしまう。また、低回転数のミリング処理のみでは、無機硫化物のLi2S含有量を高くすることができず、また、Li2Sからなる結晶相が不純物として含まれてしまう。
 高回転数のミリング処理における回転数は、得られる無機硫化物中のLi2S含有量x又はdをより高くしつつLi2Sからなる結晶相の発生をより抑制する観点から、800rpm以上が好ましく、900~2000rpmがより好ましい。また、この際の処理時間は特に制限されず、30分~3時間が好ましく、40分~2時間がより好ましい。また、処理温度は特に制限されず、0~50℃(例えば室温)で行うことができる。このような高回転数のミリング処理は、例えば、振動ミル等により行うことができる。
 低回転数のミリング処理における回転数は、Li2Sからなる結晶相の発生をより抑制する観点から、600rpm以下が好ましく、300~550rpmがより好ましい。また、この際の処理時間は特に制限されず、10~100時間が好ましく、20~80時間がより好ましい。また、処理温度は特に制限されず、0~50℃(例えば室温)で行うことができる。このような低回転数のミリング処理は、例えば、遊星ボールミル等により行うことができる。
 具体的な製造方法としては、まず、例えば、超低湿度(露点-60℃以下)環境下に、密閉容器(グローブボックス、ドライルーム、オープンドライチャンバー等)内で、高回転数のミリング処理を行う装置の容器内に原料粉末を充填する。この際使用できる容器としては、特に制限はなく、メノー、アルミナ、ジルコニア等の材料が挙げられる。この際の原料充填量は特に制限されず、1~100g程度とすることができる。この原料粉末に、必要に応じて粉砕メディアを加えて密封後にグローブボックス外に取り出し、ミリング装置にセットすることが好ましい。ミリング処理後、生成物が容器に強く付着することがあるため、必要に応じて容器を例えば超低湿度(露点-60℃以下)環境下(グローブボックス等)に再度導入し、生成物を容器の壁から掻き落とした後、再度同じ処理を行うこともできる。
 この後、例えば超低湿度(露点-60℃以下)環境下(グローブボックス等)内で容器を開け、粉末を低回転数のミリング装置用容器に移し、低回転数でミリング処理を行う。処理後、生成物を例えば超低湿度(露点-60℃以下)環境下(グローブボックス等)内で取り出し、密閉容器で封入後、X線回折測定、イオン伝導度測定等の各種評価を行うことができる。
 このようにして本発明の無機硫化物が得られるが、この後、必要に応じて加熱処理を施すこともできる。これにより、結晶相をより多くしてイオン伝導度をより高めることができるため、要求特性に応じて結晶相とガラス相との存在比を調整することが可能である。この場合、加熱温度は特に制限はなく、100~500℃が好ましく、200~400℃がより好ましい。また、加熱時間も特に制限はなく、0.5~100時間が好ましく、1~50時間がより好ましい。
 4.リチウムイオン二次電池
 本発明の無機硫化物を用いるリチウムイオン二次電池は、公知の手法により製造することができる。
 例えば、本発明の無機硫化物を正極のバインダー材料として使用する場合には、正極材料として公知のリチウムマンガン系複合酸化物等を用い、本発明の無機硫化物をバインダー材料として用いて、公知の手法により正極を製造することができる。つまり、バインダー材料として通常使用されているPTFE等の代替材料として本発明の無機硫化物を用い、正極を作製することができる。本発明の無機硫化物を正極のバインダー材料として使用しない場合は従来公知の正極を採用することができる。
 また、本発明の無機硫化物を負極のバインダー材料として使用する場合には、負極材料として公知の金属リチウム、炭素系材料(活性炭、黒鉛等)、ケイ素、酸化ケイ素、Si-SiO系材料、リチウムチタン酸化物等を用い、本発明の無機硫化物をバインダー材料として用いて、公知の手法により負極を製造することができる。つまり、バインダー材料として通常使用されているPTFE等の代替材料として本発明の無機硫化物を用い、負極を作製することができる。本発明の無機硫化物を負極のバインダー材料として使用しない場合は従来公知の負極を採用することができる。
 また、本発明の無機硫化物を電解質層の固体電解質として使用する場合は、本発明の無機硫化物を常法により層状に成形し、電解質層として使用することができる。本発明の無機硫化物を電解質層のバインダー材料として使用する場合には、固体電解質として固体電解質を用い、本発明の無機硫化物をバインダー材料として用いて、公知の手法により電解質層を製造することができる。つまり、バインダー材料として通常使用されているPTFE等の代替材料として本発明の無機硫化物を用い、電解質層を作製することができる。
 さらに、その他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てることができる。なお、本発明において、「リチウムイオン二次電池」とは、負極材料として金属リチウムを用いた「リチウム二次電池」も包含する概念である。
 以下、実施例および比較例を示し、本発明の特徴とするところを一層明確にするが、本発明は以下の実施例に限定されるものではない。
 [実施例1]
 グローブボックス(GB)内にてLi2SとP2S5とをモル比75: 25になるように秤量後、乳鉢混合した。全量は2gとなるようにした。これを振動ミル(回転数1000rpm)用メノー製容器に充填し、ディスク状粉砕メディアを入れ、密封してGB外に出し、振動ミルにセットした。振動ミルにて1時間粉砕後再度GB内で粉末を容器及びメディア壁より掻き落とし、再度1時間粉砕処理した。粉砕処理後GB内にて、低回転数遊星ボールミル用容器に移し替え、密閉後GB外に出し、低回転数遊星ボールミル(500rpm)にて30時間粉砕した。粉砕後、GB内にて容器から粉末を回収し、X線回折評価(XRD評価)等を行った。
 得られた試料のX線回折パターンを図1に示す。
 得られたX線回折パターン及びそのリートベルト解析結果から、実施例1で得られた試料は、高リチウムイオン導電性を有すると言われる(非特許文献、Hommaら、Solid State Ionics 182 53-58 (2011).)高温相β-Li3PS4からなる結晶相(斜方晶系、空間群Pnma、a= 12.624(6)Å, b= 8.056(3)Å, c= 6.041(3)Å)と、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。イオン伝導度測定を行ったところ、4.6×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、2.5(1)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 以前の報告(A. Hayashi et al., Electrochemistry Communications 5 111-114 (2003).)では、同一組成で低回転数(370rpm)のミリング処理のみで試料合成を行っており、この場合は結晶相のないガラス相のみ得られ、230℃の熱処理で初めて結晶相が得られた。その結晶相は別の文献(R. Kanno et al., J. Electrochem. Soc., 148 A742-A746 (2001))に示される単斜晶系の結晶相チオリシコンIIIと帰属されており、本発明の結晶相とは異なることがわかる。
 なお、実施例1で得られた試料を真空中500℃で加熱(焼成)したもののX線回折パターンを図2に示す。図2から明らかなように、得られたX線回折パターンは、斜方晶β-Li3PS4(空間群Pnma, a= 12.8924(8)Å, b= 8.1490(5)Å, c= 6.1441(4)Å)の単位胞のみでフィットでき、ガラス相が結晶相に変わっていた。また、この焼成物のイオン伝導度は5.33×10-4S・cmであった。このことは、得られた実施例1の試料が高イオン伝導度を有する焼成物の原料としても活用可能であることが明らかである。
 [実施例2]
 GB内にてLi2SとP2S5とをモル比76: 24になるように秤量後は、実施例1と同様の条件で合成を行った。得られた試料のX線回折パターンを図3に示す。得られたX線回折パターン及びそのリートベルト解析結果から、実施例2で得られた試料は、β-Li3PS4(斜方晶系、空間群Pnma、a= 12.857(3)Å, b= 8.127(2)Å, c= 6.1068(15)Å)のピークと高温相Li7PS6(立方晶系(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000003
、a= 9.915(5)Å)のピークとを有する結晶相と、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。なお、結晶相において、Li3PS4とLi7PS6との質量比は88: 12であった。イオン伝導度測定を行ったところ、4.79×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。なお、得られた試料は、実施例1と同様に柔らかい試料であり、成形性に優れていた。
 [実施例3]
 GB内にてLi2SとP2S5とをモル比77: 23になるように秤量後は、実施例1と同様の条件で合成を行った。得られた試料のX線回折パターンを図3に示す。得られたX線回折パターン及びそのリートベルト解析結果から、実施例3で得られた試料は、β-Li3PS4(斜方晶系、空間群Pnma、a= 12.692(5)Å, b= 8.185(3)Å, c= 6.120(2)Å)のピークと高温相Li7PS6(立方晶系(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000004
、a= 9.899(2)Å)のピークとを有する結晶相と、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。なお、結晶相において、Li3PS4とLi7PS6との質量比は83: 17であった。イオン伝導度測定を行ったところ、4.17×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。なお、得られた試料は、実施例1と同様に柔らかい試料であり、成形性に優れていた。
 [実施例4]
 GB内にてLi2SとP2S5とをモル比78: 22になるように秤量後は、実施例1と同様の条件で合成を行った。得られた試料のX線回折パターンを図4に示す。得られたX線回折パターン及びそのリートベルト解析結果から、実施例4で得られた試料は、高温相Li7PS6(立方晶系(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000005
、a= 9.985(5)Å)のピークを有する結晶相と、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。イオン伝導度測定を行ったところ、3.9×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。なお、得られた試料は、実施例1と同様に柔らかい試料であり、成形性に優れていた。
 [実施例5]
 GB内にてLi2SとP2S5とをモル比80: 20になるように秤量後は、実施例1と同様の条件で合成を行った。得られた試料のX線回折パターンを図4に示す。得られたX線回折パターン及びそのリートベルト解析結果から、実施例5で得られた試料は、高温相Li7PS6(立方晶系(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000006
、a= 9.9024(17)Å)のピークを有する結晶相と、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。イオン伝導度測定を行ったところ、4.5×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。この結果は、以前の報告(A. Hayashi et al., Electrochemistry Communications 5 111-114 (2003).)と異なる。報告では、同一組成で低回転数(370rpm)のミリング処理のみで試料合成を行っており、この場合はLi2S含有のガラス相のみ得られ、230℃の熱処理で初めて結晶相が得られたがLi2Sも残留していた。Li2Sが残留すると、H2Sガスが発生しやすいためドライルームで扱えないという弱点となる。本発明の無機硫化物はLi2Sを含まないことから、Li2Sフリー固体電解質が得られたことが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、3.6(2)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 [実施例6]
 GB内にてLi2SとGeS2とP2S5とをモル比5: 1: 1(71.4: 14.3: 14.3)になるように秤量後は、実施例1と同様の条件で合成を行った。得られた試料のX線回折パターンを図5に示す。得られたX線回折パターン及びそのリートベルト解析結果から、実施例6で得られた試料は、β-Li3PS4(斜方晶系、空間群Pnma、a= 13.068(6)Å, b= 7.934(4)Å, c= 6.057(3)Å)のピークとLi10GeP2S12(LGPS;正方晶系、空間群P42/nmc、a= 8.537(9)Å、c= 12.877(18)Å)のピークとを有する結晶相と、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。なお、結晶相において、Li3PS4とLi10GeP2S12との質量比は73: 27であった。イオン伝導度測定を行ったところ、5.1×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、1.9(1)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 なお、実施例6で得られた試料を真空中500℃で加熱(焼成)したもののX線回折パターンを図6に示す。図6から明らかなように、得られたX線回折パターンは、正方晶Li10GeP2S12(LGPS;正方晶系、空間群P42/nmc、a= 8.6731(3)Å、c= 12.5906(5)Å)の単位胞のみでフィットでき、ガラス相が結晶相に変わっていた。また、この焼成物のイオン伝導度は1.5×10-3S・cmであった。このことは、得られた実施例6の試料が高イオン伝導度を有する焼成物の原料としても活用可能であることが明らかである。
 [実施例7]
 GB内にてLi2SとGeS2とP2S5とをモル比6: 1: 1(75.0: 12.5: 12.5)になるように秤量後は、実施例1と同様の条件で合成を行った。得られた試料のX線回折パターンを図7に示す。得られたX線回折パターン及びそのリートベルト解析結果から、実施例7で得られた試料は、β-Li3PS4(斜方晶系、空間群Pnma、a= 13.171(4)Å, b= 7.979(3)Å, c= 6.1095(19)Å)のピークとLi10GeP2S12(LGPS;正方晶系、空間群P42/nmc、a= 9.138(7)Å、c= 13.250(15)Å)のピークとを有する結晶相と、高温相Li7PS6(立方晶系(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000007
、a= 9.9678(9)Å)のピークを有する結晶相と公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。なお、結晶相において、Li3PS4とLi10GeP2S12とLi7PS6との質量比は51: 25: 24であった。イオン伝導度測定を行ったところ、7.4×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。なお、得られた試料は、実施例1と同様に柔らかい試料であり、成形性に優れていた。
 [実施例8]
 GB内にてLi2SとGeS2とP2S5とをモル比7: 1: 1(77.8: 11.1: 11.1)になるように秤量後は、実施例1と同様の条件(ただし低回転数遊星ボールミル(500rpm)にて30時間粉砕を1回追加した。)で合成を行った。得られた試料のX線回折パターンを図7に示す。得られたX線回折パターン及びそのリートベルト解析結果から、実施例8で得られた試料は、β-Li3PS4(斜方晶系、空間群Pnma、a= 13.212(9)Å, b= 7.991(10)Å, c= 6.123(6)Å)のピークとLi10GeP2S12(LGPS;正方晶系、空間群P42/nmc、a= 9.159(13)Å、c= 12.77(2)Å)のピークとを有する結晶相と、高温相Li7PS6(立方晶系(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000008
、a= 9.9765(7)Å)のピークを有する結晶相と公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。なお、結晶相において、Li3PS4とLi10GeP2S12とLi7PS6との質量比は39: 16: 45であった。イオン伝導度測定を行ったところ、9.46×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、2.5(2)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 [実施例9]
 GB内にてLi2SとGeS2をモル比2: 1(66.7: 33.3)になるように秤量後は、実施例1と同様の条件で合成を行った。得られた試料のX線回折パターンを図8に示す。得られたX線回折パターン及びそのリートベルト解析結果から、実施例9で得られた試料は、Li4GeS4(斜方晶系、空間群Pnma、a= 13.928(6)Å, b= 7.816(4)Å, c= 6.192(3)Å)のピークを有する結晶相と公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。イオン伝導度測定を行ったところ、1.1×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。なお、得られた試料は、実施例1と同様に柔らかい試料であり、成形性に優れていた。
 [実施例10]
 グローブボックス(GB)内にてLi2S、LiI及びP2S5をモル比2: 3: 1(0.333: 0.500: 0.167、Li7P2S8I組成)になるように秤量後、乳鉢混合した。全量は2gとなるようにした。これを振動ミル(回転数1000rpm)用メノー製容器に充填し、ディスク状粉砕メディアを入れ、密封してGB外に出し、振動ミルにセットした。振動ミルにて0.5時間の粉砕を、10分程度休止をはさみながら4回、合計2時間粉砕処理を行った。粉砕処理後GB内にて、低回転数遊星ボールミル用容器に移し替え、密閉後GB外に出し、低回転数遊星ボールミル(500rpm)にて30時間粉砕した。粉砕後、GB内にて容器から粉末を回収し、X線回折評価(XRD評価)等を行った。得られた試料のX線回折パターンを図9に示す。図9から、正方晶Li4PS4I結晶相(空間群P4/nmm、格子定数a=8.4761(10)Å、c=5.9602(9)Åで指数付け可能であり、同一の空間群を持つ、Li4PS4I固体電解質(S. J. Sedlmaierら、Chem. Mater., 29 1830-1835 (2017).文献値a=8.48284(12)Å、c=5.93013(11)Å)に近かった。この結晶相に加えて図中矢印で示される位置に、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相が共存していた。イオン伝導度測定を行ったところ、5.8×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、0.65(6)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 [実施例11]
 グローブボックス(GB)内にてLi2S、GeS2、TiS2及びP2S5を、Li2S: MS2(GeS2及びTiS2): P2S5モル比5: 1: 1(0.714: 0.143: 0.143、MS2内比率に関してはGeS2とTiS2のモル比は9: 1、組成式: Li10Ge0.9Ti0.1P2S12)になるように秤量後、乳鉢混合した。全量は2gとなるようにした。以後実施例10と同様に試料作製を行った。得られた試料のX線回折パターンを図10に示す。図10から、β-Li3PS4(斜方晶系、空間群Pnma、a= 13.235(3)Å, b= 7.9758(19)Å, c= 6.1047(14)Å)のピークとLi10GeP2S12(LGPS;正方晶系、空間群P42/nmc、a= 8.712(7)Å、c= 12.701(13)Å)のピークとを有する結晶相が確認できた。β-Li3PS4相とLGPS相それぞれの質量比は69:31であった。この結晶相に加えて図中矢印で示される位置に、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相が共存していた。イオン伝導度測定を行ったところ、4.0×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、1.6(1)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 [実施例12]
 グローブボックス(GB)内にてLi2S、SnS2及びP2S5を、モル比5: 1: 1(0.714: 0.143: 0.143)になるように秤量後、乳鉢混合した。全量は2gとなるようにした。以後実施例10と同様に試料作製を行った。得られた試料のX線回折パターンを図11に示す。図11から、β-Li3PS4(斜方晶系、空間群Pnma、a= 13.381(5)Å, b= 8.009(3)Å, c= 6.1192(2)Å)のピークとLi10SnP2S12(LSPS;正方晶系、空間群P42/nmc、a= 8.736(2)Å、c= 12.828(4)Å)のピークとを有する結晶相が確認できた。β-Li3PS4相とLSPS相それぞれの質量比は69: 31であった。この結晶相に加えて図中矢印で示される位置に、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相が共存していた。イオン伝導度測定を行ったところ、4.0×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、1.4(1)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 [実施例13]
 グローブボックス(GB)内にてLi2S、SnS2及びP2S5を、モル比6: 1: 1(0.750: 0.125: 0.125)になるように秤量後、乳鉢混合した。全量は2gとなるようにした。以後実施例10と同様に試料作製を行った。得られた試料のX線回折パターンを図12に示す。図12から、β-Li3PS4(斜方晶系、空間群Pnma、a= 13.577(6)Å, b= 7.991(3)Å, c= 6.221(2)Å)のピークとLi10SnP2S12(LSPS;正方晶系、空間群P42/nmc、a= 8.487(12)Å、c= 13.51(3)Å)のピークと立方晶アージャロダイトLi7PS6(立方晶系、空間群
Figure JPOXMLDOC01-appb-M000009
、a=9.9940(17))を有する結晶相が確認できた。β-Li3PS4相とLSPS相, 立方晶アージャロダイト相それぞれの質量比は57: 23: 20であった。この結晶相に加えて図中矢印で示される位置に、公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相が共存していた。イオン伝導度測定を行ったところ、4.7×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、1.1(1)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 [実施例14]
 グローブボックス(GB)内にてLi2S、P2S5及びLiIを、モル比6: 1: 2(0.667: 0.111: 0.222)になるように秤量後、乳鉢混合した。全量は2gとなるようにした。以後実施例10と同様に試料作製を行った。得られた試料のX線回折パターンを図13に示す。図13から、Li6PS5I(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000010
、a= 10.0705(8)Å)のピークを有する結晶相と公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。イオン伝導度測定を行ったところ、1.5×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。なお、得られた試料は、実施例1と同様に柔らかい試料であり、成形性に優れていた。
 [実施例15]
 グローブボックス(GB)内にてLi2S、P2S5及びLiClを、モル比6: 1: 2(0.667: 0.111: 0.222)になるように秤量後、乳鉢混合した。全量は2gとなるようにした。以後実施例10と同様に試料作製を行った。得られた試料のX線回折パターンを図14に示す。図14から、Li6PS5Cl(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000011
、a= 9.8466(9)Å)のピークを有する結晶相と公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。イオン伝導度測定を行ったところ、10.8×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、1.4(1)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 [実施例16]
 グローブボックス(GB)内にてLi2S、P2S5及びLiBrを、モル比6: 1: 2(0.667: 0.111: 0.222)になるように秤量後、乳鉢混合した。全量は2gとなるようにした。以後実施例10と同様に試料作製を行った。得られた試料のX線回折パターンを図15に示す。図15から、Li6PS5Br(立方晶アージャロダイト)、空間群
Figure JPOXMLDOC01-appb-M000012
、a= 9.9389(8)Å)のピークを有する結晶相と公知の70Li2S-30P2S5固体電解質で生成しているガラス相に類似したブロードなピークを持つガラス相の二相からなるガラスセラミック粉末であることが明らかとなった。イオン伝導度測定を行ったところ、4.8×10-4S・cm-1であり、固体電解質として十分な特性を有することが明らかである。また、微小圧縮試験機を用いて、Ar雰囲気下且つ低露点(-55℃)にて、最大負荷1000mNをかけて、室温にてヤング率測定し、ポアソン比=0.5として算出したところ、0.89(8)GPaであり、バインダー材料であるポリテトラフルオロエチレン(0.5GPa)に近い値を示し、成形性に優れる固体電解質であることが明らかである。
 試験例1:電池作製(1)
 得られた無機硫化物粉末(固体電解質粉末)が、実際にリチウムイオン二次電池として動作可能かどうか確認するためにGB内で電池作製を行った。実施例1~6で得られた固体電解質粉末と正極活物質(NMC: LiNi1/3Mn1/3Co1/3O2)を質量比3: 7で混合し、正極合材とした。一方、負極合材は得られた実施例1~6で得られた固体電解質粉末を負極活物質(LTO: Li4Ti5O12)と質量比4: 6で混合して作製した。まず金属管片面に金属治具を入れ、実施例1~6の固体電解質粉末を入れた後、反対側にも金属治具をいれてプレスし、電解質層を作製した。プレスした一方に正極合材を入れてプレスして正極を作製した後、反対側に負極合材を入れてプレスして負極を作製した。その3層一体錠剤を型から抜いて、一方に電池下部上に金属治具を入れたPET(ポリエチレンテレフタレート)管に入れ、反対側にも金属治具を入れてプレスしその後電池上部を載せ、蝶ねじで固定して上部をレンチで締め上げ全固体リチウムイオン二次電池を作製した。
 実施例1で得られた試料を使用した全固体リチウムイオン二次電池の30℃における充放電特性評価結果を図16に示す。電池として問題なく動作しており、本発明の無機硫化物(固体電解質)がリチウムイオン二次電池用正極バインダー材料、リチウムイオン二次電池用負極バインダー材料、リチウムイオン二次電池用固体電解質として活用できることが明らかである。
 次に、実施例5で得られた試料を使用した全固体リチウムイオン二次電池の30℃における充放電特性評価結果を図17に示す。電池として問題なく動作しており、本発明の無機硫化物(固体電解質)がリチウムイオン二次電池用正極バインダー材料、リチウムイオン二次電池用負極バインダー材料、リチウムイオン二次電池用固体電解質として活用できることが明らかである。
 試験例2:電池作製(2)
 上記試験例1において、正極活物質をNCA(LiNi0.85Co0.10Al0.05O2)に、負極をInに変更して上記と同様に電池作製を行った。
 実施例13で得られた試料を正極合材用及び電解質用固体電解質に用いた場合の充放電特性を図18に示す。図18より実施例13で得られた試料はリチウムイオン二次電池として問題なく動作しており、本発明の無機硫化物(固体電解質)がリチウムイオン二次電池用正極バインダー材料、リチウムイオン二次電池用負極バインダー材料、リチウムイオン二次電池用固体電解質として活用できることが明らかである。
 実施例15で得られた試料を正極合材用及び電解質用固体電解質に用いた場合の充放電特性を図19に示す。図19より実施例15で得られた試料はリチウムイオン二次電池として問題なく動作しており、本発明の無機硫化物(固体電解質)がリチウムイオン二次電池用正極バインダー材料、リチウムイオン二次電池用負極バインダー材料、リチウムイオン二次電池用固体電解質として活用できることが明らかである。
 実施例16で得られた試料を正極合材用及び電解質用固体電解質に用いた場合の充放電特性を図20に示す。図20より実施例16で得られた試料はリチウムイオン二次電池として問題なく動作しており、本発明の無機硫化物(固体電解質)がリチウムイオン二次電池用正極バインダー材料、リチウムイオン二次電池用負極バインダー材料、リチウムイオン二次電池用固体電解質として活用できることが明らかである。
 実施例6で得られた試料を正極合材用及び電解質用固体電解質に用いた場合の充放電特性を図21に示す。図21より実施例6で得られた試料はリチウムイオン二次電池として問題なく動作しており、本発明の無機硫化物(固体電解質)がリチウムイオン二次電池用正極バインダー材料、リチウムイオン二次電池用負極バインダー材料、リチウムイオン二次電池用固体電解質として活用できることが明らかである。
 以上のことから、本発明の無機硫化物(固体電解質)が、リチウムイオン二次電池用正極バインダー材料、リチウムイオン二次電池用負極バインダー材料、リチウムイオン二次電池用固体電解質、リチウムイオン二次電池用電解質層バインダー材料として活用できることが明らかである。
 本発明の無機硫化物は、例えば、安全性が要求される車載用、定置用等の大型リチウムイオン二次電池の固体電解質、固体電解質用のバインダー材料、固体電池電極用のバインダー材料等として利用可能である。

Claims (14)

  1. 一般式(1):
    xLi2S-yGeS2-(1-x-y)P2S5   (1)
    [式中、x及びyは、0.667≦x≦0.860、0≦y≦0.333、0.667≦x+y≦1を示す。]
    で表され、結晶相とガラス相とが共存している、無機硫化物。
  2. 前記結晶相が、Li3PS4、Li7PS6、Li4GeS4及びLi10GeP2S12よりなる群から選ばれる少なくとも1種の結晶相である、請求項1に記載の無機硫化物。
  3. 一般式(2):
    dLi2S-eMS2-fLiX-(1-d-e-f)P2S5   (2)
    [式中、XはCl、Br及びIよりなる群から選ばれる少なくとも1種を示す。MはGe、Sn及びTiよりなる群から選ばれる少なくとも1種を示す。d、e及びfは、0.600≦d≦0.860、0≦e≦0.333、0<f≦0.300、0.600≦d+e+f≦1を示す。]
    で表され、結晶相とガラス相とが共存している、無機硫化物。
  4. 前記結晶相が、β-Li3PS4、立方晶アージャロダイト、Li10MP2S12(MはGe又はSnである)、及びLi4PS4Iよりなる群から選ばれる少なくとも1種の結晶相である、請求項3に記載の無機硫化物。
  5. Li2Sからなる結晶相を含まない、請求項1~4のいずれか1項に記載の無機硫化物。
  6. ヤング率が3.0GPa以下である、請求項1~5のいずれか1項に記載の無機硫化物。
  7. イオン伝導度が1.00×10-4S・cm-1以上である、請求項1~6のいずれか1項に記載の無機硫化物。
  8. 請求項1~7のいずれか1項に記載の無機硫化物の製造方法であって、
    Li2Sを含む原料粉末に対して、高回転数のミリング処理を施した後に、低回転数のミリング処理を施す工程
    を備える、製造方法。
  9. 前記高回転数のミリング処理における回転数が800rpm以上であり、前記低回転数のミリング処理における回転数が600rpm以下である、請求項8に記載の製造方法。
  10. 前記原料粉末が、さらに、GeS2、SnS2、TiS2、LiX及びP2S5よりなる群から選ばれる少なくとも1種を含む、請求項8又は9に記載の製造方法。
  11. 請求項1~7のいずれか1項に記載の無機硫化物からなる、リチウムイオン二次電池用固体電解質。
  12. 請求項1~7のいずれか1項に記載の無機硫化物からなる、リチウムイオン二次電池の電解質層用バインダー材料。
  13. 請求項1~7のいずれか1項に記載の無機硫化物からなる、リチウムイオン二次電池の電極用バインダー材料。
  14. 請求項11に記載のリチウムイオン二次電池用固体電解質又は請求項12に記載のリチウムイオン二次電池の電解質層用バインダー材料を含有する電解質層と、請求項13に記載のリチウムイオン二次電池の電極用バインダー材料を含有する電極との少なくとも1つを備える、リチウムイオン二次電池。
PCT/JP2017/040652 2016-11-28 2017-11-10 無機硫化物及びその製造方法 WO2018096957A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018552506A JP7113513B2 (ja) 2016-11-28 2017-11-10 無機硫化物及びその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-229662 2016-11-28
JP2016229662 2016-11-28
JP2017001819 2017-01-10
JP2017-001819 2017-01-10
JP2017-118621 2017-06-16
JP2017118621 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018096957A1 true WO2018096957A1 (ja) 2018-05-31

Family

ID=62194996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040652 WO2018096957A1 (ja) 2016-11-28 2017-11-10 無機硫化物及びその製造方法

Country Status (2)

Country Link
JP (1) JP7113513B2 (ja)
WO (1) WO2018096957A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239949A1 (ja) * 2018-06-13 2019-12-19 三菱瓦斯化学株式会社 Lgps系固体電解質および製造方法
JP2020043124A (ja) * 2018-09-06 2020-03-19 トヨタ自動車株式会社 蓄電デバイス
CN111600071A (zh) * 2020-05-25 2020-08-28 常州赛得能源科技有限公司 一种超离子导体固态电解质及其制备方法和应用
CN111755740A (zh) * 2019-03-28 2020-10-09 丰田自动车株式会社 硫化物固体电解质、硫化物固体电解质的前体、全固体电池及硫化物固体电解质的制造方法
WO2021010479A1 (ja) * 2019-07-18 2021-01-21 出光興産株式会社 化合物及びそれを含む電池
US10923763B2 (en) 2019-01-31 2021-02-16 University Of Maryland, College Park Lithium metal sulfides as lithium super ionic conductors, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
JP2021048045A (ja) * 2019-09-18 2021-03-25 日産自動車株式会社 全固体電池
KR20230040519A (ko) 2021-09-16 2023-03-23 현대자동차주식회사 황화물계 고체전해질, 이의 제조방법 및 이를 포함하는 전고체 전지
WO2023166790A1 (ja) * 2022-03-03 2023-09-07 国立研究開発法人産業技術総合研究所 バナジウム含有リチウム硫化物
WO2024043740A1 (ko) * 2022-08-25 2024-02-29 주식회사 엘지화학 고체 전해질 및 이를 포함하는 전고체 전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103281A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 固体電解質及びそれを用いた固体二次電池
JP2016117640A (ja) * 2014-12-05 2016-06-30 国立大学法人豊橋技術科学大学 固体電解質ガラス及びその製造方法、固体電解質ガラス用前駆体、サスペンジョン、リチウムイオン電池用電極並びにリチウムイオン電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5443445B2 (ja) * 2011-07-06 2014-03-19 トヨタ自動車株式会社 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法
JP6234665B2 (ja) * 2011-11-07 2017-11-22 出光興産株式会社 固体電解質
JP6088797B2 (ja) * 2012-11-06 2017-03-01 出光興産株式会社 固体電解質

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103281A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 固体電解質及びそれを用いた固体二次電池
JP2016117640A (ja) * 2014-12-05 2016-06-30 国立大学法人豊橋技術科学大学 固体電解質ガラス及びその製造方法、固体電解質ガラス用前駆体、サスペンジョン、リチウムイオン電池用電極並びにリチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAYASHI, AKITOSHI ET AL.: "Formation of superionic crystals from mechanically milled Li2S-P2S5 glasse s", ELECTROCHEMISTRY COMMUNICATIONS, vol. 5, 2003, pages 111 - 114, XP055487487 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7294334B2 (ja) 2018-06-13 2023-06-20 三菱瓦斯化学株式会社 Lgps系固体電解質および製造方法
US11799128B2 (en) 2018-06-13 2023-10-24 Mitsubishi Gas Chemical Company, Inc. LGPS-based solid electrolyte and production method
JPWO2019239949A1 (ja) * 2018-06-13 2021-07-08 三菱瓦斯化学株式会社 Lgps系固体電解質および製造方法
TWI799601B (zh) * 2018-06-13 2023-04-21 日商三菱瓦斯化學股份有限公司 Lgps系固體電解質及其製造方法
WO2019239949A1 (ja) * 2018-06-13 2019-12-19 三菱瓦斯化学株式会社 Lgps系固体電解質および製造方法
JP7058051B2 (ja) 2018-09-06 2022-04-21 トヨタ自動車株式会社 蓄電デバイス
JP2020043124A (ja) * 2018-09-06 2020-03-19 トヨタ自動車株式会社 蓄電デバイス
US10923763B2 (en) 2019-01-31 2021-02-16 University Of Maryland, College Park Lithium metal sulfides as lithium super ionic conductors, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
CN111755740B (zh) * 2019-03-28 2023-12-05 丰田自动车株式会社 硫化物固体电解质、硫化物固体电解质的前体、全固体电池及硫化物固体电解质的制造方法
CN111755740A (zh) * 2019-03-28 2020-10-09 丰田自动车株式会社 硫化物固体电解质、硫化物固体电解质的前体、全固体电池及硫化物固体电解质的制造方法
WO2021010479A1 (ja) * 2019-07-18 2021-01-21 出光興産株式会社 化合物及びそれを含む電池
JP2021048045A (ja) * 2019-09-18 2021-03-25 日産自動車株式会社 全固体電池
JP7453765B2 (ja) 2019-09-18 2024-03-21 日産自動車株式会社 全固体電池
CN111600071A (zh) * 2020-05-25 2020-08-28 常州赛得能源科技有限公司 一种超离子导体固态电解质及其制备方法和应用
CN111600071B (zh) * 2020-05-25 2021-05-11 常州赛得能源科技有限公司 一种超离子导体固态电解质及其制备方法和应用
KR20230040519A (ko) 2021-09-16 2023-03-23 현대자동차주식회사 황화물계 고체전해질, 이의 제조방법 및 이를 포함하는 전고체 전지
WO2023166790A1 (ja) * 2022-03-03 2023-09-07 国立研究開発法人産業技術総合研究所 バナジウム含有リチウム硫化物
WO2024043740A1 (ko) * 2022-08-25 2024-02-29 주식회사 엘지화학 고체 전해질 및 이를 포함하는 전고체 전지

Also Published As

Publication number Publication date
JPWO2018096957A1 (ja) 2019-10-17
JP7113513B2 (ja) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2018096957A1 (ja) 無機硫化物及びその製造方法
Deng et al. Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect
Griffith et al. Titanium niobium oxide: from discovery to application in fast-charging lithium-ion batteries
Yang et al. Elastic properties, defect thermodynamics, electrochemical window, phase stability, and Li+ mobility of Li3PS4: Insights from first-principles calculations
EP3171444B1 (en) Sulfide-based solid electrolyte for lithium ion batteries and method for making the electrolyte
Bachman et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction
Yu et al. Monolithic all-phosphate solid-state lithium-ion battery with improved interfacial compatibility
Nishijima et al. Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery
Thangadurai et al. Li6ALa2Nb2O12 (A= Ca, Sr, Ba): A New Class of Fast Lithium Ion Conductors with Garnet‐Like Structure
KR101665465B1 (ko) 리튬 이온 전지용 황화물계 고체 전해질
US10879562B2 (en) Solid electrolyte, preparation method thereof, and all-solid-state battery employing the same
JP5701741B2 (ja) 硫化物系固体電解質
KR101729091B1 (ko) 결정성 고체 전해질 및 그 제조 방법
KR20200003929A (ko) 리튬 이차 전지의 고체 전해질 및 당해 고체 전해질용 황화물계 화합물
US10396395B2 (en) Solid electrolyte material and method for producing the same
JP2022502341A (ja) 大気安定性の高い無機硫化物固体電解質、及びその製造方法並びにその応用
CN111448702A (zh) 硫化物系化合物颗粒、固体电解质和锂二次电池
JP2019133933A (ja) 固体電解質および固体電池
JP2018174129A (ja) 固体電解質材料およびその製造方法
CN106785016A (zh) 一种添加锂硅合金粉末的硫化锂系固体电解质材料及其制备方法
JP2020027715A (ja) 結晶性硫化物系固体電解質の製造方法
Li et al. Conduction below 100° C in nominal Li 6 ZnNb 4 O 14
CN114614081B (zh) 一类固态电解质材料及应用
JP2018063758A (ja) 硫化物固体電解質
JP2018125129A (ja) 固体電解質及びその製造方法、全固体二次電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874692

Country of ref document: EP

Kind code of ref document: A1