WO2018095029A1 - 一种以石墨烯为核的三元正极材料的制作方法 - Google Patents
一种以石墨烯为核的三元正极材料的制作方法 Download PDFInfo
- Publication number
- WO2018095029A1 WO2018095029A1 PCT/CN2017/089739 CN2017089739W WO2018095029A1 WO 2018095029 A1 WO2018095029 A1 WO 2018095029A1 CN 2017089739 W CN2017089739 W CN 2017089739W WO 2018095029 A1 WO2018095029 A1 WO 2018095029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- solution
- core
- water
- electrode material
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of cathode materials for lithium ion batteries, and more particularly to a method for fabricating a ternary cathode material using graphene as a core.
- the conductivity and structure of the electrode material affect the energy density, rate performance, and cycle stability of the lithium ion battery.
- Lithium cobaltate, lithium manganate, and lithium iron phosphate which are currently on the market, have some defects, such as short cycle life (lithium cobaltate), low energy density (lithium manganate), poor conductivity, and low discharge voltage (lithium iron phosphate). ).
- the performance of ternary battery materials is better than that of mature battery materials.
- nickel-cobalt-manganate (NCM) has stable electrochemical performance and good cycle performance.
- Nickel-cobalt lithium aluminate (NCA) has high energy density and is lithium iron phosphate. Double the battery. Ternary materials have broad application prospects in the field of electric vehicles.
- the conductivity of electrons and ions is an important factor affecting the capacity utilization, rate performance, and cycle stability of the electrode material.
- a well-designed structure is an effective means to improve the electrochemical performance of the battery.
- the structure of electrode material based on graphene can shorten the transmission path of lithium ions and electrons and increase the rate of mass transfer.
- Graphene has excellent electrical conductivity.
- Combining graphene with ternary battery materials can greatly improve the electrical conductivity of materials, increase the electron and ion conduction rate of electrode materials, and improve capacity utilization, rate performance, and cycle stability.
- the composite structure of ternary materials and graphene is mainly synthesized by a two-step method, that is, a ternary material is first synthesized and then coated, thereby increasing the electron conduction rate of the ternary material.
- a lithium-rich material Li(Li0.2Mn0.54Ni0.13Co0.13)O2 is first synthesized by a sol-gel method.
- O the particle size is nanometer; the area of actual contact between the electrode and the electrolyte is large, and the dissolution loss of the active material is large.
- the large-diameter electrode active material has a small specific surface area, the actual contact surface between the electrode and the electrolyte is small, the degree of reaction between the electrode active material and the electrolyte is reduced, the consumption of the electrode material is reduced, and the electron ion conduction is reduced. Resistance, and thus the overall performance of the electrode material.
- the precursor of the ternary battery material prepared by the coprecipitation method can be prepared by mixing and sintering a suitable proportion of lithium source, and the sintering process requires high temperature and high energy consumption, and cannot achieve the purpose of energy saving.
- the present invention has devised a method for fabricating a ternary positive electrode material using graphene as a core, and the present invention is achieved by the following scheme:
- a method for fabricating a ternary positive electrode material using graphene as a core characterized in that the method comprises the following steps:
- Step one the preparation of graphene oxide, the natural graphite and concentrated sulfuric acid and phosphoric acid are mixed uniformly, slowly adding potassium permanganate and a constant temperature water bath, adding deionized water, heating to continue the reaction, then adding hydrogen peroxide oxidation, and finally using hydrochloric acid Washing with deionized water until the pH of the solution is neutral, and freeze-drying to obtain graphene oxide powder;
- Step two reducing graphene oxide, the obtained graphene oxide is centrifugally dispersed in water, then adding hydrazine solution and ammonia water, mixing uniformly, heating in a water bath, performing reaction, washing, centrifuging, freeze-drying to obtain graphite Olefin
- Step 3 preparing a dispersion of graphene and a precursor solution, dispersing the obtained graphene sheet in ethanol to form a stable graphene solution; and preparing the nickel salt, cobalt salt, and manganese salt solution according to 1:1 : 1 preparing a uniform mixed precursor solution; preparing a lithium source solution;
- Step 4 preparing a ternary positive electrode material suspension, mixing the graphene solution, the precursor solution and the lithium source solution, fully stirring, adjusting the reaction time, temperature, pressure, and making the ternary positive electrode with graphene as the core Suspension of material;
- Step 5 The suspension of the ternary positive electrode material is filtered, washed, and vacuum dried to obtain a powder of a ternary positive electrode material having graphene as a core.
- step 1 the volume ratio of concentrated sulfuric acid to phosphoric acid is 8:1 to 11:1.
- step 1 More preferably, in step 1, adding potassium permanganate and reacting in a constant temperature water bath, the temperature of the water bath is 20-50 ° C, the reaction is 2 ⁇ 5 h, and then the deionized water is added to raise the temperature of the water bath to 80. ⁇ 110 ° C, the reaction time is 20 ⁇ 60min.
- the mass fraction of the graphene oxide dispersed in water is 0.02% ⁇ 0.1 ⁇ 3 ⁇ 4, the hydrazine solution and the ammonia water are added, and after being uniformly mixed, the water bath is heated, the water bath temperature is 80-100 ° C, and the water bath 40 to 80 min °
- the graphene oxide is ultrasonically dispersed in water, and then centrifuged, and the centrifuge is centrifuged for 20 to 60 minutes.
- the temperature of the mixed reaction of the graphene, the precursor and the lithium source solution is 60 to 90 ° C.
- the present invention provides a hydrothermal method for directly synthesizing a high-capacity core-shell ternary cathode material having a high capacity and a long cycle life, wherein the core material is a graphene material, and the outer shell material of the graphene is a ternary cathode material.
- the synthesis process of the material not only can achieve large particle size, but also save energy; the core of graphene builds a good conductive network, increases the conduction rate of electrons and ions, and provides a buffer skeleton to alleviate physical changes of materials.
- the multi-core spherical structure makes the material have a good high current charge and discharge capability and improves the overall performance of the positive electrode material.
- a method for fabricating a ternary positive electrode material using graphene as a core can realize a large particle size and a core-shell structure, and avoid introducing defects into graphene during a high-temperature sintering process; the preparation process is simple, and the preparation process is simple.
- the ternary material has a uniform particle size.
- a uniform mixed precursor solution was prepared by disposing a uniform mixture of nickel sulfate, cobalt sulfate, and manganese sulfate in a ratio of 1: 1:1, and a lithium carbonate solution was prepared.
- preparing a ternary positive electrode material adding a portion of the prepared graphene solution to the lining of the polytetrafluoroethylene, adding the mixed precursor solution and the lithium carbonate solution in proportion to the ruthenium, stirring well, adjusting the reaction time, A reaction temperature of 90 ° C, a reaction pressure, or the like was used to prepare a suspension of a ternary positive electrode material having graphene as a core. Then, the cathode material suspension was filtered, washed, and vacuum dried to obtain a ternary cathode material powder having graphene as a core.
- Dispersion of graphene and configuration of precursor solution Disperse graphene in ethanol solution, ultrasonic 2h, To a stable solution with a concentration of lg/L.
- a uniform mixed precursor solution was prepared by disposing nickel chloride, cobalt chloride, and manganese chloride in a ratio of 1: 1:1, and a lithium carbonate solution was prepared.
- ternary cathode material a solution of the prepared graphene solution is added to the lining of the polytetrafluoroethylene, and the mixed precursor solution and the lithium carbonate solution are added in proportion to the mixture, and the mixture is stirred thoroughly to control the reaction time.
- a reaction temperature of 80 ° C, a reaction pressure, or the like was used to prepare a suspension of a ternary positive electrode material having graphene as a core. Then, the cathode material suspension was filtered, washed, and vacuum dried to obtain a ternary cathode material powder having graphene as a core.
- a uniform mixed precursor solution was prepared by disposing a uniform mixture of nickel sulfate, cobalt sulfate, and manganese sulfate in a ratio of 1: 1:1, and a lithium carbonate solution was prepared.
- preparing a ternary positive electrode material adding a portion of the prepared graphene solution to the inner liner of the polytetrafluoroethylene, and adding the mixed precursor solution and the lithium carbonate solution in proportion to the mixture, stirring well, adjusting the reaction time, A reaction temperature of 70 ° C, a reaction pressure, or the like was used to prepare a suspension of a ternary positive electrode material in which graphene was a core. Then, the cathode material suspension was filtered, washed, and vacuum dried to obtain a ternary cathode material powder having graphene as a core.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明是一种以石墨烯为核的三元正极材料的制作方法,本发明提出一种水热法直接合成高容量、长循环寿命的大粒径核壳三元正极材料,其内核材料为石墨烯材料,石墨烯的外壳材料为三元正极材料,该材料的合成过程不仅能够实现大粒径,而且能够节约能量;内核的石墨烯构建良好的导电网络,增大电子、离子的传导速率,同时提供一个缓冲骨架,缓解材料物理变化。多核型球状结构使得该材料具有良好的大电流充放电能力,提高正极材料的综合性能。
Description
说明书 发明名称:一种以石墨烯为核的三元正极材料的制作方法 技术领域
[0001] 本发明涉及锂离子电池正极材料领域, 具体的是一种以石墨烯为核的三元正极 材料的制作方法。
背景技术
[0002] 电极材料的导电性以及结构影响锂离子电池的能量密度、 倍率性能以及循环稳 定性。 目前市场上成熟应用的钴酸锂、 锰酸锂、 磷酸铁锂存在一些缺陷, 如循 环寿命短 (钴酸锂) , 能量密度低 (锰酸锂) , 导电性差、 放电电压低 (磷酸 铁锂) 。 三元电池材料的性能优于成熟使用的电池材料, 如镍钴锰酸锂 (NCM ) 的电化学性能稳定、 循环性能好, 镍钴铝酸锂 (NCA) 的能量密度高, 是磷 酸铁锂电池的两倍。 三元材料在电动汽车领域有广阔的应用前景。 如今市面上 的电动汽车系列已经使用到常规的三元电池材料, 丰田的混动汽车 (prius锂电 版) 已经使用了 NCM, 特斯拉的纯电动汽车 (Model S) 已经使用了 NCA, 其能 量密度分别为 170 wh/kg、 30-80 wh/g, 续航的路程分别为〉 400公里、 24公里。 然而, 吋代的发展给锂离子电池提出新的挑战。 对于各类电动设备, 人们希望 消耗几秒的吋间充电, 且能满更长吋间连续使用。 因此, 发展更高能量密度、 更高倍率性能且循环寿命更长的锂离子电池是亟待解决的问题。
[0003] 锂离子电池的电极材料中, 电子、 离子的传导率是影响电极材料的容量利用率 、 倍率性能、 以及循环稳定性的重要因素。 设计合理的结构是提高电池电化学 性能的有效手段。 在锂离子电池的电极材料结构设计中, 以石墨烯为基础构造 电极材料结构可以缩短锂离子和电子的传输路径, 增大传质传荷的速率。 石墨 烯具有优异的导电性, 将石墨烯与三元电池材料结合能够极大提升材料的导电 性, 增大电极材料电子、 离子的传导速率, 提高容量利用率、 倍率性能、 以及 循环稳定性。 目前主要以两步法来合成三元材料与石墨烯的复合结构, 即先合 成三元材料而后对其包覆, 以此提高三元材料的电子传导速率。
[0004] 目前, 用溶胶凝胶法先合成富锂材料 Li(Li0.2Mn0.54Ni0.13Co0.13)O2 (LMNC
O) , 其粒径为纳米级; 电极与电解液之间实际接触的面积大, 活性材料的溶解 损失较大。 大粒径的电极活性材料比表面积小, 所制作的电极与电解液之间的 实际接触面小, 电极活性材料与电解液之间的反应程度降低, 减少电极材料的 消耗, 降低电子离子传导的电阻, 从而电极材料的综合性能。 用共沉淀法制备 的三元电池材料前驱体, 加入合适比例的锂源混合烧结后才能制备出正极材料 , 其烧结过程需高温, 耗能大, 不能达到节能的目的。
技术问题
[0005] 本发明为解决以上技术问题, 设计了一种以石墨烯为核的三元正极材料的制作 方法, 本发明是采用如下方案实现的:
[0006] 一种以石墨烯为核的三元正极材料的制作方法, 其特征在于, 方法包括如下步 骤,
[0007] 步骤一, 氧化石墨烯的制备, 将天然石墨与浓硫酸和磷酸混合均匀, 缓慢加入 高锰酸钾并恒温水浴, 加去离子水, 升温继续反应, 然后加入双氧水氧化, 最 后用盐酸和去离子水洗涤至溶液 pH值偏中性, 冷冻干燥, 得氧化石墨烯粉末;
[0008] 步骤二, 还原氧化石墨烯, 将制得的氧化石墨烯离心分散于水中, 然后加入肼 溶液和氨水, 混合均匀, 水浴加热, 进行反应, 反应后, 洗涤, 离心, 冷冻干 燥得到石墨烯片;
[0009] 步骤三, 制备石墨烯的分散液和前驱体溶液, 将制得的石墨烯片分散于乙醇中 , 形成稳定的石墨烯溶液; 将镍盐、 钴盐、 锰盐溶液按照 1 : 1: 1配制均匀的混 合前驱体溶液; 配制锂源溶液;
[0010] 步骤四, 制备三元正极材料悬浮液, 将石墨烯溶液、 前驱体溶液以及锂源溶液 混合, 充分搅拌, 调控反应吋间、 温度、 压力, 制得以石墨烯为核的三元正极 材料的悬浮液;
[0011] 步骤五, 将三元正极材料的悬浮液过滤、 洗涤、 真空干燥得到以石墨烯为核的 三元正极材料的粉末。
问题的解决方案
技术解决方案
[0012] 优选地, 步骤一中, 浓硫酸和磷酸的体积比为 8:1~11:1。
[0013] 更优选地, 步骤一中, 加入高锰酸钾并恒温水浴反应, 水浴的温度为 20~50°C , 反应 2~5h, 然后再加去离子水后将水浴温度升高至 80~110°C, 反应吋间为 20~ 60min。
[0014] 优选地, 步骤二中, 氧化石墨烯分散于水中的质量分数为 0.02%~0.1<¾, 加入肼 溶液和氨水, 混合均匀后, 水浴加热, 水浴温度为 80~100°C, 水浴吋间为 40~80 min°
[0015] 更优选地, 步骤二中, 将氧化石墨烯超声分散于水中, 然后离心, 离心吋间为 20〜60min。
[0016] 优选地, 步骤四中, 石墨烯、 前驱体以及锂源溶液混合反应的温度为 60~90°C
[0017] 本发明提出一种水热法直接合成高容量、 长循环寿命的大粒径核壳三元正极材 料, 其内核材料为石墨烯材料, 石墨烯的外壳材料为三元正极材料, 该材料的 合成过程不仅能够实现大粒径, 而且能够节约能量; 内核的石墨烯构建良好的 导电网络, 增大电子、 离子的传导速率, 同吋提供一个缓冲骨架, 缓解材料物 理变化。 多核型球状结构使得该材料具有良好的大电流充放电能力, 提高正极 材料的综合性能。
发明的有益效果
有益效果
[0018] 本发明中, 以石墨烯为核的三元正极材料的制作方法, 能够实现大粒径和核壳 结构, 避免高温烧结结过程给石墨烯引入缺陷; 制备过程简单, 所制得的三元 材料粒径均一。
实施该发明的最佳实施例
本发明的最佳实施方式
[0019] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合实施例, 对本 发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释 本发明, 并不用于限定本发明。
[0020] 实施例 1
[0021] 氧化石墨烯的制备: 将天然石墨 6g与浓硫酸和磷酸混体积比为 11: 1混合均匀,
逐步加入高锰酸钾, 在 50°C的恒水浴中搅拌反应 2h, 加入一些去离子水后, 在 11 0°C继续反应 20min, 然后加入大量的去离子水终止反应。 加入质量分数为 30%双 氧水后, 直至溶液由棕黑色变成金黄色, 用盐酸和去离子水反复洗涤至溶液 pH 值偏中性, 高速离心冷冻干燥后得到氧化石墨烯粉末。
[0022] 还原氧化石墨烯: 超声将氧化石墨烯按 0.1%的质量分散于水中, 然后控制转速 离心 60min, 去除聚集体, 得到均一的氧化石墨烯溶液。 向氧化石墨烯溶液中加 入水、 质量分数为 20%的肼、 35%的氨水, 混合均匀, 然后置于 100°C条件下, 水浴 60min。 反应结束后, 用去离子水反复洗涤, 高速离心冷冻干燥后得到石墨 烯片。
[0023] 石墨烯的分散和前驱体溶液的配置: 将石墨烯分散在乙醇溶液中, 超声 lh, 得 到浓度为 3g/L的稳定溶液。
[0024] 将硫酸镍、 硫酸钴、 硫酸锰按比例 1 : 1: 1配置均匀的混合前驱体溶液, 并配 制碳酸锂溶液。
[0025] 制备三元正极材料: 向聚四氟乙烯的内衬中加入配好的石墨烯溶液一份, 同吋 按比例加入混合前驱体溶液以及碳酸锂溶液, 充分搅拌, 调控反应吋间、 反应 温度 90°C、 反应压力等, 制得石墨烯为核的三元正极材料的悬浮液。 然后将正极 材料悬浮液过滤、 洗涤、 真空干燥得以石墨烯为核的三元正极材料粉末。
[0026] 实施例 2
[0027] 将天然石墨 4g与浓硫酸和磷酸混体积比为 9: 1混合均匀, 逐步加入高锰酸钾, 在 30°C的恒水浴中搅拌反应 4h, 加入一些去离子水后, 在 90°C继续反应 40min, 然后加入大量的去离子水终止反应。 加入质量分数为 20%双氧水后, 直至溶液由 棕黑色变成金黄色, 用盐酸和去离子水反复洗涤至溶液 pH值偏中性, 高速离心 冷冻干燥后得到氧化石墨烯粉末。
[0028] 超声将氧化石墨烯按 0.05%的质量分散于水中, 然后控制转速离心 30min, 去除 聚集体, 得到均一的氧化石墨烯溶液。 向氧化石墨烯溶液中加入水、 质量分数 为 30%的肼、 25%氨水, 混合均匀, 然后置于 90°C条件下, 水浴 80min。 反应结 束后, 用去离子水反复洗涤, 高速离心冷冻干燥后得到石墨烯片。
[0029] 石墨烯的分散和前驱体溶液的配置: 将石墨烯分散在乙醇溶液中, 超声 2h, 得
到浓度为 lg/L的稳定溶液。
[0030] 将氯化镍、 氯化钴、 氯化锰按比例 1 : 1: 1配置均匀的混合前驱体溶液, 并配 制碳酸锂溶液。
[0031] 制备三元正极材料: 向聚四氟乙烯的内衬中加入配好的石墨烯溶液一份, 同吋 按比例加入混合前驱体溶液以及碳酸锂溶液, 充分搅拌, 调控反应吋间、 反应 温度 80°C、 反应压力等, 制得石墨烯为核的三元正极材料的悬浮液。 然后将正极 材料悬浮液过滤、 洗涤、 真空干燥得以石墨烯为核的三元正极材料粉末。
[0032] 实施例 3
[0033] 将天然石墨 2g与浓硫酸和磷酸混体积比为 8:1混合均匀, 逐步加入高锰酸钾, 在 50°C的恒水浴中搅拌反应 5h, 加入一些去离子水后, 在 80°C继续反应 60min, 然后加入大量的去离子水终止反应。 加入质量分数为 10%双氧水后, 直至溶液由 棕黑色变成金黄色, 用盐酸和去离子水反复洗涤至溶液 pH值偏中性, 高速离心 冷冻干燥后得到氧化石墨烯粉末。
[0034] 超声将氧化石墨烯按 0.02%的质量分散于水中, 然后控制转速离心 40min, 去除 聚集体, 得到均一的氧化石墨烯溶液。 向氧化石墨烯溶液中加入水、 质量分数 为 20%的肼、 10%氨水, 混合均匀, 然后置于 90°C条件下, 水浴 80min。 反应结 束后, 用去离子水反复洗涤, 高速离心冷冻干燥后得到石墨烯片。
[0035] 石墨烯的分散和前驱体溶液的配置: 将石墨烯分散在乙醇溶液中, 超声 lh, 得 到浓度为 0.8g/L的稳定溶液。
[0036] 将硫酸镍、 硫酸钴、 硫酸锰按比例 1 : 1: 1配置均匀的混合前驱体溶液, 并配 制碳酸锂溶液。
[0037] 制备三元正极材料: 向聚四氟乙烯的内衬中加入配好的石墨烯溶液一份, 同吋 按比例加入混合前驱体溶液以及碳酸锂溶液, 充分搅拌, 调控反应吋间、 反应 温度 70°C、 反应压力等, 制得石墨烯为核的三元正极材料的悬浮液。 然后将正极 材料悬浮液过滤、 洗涤、 真空干燥得以石墨烯为核的三元正极材料粉末。
[0038] 以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围
应该以权利要求的保护范围为准。
Claims
[权利要求 1] 一种以石墨烯为核的三元正极材料的制作方法, 其特征在于, 方法包 括如下步骤,
步骤一, 氧化石墨烯的制备, 将天然石墨与浓硫酸和磷酸混合均匀, 缓慢加入高锰酸钾并恒温水浴, 加去离子水, 升温继续反应, 然后加 入双氧水氧化, 最后用盐酸和去离子水洗涤至溶液 pH值偏中性, 冷 冻干燥, 得氧化石墨烯粉末;
步骤二, 还原氧化石墨烯, 将制得的氧化石墨烯离心分散于水中, 然 后加入肼溶液和氨水, 混合均匀, 水浴加热, 进行反应, 反应后, 洗 涤, 离心, 冷冻干燥得到石墨烯片;
步骤三, 制备石墨烯的分散液和前驱体溶液, 将制得的石墨烯片分散 于乙醇中, 形成稳定的石墨烯溶液; 将镍盐、 钴盐、 锰盐溶液按照 1 : 1: 1配制均匀的混合前驱体溶液; 并配制锂源溶液;
步骤四, 制备三元正极材料悬浮液, 将石墨烯溶液、 前驱体溶液以及 锂源溶液混合, 充分搅拌, 调控反应吋间、 温度、 压力, 制得以石墨 烯为核的三元正极材料的悬浮液;
步骤五, 将三元正极材料的悬浮液过滤、 洗涤、 真空干燥得到以石墨 烯为核的三元正极材料的粉末。
[权利要求 2] 根据权利要求 1所述的以石墨烯为核的三元正极材料的制作方法, 其 特征在于: 步骤一中, 浓硫酸和磷酸的体积比为 8:1~11:1。
[权利要求 3] 根据权利要求 1或 2所述的以石墨烯为核的三元正极材料的制作方法, 其特征在于: 步骤一中, 加入高锰酸钾并恒温水浴反应, 水浴的温度 为 20~50°C, 反应 2~5h, 然后再加去离子水后将水浴温度升高至 80 11
0°C, 反应吋间为 20~60min。
[权利要求 4] 根据权利要求 1所述的以石墨烯为核的三元正极材料的制作方法, 其 特征在于: 步骤二中, 氧化石墨烯分散于水中的质量分数为 0.02%~0.
1% , 加入肼溶液和氨水, 混合均匀后, 水浴加热, 水浴温度为 80~10
0°C, 水浴吋间为 40~80min。
[权利要求 5] 根据权利要求 1或 4所述的以石墨烯为核的三元正极材料的制作方法, 其特征在于: 步骤二中, 将氧化石墨烯超声分散于水中, 然后离心, 离心吋间为 20~60min。
[权利要求 6] 根据权利要求 1所述的以石墨烯为核的三元正极材料的制作方法, 其 特征在于: 步骤四中, 石墨烯、 前驱体以及锂源溶液混合反应的温度 为 60~90。C。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611065528.2A CN106684373A (zh) | 2016-11-28 | 2016-11-28 | 一种以石墨烯为核的三元正极材料的制作方法 |
CN201611065528.2 | 2016-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018095029A1 true WO2018095029A1 (zh) | 2018-05-31 |
Family
ID=58867279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/089739 WO2018095029A1 (zh) | 2016-11-28 | 2017-06-23 | 一种以石墨烯为核的三元正极材料的制作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106684373A (zh) |
WO (1) | WO2018095029A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106684373A (zh) * | 2016-11-28 | 2017-05-17 | 格林美股份有限公司 | 一种以石墨烯为核的三元正极材料的制作方法 |
CN108421301B (zh) * | 2018-01-23 | 2020-07-07 | 荆门市格林美新材料有限公司 | 一种用于降低锂电多元材料中toc含量的方法 |
CN110098387B (zh) * | 2019-03-27 | 2022-04-29 | 广东工业大学 | 一种磷酸锂配合导电碳材料包覆的三元正极材料及其制备方法和应用 |
CN109888258A (zh) * | 2019-04-03 | 2019-06-14 | 山东星火科学技术研究院 | 一种石墨烯改性三元正极材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103127929A (zh) * | 2011-12-01 | 2013-06-05 | 百泽(常州)新能源科技有限公司 | 一种以石墨烯/氧化物复合材料为空气电极催化剂的锂空气电池 |
CN103474651A (zh) * | 2013-09-18 | 2013-12-25 | 天津大学 | 石墨烯负载富锂正极材料的制备方法 |
CN105449213A (zh) * | 2015-12-29 | 2016-03-30 | 哈尔滨工业大学 | 一种多孔石墨烯包覆改性的锂离子电池正极材料及其制备方法 |
CN105524299A (zh) * | 2016-02-01 | 2016-04-27 | 四川大学 | 功能化石墨烯及制备方法和用其阻燃的交联型聚氨酯硬质泡沫 |
CN106684373A (zh) * | 2016-11-28 | 2017-05-17 | 格林美股份有限公司 | 一种以石墨烯为核的三元正极材料的制作方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102255081B (zh) * | 2010-11-04 | 2014-05-07 | 耿世达 | 一种锂离子电池正负极极片材料及加工方法 |
CN102891311A (zh) * | 2012-10-23 | 2013-01-23 | 中国科学院过程工程研究所 | 一种锂离子电池石墨烯-Li(NixCoyMnz)O2复合电极材料及其制备方法 |
CN104209531B (zh) * | 2013-05-31 | 2016-08-17 | 北京化工大学 | 一种钴/石墨烯复合纳米吸波材料及其制备方法 |
CN103641107A (zh) * | 2013-12-11 | 2014-03-19 | 江苏科技大学 | 一种用废旧电池石墨棒制备石墨烯的方法 |
CN104852053B (zh) * | 2015-04-03 | 2017-10-31 | 郭建 | 一种倍率型锂离子电池三元正极材料前驱体及其制备方法 |
-
2016
- 2016-11-28 CN CN201611065528.2A patent/CN106684373A/zh active Pending
-
2017
- 2017-06-23 WO PCT/CN2017/089739 patent/WO2018095029A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103127929A (zh) * | 2011-12-01 | 2013-06-05 | 百泽(常州)新能源科技有限公司 | 一种以石墨烯/氧化物复合材料为空气电极催化剂的锂空气电池 |
CN103474651A (zh) * | 2013-09-18 | 2013-12-25 | 天津大学 | 石墨烯负载富锂正极材料的制备方法 |
CN105449213A (zh) * | 2015-12-29 | 2016-03-30 | 哈尔滨工业大学 | 一种多孔石墨烯包覆改性的锂离子电池正极材料及其制备方法 |
CN105524299A (zh) * | 2016-02-01 | 2016-04-27 | 四川大学 | 功能化石墨烯及制备方法和用其阻燃的交联型聚氨酯硬质泡沫 |
CN106684373A (zh) * | 2016-11-28 | 2017-05-17 | 格林美股份有限公司 | 一种以石墨烯为核的三元正极材料的制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106684373A (zh) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104733708B (zh) | 一种表面包覆磷酸铁锂的镍钴锰酸锂复合材料的制备方法 | |
CN110233256B (zh) | 一种复合纳米材料及其制备方法 | |
WO2018095029A1 (zh) | 一种以石墨烯为核的三元正极材料的制作方法 | |
CN107516740B (zh) | 一种炭黑、石墨烯粉体复合导电剂及其制备方法、应用 | |
CN105826524B (zh) | 一种石墨烯原位形核磷酸铁锂的合成方法 | |
CN106450265A (zh) | 一种原位氮掺杂碳包覆钛酸锂复合电极材料及其制备方法 | |
CN107359328A (zh) | 一种锂离子电池用葡萄状氧化铌/碳复合电极材料的制备方法 | |
CN104993116B (zh) | 一种自组装锂离子电池正极材料v2o5的制备方法 | |
WO2018161378A1 (zh) | 一种新型结构石墨烯包覆硅纳米颗粒及其制备方法 | |
CN109888258A (zh) | 一种石墨烯改性三元正极材料的制备方法 | |
CN114079045B (zh) | 以多孔聚合物微球为模板原位合成的多孔硅/碳复合材料及制备方法和锂离子电池 | |
CN111477857A (zh) | 一种中空核壳结构FeS2@C纳米复合材料的制备方法及其应用 | |
CN110504424A (zh) | 一种多孔球状磷化二铁锂离子电池负极材料及其制备方法 | |
CN102903918B (zh) | 一种磷酸锰锂纳米片的制备方法 | |
CN108832100A (zh) | 一种碳包覆铁酸锌/石墨烯复合负极材料的制备方法 | |
CN108598403B (zh) | 锂离子电池二元过渡金属氧化物负极材料的形成方法 | |
CN108539170B (zh) | 锂离子电池纳米片负极材料的形成方法 | |
CN106450228A (zh) | 一种锂离子电池用复合纳米材料及其制备方法 | |
CN106025343B (zh) | 一种锂离子电池负极多孔氧化锡材料的制备方法 | |
CN111446416B (zh) | 多级结构相结TiO2复合石墨烯负极材料的制备及应用 | |
CN107275623A (zh) | 一种α‑MnO2‑石墨烯纳米片水热合成方法 | |
CN106935814A (zh) | 用于钠离子电池负极的二硫化铁/氧化石墨烯复合材料及制备方法 | |
CN107331835B (zh) | 一步溶剂热法合成三维石墨烯包裹碳酸钴量子点复合物电极材料及方法 | |
CN109860601A (zh) | 一种石墨烯/碳纳米管复合改性锂电池正极材料的制备方法 | |
CN111675243B (zh) | 一种铁酸锌纳米片负极材料的制备方法及产品和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17873177 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17873177 Country of ref document: EP Kind code of ref document: A1 |