CN107275623A - 一种α‑MnO2‑石墨烯纳米片水热合成方法 - Google Patents

一种α‑MnO2‑石墨烯纳米片水热合成方法 Download PDF

Info

Publication number
CN107275623A
CN107275623A CN201710572204.6A CN201710572204A CN107275623A CN 107275623 A CN107275623 A CN 107275623A CN 201710572204 A CN201710572204 A CN 201710572204A CN 107275623 A CN107275623 A CN 107275623A
Authority
CN
China
Prior art keywords
mno
graphene
prepared
graphene oxide
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710572204.6A
Other languages
English (en)
Inventor
杨雯渊
王维
王维一
范茂雄
周全勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Jingxi New Material Technology Co ltd
Original Assignee
Yunnan Jingxi New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Jingxi New Material Technology Co ltd filed Critical Yunnan Jingxi New Material Technology Co ltd
Priority to CN201710572204.6A priority Critical patent/CN107275623A/zh
Publication of CN107275623A publication Critical patent/CN107275623A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种α‑MnO2‑石墨烯纳米片水热合成方法,先将预先制得的三维还原氧化石墨烯水凝胶和MnO2分散液加入到高压反应釜内,在200~220℃下反应48~50h;再将将反应物从反应釜中取出后置入离心分离机中,离心处理的时间为10~20min,再用去离子水和无水乙醇离心洗涤反应物,清洗干净后将其置于烘箱中,在70~80℃下干燥,干燥12~15h后取出成品,即可得到α‑MnO2‑石墨烯纳米片。本发明一方面改善了MnO2的催化性能,提高了MnO2的导电性,另一方面能阻止石墨烯的团聚,可以提高电极材料的放电效率,其方法工艺简单、易于控制,并且在制备过程中不会过多的引入其它杂质离子,反应产物纯度高,是一种制备石墨烯复合材料的理想方法,易于推广。

Description

一种α-MnO2-石墨烯纳米片水热合成方法
技术领域
本发明属于石墨烯应用技术领域,具体涉及一种α-MnO2-石墨烯纳米片水热合成方法。
背景技术
锂离子电池因其具有质量轻、电压高、容量大、功率大、放电平稳和环境友好等优点,被认为是移动储能体系中最具潜力的系统。电极材料对电池性能起着决定性的作用,也是目前锂离子电池进一步发展所受到的主要制约,寻找新的电极材料和改善传统电极材料成为现在该领域研究的主要方向。
二氧化锰材料由于其结构的多样性及其独特的物理化学特性,另外价格低廉、环境友好,作为一种重要的电极材料,广泛应用于干电池、碱锰电池、锌锰电池、镁锰电池、埋锰电池等化学电源中,特别是纳米级二氧化锰具有很多独特的性能,如特殊的微观结构和较大的比表面积、表面的键态和电子态与颗粒内部不同、表面原子配位不全,导致表面活性位置增加,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,增加了化学反应的接触面,且拥有良好的电化学性能、优越的离子、电子传导率和相对高的电位使其在电化学领域有着非常重要的应用。
石墨烯由碳六元环组成的两维周期蜂窝状点阵结构,具有优异的导电性、导热性和机械性能等,是一种理想的载体,且石墨烯还具有良好的电化学稳定性,大的比表面积和宽的电化学窗口,它特有的层状结构有利于电解液在其内部迅速扩散,实现电子元件瞬时间大功率充放电,这些特点使其成为一种极有潜力的埋离子电池电极材料和超级电容器电极材料。由于石墨烯具有独特的二维结构、良好的导电性和导热性等,且具备良好的化学稳定性和相容性,能与其形成复合物的纳米粒子有很多,这些石墨烯基纳米复合物具有在催化、生物传感器和光谱学等领域应用的独特性能,是很有潜力的储能材料,在电池应用方面也有其独特的优势。石墨烯可作为导电添加剂与金属氧化物复合,形成金属氧化物/石墨烯纳米复合材料。已报道的和石墨烯形成纳米复合物的金属氧化物主要有SnO2、Fe3O4、Fe2O3、Co3O4等。
目前,MnO2虽然是一种极具潜力的电子材料,但是MnO2二元金属氧化物在嵌锂过程中会容易发生氧键断裂和过渡金属析出现象,使得充放电电压差较大,充放电的能量效率下降;其次是,MnO2电极中纳米金属产物在使用的过程中存在严重的团聚现象,团聚后也难以确保电极的长期循环稳定使其无法发挥出以单分散状态存在的特殊性能和优势。因此,研制开发一种方法工艺简单、易于控制、既能改善MnO2的催化性能、又能增加电极材料的导电性和循环稳定性的α-MnO2-石墨烯纳米片水热合成方法是客观需要的。
发明内容
为了解决背景技术中存在的问题,本发明的目的在于提供一种方法工艺简单、易于控制、既能改善MnO2的催化性能、又能增加电极呆料的导电性和循环稳定性的α-MnO2-石墨烯纳米片水热合成方法。
一种α-MnO2-石墨烯纳米片水热合成方法,包括以下步骤:
①制备石墨烯水凝胶:
a:先将1g超细石墨加入到25m L质量浓度为98%的浓硫酸溶液中,采用冰水浴冷却使其温度保持在0~5℃之间,并搅拌30min,使其混合均匀;
b:将4g高锰酸钾加入到步骤a制得的混合溶液中,然后放入35~38℃的恒温水浴中继续搅拌120min,得到悬浮混合液;
c:在步骤b制得的悬浮混合液中缓慢加入60mL去离子水,去离子水加入完毕后,在80~90℃的温度下搅拌反应15min;
d:向步骤c制得的悬浮混合液中缓慢加入质量浓度为5%的过氧化氢溶液,边加边搅拌,直至无气体生成,之后将悬浮混合液趁热过滤,得到滤饼;
e:先用质量浓度为5%的稀盐酸溶液充分洗涤滤饼,再用去离子水将滤饼洗涤至中性;
f:将经步骤e洗涤后的滤饼置于烘箱中,保持60~70℃对其进行干燥,干燥20~25h后得到氧化石墨;
h:将0.16g氧化石墨放入到400mL氢氧化钠溶液中,所述氢氧化钠溶液的PH值为~10.5~11,然后将其置入超声波处理器中,超声分散1~2h,制得0.4g/L的氧化石墨烯分散液;
i:将步骤h制得的氧化石墨烯分散液置于离心机中,在转速8000~10000 rpm条件下离心处理2~10min,得到氧化石墨烯胶状悬浮液;
j:将步骤i制得氧化石墨烯胶状悬浮液置于超声波处理器中进行超声波处理,超声波频率为40~45kHz,超声处理3h制得氧化石墨烯溶胶;
k:将步骤j制得的氧化石墨烯溶胶置入到内衬为聚四氟乙烯的水热反应釜中,保持200~220℃的温度反应12~15h,反应完全后,自然冷却至室温,取出样品,即可得到三维还原氧化石墨烯水凝胶;
②MnO2分散液的制备
l:先将0.1g高锰酸钾和1mL羧基纤维素钠加入到20mL去离子水中,磁力搅拌5min制得MnO2分散液;
③水热合成α-MnO2-石墨烯纳米片
m:将步骤①制得的三维还原氧化石墨烯水凝胶和步骤②制得的MnO2分散液加入到高压反应釜内,在200~220℃下反应48~50h;
n:将反应物从反应釜中取出后置入离心分离机中进行离心处理,离心机转速为4000~5000rpm,离心处理的时间为10~20min,再用去离子水和无水乙醇离心洗涤反应物,
清洗干净后将其置于烘箱中,在70~80℃下干燥,干燥12~15h后取出成品,即可得到α-MnO2-石墨烯纳米片。
石墨烯是由单层碳原子通过较强的共价化学键结合而成的二维晶体结构,这些化学键使得石墨烯具有优异的结构特性和力学性能,从而能够显著地提高材料的耐磨性能。二氧化锰作为一种常见的金属氧化物,常用作氧还原催化剂、氧化剂和超级电容器储能材料。本发明将改性石墨烯与α- MnO2复合后,再与装入内衬为改性聚四氟乙烯的反应釜中反应,使得石墨烯表面的氨基与聚四氟乙烯上的羧基发生缩合反应,而后被α- MnO2的所捕获,石墨烯的引入可以充当高效的载体,一方面改善了MnO2的催化性能,提高了MnO2的导电性,有效的减少MnO2在电化学反应中结构的坍塌,增强其电化学稳定性,另一方面MnO2的存在,能阻止石墨烯的团聚,可以提高电极材料的放电效率。本方法直接由二氧化锰出发制备MnO2-石墨烯纳米片,该方法工艺简单、易于控制复合材料中二氧化猛的含量,并且在制备过程中不会过多的引入其它杂质离子,反应产物纯度高,是一种制备石墨烯复合材料的理想方法,易于推广。
具体实施方式
下面结合实施例对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
本发明所述的α-MnO2-石墨烯纳米片水热合成方法,包括以下步骤:
①制备石墨烯水凝胶:
a:先将1g超细石墨加入到25m L质量浓度为98%的浓硫酸溶液中,采用冰水浴冷却使其温度保持在0~5℃之间,并搅拌30min,使其混合均匀,超细石墨的粒径为30~40μm;
b:将4g高锰酸钾加入到步骤a制得的混合溶液中,然后放入35~38℃的恒温水浴中继续搅拌120min,得到悬浮混合液;
c:在步骤b制得的悬浮混合液中缓慢加入60mL去离子水,去离子水加入完毕后,反应温度会骤然升高至80~90℃,此时在80~90℃的温度下搅拌反应15min;
d:向步骤c制得的悬浮混合液中缓慢加入质量浓度为5%的过氧化氢溶液,边加边搅拌,直至无气体生成,之后将悬浮混合液趁热过滤,得到滤饼;
e:先用质量浓度为5%的稀盐酸溶液充分洗涤滤饼,再用去离子水将滤饼洗涤至中性;
f:将经步骤e洗涤后的滤饼置于烘箱中,保持60~70℃对其进行干燥,干燥20~25h后得到氧化石墨;
h:将0.16g干燥后的氧化石墨加入到400mL氢氧化钠溶液中,所述氢氧化钠溶液的PH值为~10.5~11,然后将其置入超声波处理器中,超声分散1~2h,制得0.4g/L的氧化石墨烯分散液;
i:将步骤h制得的氧化石墨烯分散液置于离心机中,在转速8000~10000 rpm条件下离心处理2~10min,得到氧化石墨烯胶状悬浮液;
j:将步骤i制得氧化石墨烯胶状悬浮液置于超声波处理器中进行超声波处理,超声波频率为40~45kHz,超声处理3h制得氧化石墨烯溶胶;
k:将步骤j制得的氧化石墨烯溶胶置入到内衬为聚四氟乙烯的水热反应釜中,保持200~220℃的温度反应12~15h,反应完全后,自然冷却至室温,取出样品,即可得到三维还原氧化石墨烯水凝胶;
②MnO2分散液的制备
l:先将0.1g高猛酸钾和1mL羧基纤维素钠加入到20mL去离子水中,磁力搅拌5min制得MnO2分散液;
③水热合成α-MnO2-石墨烯纳米片
m:将步骤①制得的三维还原氧化石墨烯水凝胶和步骤②制得的MnO2分散液加入到高压反应釜内,在200~220℃下反应48~50h;
n:将反应物从反应釜中取出后置入离心分离机中进行离心处理,离心机转速为4000~5000rpm,离心处理的时间为10~20min,再用去离子水和无水乙醇离心洗涤反应物,
清洗干净后将其置于烘箱中,在70~80℃下干燥,干燥12~15h后取出成品,即可得到α-MnO2-石墨烯纳米片。

Claims (2)

1.一种α-MnO2-石墨烯纳米片水热合成方法,其特征在于,包括以下步骤:
①制备石墨烯水凝胶:
a:先将1g超细石墨加入到25m L质量浓度为98%的浓硫酸溶液中,采用冰浴冷却使其温度保持在0~5℃之间,并搅拌30min,使其混合均匀;
b:将4g高锰酸钾加入到步骤a制得的混合溶液中,然后放入35~38℃的恒温水浴中继续搅拌120min,得到悬浮混合液;
c:在步骤b制得的悬浮混合液中缓慢加入60mL去离子水,去离子水加入完毕后,在80~90℃的温度下搅拌反应15min;
d:向步骤c制得的悬浮混合液中缓慢加入质量浓度为5%的过氧化氢溶液,边加边搅拌,直至无气体生成,之后将悬浮混合液趁热过滤,得到滤饼;
e:先用质量浓度为5%的稀盐酸溶液充分洗涤滤饼,再用去离子水将滤饼洗涤至中性;
f:将经步骤e洗涤后的滤饼置于烘箱中,保持60~70℃对其进行干燥,干燥20~25h后得到氧化石墨;
h:将0.16g氧化石墨放入到400mL氢氧化钠溶液中,所述氢氧化钠溶液的PH值为10.5~11,然后将其置入超声波处理器中,超声分散1~2h,制得0.4g/L的氧化石墨烯分散液;
i:将步骤h制得的氧化石墨烯分散液置于离心机中,在转速8000~10000 rpm条件下离心处理2~10min,得到氧化石墨烯胶状悬浮液;
j:将步骤i制得氧化石墨烯胶状悬浮液置于超声波处理器中进行超声波处理,超声波频率为40~45kHz,超声处理3h制得氧化石墨烯溶胶;
k:将步骤j制得的氧化石墨烯溶胶置入到内衬为聚四氟乙烯的水热反应釜中,保持200~220℃的温度反应12~15h,反应完全后,自然冷却至室温,取出样品,即可得到三维还原氧化石墨烯水凝胶;
②MnO2分散液的制备
l:先将0.1g高锰酸钾和1mL羧基纤维素钠加入到20mL去离子水中,磁力搅拌5min制得MnO2分散液;
③水热合成α-MnO2-石墨烯纳米片
m:将步骤①制得的三维还原氧化石墨烯水凝胶和步骤②制得的MnO2分散液加入到高压反应釜内,在200~220℃下反应48~50h;
n:将反应物从反应釜中取出后置入离心分离机中进行离心处理,离心机转速为4000~5000rpm,离心处理的时间为10~20min,再用去离子水和无水乙醇离心洗涤反应物,
清洗干净后将其置于烘箱中,在70~80℃下干燥,干燥12~15h后取出成品,即可得到α-MnO2-石墨烯纳米片。
2.根据权利要求1所述的一种α-MnO2-石墨烯纳米片水热合成方法,其特征在于:在步骤①的a工序中,超细石墨的粒径为30~40um。
CN201710572204.6A 2017-07-13 2017-07-13 一种α‑MnO2‑石墨烯纳米片水热合成方法 Pending CN107275623A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710572204.6A CN107275623A (zh) 2017-07-13 2017-07-13 一种α‑MnO2‑石墨烯纳米片水热合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710572204.6A CN107275623A (zh) 2017-07-13 2017-07-13 一种α‑MnO2‑石墨烯纳米片水热合成方法

Publications (1)

Publication Number Publication Date
CN107275623A true CN107275623A (zh) 2017-10-20

Family

ID=60071927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710572204.6A Pending CN107275623A (zh) 2017-07-13 2017-07-13 一种α‑MnO2‑石墨烯纳米片水热合成方法

Country Status (1)

Country Link
CN (1) CN107275623A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404822A (zh) * 2018-04-12 2018-08-17 吉林大学 一种石墨烯和超薄二氧化锰纳米片杂化气凝胶及其制备方法
CN109300705A (zh) * 2018-09-07 2019-02-01 常州大学 CeO2-MnO2-石墨烯的制备及在超级电容器中的应用
CN112349909A (zh) * 2020-11-06 2021-02-09 常州大学 一种锌离子电池正极复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709061A (zh) * 2012-07-03 2012-10-03 电子科技大学 一种石墨烯包覆二氧化锰的复合电极材料及其制备方法
CN106129378A (zh) * 2016-08-30 2016-11-16 安徽师范大学 一种二硫化锡/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709061A (zh) * 2012-07-03 2012-10-03 电子科技大学 一种石墨烯包覆二氧化锰的复合电极材料及其制备方法
CN106129378A (zh) * 2016-08-30 2016-11-16 安徽师范大学 一种二硫化锡/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404822A (zh) * 2018-04-12 2018-08-17 吉林大学 一种石墨烯和超薄二氧化锰纳米片杂化气凝胶及其制备方法
CN109300705A (zh) * 2018-09-07 2019-02-01 常州大学 CeO2-MnO2-石墨烯的制备及在超级电容器中的应用
CN112349909A (zh) * 2020-11-06 2021-02-09 常州大学 一种锌离子电池正极复合材料及其制备方法和应用
CN112349909B (zh) * 2020-11-06 2022-03-29 常州大学 一种锌离子电池正极复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP6493853B2 (ja) リチウムニッケルコバルトアルミニウム酸化物複合正極材料、その製造方法及びリチウムイオン二次電池
CN106129344B (zh) 一种二氧化锡/二氧化钛球形颗粒与石墨烯纳米带复合材料的制备方法
CN110224129A (zh) 一种MOFs衍生物包覆NCM三元正极材料及其制备方法
CN104009210B (zh) 一种多孔硅/碳复合材料、制备方法及用途
CN104973595B (zh) 一种三维多孔石墨烯材料及其制备方法与应用
CN105720246B (zh) 颗粒状二氧化锡/二维纳米碳化钛复合材料及应用
WO2017000525A1 (zh) 一种蛋黄结构过渡金属氧化物 / 石墨烯复合材料及其制备方法与应用
Sen et al. Synthesis of molybdenum oxides and their electrochemical properties against Li
CN106340633B (zh) 一种高性能锂离子电池用复合纳米材料及其制备方法
CN107959006A (zh) 一种木质素基硬碳/碳纳米管复合材料及其制备方法和在锂离子电池负极材料中的应用
CN102185147B (zh) 纳米磷酸铁空心球/石墨烯复合材料及其制备方法
CN110176601A (zh) 一种碳包覆氧化亚硅负极材料及其制备方法和应用
CN106450265A (zh) 一种原位氮掺杂碳包覆钛酸锂复合电极材料及其制备方法
CN105826524B (zh) 一种石墨烯原位形核磷酸铁锂的合成方法
CN103035881B (zh) 石墨烯、硅复合材料的制备方法
CN110504424A (zh) 一种多孔球状磷化二铁锂离子电池负极材料及其制备方法
CN108598444A (zh) 锂离子电池复合负极材料三氧化二钒/石墨烯及制备方法
CN105047919B (zh) 一种磷酸铁锂电池正极材料的制备方法
CN110137465A (zh) 一种碳@Fe2O3@碳微球复合材料及其应用
CN106876673A (zh) 一步法制备二氧化钛和石墨烯双层共包覆的核壳结构锂硫电池正极材料的方法
CN105161690B (zh) 通过掺杂石墨烯和二氧化钛提高二硫化钼充放电循环能力的方法
CN107275623A (zh) 一种α‑MnO2‑石墨烯纳米片水热合成方法
CN106450228B (zh) 一种锂离子电池用复合纳米材料及其制备方法
CN108793147A (zh) 一种新型石墨烯材料及其制备方法
WO2018095029A1 (zh) 一种以石墨烯为核的三元正极材料的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171020