WO2018094860A1 - 一种螺线型陶瓷弹簧的制作工艺 - Google Patents
一种螺线型陶瓷弹簧的制作工艺 Download PDFInfo
- Publication number
- WO2018094860A1 WO2018094860A1 PCT/CN2017/070374 CN2017070374W WO2018094860A1 WO 2018094860 A1 WO2018094860 A1 WO 2018094860A1 CN 2017070374 W CN2017070374 W CN 2017070374W WO 2018094860 A1 WO2018094860 A1 WO 2018094860A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic spring
- ceramic
- powder
- manufacturing process
- precursor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/62635—Mixing details
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63436—Halogen-containing polymers, e.g. PVC
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63488—Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
Definitions
- the invention relates to a manufacturing process of a ceramic spring, in particular to a manufacturing process of a spiral ceramic spring.
- Ceramic springs have the characteristics of high mechanical strength, good mechanical properties, high temperature resistance, corrosion resistance, wear resistance, low conductance and low thermal conductivity, and have broad application prospects. Ceramic springs can be used as high-temperature components in the aerospace industry. In the high temperature environment of supersonic aircraft sealing components, metal springs are prone to oxidation and plastic deformation and quickly fail, while ceramic springs are stable due to their high temperature. Be applicable. Ceramic springs can also be used as electrode materials, piezoelectric materials and miniature sensor components due to their unique electrical properties. In addition, since the spiral type structure can effectively expand the contact area between the phase phases per unit length, the ceramic spring can also be used as a gas separation device and a catalyst carrier.
- Ceramic spring has excellent performance and wide application fields, since ceramic is a brittle material, it is easy to break during processing, so the preparation process of ceramic spring, especially the preparation technology that can be used for industrial mass production, It has always been a research hotspot and a difficult point in related fields at home and abroad.
- Early ceramic springs were mainly prepared by mechanical processing and material reduction.
- US Patent No. CR Harper et al. Hardper C RA ceramic spring for high-temperature valves [J]. Journal of Materials for Energy Systems, 1979, 1 (2): 62-67.) prepared a rectangular section of alumina ceramics by a cutting process.
- the spring firstly opens a groove on the cylindrical alumina green body, then cuts off the joint between the spiral and the green core, and finally finishes the surface to remove surface defects, thereby obtaining a ceramic spring.
- the obtained ceramic spring is used for high temperature parts and has good high temperature stability.
- the main disadvantage of this method is the long processing cycle and low material usage. Due to the high precision of machining, this method is not suitable for the preparation of millimeter and smaller ceramic springs.
- Guo Lucun, Nanjing University of Technology, China (Chinese patent CN1472448A) prepared a zirconia ceramic spring by organic injection molding. First, the nano-sized zirconia powder was thoroughly mixed with the premix, injected into a spring mold, and dried to obtain a green body.
- the method suspended the metal doped graphite substrate in a quartz reactor under a mixed atmosphere of Si 2 Cl 6 , NH 3 and H 2 .
- the ceramic spring was grown at 1200 ° C for 30 min, and it occurred on the substrate from several micrometers to several tens of micrometers.
- This method can be used to prepare ceramic springs of extremely small size, but it is costly, requires strict operating environment, and cannot be used in large-scale industrial applications. Moreover, this method is extremely limited in material range and difficult to accurately control in size, so it is still in existence.
- Laboratory research phase Yao Rongqian (CN 103707390 A) of Xiamen University of China used the method of melt spinning of organometallic polymer to prepare ceramic spring.
- the polycarbosilane precursor was melt-spun, and then wound into a polycarbosilane spring by a winding device. Then, the oxidized cross-linking is subjected to high-temperature pre-burning and final burning under the protection of the atmosphere to obtain a silicon carbide ceramic spring.
- the process of this method is complicated, the cost is high, the cycle is long, and the material application range is limited.
- the object of the present invention is to overcome the defects of the prior art and to provide a manufacturing process of a size-controllable spiral ceramic spring, which overcomes the prior art method, has large material consumption, high production cost, and limited applicable material range. Insufficient, the produced ceramic spring can be used in many fields such as electrode insulation, heat insulation protection, high temperature spring parts and so on.
- a manufacturing process of a spiral type ceramic spring adopts the following steps:
- Phase transformation molding the spinning solution is pushed into the discharge tank by the injection pump, and then enters the coagulation bath at a certain flow rate from the circular discharge port at the bottom of the discharge tank, and the distance between the discharge port and the coagulation bath is supported by Frame control, when the slurry is in contact with the coagulation bath, the rope effect and phase transformation occur, and the front has a spiral structure.
- Drive body the spinning solution is pushed into the discharge tank by the injection pump, and then enters the coagulation bath at a certain flow rate from the circular discharge port at the bottom of the discharge tank, and the distance between the discharge port and the coagulation bath is supported by Frame control, when the slurry is in contact with the coagulation bath, the rope effect and phase transformation occur, and the front has a spiral structure.
- Drive body the spinning solution is pushed into the discharge tank by the injection pump, and then enters the coagulation bath at a certain flow rate from the circular discharge port at the bottom of the discharge tank, and the distance between the discharge port and the coagulation
- the ceramic spring precursor is naturally dried for 24 to 48 hours under normal temperature and normal pressure conditions. When drying, the two ends of the spring are fixed on the straight rod, and the middle portion is kept straight, and the purpose is to make the dried precursor easy. Put into the corundum tube, and the finished product has good linearity;
- the ceramic powder comprises yttria-stabilized zirconia powder, alumina powder, cerium oxide powder or silicon nitride powder, and the average particle diameter of the powder particles is 0.02 to 2 ⁇ m.
- the organic solvent is N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide or dimethyl sulfoxide.
- the organic binder is polysulfone, polyethersulfone, polyacrylonitrile or polyvinylidene fluoride.
- the weight ratio of the ceramic powder, the organic solvent, and the organic binder is from 20 to 40:40 to 60:10 to 30.
- the mixing and stirring time is 12 to 24 hours, the stirring speed is 200 to 500 r/min, and the oil bath temperature is 50 to 70 °C.
- the components of the coagulation bath are water or an alcohol solution.
- the driving speed of the injection pump is 5 to 30 mL/min
- the diameter of the round hole at the bottom of the receiving container is 0.3 to 0.8 cm
- the height of the spinning solution falling into the coagulation bath is 5 to 30 cm, which is more preferable.
- the pushing speed of the jet pump is preferably 10 to 20 mL/min
- the height of the spinning solution falling into the coagulation bath is preferably 10 to 20 cm.
- the pushing speed and the drop height have a significant influence on the geometry of the ceramic spring. Under other conditions, the wire diameter, outer diameter and pitch of the ceramic spring will decrease as the pushing speed decreases or the drop height increases.
- the height of the spinning solution to the coagulation bath is less than 5 cm or higher than 30 cm, the balance between gravity, viscous force, and inertial force required for the rope effect is broken, and the above-mentioned ceramic spring cannot be produced.
- the sintering process firstly raises the temperature from 5 to 8 ° C / min to 600 ° C from room temperature, removes the organic matter in the precursor, and then raises the temperature to 1000 to 1600 ° C at 3 to 5 ° C / min, and keeps the ceramic powder sintered for 2 to 12 hours. Then, it was cooled to room temperature with the furnace.
- the choice of holding temperature will be the porosity and phase composition of the finished product. The effect is. In general, the higher the temperature, the lower the porosity of the ceramic spring finally obtained, and the better the strength performance.
- the invention utilizes the phenomenon that the viscous fluid falls from a certain height and encounters the resistance to spontaneously curl to form a spiral, and the ceramic powder and the organic matter are mixed to form the spinning solution having a specific viscosity, and then the non-solvent phase transformation is used to form a single step to form an organic substance.
- a ceramic spring precursor having a spiral structure of a skeleton. During the sintering process, the organic matter is pyrolyzed, and the remaining ceramic powders are connected to each other and densified to form a ceramic spring.
- the present invention has the following advantages:
- the process of preparing ceramic spring by the winding rope effect assisted phase transformation method is suitable for various ceramic materials such as zirconia, alumina, titania and silicon nitride;
- the prepared ceramic spring has excellent and controllable mechanical properties, and the wire diameter of the YSZ ceramic spring can reach 10% at room temperature;
- the geometry of the ceramic spring can be controlled by the flow rate and the drop height of the spinning solution.
- the diameter of the spring can be adjusted within the range of 0.05–2 mm, and the screw diameter can be adjusted within the range of 0.1–10 mm.
- the process is simple, the preparation process is continuous and the cycle is short, and the requirements for working conditions are low. It belongs to additive manufacturing, has no large amount of waste and tailings, is low in cost and is environmentally friendly, and is suitable for large-scale industrial production.
- FIG. 1 is a schematic structural view of an apparatus for processing a spiral type ceramic spring
- Figure 2 is a photograph of the processed ceramic spring precursor
- Figure 3 is a scanning electron micrograph of the surface of a ceramic spring.
- the spinning solution is added into the syringe and then loaded into the injection pump, and pushed to the discharge tank at a flow rate of 7.5 L/min. After the liquid level in the discharge tank is raised to a stable state, the discharge slurry is received by the receiving tank. The distance between the round hole at the bottom of the discharge tank and the surface of the solidification bath is controlled to be 20 cm. After the slurry liquid enters the coagulation bath, the spiral structure is spontaneously curled due to the winding rope effect, and the solid-liquid phase separation is triggered by the phase transformation.
- the wire structure is solidified to form a ceramic spring precursor;
- the precursor was taken out after immersion in the coagulation bath for 24 hours, and the two ends were fixed on a straight rod after straightening, and naturally dried at room temperature under normal pressure for 48 hours, and then placed in a corundum tube and placed in a muffle furnace.
- the temperature rise rate was controlled to 6 ° C / min, and the temperature was raised to 600 ° C and then kept for 30 minutes to completely decompose the organic matter, and then heated to 1550 ° C at 3 ° C / min, kept for 8 h, and finally cooled to room temperature with the furnace to obtain a YSZ ceramic spring.
- the spring has a wire diameter of about 0.2 mm and an outer diameter of about 0.7 mm. Raman spectroscopy indicates that the main phase of the ceramic spring is monoclinic zirconia.
- the precursor was taken out after immersion in the coagulation bath for 48 hours, and the two ends were fixed on a straight rod after straightening, and naturally dried at room temperature under normal pressure for 48 hours, and then placed in a corundum tube and placed in a muffle furnace.
- the heating rate is controlled to 6 ° C / min, and the temperature is raised to 600 ° C and then kept for 30 min to completely decompose the organic matter, and then heated to 1600 ° C at 3 ° C / min, kept for 2 h, and finally cooled to room temperature with the furnace to obtain an alumina ceramic bomb.
- Spring has a wire diameter of about 0.35 mm and an outer diameter of about 1.5 mm. Raman spectroscopy indicates that the main phase of the ceramic spring is ⁇ -alumina.
- the precursor is immersed in the coagulation bath for 24 hours, and then taken out, and the ends are fixed on the straight rod, in the chamber. It is naturally dried under normal pressure for 48 hours, then placed in a corundum tube and placed in a muffle furnace.
- the temperature rising rate was controlled to 6 ° C / min, and the temperature was raised to 600 ° C and then kept for 30 minutes to completely decompose the organic matter, and then heated to 1100 ° C at 3 ° C / min, kept for 4 h, and finally cooled to room temperature with the furnace to obtain a cerium oxide ceramic spring.
- a manufacturing process of a spiral type ceramic spring adopts the following steps:
- Phase inversion molding the spinning solution 2 is pushed into the discharge tank by the syringe pump 1, the pushing speed of the syringe pump 1 is 5 mL/min, and then the flow rate from the bottom discharge port of the discharge tank 3 enters the receiving tank 4
- the coagulation bath 5 contained in the coagulation bath is made of water, and the diameter of the round hole at the bottom of the receiving container is 0.3 cm.
- the distance between the discharge port and the coagulation bath is controlled by the support frame, and the spinning solution falls to the coagulation bath.
- the height in the middle is 5cm.
- Impregnation the prepared ceramic spring precursor is immersed in a coagulation bath for 24 hours to fully perform phase inversion;
- the ceramic spring precursor is naturally dried for 24 hours under normal temperature and normal pressure conditions. When drying, the two ends of the spring are fixed on the straight rod, and the middle portion is kept straight, and the purpose is to make the dried precursor easy to put in. Corundum tube, and the finished product has good linearity;
- a manufacturing process of a spiral type ceramic spring adopts the following steps:
- alumina powder having an average particle diameter of 2 ⁇ m is added to an organic solvent of dimethylformamide, sonicated for 30 minutes to sufficiently disperse the powder into an organic solvent, and an organic binder polyacrylonitrile, alumina is added.
- the weight ratio of the powder, the organic solvent and the organic binder is 40:50:10, the oil bath is kept at 70 ° C, the stirring speed is controlled to be 500 r / min, and the mechanical stirring is carried out for 12 hours to uniformly mix the components of the slurry;
- Phase inversion molding the spinning solution is pushed into the discharge tank by the syringe pump.
- the driving speed of the injection pump is 30 mL/min, and then the flow rate enters the coagulation bath from the circular discharge port at the bottom of the discharge tank, and the coagulation bath is used.
- the component is water, the diameter of the round hole at the bottom of the receiving container is 0.8cm, the distance between the discharge port and the coagulation bath is controlled by the support frame, and the height of the spinning solution falling into the coagulation bath is 30cm, when the slurry and the coagulation bath Winding effect and phase transformation occur upon contact to form a precursor having a helical structure;
- the ceramic spring precursor is naturally dried for 48 hours under normal temperature and normal pressure conditions. When drying, the two ends of the spring are fixed on the straight rod, and the middle portion is kept straight, and the purpose is to make the dried precursor easy to put in. Corundum tube, and the finished product has good linearity;
- a manufacturing process of a spiral type ceramic spring adopts the following steps:
- cerium oxide stabilized zirconia powder having an average particle diameter of 0.02 ⁇ m was added to an organic solvent N-methyl-2-pyrrolidone, and ultrasonically treated for 15 minutes to sufficiently disperse the powder, and an organic binder polysulfone was added.
- the weight ratio of the yttria-stabilized zirconia powder, the organic solvent and the organic binder is 20:40:10, mechanically stirred under the oil bath heat preservation state, the control stirring time is 12 hours, and the stirring speed is 500r/min.
- the temperature of the oil bath is 50 ° C, so that the components of the slurry are uniformly mixed;
- Phase transformation molding the spinning solution is pushed into the discharge tank by the syringe pump, and then enters the water at a certain flow rate from the circular discharge port at the bottom of the discharge tank to perform the coagulation bath.
- Impregnation the prepared ceramic spring precursor is immersed in a coagulation bath for 24 hours to fully perform phase inversion;
- the ceramic spring precursor is naturally dried for 24 hours under normal temperature and normal pressure conditions. When drying, the two ends of the spring are fixed on the straight rod, and the middle portion is kept straight, and the purpose is to make the dried precursor easy to put in. Corundum tube, and the finished product has good linearity;
- a manufacturing process of a spiral type ceramic spring adopts the following steps:
- Phase inversion molding the spinning solution is pushed into the discharge tank by the syringe pump, and then enters the alcohol solution at a certain flow rate from the circular discharge port at the bottom of the discharge tank to perform a coagulation bath.
- the injection pump is The driving speed is 20mL/min, the diameter of the round hole at the bottom of the receiving container is 0.8cm, and the distance between the discharging port and the coagulation bath is controlled by the support frame at 20cm.
- the slurry is in contact with the coagulation bath, the winding effect and phase transformation occur.
- the ceramic spring precursor is naturally dried for 48 hours under normal temperature and normal pressure conditions. When drying, the two ends of the spring are fixed on the straight rod, and the middle portion is kept straight, and the purpose is to make the dried precursor easy to put in. Corundum tube, and the finished product has good linearity;
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种螺线型陶瓷弹簧的制作工艺,包括浆料配置、除气、相转化成型、浸渍、干燥、烧结等步骤,采用卷绳效应辅助相转化方法制备得到螺线型陶瓷弹簧。与现有技术相比,所述制作工艺克服了已有方法材料消耗大,生产成本高,可适用材料范围有限的不足,生产出的陶瓷弹簧可运用于电极绝缘、隔热防护、高温弹簧零部件等诸多领域。
Description
本发明涉及一种陶瓷弹簧的制作工艺,尤其是涉及一种螺线型陶瓷弹簧的制作工艺。
陶瓷弹簧具有机械强度高、力学性能好、耐高温、耐腐蚀、耐磨损、低电导、低热导等特征,具有广泛的应用前景。陶瓷弹簧可以作为高温零部件应用于航空航天领域中,面对超音速飞行器密封元件的高温环境,金属弹簧容易发生氧化和塑性变形而迅速失效,而陶瓷弹簧则因为其在高温下具有稳定性而适用。因为其独特的电性能,陶瓷弹簧还可以作为电极材料、压电材料和微型传感器部件。另外,由于螺线型结构可以有效扩展单位长度内物相之间的接触面积,陶瓷弹簧还可以用作气体分离装置和催化剂载体。
虽然陶瓷弹簧具有优异的性能和广阔的应用领域,但由于陶瓷是一种脆性材料,在加工过程中极易发生断裂,因此陶瓷弹簧的制备工艺,特别是可用于工业化大规模生产的制备技术,一直是国内外相关领域的研究热点和难点。早期的陶瓷弹簧主要是通过机械加工减材制造的方式制备。美国C.R.Harper等(Harper C R.A ceramic spring for high-temperature valves[J].Journal of Materials for Energy Systems,1979,1(2):62-67.)采用切削加工的方法制备了矩形截面的氧化铝陶瓷弹簧,首先在圆柱形氧化铝生坯上开出沟槽,然后切除螺线间的连接部分和生坯芯部,最后对表面进行精加工去除表面缺陷,从而获得陶瓷弹簧。制得的陶瓷弹簧被用于高温零部件,具有良好的高温稳定性。这种方法的主要缺点在于加工周期长,材料使用率低,由于对机加工精度要求高,这种方法也不适用于毫米及更小尺寸陶瓷弹簧的制备。国内南京工业大学郭露村等(中国专利CN1472448A)采用有机物混合注塑的方法制备了氧化锆陶瓷弹簧,首先将纳米级氧化锆粉末与预混液充分混合,注入弹簧模具,干燥脱模后获得生坯,然后排胶、浸浆,最后无压烧结获得成品。这种方法的主要问题在于所获得陶瓷体结构较为疏松,由于烧结收缩,弹簧的尺寸也难以有效控制,对实际应用
造成很大影响。日本S.Motojima(Motojima S,Kagiya S,Iwanaga H.Preparation of micro-coiled SiC and TiC fibres by vapour phase metallizing of micro-coiled carbon fibres[J].Journal of Materials Science,1995,31(17):4641-4645.)等采用化学气相沉积的方法制备了Si3N4陶瓷螺线,该方法将金属掺杂的石墨基板悬挂在石英反应炉中,在Si2Cl6、NH3、H2混合气氛下于1200℃保温30min,在基板上自发生成几微米到几十微米不等的陶瓷弹簧。这种方法可用于制备极小尺寸的陶瓷弹簧,但是成本高,对操作环境要求严格,无法进行大规模工业化运用,而且这种方法适用的材料范围极其有限,尺寸难以精确控制,因此至今仍处于实验室研究阶段。国内厦门大学姚荣迁等(CN 103707390 A)采用有机金属聚合物熔融纺丝的方法制备了陶瓷弹簧,首先将聚碳硅烷前驱体熔融纺丝,再通过缠绕装置绕制成为聚碳硅烷弹簧,然后氧化交联,在气氛保护下经过高温预烧、终烧,获得碳化硅陶瓷弹簧。但是这种方法工艺过程较为复杂,成本高,周期长,材料适用范围有限。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种尺寸可控的螺线型陶瓷弹簧的制作工艺,克服了已有方法材料消耗大,生产成本高,可适用材料范围有限的不足,生产出的陶瓷弹簧可运用于电极绝缘、隔热防护、高温弹簧零部件等诸多领域。
本发明的目的可以通过以下技术方案来实现:
一种螺线型陶瓷弹簧的制作工艺,采用以下步骤:
(1)浆料配制:将陶瓷粉末加入有机溶剂,超声处理15~30分钟使粉末充分分散至有机溶剂中,加入有机粘结剂,在油浴保温状态下机械搅拌,使浆料各组分混合均匀;
(2)除气:混合均匀的浆料置于真空干燥器中除去搅拌过程中溶入的气泡,静置6~12小时形成所需的纺丝液;
(3)相转化成型:纺丝液由注射泵推动进入出料罐,然后从出料罐底部圆形出料口中以一定的流速进入凝固浴,出料口与凝固浴之间的距离由支撑架控制,当浆料与凝固浴接触时发生卷绳效应和相转化,生成具有螺旋型结构的前
驱体;
(4)浸渍:将制得的陶瓷弹簧前驱体于凝固浴中浸渍24~48小时,使相转化充分进行;
(5)干燥:在常温常压条件下对陶瓷弹簧前驱体自然干燥24~48小时,干燥时将弹簧两端固定于直杆上,中部保持平直,其目的在于使干燥后的前驱体便于放入刚玉管,且成品直线性较好;
(6)烧结:将干燥后的前驱体插入刚玉管中,在空气气氛下于马弗炉中进行烧结,之后随炉冷却获得陶瓷弹簧成品。
所述的陶瓷粉末包括氧化钇稳定氧化锆粉末、氧化铝粉末、氧化铈粉末或氮化硅粉末,粉末颗粒平均粒径为0.02~2μm,
所述的有机溶剂为N-甲基-2-吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺或二甲基亚砜,
所述的有机粘结剂为聚砜、聚醚砜、聚丙烯腈或聚偏氟乙烯。
所述的陶瓷粉末、有机溶剂、有机粘结剂的重量比为20~40:40~60:10~30。
浆料配制过程中,混合搅拌的时间为12~24小时,搅拌速度为200~500r/min,油浴温度为50~70℃。
凝固浴的组分为水或酒精溶液。
相转化成型过程中,注射泵的推动速度为5~30mL/min,接收容器底部圆孔直径为0.3~0.8cm,纺丝液的下落到凝固浴中的高度为5~30cm,作为更加优选的实施方式,射泵的推动速度优选为10~20mL/min,纺丝液的下落到凝固浴中的高度优选为10~20cm。推动速度和下落高度对陶瓷弹簧的几何尺寸具有显著的影响,在其他条件不变的情况下,陶瓷弹簧的线径、外径以及螺距将随着推动速度的减少或下落高度的增加而减少。当纺丝液到凝固浴的高度低于5cm或高于30cm时,卷绳效应所需的重力、粘性力、惯性力三者之间的平衡被打破,无法生成上述陶瓷弹簧。
烧结工艺首先从室温状态以5~8℃/min升温至600℃,除去前驱体中的有机物,然后以3~5℃/min升温至1000~1600℃,保温2~12h,使陶瓷粉末烧结致密,之后随炉冷却至室温。保温温度的选择将对成品的孔隙率和相组成
产生影响,一般情况下,温度越高,最终获得的陶瓷弹簧孔隙率越低,强度性能越好。
本发明利用粘性流体从一定高度落下后遇到阻力会自发卷曲形成螺旋的现象,将陶瓷粉末与有机物混合形成具有特定粘度的该纺丝液,然后利用非溶剂致相转化一步成型,生成以有机物为骨架的具有螺旋结构的陶瓷弹簧前驱体。在烧结过程中,有机物被热解,留存的陶瓷粉末相互连接、致密化,最终形成陶瓷弹簧。
与现有技术相比,本发明具有以下优点:
(1)适用范围广,与已有方法相比,采用卷绳效应辅助相转化方法制备陶瓷弹簧的工艺适用于氧化锆、氧化铝、氧化钛、氮化硅等多种陶瓷材料;
(2)制备的陶瓷弹簧具有优异且可控的力学性能,线径为YSZ陶瓷弹簧在室温下的弹性变形量可达10%;
(3)陶瓷弹簧的几何尺寸可由纺丝液的流速和下落高度进行控制,其中弹簧的线径可在0.05–2mm范围内进行调控,螺径可在0.1–10mm范围内进行调控;
(4)工艺简洁、制备过程连续且周期较短,对工况的要求较低,属于增材制造,无大量废料、尾料产生,成本低廉且对环境友好,适用于大规模工业化生产。
图1为加工螺线型陶瓷弹簧的装置的结构示意图;
图2为加工得到的陶瓷弹簧前驱体照片;
图3为陶瓷弹簧表面的扫描电镜照片。
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
(1)取平均粒径为0.2μm,氧化钇含量为3wt.%的YSZ粉末100g,加入150g分析纯的NMP溶液,超声分散15min,再加入50g PES聚合物,在50℃
的油浴锅中机械搅拌12h,搅拌速度为300r/min,从而使浆料充分混合均匀,待浆料冷却至室温后,将其置于真空干燥器中抽气脱泡,再静置12h,获得组分均匀的纺丝液;
(2)将纺丝液添入注射器后装入注射泵,以7.5L/min的流速推送至出料罐,待出料罐中液面升高至稳定后,用接收槽接收流出浆料,控制出料罐底部圆孔与凝固浴液面之间的距离为20cm,浆料液进入凝固浴后由于卷绳效应自发卷曲形成螺线结构,又由于相转化作用引发固-液分相,螺线结构固化生成陶瓷弹簧前驱体;
(3)前驱体在凝固浴中浸渍24h后取出,伸直后两端固定在直棒上,在室温常压下自然干燥48h,然后将其置入刚玉管中,放入马弗炉。控制升温速度为6℃/min,升至600℃后保温30min,使有机物完全分解,然后再以3℃/min升温至1550℃,保温8h,最后随炉冷却至室温,获得YSZ陶瓷弹簧。弹簧的线径约为0.2mm,外径约为0.7mm,拉曼光谱表征显示陶瓷弹簧的主要物相为单斜相氧化锆。
实施例2
(1)取平均粒径为0.05μm的氧化铝粉末40g,加入80g分析纯的DMSO溶液,超声分散15min,再加入30g PES聚合物,在60℃的油浴锅中机械搅拌12h,搅拌速度为200r/min,使浆料充分混合均匀。待浆料冷却至室温后,将其置于真空干燥器中抽气直至液面没有气泡产生,再静置6h,获得组分均匀的纺丝液;
(2)将纺丝液添入注射器后装入注射泵,以10L/min的流速推送至出料罐,待出料罐中液面升高至稳定后,用接收槽接收流出浆料,控制出料罐底部圆孔与凝固浴液面之间的距离为15cm,浆料液进入凝固浴后由于卷绳效应自发卷曲形成螺线结构,又由于相转化作用引发固-液分相,螺线结构固化生成陶瓷弹簧前驱体;
(3)前驱体在凝固浴中浸渍48h后取出,伸直后两端固定在直棒上,在室温常压下自然干燥48h,然后将其置入刚玉管中,放入马弗炉。控制升温速度为6℃/min,升至600℃后保温30min,使有机物完全分解,然后再以3℃/min升温至1600℃,保温2h,最后随炉冷却至室温,获得氧化铝陶瓷弹
簧。弹簧的线径约为0.35mm,外径约为1.5mm,拉曼光谱表征显示陶瓷弹簧的主要物相为α-氧化铝。
实施例3
(1)取平均粒径为0.5μm,氧化钇含量为5wt.%的YSZ粉末120g,加入180g分析纯的DMAC溶液,超声分散30min,再加入90g PVDF聚合物,在60℃的油浴锅中机械搅拌24h,搅拌速度为400r/min,从而使浆料充分混合均匀。待浆料冷却至室温后,将其置于真空干燥器中抽气脱泡,再静置6h,获得组分均匀的纺丝液;
(2)将纺丝液添入注射器后装入注射泵,以20L/min的流速推送至出料罐,待出料罐中液面升高至稳定后,用接收槽接收流出浆料,控制出料罐底部圆孔与凝固浴液面之间的距离为18cm,浆料液进入凝固浴后由于卷绳效应自发卷曲形成螺线结构,又由于相转化作用引发固-液分相,螺线结构固化生成陶瓷弹簧前驱体;
(3)前驱体在凝固浴中浸渍24h后取出,伸直后两端固定在直棒上,在室温常压下自然干燥48h,然后将其置入刚玉管中,放入马弗炉。控制升温速度为6℃/min,升至600℃后保温30min,使有机物完全分解,然后再以3℃/min升温至1250℃,保温2h,最后随炉冷却至室温,获得YSZ陶瓷弹簧。拉曼光谱表征显示陶瓷弹簧的主要物相为四方相氧化锆。
实施例4
(1)取平均粒径为1μm的氧化铈粉末100g,加入120g分析纯的NMP溶液,超声分散15min,再加入30gPESf聚合物,在50℃的油浴锅中机械搅拌24h,搅拌速度为350r/min,从而使浆料充分混合均匀,待浆料冷却至室温后,将其置于真空干燥器中抽气脱泡,再静置12h,获得组分均匀的纺丝液;
(2)将纺丝液添入注射器后装入注射泵,以15L/min的流速推送至出料罐,待出料罐中液面升高至稳定后,用接收槽接收流出浆料,控制出料罐底部圆孔与凝固浴液面之间的距离为12cm,浆料液进入凝固浴后由于卷绳效应自发卷曲形成螺线结构,又由于相转化作用引发固-液分相,螺线结构固化生成陶瓷弹簧前驱体;
(3)前驱体在凝固浴中浸渍24h后取出,伸直后两端固定在直棒上,在室
温常压下自然干燥48h,然后将其置入刚玉管中,放入马弗炉。控制升温速度为6℃/min,升至600℃后保温30min,使有机物完全分解,然后再以3℃/min升温至1100℃,保温4h,最后随炉冷却至室温,获得氧化铈陶瓷弹簧。
实施例5
一种螺线型陶瓷弹簧的制作工艺,采用以下步骤:
(1)浆料配制:将平均粒径为0.02μm的氧化钇稳定氧化锆粉末加入N-甲基-2-吡咯烷酮有机溶剂,超声处理15分钟使粉末充分分散至有机溶剂中,加入有机粘结剂聚砜,氧化钇稳定氧化锆粉末、有机溶剂、有机粘结剂的重量比为20:60:20,在50℃的油浴保温状态,控制搅拌速度为200r/min,机械搅拌24小时,使浆料各组分混合均匀;
(2)除气:混合均匀的浆料置于真空干燥器中除去搅拌过程中溶入的气泡,静置6小时形成所需的纺丝液;
(3)相转化成型:纺丝液2由注射泵1推动进入出料罐,注射泵1的推动速度为5mL/min,然后从出料罐3的底部圆形出料口中流速进入接收槽4中盛装的凝固浴5,采用的凝固浴的组分为水,接收容器底部圆孔直径为0.3cm,出料口与凝固浴之间的距离由支撑架控制,纺丝液的下落到凝固浴中的高度为5cm,当浆料与凝固浴接触时发生卷绳效应和相转化,生成具有螺旋型结构的前驱体,整个流程采用的装置如图1所示,制作得到的陶瓷弹簧前驱体照片如图2所示;
(4)浸渍:将制得的陶瓷弹簧前驱体于凝固浴中浸渍24小时,使相转化充分进行;
(5)干燥:在常温常压条件下对陶瓷弹簧前驱体自然干燥24小时,干燥时将弹簧两端固定于直杆上,中部保持平直,其目的在于使干燥后的前驱体便于放入刚玉管,且成品直线性较好;
(6)烧结:将干燥后的前驱体插入刚玉管中,在空气气氛下于马弗炉中进行烧结,烧结工艺首先从室温状态以5℃/min升温至600℃,除去前驱体中的有机物,然后以3℃/min升温至1000℃,保温12h,使陶瓷粉末烧结致密,之后随炉冷却至室温获得陶瓷弹簧成品,其扫描电镜照片如图3所示。
实施例6
一种螺线型陶瓷弹簧的制作工艺,采用以下步骤:
(1)浆料配制:将平均粒径为2μm的氧化铝粉末加入二甲基甲酰胺有机溶剂,超声处理30分钟使粉末充分分散至有机溶剂中,加入有机粘结剂聚丙烯腈,氧化铝粉末、有机溶剂、有机粘结剂的重量比为40:50:10,在70℃的油浴保温状态,控制搅拌速度为500r/min,机械搅拌12小时,使浆料各组分混合均匀;
(2)除气:混合均匀的浆料置于真空干燥器中除去搅拌过程中溶入的气泡,静置12小时形成所需的纺丝液;
(3)相转化成型:纺丝液由注射泵推动进入出料罐,注射泵的推动速度为30mL/min,然后从出料罐底部圆形出料口中流速进入凝固浴,采用的凝固浴的组分为水,接收容器底部圆孔直径为0.8cm,出料口与凝固浴之间的距离由支撑架控制,纺丝液的下落到凝固浴中的高度为30cm,当浆料与凝固浴接触时发生卷绳效应和相转化,生成具有螺旋型结构的前驱体;
(4)浸渍:将制得的陶瓷弹簧前驱体于凝固浴中浸渍48小时,使相转化充分进行;
(5)干燥:在常温常压条件下对陶瓷弹簧前驱体自然干燥48小时,干燥时将弹簧两端固定于直杆上,中部保持平直,其目的在于使干燥后的前驱体便于放入刚玉管,且成品直线性较好;
(6)烧结:将干燥后的前驱体插入刚玉管中,在空气气氛下于马弗炉中进行烧结,烧结工艺首先从室温状态以8℃/min升温至600℃,除去前驱体中的有机物,然后以5℃/min升温至1600℃,保温2h,使陶瓷粉末烧结致密,之后随炉冷却至室温获得陶瓷弹簧成品。
实施例7
一种螺线型陶瓷弹簧的制作工艺,采用以下步骤:
(1)浆料配制:将平均粒径为0.02μm氧化钇稳定氧化锆粉末加入到有机溶剂N-甲基-2-吡咯烷酮中,超声处理15分钟使粉末充分分散,加入有机粘结剂聚砜,氧化钇稳定氧化锆粉末、有机溶剂、有机粘结剂的重量比为20:40:10,在油浴保温状态下机械搅拌,控制合搅拌的时间为12小时,搅拌速度为500r/min,油浴温度为50℃,使浆料各组分混合均匀;
(2)除气:混合均匀的浆料置于真空干燥器中除去搅拌过程中溶入的气泡,静置6小时形成所需的纺丝液;
(3)相转化成型:纺丝液由注射泵推动进入出料罐,然后从出料罐底部圆形出料口中以一定的流速进入水中进行凝固浴,本实施例中,注射泵的推动速度为10mL/min,接收容器底部圆孔直径为0.3cm,出料口与凝固浴之间的距离由支撑架控制在10cm,当浆料与凝固浴接触时发生卷绳效应和相转化,生成具有螺旋型结构的前驱体;
(4)浸渍:将制得的陶瓷弹簧前驱体于凝固浴中浸渍24小时,使相转化充分进行;
(5)干燥:在常温常压条件下对陶瓷弹簧前驱体自然干燥24小时,干燥时将弹簧两端固定于直杆上,中部保持平直,其目的在于使干燥后的前驱体便于放入刚玉管,且成品直线性较好;
(6)烧结:将干燥后的前驱体插入刚玉管中,在空气气氛下于马弗炉中进行烧结,烧结工艺首先从室温状态以5℃/min升温至600℃,除去前驱体中的有机物,然后以3℃/min升温至1000℃,保温12h,使陶瓷粉末烧结致密,之后随炉冷却至室温之后随炉冷却,获得陶瓷弹簧成品。
实施例8
一种螺线型陶瓷弹簧的制作工艺,采用以下步骤:
(1)浆料配制:将平均粒径为2μm氧化铈粉末加入到有机溶剂二甲基乙酰胺中,超声处理30分钟使粉末充分分散,加入有机粘结剂聚砜,氧化钇稳定氧化锆粉末、有机溶剂、有机粘结剂的重量比为40:60:30,在油浴保温状态下机械搅拌,控制合搅拌的时间为24小时,搅拌速度为200r/min,油浴温度为70℃,使浆料各组分混合均匀;
(2)除气:混合均匀的浆料置于真空干燥器中除去搅拌过程中溶入的气泡,静置12小时形成所需的纺丝液;
(3)相转化成型:纺丝液由注射泵推动进入出料罐,然后从出料罐底部圆形出料口中以一定的流速进入酒精溶液中进行凝固浴,本实施例中,注射泵的推动速度为20mL/min,接收容器底部圆孔直径为0.8cm,出料口与凝固浴之间的距离由支撑架控制在20cm,当浆料与凝固浴接触时发生卷绳效应和相转化,
生成具有螺旋型结构的前驱体;
(4)浸渍:将制得的陶瓷弹簧前驱体于凝固浴中浸渍48小时,使相转化充分进行;
(5)干燥:在常温常压条件下对陶瓷弹簧前驱体自然干燥48小时,干燥时将弹簧两端固定于直杆上,中部保持平直,其目的在于使干燥后的前驱体便于放入刚玉管,且成品直线性较好;
(6)烧结:将干燥后的前驱体插入刚玉管中,在空气气氛下于马弗炉中进行烧结,烧结工艺首先从室温状态以8℃/min升温至600℃,除去前驱体中的有机物,然后以5℃/min升温至1600℃,保温2h,使陶瓷粉末烧结致密,之后随炉冷却至室温之后随炉冷却,获得陶瓷弹簧成品。
Claims (9)
- 一种螺线型陶瓷弹簧的制作工艺,其特征在于,该工艺采用以下步骤:(1)浆料配制:将陶瓷粉末加入有机溶剂,超声处理15~30分钟使粉末充分分散至有机溶剂中,加入有机粘结剂,在油浴保温状态下机械搅拌,使浆料各组分混合均匀;(2)除气:混合均匀的浆料置于真空干燥器中除去搅拌过程中溶入的气泡,静置6~12小时形成所需的纺丝液;(3)相转化成型:纺丝液由注射泵推动进入出料罐,然后从出料罐底部圆形出料口中以一定的流速进入凝固浴,出料口与凝固浴之间的距离由支撑架控制,当浆料与凝固浴接触时发生卷绳效应和相转化,生成具有螺旋型结构的前驱体;(4)浸渍:将制得的陶瓷弹簧前驱体于凝固浴中浸渍24~48小时,使相转化充分进行;(5)干燥:在常温常压条件下对陶瓷弹簧前驱体自然干燥24~48小时,干燥时将弹簧两端固定于直杆上,中部保持平直,其目的在于使干燥后的前驱体便于放入刚玉管;(6)烧结:将干燥后的前驱体插入刚玉管中,在空气气氛下于马弗炉中进行烧结,之后随炉冷却获得陶瓷弹簧成品。
- 根据权利要求1所述的一种螺线型陶瓷弹簧的制作工艺,其特征在于,所述的陶瓷粉末包括氧化钇稳定氧化锆粉末、氧化铝粉末、氧化铈粉末或氮化硅粉末,粉末颗粒平均粒径为0.02~2μm,所述的有机溶剂为N-甲基-2-吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺或二甲基亚砜,所述的有机粘结剂为聚砜、聚醚砜、聚丙烯腈或聚偏氟乙烯。
- 根据权利要求1或2所述的一种螺线型陶瓷弹簧的制作工艺,其特征在于,所述的陶瓷粉末、有机溶剂、有机粘结剂的重量比为20~40:40~60:10~30。
- 根据权利要求1所述的一种螺线型陶瓷弹簧的制作工艺,其特征在于, 浆料配制过程中,混合搅拌的时间为12~24小时,搅拌速度为200~500r/min,油浴温度为50~70℃。
- 根据权利要求1所述的一种螺线型陶瓷弹簧的制作工艺,其特征在于,凝固浴的组分为水或酒精溶液。
- 根据权利要求1所述的一种螺线型陶瓷弹簧的制作工艺,其特征在于,相转化成型过程中,注射泵的推动速度为5~30mL/min,接收容器底部圆孔直径为0.3~0.8cm,纺丝液的下落到凝固浴中的高度为5~30cm。
- 根据权利要求6所述的一种螺线型陶瓷弹簧的制作工艺,其特征在于,注射泵的推动速度优选为10~20mL/min。
- 根据权利要求6所述的一种螺线型陶瓷弹簧的制作工艺,其特征在于,纺丝液的下落到凝固浴中的高度优选为10~20cm。
- 根据权利要求1所述的一种螺线型陶瓷弹簧的制作工艺,其特征在于,烧结工艺首先从室温状态以5~8℃/min升温至600℃,除去前驱体中的有机物,然后以3~5℃/min升温至1000~1600℃,保温2~12h,使陶瓷粉末烧结致密,之后随炉冷却至室温。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611043483.9A CN106588000B (zh) | 2016-11-24 | 2016-11-24 | 一种螺线型陶瓷弹簧的制作工艺 |
CN201611043483.9 | 2016-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018094860A1 true WO2018094860A1 (zh) | 2018-05-31 |
Family
ID=58592890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/070374 WO2018094860A1 (zh) | 2016-11-24 | 2017-01-06 | 一种螺线型陶瓷弹簧的制作工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106588000B (zh) |
WO (1) | WO2018094860A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116514577A (zh) * | 2023-05-05 | 2023-08-01 | 天津大学 | 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108249952B (zh) * | 2018-03-07 | 2021-03-26 | 徐州普罗顿氢能储能产业研究院有限公司 | 一种多孔陶瓷承烧板的制备方法 |
CN109161331B (zh) * | 2018-07-27 | 2021-08-31 | 上海交通大学 | 陶瓷螺旋纤维增强硅橡胶轻质耐烧蚀隔热涂料及其应用 |
CN111792928A (zh) * | 2020-06-09 | 2020-10-20 | 中国地质大学(武汉) | 一种3d打印陶瓷制备方法及其产品 |
CN113897705A (zh) * | 2021-09-28 | 2022-01-07 | 舟山腾宇航天新材料有限公司 | 一种螺旋型氧化物高熵陶瓷纤维的制备工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63274636A (ja) * | 1987-05-06 | 1988-11-11 | Taimei Kagaku Kogyo Kk | 細デニ−ルアルミナ系連続繊維の製造法 |
CN1472448A (zh) * | 2003-07-17 | 2004-02-04 | 南京工业大学 | 纳米陶瓷弹簧生产方法 |
CN103707390A (zh) * | 2013-12-20 | 2014-04-09 | 厦门大学 | 一种陶瓷弹簧成型装置与陶瓷弹簧的制备方法 |
CN104841286A (zh) * | 2015-05-08 | 2015-08-19 | 上海穗杉实业有限公司 | 一种螺旋状无机中空纤维膜及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS627659A (ja) * | 1985-07-03 | 1987-01-14 | 明和工業株式会社 | セラミツクス・コイルばねの製造法 |
CN102584211B (zh) * | 2012-02-24 | 2013-07-31 | 西安理工大学 | 一种低温静电纺丝制备微、纳米多孔陶瓷纤维的方法 |
CN102786305B (zh) * | 2012-07-20 | 2014-07-23 | 东华大学 | 一种制备连续硼化锆陶瓷前驱体纤维的方法 |
CN104785123A (zh) * | 2015-03-13 | 2015-07-22 | 海门市森达装饰材料有限公司 | 一种中空纤维陶瓷膜制备方法 |
-
2016
- 2016-11-24 CN CN201611043483.9A patent/CN106588000B/zh active Active
-
2017
- 2017-01-06 WO PCT/CN2017/070374 patent/WO2018094860A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63274636A (ja) * | 1987-05-06 | 1988-11-11 | Taimei Kagaku Kogyo Kk | 細デニ−ルアルミナ系連続繊維の製造法 |
CN1472448A (zh) * | 2003-07-17 | 2004-02-04 | 南京工业大学 | 纳米陶瓷弹簧生产方法 |
CN103707390A (zh) * | 2013-12-20 | 2014-04-09 | 厦门大学 | 一种陶瓷弹簧成型装置与陶瓷弹簧的制备方法 |
CN104841286A (zh) * | 2015-05-08 | 2015-08-19 | 上海穗杉实业有限公司 | 一种螺旋状无机中空纤维膜及其制备方法 |
Non-Patent Citations (1)
Title |
---|
KAYA, C. ET AL.: "Zirconia-toughened alumina ceramics of helical spring shape with improved properties from extruded sol-derived pates", SCRIPTA MATERIALIA, vol. 48, 31 December 2003 (2003-12-31), pages 359 - 364, XP004398551, ISSN: 1359-6462, DOI: 10.1016/s1359-6462(02)00460-8 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116514577A (zh) * | 2023-05-05 | 2023-08-01 | 天津大学 | 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法 |
CN116514577B (zh) * | 2023-05-05 | 2023-10-20 | 天津大学 | 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106588000B (zh) | 2020-11-10 |
CN106588000A (zh) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018094860A1 (zh) | 一种螺线型陶瓷弹簧的制作工艺 | |
CN102965848B (zh) | 一种纳米多孔陶瓷膜及其制备方法 | |
KR102250489B1 (ko) | 세라믹-폴리머 하이브리드 나노구조들, 이들을 생산하기 위한 방법들 및 응용들 | |
Cai et al. | Geometrically complex silicon carbide structures fabricated by robocasting | |
US8585795B2 (en) | Ceramic nanofibers for liquid or gas filtration and other high temperature (> 1000° C.) applications | |
CN103183513B (zh) | 一种质子导电陶瓷电解质薄膜的制备方法 | |
CN114516657B (zh) | 一种高熵氧化物陶瓷纳米晶及其制备方法和应用 | |
CN108176249B (zh) | 一种碳化硅纳米纤维膜的制备方法 | |
US8871140B2 (en) | Inorganic hollow yarns and method of manufacturing the same | |
CN105536559A (zh) | 一种莫来石陶瓷中空纤维膜及其制备方法 | |
CN105347396A (zh) | 二氧化锆球磨介质的制备方法 | |
CN102051710B (zh) | 一种微细平直pzt压电纤维阵列的制备方法 | |
CN104841286A (zh) | 一种螺旋状无机中空纤维膜及其制备方法 | |
CN103553596A (zh) | 锆酸镧陶瓷纤维的制备方法 | |
CN101823884A (zh) | 一种用浸渍裂解法制备高密度再结晶碳化硅制品的方法 | |
KR101913178B1 (ko) | 세라믹 중공사막의 제조방법 및 이에 따라 제조되는 세라믹 중공사막 | |
CN107686351A (zh) | 一种碳化锆陶瓷纤维及其制备方法 | |
KR101561606B1 (ko) | 다공성 중공사막의 제조방법 및 이로부터 제조된 다공성 중공사막 | |
CN109748595B (zh) | 一种混合渗剂、用途及反应熔渗制备方法 | |
KR20150014718A (ko) | 다공성 중공사막의 제조방법 및 이로부터 제조된 다공성 중공사막 | |
CN105347792A (zh) | 基于水基凝胶体系的二氧化锆球磨介质的制备方法 | |
CN105314996A (zh) | 一种单向直通多孔碳化硅-硅陶瓷材料的制备方法 | |
CN114836850B (zh) | 一种中空氧化锆纤维及其无模板制备方法 | |
KR20100090377A (ko) | 고온에서 내산화성 갖는 다공성 나노 탄화규소 및 그 제조방법 | |
Choi et al. | Preparation and characterization of ultrathin alumina hollow fiber microfiltration membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17873388 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 31.07.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17873388 Country of ref document: EP Kind code of ref document: A1 |