CN102051710B - 一种微细平直pzt压电纤维阵列的制备方法 - Google Patents

一种微细平直pzt压电纤维阵列的制备方法 Download PDF

Info

Publication number
CN102051710B
CN102051710B CN2010105596431A CN201010559643A CN102051710B CN 102051710 B CN102051710 B CN 102051710B CN 2010105596431 A CN2010105596431 A CN 2010105596431A CN 201010559643 A CN201010559643 A CN 201010559643A CN 102051710 B CN102051710 B CN 102051710B
Authority
CN
China
Prior art keywords
pzt
array
preparation
colloidal sol
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105596431A
Other languages
English (en)
Other versions
CN102051710A (zh
Inventor
陈彩凤
刘军
骆英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN2010105596431A priority Critical patent/CN102051710B/zh
Priority to US13/883,609 priority patent/US20140157558A1/en
Priority to PCT/CN2010/080554 priority patent/WO2012068764A1/zh
Publication of CN102051710A publication Critical patent/CN102051710A/zh
Application granted granted Critical
Publication of CN102051710B publication Critical patent/CN102051710B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/03Assembling devices that include piezoelectric or electrostrictive parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/1061Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive fibres
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Abstract

一种微细平直PZT压电纤维阵列的制造方法,涉及功能性陶瓷纤维的制造方法,具体为:用塑料毛细管作为反应模板,首先制备PZT溶胶,然后加入PZT纳米粉末,混合均匀形成悬浮液,将塑料毛细管置于两端开口的石英管中,用胶或石腊填充毛细管间的空隙及石英管与塑料毛细管间的空隙并固化成阵列形状,将石英管浸入所述悬浮液中,待充分吸附后,然后将其余悬浮液从石英管的一端倒入,并在另一端抽滤,以使悬浮液通过抽力进入塑料毛细管中,一直至毛细管内充满悬浮液;将石英管干燥至无多余液体成份,取出重复多次浸渍、抽滤、干燥,再进行模板脱除与晶化热处理,制备出直径为几个微米至几百微米,长度为0.5cm~3cm,平直而致密度高的PZT压电纤维阵列。

Description

一种微细平直PZT压电纤维阵列的制备方法
技术领域
本发明涉及功能性陶瓷纤维及其制造方法,具体为一种微细平直PZT压电纤维阵列的制造方法。
背景技术
压电纤维及其阵列结构因具有较高的压电应变常数和厚度机电耦合系数、低的机械品质因数和声阻抗等优异性能在传感器、驱动器、超声传感器装置以及汽车、航空等领域有着很大的潜在应用。
目前制备压电纤维常用的方法有溶胶-凝胶法、挤压法、纺丝法、拉拔法、机械切割法、基体纤维浸渍法等。如美国Advanced Cerametrics公司采用悬浮磁粉纺丝法制备了横断面尺寸在80~300μm的PZT纤维,但由于该方法使用大量的有机高分子作为载体,导致纤维经热解和烧结后内部有较多空隙,纤维均匀性下降,另外,悬浮体的粘度较大,很难控制直径较小的纤维;Williams等用切割法制备了压电纤维,由于该法是先制备压电陶瓷,再将其切割成纤维,纤维的大小与机械加工先进程度有关,但目前加工纤维横断面尺寸要达到100μm以下有一定难度;Brei等提出采用模板浸渍法制备碳纤维,该法制备的纤维具有一定的强度,纤维直径较细,但纤维极不平直,变形量很大;江苏大学用溶胶-粉末共混挤压法制备了直径为200-400μm的PZT纤维,此法制备的纤维密度较高,但纤维的粗细受模具的限制,要制备直径为100μm以下的平直纤维是极为困难的。
目前压电纤维阵列的获得基本上都是在制备压电纤维的基础上通过排列法得到,这种方法对于粗纤维构成的阵列有效,但对微细纤维,特别是直径小于几百微米的纤维,由于在操作的过程中很容易引起纤维的破损及阵列的混乱,因此采用排列法来得到阵列就显得极为不利。
发明内容
本发明的目的在于提供一种所得纤维具有单一钙钛矿相结构,平直且致密度高,直径为5~100μm,整齐有序,具有高的压电性能,能用于传感/驱动器件中1-3压电纤维复合材料的PZT压电纤维阵列的制备方法。
一种微细平直PZT压电纤维阵列的制备方法,其特征在于:用塑料毛细管作为反应模板,首先制备PZT溶胶,然后加入PZT纳米粉末,混合均匀形成悬浮液,将塑料毛细管剪成适当的长度置于两端开口并能在PZT烧结温度范围内使用的容器中,用胶或石腊填充毛细管间的空隙及容器与塑料毛细管间的空隙并固化成需要的阵列形状,将装有塑料毛细管的容器浸入所述悬浮液中,待充分吸附后,然后将其余悬浮液从容器的一端倒入,并在另一端抽滤,以使含有纳米PZT粉末的悬浮液通过抽力进入塑料毛细管中,一直至毛细管内充满悬浮液;将装有塑料毛细管的容器干燥至无多余液体成份,取出重复多次浸渍、抽滤、干燥,将上述干燥后的装有塑料毛细管的容器进行模板脱除与晶化热处理,得到PZT压电纤维阵列结构。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:PZT溶胶制备方法如下:将醋酸铅、硝酸锆、钛酸四丁酯在溶剂和稳定剂中混合均匀后,加入水和醋酸,在80℃低温加热和超声振荡条件下使混合物混合反应,并在磁力搅拌器上搅拌均匀后获得所述的溶胶。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:溶胶-粉末混合体系的制备方法如下:将PZT溶胶和纳米PZT粉末混合,加入PEG作为分散剂,在80℃低温下加热均匀搅拌,并超声分散使得混合物与溶胶充分混合均匀。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:溶剂为乙二醇单甲醚,稳定剂为乙酰丙酮。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述PZT溶胶和纳米PZT粉末的重量比例为1:0.05~1:0.5;PZT溶胶中包含醋酸铅、硝酸锆、钛酸四丁酯、水和醋酸,PZT溶胶的浓度为0.2~1.0mol/l,其中醋酸铅、硝酸锆、钛酸四丁酯的物质的量的比例为100:(50~60):(40~48),水与醋酸的重量比例为1:0.5~1:2。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述醋酸铅、硝酸锆、钛酸四丁酯的物质的量的比例为100:56:44。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述水与醋酸的重量比例为1:1。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述溶胶的浓度0.35Mol/l。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述PZT溶胶和PZT粉末的重量比例为1:0.1。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述纳米PZT粉末与PEG重量比为:1:0.001~1:0.008。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述纳米PZT粉末与PEG重量比为:1:0.005。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述模板脱除与晶化热处理的过程为:室温~200℃,升温速率1℃/min,200℃保温1h; 200~600℃,升温速率2℃/min,600℃保温1~2h; 600℃~950℃,升温速率3.5℃/ min,保温30 分钟。
所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述容器为石英管。
与现有的制备方法相比,本发明的突出优点:本方法可以精确控制纤维的直径和长度,能制备出直径仅在几个微米至几百微米,长度为0.5cm~3cm,平直而致密度高的PZT微细压电纤维,该PZT压电纤维具有单一钙钛矿相结构,表面光滑,具有高的压电性能;其次,本方法制备出的压电纤维不需手工排列即可直接形成各种需要的阵列结构,纤维排列整齐有序且破损少。
附图说明
图1为PZT压电纤维在750℃和950℃二种温度下烧结的X射线衍射谱图。图1中横坐标为衍射角,纵坐标为衍射强度。图1显示950℃烧结后纤维即具有单一的钙钛矿相;
图2为PZT压电纤维经950℃烧结后的扫描电镜图,图中纤维形貌显示纤维较为致密,无气孔;
图3为PZT压电纤维阵列在950℃烧结的扫描电镜图,图中纤维排列整齐有序,破损少。
具体实施方式
本发明设计的一种PZT压电纤维及其阵列结构,其特征在于用塑料毛细管作为模板,采用溶胶-PZT纳米粉末共混吸附与反应的方法来制备微细平直的PZT陶瓷纤维阵列。
其中溶胶和纳米PZT粉末的比例为1:0.05~1:0.5;溶胶中包含醋酸铅、硝酸锆、钛酸四丁酯、水、醋酸,溶胶的浓度为0.2~1.0mol/l,其中醋酸铅、硝酸锆、钛酸四丁酯的比例为100:(50~60):(40~48),水与醋酸的比例为1:0.5~1:2。
本发明所述PZT压电纤维的制备方法是按下列工艺进行:
1.PZT溶胶制备:将所述比例的醋酸铅、硝酸锆、钛酸四丁酯在的溶剂和稳定剂中处理后与上述比例的水和醋酸进行混合,在80℃低温加热和超声振荡条件下使混合物混合均匀,并在磁力搅拌器上搅拌均匀并完全产生水解反应后获得所述的溶胶;
2.溶胶-粉末混合体系的制备:将溶胶和纳米PZT粉末按上述所述比例混合,加入PEG作为分散剂,在80℃低温下加热均匀搅拌,并超声分散使得混合物与溶胶充分混合均匀;
3.PZT压电纤维的制备:将塑料毛细管剪成适当的长度,用胶或石腊填充毛细管间的空隙并固化成一定的阵列形状,置于石英管中,石英管与塑料毛细管间的空隙部分用胶或石腊等封住。先将装有塑料毛细管的石英管浸入所得悬浮液中,待充分吸附后,然后将所得悬浮液从石英管的上部缓缓倒入,并在下方抽滤,以使纳米PZT粉末通过抽力进入塑料毛细管中,一直至毛细管内充满粉末颗粒,将石英管与塑料毛细管置于烘箱内60℃干燥至无多余液体成份,取出重复多次浸渍、抽滤、干燥数次;
4.PZT压电纤维的热处理:将干燥后的石英管连同含纤维的塑料毛细管置于热处理炉内进行模板脱除与晶化热处理,得到PZT压电纤维阵列结构。
本发明PZT压电纤维及其阵列结构的制造方法所述的溶胶中溶剂为乙二醇单甲醚,稳定剂为乙酰丙酮。
本发明新型PZT压电纤维阵列的制造方法所述醋酸铅、硝酸锆、钛酸四丁酯的比例为100:(50~60):(40~48),最佳比例为100:56:44;溶胶粉末体系中,粉末均为纳米PZT粉, 如纳米PZT5,其中Zr:Ti=56:44。
本发明PZT压电纤维的制造方法所述水和醋酸比为1:0.5~1:2,理想比例为 1:1。若比例过大,则由于水的含量过高,溶胶的水解速度较快,会形成凝胶失去流动性;反之,比例过小,醋酸的含量过高,虽然有利于抑制水解的进行,但是在干燥和烧成的过程中,醋酸会挥发,扩大了纤维的收缩,同时还留下了大量的气孔,降低了纤维的致密度和强度,因此要求水和醋酸的比例在所述的范围内。
本发明PZT压电纤维的制造方法所述溶胶的浓度为0.2~1.0mol/l,理想浓度为0.35Mol/l。浓度过高,溶胶的粘度过大PZT纳米粉体不易分散;浓度过低,制备的纤维致密度受影响,因此要求溶胶浓度在一定的范围内。
本发明PZT压电纤维的制造方法所述溶胶和PZT粉末比为1:0.05~1:0.5,理想比例为1:0.1,当比例过高时,固相含量较低,粘度过低,形成纤维易变形,反之比例过低,溶胶粉末体系流动性差,易堵塞模板,因此,要求溶胶和PZT粉末的比例在所述范围内。
本发明的纳米PZT粉末与PEG重量比为:1:0.001~1:0.008,理想比例为1:0.005,当比例过大时,易形成胶束对纳米粉末在溶胶中的分散不利,当比例过少,不易达到良好分散粉末的目的,因此,要求粉末与PEG的比例在所述范围内。
本发明PZT压电纤维的制造方法所述热处理过程为:1. 室温~200℃,升温速率1℃/min,200℃保温1h,主要是纤维前驱体中水分及部分有机物的挥发;2. 200~600℃,升温速率2℃/min,600℃保温1~2h,主要为有机物的挥发和分解以及PZT纤维的晶化;3. 600℃~950℃,升温速率3.5℃/ min,主要为晶粒长大,纤维致密化和气孔的排出,保温30 分钟。
以下给出本发明的几个具体实施例:
实施例1:
    按摩尔比为100:56:44称取醋酸铅、硝酸锆、钛酸四丁酯四种原料,用乙二醇单甲醚均匀溶解混合,加入1:1的水和醋酸,在磁力搅拌作用下调整溶液浓度为0.3mol/l,获得溶胶,取溶胶10份,按溶胶:PZT粉末重量比为1:0.1称取1份的PZT纳米粉末,再加入PEG1000,加入量为PZT纳米粉末的0.5%,在磁力搅拌作用下分散半小时后置于超声分散仪中分散2小时,制备溶胶粉末体系,将内径为0.25mm的薄壁塑料毛细管剪成2cm长度,取50根排列成圆截面阵列形状,用石腊填充毛细管间的空隙置于内径为1cm的石英管中,室温固化30分钟,再用少量石腊封住石英管与塑料毛细管间的空隙,将装有塑料毛细管的石英管浸入上述溶胶粉末混合所得的悬浮液中。待充分吸附后,将上述悬浮液从石英管的上部缓缓倒入,并在下方抽滤,以使纳米PZT粉末通过抽力进入塑料毛细管中,一直至毛细管内充满粉末颗粒。将石英管与塑料毛细管置于烘箱内60℃干燥至无多余液体成份,取出重复三次浸渍、抽滤、干燥,将上述石英管连同含纤维的塑料毛细管置于热处理炉内煅烧至950℃进行模板与石腊的脱除、烧结,得到平均直径约为50μm,长度约为0.8cm的PZT压电纤维及其呈圆截面阵列整齐排列的结构。
实施例2:
按摩尔比为100:56:44称取醋酸铅、硝酸锆、钛酸四丁酯四种原料,用乙二醇单甲醚均匀溶解混合,加入1:1的水和醋酸,在磁力搅拌作用下调整溶液浓度为0.5mol/l,获得溶胶,取溶胶100份,按溶胶:PZT粉末重量比为1:0.06称取6份的PZT纳米粉末,再加入PEG400和PEG2000,加入量为PZT纳米粉末的0.6%,在磁力搅拌作用下分散半小时后置于超声分散仪中分散2小时,制备溶胶粉末体系,将内径为0.3mm的薄壁塑料毛细管剪成4cm长度,取100根排列成圆截面阵列形状,用501万能胶填充毛细管间的空隙置于内径为2cm的石英管中,室温固化6小时,再用少量501万能胶封住石英管与塑料毛细管间的空隙,将装有塑料毛细管的石英管浸入上述溶胶粉末混合所得的悬浮液中,待充分吸附后,将上述悬浮液从石英管的上部缓缓倒入,并在下方抽滤,以使纳米PZT粉末通过抽力进入塑料毛细管中,一直至毛细管内充满粉末颗粒,将石英管与塑料毛细管置于烘箱内60℃干燥至无多余液体成份,取出重复多次浸渍、抽滤、干燥数次,将上述石英管连同含纤维的塑料毛细管置于热处理炉内煅烧至1000℃进行模板与胶的脱除、烧结,得到平均直径约为80μm,长度为1.5cm左右的PZT压电纤维及其呈圆截面阵列整齐排列的结构。
实施例3:
按摩尔比为100:56:44称取醋酸铅、硝酸锆、钛酸四丁酯四种原料,用乙二醇单甲醚均匀溶解混合,加入1:1的水和醋酸,在磁力搅拌作用下调整溶液浓度为0.35mol/l,获得溶胶,取溶胶10份,按溶胶:PZT粉末重量比为1:0.4称取4份的PZT纳米粉末,再加入PEG1000,其重量为PZT纳米粉末的0.5%,在磁力搅拌作用下分散半小时后置于超声分散仪中分散2小时,制备溶胶粉末体系,将内径为0.1mm的薄壁塑料毛细管剪成2cm长度,取49根排列成7×7根的方形阵列形状,用501万能胶填充毛细管间的空隙置于内径为4cm的石英管中,室温固化6小时,再用少量501万能胶封住石英管与塑料毛细管间的空隙,将装有塑料毛细管的石英管浸入上述溶胶粉末混合所得的悬浮液中,待充分吸附后,将上述悬浮液从石英管的上部缓缓倒入,并在下方抽滤,以使纳米PZT粉末通过抽力进入塑料毛细管中,一直至毛细管内充满粉末颗粒,将石英管与塑料毛细管置于烘箱内60℃干燥至无多余液体成份,取出重复多次浸渍、抽滤、干燥数次,将上述石英管连同含纤维的塑料毛细管置于热处理炉内煅烧至950℃进行模板与胶的脱除、烧结,得到平均直径约为30μm,长度为0.8cm左右的7×7根PZT压电纤维方形阵列结构。

Claims (10)

1.一种微细平直PZT压电纤维阵列的制备方法,所述PZT压电纤维的直径为5~100μm,其特征在于:用塑料毛细管作为反应模板,首先制备PZT溶胶,然后加入PZT纳米粉末,混合均匀形成悬浮液,将塑料毛细管剪成适当的长度置于两端开口并能在PZT烧结温度范围内使用的容器中,用胶或石腊填充毛细管间的空隙及容器与塑料毛细管间的空隙并固化成需要的阵列形状,将装有塑料毛细管的容器浸入所述悬浮液中,待充分吸附后,然后将其余悬浮液从容器的一端倒入,并在另一端抽滤,以使含有PZT纳米粉末的悬浮液通过抽力进入塑料毛细管中,一直至毛细管内充满悬浮液;将装有塑料毛细管的容器干燥至无多余液体成份,取出重复多次浸渍、抽滤、干燥,将上述干燥后的装有塑料毛细管的容器进行模板脱除与晶化热处理,得到PZT压电纤维阵列结构。
2.如权利要求1所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:PZT溶胶制备方法如下:将醋酸铅、硝酸锆、钛酸四丁酯在溶剂和稳定剂中混合均匀后,加入水和醋酸,在80℃低温加热和超声振荡条件下使混合物混合反应,并在磁力搅拌器上搅拌均匀后获得所述的溶胶。
3.如权利要求1所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述悬浮液的制备方法如下:首先制备PZT溶胶,然后加入PZT纳米粉末,加入PEG作为分散剂,在80℃低温下加热均匀搅拌,并超声分散使得混合物与溶胶充分混合均匀。
4.如权利要求2所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:溶剂为乙二醇单甲醚,稳定剂为乙酰丙酮。
5.如权利要求1所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述PZT溶胶和PZT纳米粉末的重量比例为1:0.05~1:0.5;PZT溶胶中包含醋酸铅、硝酸锆、钛酸四丁酯、水和醋酸,PZT溶胶的浓度为0.2~1.0mol/l,其中醋酸铅、硝酸锆、钛酸四丁酯的物质的量的比例为100:(50~60):(40~48),水与醋酸的重量比例为1:0.5~1:2。
6.如权利要求5所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述醋酸铅、硝酸锆、钛酸四丁酯的物质的量的比例为100:56:44,所述水与醋酸的重量比例为1:1,所述溶胶的浓度0.35mol/l,所述PZT溶胶和PZT纳米粉末的重量比例为1:0.1。
7.如权利要求3所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述PZT纳米粉末与PEG重量比为:1:0.001~1:0.008。
8.如权利要求7所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述PZT纳米粉末与PEG重量比为:1:0.005。
9.如权利要求1所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述模板脱除与晶化热处理的过程为:室温~200℃,升温速率1℃/min,200℃保温1h; 200~600℃,升温速率2℃/min,600℃保温1~2h; 600℃~950℃,升温速率3.5℃/ min,保温30 分钟。
10.如权利要求1所述的一种微细平直PZT压电纤维阵列的制备方法,其特征在于:所述容器为石英管。
CN2010105596431A 2010-11-26 2010-11-26 一种微细平直pzt压电纤维阵列的制备方法 Expired - Fee Related CN102051710B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010105596431A CN102051710B (zh) 2010-11-26 2010-11-26 一种微细平直pzt压电纤维阵列的制备方法
US13/883,609 US20140157558A1 (en) 2010-11-26 2010-12-31 Method for preparing micro straight pzt piezoelectric fiber array
PCT/CN2010/080554 WO2012068764A1 (zh) 2010-11-26 2010-12-31 一种微细平直pzt压电纤维阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105596431A CN102051710B (zh) 2010-11-26 2010-11-26 一种微细平直pzt压电纤维阵列的制备方法

Publications (2)

Publication Number Publication Date
CN102051710A CN102051710A (zh) 2011-05-11
CN102051710B true CN102051710B (zh) 2012-11-07

Family

ID=43956494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105596431A Expired - Fee Related CN102051710B (zh) 2010-11-26 2010-11-26 一种微细平直pzt压电纤维阵列的制备方法

Country Status (3)

Country Link
US (1) US20140157558A1 (zh)
CN (1) CN102051710B (zh)
WO (1) WO2012068764A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603306A (zh) * 2012-03-22 2012-07-25 厦门大学 一种压电陶瓷纤维的压力挤出成型方法
WO2014069477A1 (ja) * 2012-10-31 2014-05-08 日本バルカー工業株式会社 圧電積層体
CN103898632B (zh) * 2012-12-28 2016-03-02 中国科学院声学研究所 一种致密压电陶瓷纤维的制备方法及致密压电陶瓷纤维
CN103258952B (zh) * 2013-04-24 2014-12-31 武汉纺织大学 一种聚偏氟乙烯纤维阵列压电膜及其制备方法
CN111617516B (zh) * 2020-07-10 2022-06-07 安徽师范大学 以金属丝为模板的硅胶整体开管毛细管柱及其制备方法
CN112279641B (zh) * 2020-10-22 2022-08-23 江西欧迈斯微电子有限公司 一种压电纤维及其制备方法
CN116082895B (zh) * 2022-11-28 2024-04-19 北京航空航天大学 一种柔性纤维阵列涂层及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064596A (en) * 1986-06-06 1991-11-12 Mitsubishi Kasei Corporation Process for preparing a slender or thin ceramic green body
CN101190845A (zh) * 2007-12-20 2008-06-04 厦门大学 一种锆钛酸铅陶瓷纤维的制备方法
CN101358388A (zh) * 2008-07-10 2009-02-04 江苏大学 一种pzt压电纤维及其制备方法
CN101367229A (zh) * 2008-09-01 2009-02-18 姚志刚 一种耐火纤维制品成型方法及专用设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726099A (en) * 1986-09-17 1988-02-23 American Cyanamid Company Method of making piezoelectric composites
US4933230A (en) * 1986-09-17 1990-06-12 American Cyanamid Piezoelectric composites
US4921328A (en) * 1989-05-26 1990-05-01 Alfred University Polycrystalline ferroelectric fiber
US5340510A (en) * 1993-04-05 1994-08-23 Materials Systems Incorporated Method for making piezoelectric ceramic/polymer composite transducers
US5660877A (en) * 1995-10-02 1997-08-26 General Electric Company Method for fabricating lamellar piezoelectric preform and composite
US6191523B1 (en) * 1997-07-30 2001-02-20 The United States Of America As Represented By The Secretary Of The Navy Tranducing composite of sintered piezoelectric ceramic granules in a polymer matrix
DE19954020C2 (de) * 1999-11-10 2002-02-28 Fraunhofer Ges Forschung Verfahren zur Herstellung eines piezoelektrischen Wandlers
US7029598B2 (en) * 2002-06-19 2006-04-18 Fuji Photo Film Co., Ltd. Composite material for piezoelectric transduction
JP5616171B2 (ja) * 2009-09-28 2014-10-29 富士フイルム株式会社 高分子複合圧電体及びそれを用いた圧電素子
CN101774537B (zh) * 2009-10-23 2013-04-03 东华大学 一种微通道垂直生长TiO2包覆ZnO纳米棒阵列的制备方法
US8680751B2 (en) * 2010-12-02 2014-03-25 Georgia Tech Research Corporation Hybrid nanogenerator for harvesting chemical and mechanical energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064596A (en) * 1986-06-06 1991-11-12 Mitsubishi Kasei Corporation Process for preparing a slender or thin ceramic green body
CN101190845A (zh) * 2007-12-20 2008-06-04 厦门大学 一种锆钛酸铅陶瓷纤维的制备方法
CN101358388A (zh) * 2008-07-10 2009-02-04 江苏大学 一种pzt压电纤维及其制备方法
CN101367229A (zh) * 2008-09-01 2009-02-18 姚志刚 一种耐火纤维制品成型方法及专用设备

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
刘瑞华.纳米TiO2复合织物的制备及其对氨气的光催化降解.《中国优秀硕士学位论文全文数据库》.2006,中文摘要. *
张芳等.聚乙二醇加入量对锆钛酸铅粉体细度的影响.《大连轻工业学院学报》.2002,第21卷(第3期),第164-167页. *
杨杰.PZT压电纤维的制备与性能研究.《中国优秀硕士学位论文全文数据库》.2009,第15页. *
聂国旗.压电陶瓷纤维的制备与性能测试研究.《中国优秀硕士学位论文全文数据库》.2010,第26-29页. *
陈彩凤等.活性炭微反应器法制备PZT压电纤维的研究.《第三届全国压电和声波理论及器件技术研讨会论文集》.2008,第342-345页. *
陈彩凤等.炭模板法制备PZT压电复合纤维.《2009年全国压电和声波理论及器件技术研讨会暨2009年全国频率控制技术年会论文集》.2009,第254-256页. *

Also Published As

Publication number Publication date
US20140157558A1 (en) 2014-06-12
CN102051710A (zh) 2011-05-11
WO2012068764A1 (zh) 2012-05-31

Similar Documents

Publication Publication Date Title
CN102051710B (zh) 一种微细平直pzt压电纤维阵列的制备方法
Yuan et al. Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process
US11680017B2 (en) Geopolymeric formulations and associated methods for the manufacturing of three-dimensional structures
IL180965A (en) Method for obtaining porous ceramic materials
CN104141181B (zh) 一种含有SiO2掺杂的ZrO2纤维的制备方法
CN103708828B (zh) 一种钛酸铋钠-钛酸钡无铅复合压电厚膜的制备方法
WO2017004776A1 (zh) 多孔氧化铝陶瓷及其制备方法
CN103183513A (zh) 一种质子导电陶瓷电解质薄膜的制备方法
CN108176249A (zh) 一种碳化硅纳米纤维膜的制备方法
CN114516657B (zh) 一种高熵氧化物陶瓷纳米晶及其制备方法和应用
CN101358388B (zh) 一种pzt压电纤维及其制备方法
Liu et al. Effects of SDBS and ZrO2 additives on the microstructure and properties of silicon-bonded SiC porous ceramics
CN101948305B (zh) 低温烧结(Ba
CN108000684A (zh) 一种粉末注射成型用粘结剂制备方法及其应用
EP3652266B1 (en) Phase-change material and method for producing same
Liu et al. Effect of the slurry composition on the piezoelectric properties of PZT ceramics fabricated via materials extrusion 3D printing
CN105314996A (zh) 一种单向直通多孔碳化硅-硅陶瓷材料的制备方法
WO2024078182A1 (zh) 一种高透气性陶瓷纤维过滤管的制备方法
CN101531509A (zh) 一种BaTiO3-SrTiO3混相瓷粉的制备方法
Al-Hartomy et al. Synthesis, characterization, and dielectric properties of nanocrystalline Ba1− xPbxZrO3 (0≤ x≤ 0.75) by polymeric citrate precursor route
CN108164282A (zh) 一种凹凸棒石复合陶瓷膜支撑体及其制备方法和应用
CN1222491C (zh) 制备钨酸锆陶瓷体的方法及其所制得的钨酸锆陶瓷体与光纤光栅温度补偿装置
Prabhakaran et al. Magnesia induced coagulation of aqueous PZT powder suspensions for direct coagulation casting
CN102267721B (zh) 化学式为Ca0.4Sr0.6Bi4Ti4O15的钙钛矿结构多晶纳米粉体快速制备方法
CN105778109B (zh) 一种钛酸钡陶瓷聚合物前驱体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121107

Termination date: 20141126

EXPY Termination of patent right or utility model