CN116514577A - 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法 - Google Patents

宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法 Download PDF

Info

Publication number
CN116514577A
CN116514577A CN202310497377.1A CN202310497377A CN116514577A CN 116514577 A CN116514577 A CN 116514577A CN 202310497377 A CN202310497377 A CN 202310497377A CN 116514577 A CN116514577 A CN 116514577A
Authority
CN
China
Prior art keywords
ceramic
spring
carbon
template frame
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310497377.1A
Other languages
English (en)
Other versions
CN116514577B (zh
Inventor
季惠明
郇正利
陈之伟
苏冬
祝文霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202310497377.1A priority Critical patent/CN116514577B/zh
Publication of CN116514577A publication Critical patent/CN116514577A/zh
Application granted granted Critical
Publication of CN116514577B publication Critical patent/CN116514577B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5058Boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5066Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明公开了一种宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法,陶瓷弹簧材料包括:碳弹簧模板框架及其上包覆的陶瓷层,碳弹簧模板框架为碳形成的三维网状结构。陶瓷弹簧材料的制备方法包括以下步骤:将三聚氰胺泡沫热压,得到三聚氰胺弹簧海绵,将三聚氰胺弹簧海绵碳化裂解,得到碳弹簧模板框架;在碳弹簧模板框架上包覆陶瓷层,得到陶瓷弹簧材料。本发明的碳弹簧模板框架受压缩时,易于变形和吸收能量,回弹时,层状结构能均匀地释放能量,使其具有优异的抗疲劳性能,极大缩短了压力传感器的响应回复时间,大大降低了压力传感器的检测下限。由本发明陶瓷弹簧材料获得的压力传感器能够应用在高达500℃极端高温条件下,应变范围达到60%。

Description

宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法
技术领域
本发明属于柔性压力传感器技术领域,具体来说涉及一种宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法。
背景技术
柔性压力传感器在人机交互、生物医学监测、空间探索、汽车工业等应用领域得到了广泛关注。多样化、复杂的应用环境对传感器性能提出了多功能和更高的要求。例如,无人或载人航天器的传感设备必须在深低温条件下可靠运行,而传感设备需要设计成能够承受高温环境(高达500℃),用于消防员、汽车发动机和航空航天电子设备的生理监测。因此,迫切需要在恶劣环境下同时实现多功能、快速响应/恢复、高灵敏度、实时监测和良好稳定性的压力传感器。
目前,Mxene基和碳材料作为两种常见的压阻柔性传感材料,由于其低密度、高灵敏度、响应快、超弹性等特点,在压力传感器领域中得到了广泛的关注。专利CN 110358142A公开了一种宽温域范围内用高灵敏度柔性复合海绵压敏传感器的制备方法,以聚酰亚胺海绵为模板,通过真空浸渍和水热组装还原手段,向其中添加氧化石墨烯导电填料,然后再进行后续真空冷冻干燥处理得到柔性复合海绵压敏传感器,该传感器具有灵敏度高和导电材料填充均匀的特点,可用于-196℃至300℃的温域范围内。Yanan Ma等人(Y.M.Xie,Y.F.Cheng,Y.N.Ma,et al.3D MXene-based flexible network for high-performancepressure sensor with a wide temperature range,Adv.Sci.200(2022)2205303.)制备了高灵敏度的MXene/聚醚酰亚胺网络压阻传感材料,具有较高的灵敏度(-5℃,80kPa-1)(150℃,20kPa-1),较短的响应时间(163ms),检测限低至9Pa,可以在-5℃~150℃宽温度范围正常使用。Zhangpeng Li等人(T.D.Chen,G.C.Yang,Y.Y.Li,et al.Temperature-adaptable pressure sensors based on MXene-coated GO hierarchical aerogelswith superb detection capability,Carbon 200(2022)47-55.)制备了氧化石墨烯包覆mxene的多级孔结构气凝胶,具有较高的灵敏度(1.744kPa-1),快速的响应时间(4.5ms),适用于-196℃至300℃的温度范围内。因此,现有MXene基和碳基宽温域传感器柔性敏感材料的抗氧化性能较弱,阻碍了它们在极端高温含氧条件(高达300℃)下的应用,除此之外,现有柔性聚合物材料在复杂环境条件下会出现更严重的性能退化甚至完全失效,显然,现有的宽温域柔性敏感材料在恶劣环境条件下不稳定的材料性能限制了它们的应用。
与MXene基和碳材料相比,前驱体陶瓷材料具有本征的抵抗高温、低温和腐蚀化学等恶劣环境的能力,已成为常用的高温压力传感器之一。专利CN 109678519A公开了一种基于聚合物前驱体陶瓷的高温压力传感器,该传感器可在超过800℃条件下使用,并且使用寿命高。然而,由于其机械刚性和脆性,无法应用于柔性传感器中。
综上所述,现有技术中对于柔性压力传感器温度适用范围较窄的问题,尚缺乏有效的解决方案。
发明内容
针对目前采用碳基、MXene基和聚合物基材料作为敏感材料的传感器,存在高温抗氧化性能差、耐腐蚀性能差和抗疲劳性能差等问题,本发明的目的在于提供一种陶瓷弹簧材料的制备方法,该制备方法获得的陶瓷弹簧材料具有优异的高温抗氧化、耐腐蚀和疏水性能。
本发明的另一目的是提供一种陶瓷弹簧材料,该陶瓷弹簧材料采用陶瓷层与具有层状和类弹簧结构的碳模板复合。
本发明的目的是通过下述技术方案予以实现的。
一种陶瓷弹簧材料,包括:碳弹簧模板框架及其上包覆的陶瓷层,所述碳弹簧模板框架为碳形成的三维网状结构。
在上述技术方案中,所述陶瓷层的材质为硅氧碳陶瓷、碳化硅陶瓷或硅硼碳氮陶瓷在上述技术方案中,所述陶瓷层的厚度为50~500nm,优选为100~200nm。
一种陶瓷弹簧材料的制备方法,包括以下步骤:
步骤1,将三聚氰胺泡沫热压,得到三聚氰胺弹簧海绵,将三聚氰胺弹簧海绵碳化裂解,得到碳弹簧模板框架;
在所述步骤1中,所述热压为单轴定向热压。
在所述步骤1中,三聚氰胺弹簧海绵的厚度和三聚氰胺泡的厚度的比为(1~4):8。
在所述步骤1中,所述热压的压强为40~100kPa,所述热压的温度为230~250℃,所述热压的时间为15~20min。
在所述步骤1中,所述碳化裂解的温度为700~1000℃,所述碳化裂解的时间为1~3小时,所述碳化裂解于氮气或惰性气体环境下进行。
步骤2,在步骤1制备所得碳弹簧模板框架上包覆陶瓷层,得到陶瓷弹簧材料,其中,所述陶瓷层的材质为硅氧碳陶瓷、碳化硅陶瓷或硅硼碳氮陶瓷。
在所述步骤2中,所述陶瓷层的厚度为50~500nm,优选为100~200nm。
在所述步骤2中,包覆陶瓷层的方法为:在前驱体浸渍溶液中将碳弹簧模板框架真空浸渍至少1次,每次真空浸渍后先烘干再交联,完成全部的真空浸渍后,在氮气或惰性气体环境下裂解陶瓷化,在碳弹簧模板框架上获得陶瓷层,其中,所述前驱体浸渍溶液包括:聚合物前驱体、铂催化剂和有机溶剂。
在上述技术方案中,所述前驱体浸渍溶液在惰性气体环境下制备而成。
在上述技术方案中,所述聚合物前驱体为含氢聚硅氧烷、聚硅碳烷或聚硅氮烷,所述铂催化剂为Karstedt催化剂。
在上述技术方案中,当所述聚合物前驱体为含氢聚硅氧烷时,所述前驱体浸渍溶液还包括交联剂和造孔剂,按质量份数计,所述造孔剂、交联剂和聚合物前驱体的比为(1~3):(10~20):(5~10)。
在上述技术方案中,所述前驱体浸渍溶液中聚合物前驱体的质量分数为0.5~10wt%,按质量份数计,铂催化剂和聚合物前驱体的比为(0.5~2):100。
在所述步骤2中,所述有机溶剂为正己烷、环己烷、四氢呋喃、二氯甲烷或三氯甲烷。
在所述步骤2中,所述真空浸渍的次数为1~4次。
在所述步骤2中,所述烘干的温度为50~70℃,所述烘干的时间为5~7小时。
在所述步骤2中,所述交联为于80~120℃干燥2~5小时。
在所述步骤2中,所述裂解陶瓷化为于800~1200℃保温1~3小时。
上述制备方法获得的陶瓷弹簧材料。
上述陶瓷弹簧材料作为压力传感器中敏感材料的应用。
本发明将三聚氰胺泡沫单轴定向热压后,使得在三聚氰胺泡沫内部形成高度有序的层状与类弹簧各向异性结构,制备得到碳弹簧模板框架,碳弹簧模板框架受压缩时,易于变形和吸收能量,回弹时,层状结构能均匀地释放能量,使其具有优异的抗疲劳性能,极大缩短了压力传感器的响应回复时间,大大降低了压力传感器的检测下限。
本发明与现有技术相比,具有以下优点:
(1)本发明的制备方法简单易行,材料价廉易得,成本低;
(2)由本发明陶瓷弹簧材料获得的压力传感器能够应用在极端高温含氧条件(高达500℃)下,优于传统柔性压力传感器的应用温域(通常小于300℃)。因此可以广泛地应用于无人或载人航天器、消防员、汽车发动机和航空航天电子设备等领域的有效监测,拓展了柔性传感器的应用领域。
(3)由本发明陶瓷弹簧材料获得的压力传感器的应变范围达到60%,远大于已报道的前驱体陶瓷相关的柔性压力传感器。因此具有更好的柔性和回弹性以及应用于大应变的场景。
附图说明
图1为实施例1制备陶瓷弹簧材料在常温下的10%、30%、50%和60%应变下的应力-应变回复曲线;
图2为实施例1制备陶瓷弹簧材料在500℃下的压阻性能;
图3为X-射线粉末衍射图谱,其中,SiOC@C Spring-1为实施例6所得陶瓷弹簧材料的X-射线粉末衍射图谱,SiOC@C Spring-2为实施例1所得陶瓷弹簧材料的X-射线粉末衍射图谱,SiOC@C Spring-3为实施例4所得陶瓷弹簧材料的X-射线粉末衍射图谱;
图4为扫描电镜照片,其中,(a)为实施例3制备所得陶瓷弹簧材料的扫描电镜照片,(b)为实施例1制备所得陶瓷弹簧材料的扫描电镜照片,(c)为实施例1制备所得陶瓷弹簧材料的扫描电镜照片,(d)为实施例5制备所得陶瓷弹簧材料的微观形貌扫描电镜照片,(e)为实施例1制备所得陶瓷弹簧材料中硅氧碳陶瓷厚度的显微镜照片,(f)为实施例2制备所得陶瓷弹簧材料中硅氧碳陶瓷厚度的显微镜照片;
图5为实施例1制备得到的压力传感器的压阻性能,其中,(a)为压力传感器在-1~1V电压范围内不同压力下的I-V曲线,(b)为压力传感器的线性灵敏度,(c)为压力传感器的不同动态频率压阻测试,(d-f)为压力传感器的响应回复时间。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
下述实施例中所涉及仪器的型号如下:5.0kV场发射扫描电镜(SEM,TDCLS-S4800,日本)、x射线衍射仪(XRD,D8 Advanced,德国,Cu Ka辐射,扫描速度为10°-min-1)、万用表(Keithley 2750)、LD24.204万能试验机(Lishi(Shanghai)Instruments Co.,Ltd,China,高温)、万能试验机(CMT4303,Meister Industrial Systems,China,常温)。
下述实施例中所涉及药品的购买源如下:市售的三聚氰胺泡沫(郑州科技股份有限公司中国)、含氢聚硅氧烷(phms,深圳吉鹏氟化硅材料有限公司)、四甲基四乙烯基环四硅氧烷(D4Vi,[MeViSiO]4,深圳吉鹏氟化硅材料有限公司)、聚二甲基硅氧烷(PDMS,天津科美欧化学试剂公司)、铂配合物(Karstedt催化剂,[Pt]:3000ppm,深圳鸿维有机硅材料公司)、环己烷(上海阿拉丁生化科技股份有限公司)、石墨烯/金叉指电极(叉指电极,购买自西鑫科技研发有限公司)。
实施例1
一种陶瓷弹簧材料的制备方法,包括以下步骤:
步骤1,将三聚氰胺泡沫先后依次用无水乙醇和去离子水清洗,在80℃的烘箱中烘干12小时,将三聚氰胺泡沫放入压缩模具中,以80kPa的压强单轴定向热压18min,得到三聚氰胺弹簧海绵,其中,三聚氰胺弹簧海绵的厚度和三聚氰胺泡的厚度的比为4:8,单轴定向热压的温度为240℃。于氩气环境下,将三聚氰胺弹簧海绵于700℃碳化裂解1h,得到碳弹簧模板框架。
步骤2,将步骤1制备所得碳弹簧模板框架(15×15×3mm)真空浸渍1次,真空浸渍的步骤为:将碳弹簧模板框架完全浸入前驱体浸渍溶液中,在真空烘箱中保持真空浸渍10分钟,真空浸渍后先在鼓风烘箱中于50℃烘干5小时,再交联,在氩气环境下于1000℃保温1小时以裂解陶瓷化,得到陶瓷弹簧材料,其中,交联为于80℃干燥2小时,前驱体浸渍溶液为聚合物前驱体、铂催化剂、交联剂、造孔剂和有机溶剂在惰性气体环境下混合的混合物,聚合物前驱体为含氢聚硅氧烷(phms),铂催化剂为Karstedt催化剂,有机溶剂为环己烷,造孔剂为PDMS,交联剂为四甲基四乙烯基环四硅氧烷,前驱体浸渍溶液的制备方法为:在氩气气氛下,将聚合物前驱体、交联剂和有机溶剂混合,磁力搅拌30min,再加入造孔剂和铂催化剂,磁力搅拌10min,得到前驱体浸渍溶液,前驱体浸渍溶液中聚合物前驱体的质量分数为2wt%,按质量份数计,铂催化剂和聚合物前驱体的比为1:100,按质量份数计,造孔剂、交联剂和聚合物前驱体的比为3:20:10。
经测试,碳弹簧模板框架外包覆的硅氧碳陶瓷的厚度为100nm,陶瓷弹簧材料的压缩回弹的最大应变为60%,室温下由陶瓷弹簧材料组装成的压力传感器的灵敏度为282.46kPa-1,应用温度可达500℃。
陶瓷弹簧材料对1mol/L HCl水溶液、1mol/L NaOH水溶液和25摄氏度的饱和NaCl水溶液的接触角分别为147.4°、147.6°和148.8°。
将由实施例1所得陶瓷弹簧材料组装而成的压力传感器置于1mol/L HCl水溶液、1mol/L NaOH水溶液和25摄氏度的饱和NaCl溶液中,10次压缩循环后,压力传感器的实时电流信号稳定,表明由本发明陶瓷弹簧材料组装而成的压力传感器具有优异的耐腐蚀性能。
实施例2
一种陶瓷弹簧材料的制备方法,包括以下步骤:
步骤1,将三聚氰胺泡沫先后依次用无水乙醇和去离子水清洗,在80℃的烘箱中烘干12小时,将三聚氰胺泡沫放入压缩模具中,以80kPa的压强单轴定向热压18min,得到三聚氰胺弹簧海绵,其中,三聚氰胺弹簧海绵的厚度和三聚氰胺泡的厚度的比为4:8,单轴定向热压的温度为240℃。于氩气环境下,将三聚氰胺弹簧海绵于700℃碳化裂解1h,得到碳弹簧模板框架。
步骤2,将步骤1制备所得碳弹簧模板框架(15×15×3mm)真空浸渍2次,每次真空浸渍的步骤为:将碳弹簧模板框架完全浸入前驱体浸渍溶液中,在真空烘箱中保持真空浸渍10分钟,每次真空浸渍后先在鼓风烘箱中于50℃烘干5小时,再交联,完成全部的真空浸渍后,在氩气环境下于1000℃保温1小时以裂解陶瓷化,得到陶瓷弹簧材料,其中,交联为于80℃干燥2小时,前驱体浸渍溶液为聚合物前驱体、铂催化剂、交联剂、造孔剂和有机溶剂在惰性气体环境下混合的混合物,聚合物前驱体为含氢聚硅氧烷(phms),铂催化剂为Karstedt催化剂,有机溶剂为环己烷,造孔剂为PDMS,交联剂为四甲基四乙烯基环四硅氧烷,前驱体浸渍溶液的制备方法为:在氩气气氛下,将聚合物前驱体、交联剂和有机溶剂混合,磁力搅拌30min,再加入造孔剂和铂催化剂,磁力搅拌10min,得到前驱体浸渍溶液,前驱体浸渍溶液中聚合物前驱体的质量分数为2wt%,按质量份数计,铂催化剂和聚合物前驱体的比为1:100,按质量份数计,造孔剂、交联剂和聚合物前驱体的比为3:20:10。
经测试,碳弹簧模板框架外包覆的硅氧碳陶瓷的厚度为200nm,陶瓷弹簧材料的压缩回弹的最大应变为60%,室温下由陶瓷弹簧材料组装成的压力传感器的灵敏度为262.37kPa-1,应用温度可达500℃。
实施例3
一种陶瓷弹簧材料的制备方法,包括以下步骤:
步骤1,将三聚氰胺泡沫先后依次用无水乙醇和去离子水清洗,在80℃的烘箱中烘干12小时,于氩气环境下,将三聚氰胺泡沫于700℃碳化裂解1h,得到碳泡沫模板框架。
步骤2,将步骤1制备所得碳泡沫模板框架(15×15×3mm)真空浸渍1次,真空浸渍的步骤为:将碳弹簧模板框架完全浸入前驱体浸渍溶液中,在真空烘箱中保持真空浸渍10分钟,真空浸渍后先在鼓风烘箱中于50℃烘干5小时,再交联,在氩气环境下于1000℃保温1小时以裂解陶瓷化,得到陶瓷弹簧材料,其中,交联为于80℃干燥2小时,前驱体浸渍溶液为聚合物前驱体、铂催化剂、交联剂、造孔剂和有机溶剂在惰性气体环境下混合的混合物,聚合物前驱体为含氢聚硅氧烷,铂催化剂为Karstedt催化剂,有机溶剂为环己烷,造孔剂为PDMS,交联剂为四甲基四乙烯基环四硅氧烷,前驱体浸渍溶液的制备方法为:在氩气气氛下,将聚合物前驱体、交联剂和有机溶剂混合,磁力搅拌30min,再加入造孔剂和铂催化剂,磁力搅拌10min,得到前驱体浸渍溶液,前驱体浸渍溶液中聚合物前驱体的质量分数为2wt%,按质量份数计,铂催化剂和聚合物前驱体的比为1:100,按质量份数计,造孔剂、交联剂和聚合物前驱体的比为3:20:10。
经测试,碳泡沫模板框架外包覆的硅氧碳陶瓷的厚度为100nm,陶瓷弹簧材料的压缩回弹的最大应变为30%,室温下由陶瓷弹簧材料组装成的压力传感器的灵敏度为163.21kPa-1,应用温度可达500℃。
实施例4
一种陶瓷弹簧材料的制备方法,包括以下步骤:
步骤1,将三聚氰胺泡沫先后依次用无水乙醇和去离子水清洗,在80℃的烘箱中烘干12小时,将三聚氰胺泡沫放入压缩模具中,以80kPa的压强单轴定向热压18min,得到三聚氰胺弹簧海绵,其中,三聚氰胺弹簧海绵的厚度和三聚氰胺泡的厚度的比为4:8,单轴定向热压的温度为240℃。于氩气环境下,将三聚氰胺弹簧海绵于700℃碳化裂解1h,得到碳弹簧模板框架。
步骤2,将步骤1制备所得碳弹簧模板框架(15×15×3mm)真空浸渍1次,真空浸渍的步骤为:将碳弹簧模板框架完全浸入前驱体浸渍溶液中,在真空烘箱中保持真空浸渍10分钟,真空浸渍后先在鼓风烘箱中于50℃烘干5小时,再交联,在氩气环境下于1000℃保温1小时以裂解陶瓷化,得到陶瓷弹簧材料,其中,交联为于80℃干燥2小时,前驱体浸渍溶液为聚合物前驱体、铂催化剂、交联剂、造孔剂和有机溶剂在惰性气体环境下混合的混合物,聚合物前驱体为含氢聚硅氧烷,铂催化剂为Karstedt催化剂,有机溶剂为环己烷,造孔剂为PDMS,交联剂为四甲基四乙烯基环四硅氧烷,前驱体浸渍溶液的制备方法为:在氩气气氛下,将聚合物前驱体、交联剂和有机溶剂混合,磁力搅拌30min,再加入造孔剂和铂催化剂,磁力搅拌10min,得到前驱体浸渍溶液,前驱体浸渍溶液中聚合物前驱体的质量分数为3wt%,按质量份数计,铂催化剂和聚合物前驱体的比为1:100,按质量份数计,造孔剂、交联剂和聚合物前驱体的比为3:20:10。
经测试,碳弹簧模板框架外包覆的硅氧碳陶瓷的厚度为150nm,陶瓷弹簧材料的压缩回弹的最大应变为60%,室温下由陶瓷弹簧材料组装成的压力传感器的灵敏度为268.56kPa-1,应用温度可达500℃。
实施例5
一种陶瓷弹簧材料的制备方法,包括以下步骤:
步骤1,将三聚氰胺泡沫先后依次用无水乙醇和去离子水清洗,在80℃的烘箱中烘干12小时,将三聚氰胺泡沫放入压缩模具中,以80kPa的压强单轴定向热压18min,得到三聚氰胺弹簧海绵,其中,三聚氰胺弹簧海绵的厚度和三聚氰胺泡的厚度的比为4:8,单轴定向热压的温度为240℃。于氩气环境下,将三聚氰胺弹簧海绵于700℃碳化裂解1h,得到碳弹簧模板框架。
步骤2,将步骤1制备所得碳弹簧模板框架(15×15×3mm)真空浸渍1次,真空浸渍的步骤为:将碳弹簧模板框架完全浸入前驱体浸渍溶液中,在真空烘箱中保持真空浸渍10分钟,真空浸渍后先在鼓风烘箱中于50℃烘干5小时,再交联,在氩气环境下于1000℃保温1小时以裂解陶瓷化,得到陶瓷弹簧材料,其中,交联为于80℃干燥2小时,前驱体浸渍溶液为聚合物前驱体、铂催化剂、交联剂和有机溶剂在惰性气体环境下混合的混合物,聚合物前驱体为含氢聚硅氧烷,铂催化剂为Karstedt催化剂,有机溶剂为环己烷,交联剂为四甲基四乙烯基环四硅氧烷,前驱体浸渍溶液的制备方法为:在氩气气氛下,将聚合物前驱体、交联剂和有机溶剂混合,磁力搅拌30min,再加入铂催化剂,磁力搅拌10min,得到前驱体浸渍溶液,前驱体浸渍溶液中聚合物前驱体的质量分数为2wt%,按质量份数计,铂催化剂和聚合物前驱体的比为1:100,按质量份数计,交联剂和聚合物前驱体的比为20:10。
经测试,碳弹簧模板框架外包覆的硅氧碳陶瓷的厚度为100nm,陶瓷弹簧材料的压缩回弹的最大应变为20%,室温下由陶瓷弹簧材料组装成的压力传感器的灵敏度为141.58kPa-1,应用温度可达500℃。
实施例6
一种陶瓷弹簧材料的制备方法,与实施例1基本一致,唯一不同之处在于“前驱体浸渍溶液中聚合物前驱体的质量分数为1wt%”
上述将陶瓷弹簧材料组装成压力传感器:陶瓷弹簧材料作为压力传感器中敏感材料,按顺序依次组装封装薄膜、陶瓷弹簧材料和叉指电极,即得压力传感器,其中,封装薄膜为聚酰亚胺薄膜,叉指电极为金/石墨叉指电极。
由实施例1制备所得陶瓷弹簧材料组装成的压力传感器的检测范围为0.098~25kPa,响应时间为12ms,回复时间为4ms。
由实施例2制备所得陶瓷弹簧材料组装成的压力传感器的检测范围为0.098~31kPa,响应时间为16ms,回复时间为8ms。
由实施例3制备所得陶瓷弹簧材料组装成的压力传感器的检测范围为0.098~19kPa,响应时间为45ms,回复时间为48ms。
由实施例4制备所得陶瓷弹簧材料组装成的压力传感器的检测范围为0.098~32kPa,响应时间为15ms,回复时间为7ms。
由实施例5制备所得陶瓷弹簧材料组装成的压力传感器的检测范围为0.098~16kPa,响应时间为14ms,回复时间为9ms。
由图1可知,陶瓷弹簧材料即使在60%应变下也能恢复到初始状态,并在加载过程中表现出不同的变形阶段:线性弹性变形状态(应变<30%)和应力急剧增加的非线性状态(应变>30%)。
由图2可知,在500℃下,由陶瓷弹簧材料制备而成的压力传感器对不同施加压力的响应信号是可逆的和一致的表现出稳定的高温压阻性能。
由图3可知,包覆的陶瓷材料层为硅氧碳非晶相,三聚氰胺裂解碳化后为碳相。
从图4中可以看出,陶瓷弹簧材料中,结构呈现出各向异性结构,由层状与类弹簧结构组成,硅氧碳陶瓷表面可构建出颗粒堆积结构,硅氧碳的包覆厚度在100~200nm左右。
从图5中可以看出,由陶瓷弹簧材料制备而成的压力传感器具有稳定的压阻信号、较高的灵敏度和较快的响应回复时间,适用于动态频率较快的应用领域。
实施例1和实施例2对比,前驱体浸渍溶液浸渍碳弹簧模板框架的次数不同,浸渍次数对检测范围的影响为:在一定次数范围内,浸渍次数越多,包覆的硅氧碳陶瓷厚度越大,压缩强度和检测范围越大;
实施例1和实施例3的对比,使用的碳模板不同,碳模板结构对响应回复时间的影响为:类弹簧和层状结构的引入,降低了响应回复时间;
实施例1和实施例4的对比,前驱体浸渍溶液中聚合物前驱体的质量分数不同,前驱体浸渍溶液中聚合物前驱体的浓度对检测范围的影响为:在一定的范围内,浓度越高,压力检测范围越大;
实施例1和实施例5的对比,PDMS添加量的不同,PDMS对检测范围与响应回复时间的影响为:在一定的范围内,PDMS添加量越多,颗粒堆积的形貌越均匀,检测范围越大,响应回复时间越短。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种陶瓷弹簧材料,其特征在于,包括:碳弹簧模板框架及其上包覆的陶瓷层,所述碳弹簧模板框架为碳形成的三维网状结构。
2.根据权利要求1所述的陶瓷弹簧材料,其特征在于,所述陶瓷层的材质为硅氧碳陶瓷、碳化硅陶瓷或硅硼碳氮陶瓷。
3.根据权利要求1所述的陶瓷弹簧材料,其特征在于,所述陶瓷层的厚度为50~500nm,优选为100~200nm。
4.一种陶瓷弹簧材料的制备方法,其特征在于,包括以下步骤:
步骤1,将三聚氰胺泡沫热压,得到三聚氰胺弹簧海绵,将三聚氰胺弹簧海绵碳化裂解,得到碳弹簧模板框架;
步骤2,在步骤1制备所得碳弹簧模板框架上包覆陶瓷层,得到陶瓷弹簧材料,其中,所述陶瓷层的材质为硅氧碳陶瓷、碳化硅陶瓷或硅硼碳氮陶瓷。
5.根据权利要求4所述的制备方法,其特征在于,在所述步骤1中,所述热压为单轴定向热压;
在所述步骤1中,三聚氰胺弹簧海绵的厚度和三聚氰胺泡的厚度的比为(1~4):8;
所述热压的压强为40~100kPa,所述热压的温度为230~250℃,所述热压的时间为15~20min。
6.根据权利要求4所述的制备方法,其特征在于,在所述步骤1中,所述碳化裂解的温度为700~1000℃,所述碳化裂解的时间为1~3小时,所述碳化裂解于氩气或惰性气体环境下进行。
7.根据权利要求4所述的制备方法,其特征在于,在所述步骤2中,包覆陶瓷层的方法为:在前驱体浸渍溶液中将碳弹簧模板框架真空浸渍至少1次,每次真空浸渍后先烘干再交联,完成全部的真空浸渍后,在氮气或惰性气体环境下裂解陶瓷化,在碳弹簧模板框架上获得陶瓷层,其中,所述前驱体浸渍溶液包括:聚合物前驱体、铂催化剂和有机溶剂。
8.根据权利要求7所述的制备方法,其特征在于,所述聚合物前驱体为含氢聚硅氧烷、聚硅碳烷或聚硅氮烷,所述铂催化剂为Karstedt催化剂,所述有机溶剂为正己烷、环己烷、四氢呋喃、二氯甲烷或三氯甲烷;
所述前驱体浸渍溶液中聚合物前驱体的质量分数为0.5~10wt%,按质量份数计,铂催化剂和聚合物前驱体的比为(0.5~2):100;
当所述聚合物前驱体为含氢聚硅氧烷时,所述前驱体浸渍溶液还包括交联剂和造孔剂,按质量份数计,所述造孔剂、交联剂和聚合物前驱体的比为(1~3):(10~20):(5~10)。
9.根据权利要求7所述的制备方法,其特征在于,在所述步骤2中,所述交联为于80~120℃干燥2~5小时;
在所述步骤2中,所述裂解陶瓷化为于800~1200℃保温1~3小时。
10.如权利要求1所述陶瓷弹簧材料或权利要求4~9中任意一项所述制备方法获得的陶瓷弹簧材料作为压力传感器中敏感材料的应用。
CN202310497377.1A 2023-05-05 2023-05-05 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法 Active CN116514577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310497377.1A CN116514577B (zh) 2023-05-05 2023-05-05 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310497377.1A CN116514577B (zh) 2023-05-05 2023-05-05 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN116514577A true CN116514577A (zh) 2023-08-01
CN116514577B CN116514577B (zh) 2023-10-20

Family

ID=87404372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310497377.1A Active CN116514577B (zh) 2023-05-05 2023-05-05 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN116514577B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165782A (ja) * 2001-09-20 2003-06-10 Inoac Corp セラミックス多孔体の製造方法
US20060244165A1 (en) * 2005-04-27 2006-11-02 Dai Huang Manufacturing carbon fiber reinforced ceramics as brake discs
CN101555138A (zh) * 2008-04-09 2009-10-14 中国科学院金属研究所 一种碳化硅泡沫陶瓷波纹板及其制备方法
CN105439545A (zh) * 2015-11-20 2016-03-30 中钢集团洛阳耐火材料研究院有限公司 耐铝液侵蚀的氧化铝质泡沫陶瓷过滤器及制备方法
CN106565262A (zh) * 2016-10-31 2017-04-19 航天材料及工艺研究所 一种低密度难熔抗氧化碳陶复合材料的制备方法
CN106946572A (zh) * 2017-03-31 2017-07-14 美科特种材料股份有限公司 一种多材料混合型提高强度的泡沫空心陶瓷材料及其制备方法
WO2018094860A1 (zh) * 2016-11-24 2018-05-31 上海交通大学 一种螺线型陶瓷弹簧的制作工艺
CN108328596A (zh) * 2017-01-20 2018-07-27 中国科学院物理研究所 一种碳海绵及其制备方法和压力传感器
CN109836165A (zh) * 2017-11-27 2019-06-04 航天特种材料及工艺技术研究所 一种SiC泡沫及其制备方法
CN110358142A (zh) * 2019-07-11 2019-10-22 哈尔滨工程大学 宽温域用高灵敏度柔性复合海绵压敏传感器的制备方法
CN111018533A (zh) * 2019-12-25 2020-04-17 南方科技大学 一种多孔碳化硅基复合陶瓷材料及其制备方法和用途
WO2021258746A1 (zh) * 2020-06-24 2021-12-30 清华大学 一种仿珍珠母层状高强超韧陶瓷的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165782A (ja) * 2001-09-20 2003-06-10 Inoac Corp セラミックス多孔体の製造方法
US20060244165A1 (en) * 2005-04-27 2006-11-02 Dai Huang Manufacturing carbon fiber reinforced ceramics as brake discs
CN101555138A (zh) * 2008-04-09 2009-10-14 中国科学院金属研究所 一种碳化硅泡沫陶瓷波纹板及其制备方法
CN105439545A (zh) * 2015-11-20 2016-03-30 中钢集团洛阳耐火材料研究院有限公司 耐铝液侵蚀的氧化铝质泡沫陶瓷过滤器及制备方法
CN106565262A (zh) * 2016-10-31 2017-04-19 航天材料及工艺研究所 一种低密度难熔抗氧化碳陶复合材料的制备方法
WO2018094860A1 (zh) * 2016-11-24 2018-05-31 上海交通大学 一种螺线型陶瓷弹簧的制作工艺
CN108328596A (zh) * 2017-01-20 2018-07-27 中国科学院物理研究所 一种碳海绵及其制备方法和压力传感器
CN106946572A (zh) * 2017-03-31 2017-07-14 美科特种材料股份有限公司 一种多材料混合型提高强度的泡沫空心陶瓷材料及其制备方法
CN109836165A (zh) * 2017-11-27 2019-06-04 航天特种材料及工艺技术研究所 一种SiC泡沫及其制备方法
CN110358142A (zh) * 2019-07-11 2019-10-22 哈尔滨工程大学 宽温域用高灵敏度柔性复合海绵压敏传感器的制备方法
CN111018533A (zh) * 2019-12-25 2020-04-17 南方科技大学 一种多孔碳化硅基复合陶瓷材料及其制备方法和用途
WO2021258746A1 (zh) * 2020-06-24 2021-12-30 清华大学 一种仿珍珠母层状高强超韧陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, CJ等: "Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge", 《CHEM》, vol. 4, no. 3, pages 544 - 554 *
刘洪丽;钟文武;吴明忠;: "裂解温度对聚硅氧烷制备SiOC泡沫陶瓷性能的影响", 佳木斯大学学报(自然科学版), no. 01, pages 1 - 3 *

Also Published As

Publication number Publication date
CN116514577B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
Song et al. Multifunctional SiC@ SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption
Wu et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding
Wang et al. Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films
Niu et al. Ultralight and hyperelastic nanofiber‐reinforced mxene–graphene aerogel for high‐performance piezoresistive sensor
Cheng et al. A low-cost piezoresistive pressure sensor with a wide strain range–featuring polyurethane sponge@ poly (vinyl alcohol)/sulfuric gel electrolyte
US10014090B2 (en) High-density carbon nanotube-based monolith and related materials, methods, and devices
CN107311682B (zh) 一种SiC纳米线增强Cf/SiC陶瓷基复合材料及其制备方法
Shen et al. Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels
Wang et al. Scalable, superelastic, and superhydrophobic MXene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding
CN108328595A (zh) 一种碳气凝胶及其制备方法和压力传感器
CN113441094B (zh) 一种硼烯-石墨烯复合气凝胶及制备与应用
Spitalsky et al. High volume fraction carbon nanotube–epoxy composites
CN115072707A (zh) 一种超柔韧多功能碳气凝胶及其制备方法
CN116514577B (zh) 宽温域用超弹前驱体陶瓷弹簧与其压力传感器及其制备方法
CN114715896B (zh) 碳化硅纳米管气凝胶的制备方法
JP6172732B2 (ja) 黒鉛シート複合材及びその製造方法
CN115093226A (zh) 一种高强度多功能石墨烯弹性体泡棉及其制备方法
Liang et al. Porous Ti3C2T x MXene nanosheets sandwiched between polyimide fiber mats for electromagnetic interference shielding
Yang et al. Sequentially bridged MXene platelets for strong high‐temperature EM‐IR bi‐stealth sheets
JP2018199587A (ja) SiC/SiC複合材の製造方法
CN112176313A (zh) 一种玻璃碳/碳纳米管薄膜复合材料及其制备方法与应用
Zhang et al. Mechanically Robust Nanoporous Polyimide/Silica Aerogels for Thermal Superinsulation of Aircraft
CN114656657B (zh) 一种高导电性、自愈合纳米复合有机水凝胶的制备方法
CN115938815A (zh) 一种碳纤维电极、制备方法及应用
Liang et al. Densification of chlorine-doped continuous CNT sheet/polyvinylidene fluoride sandwich film and improvement of the mechanical and dielectric properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant