CN114656657B - 一种高导电性、自愈合纳米复合有机水凝胶的制备方法 - Google Patents

一种高导电性、自愈合纳米复合有机水凝胶的制备方法 Download PDF

Info

Publication number
CN114656657B
CN114656657B CN202210368524.0A CN202210368524A CN114656657B CN 114656657 B CN114656657 B CN 114656657B CN 202210368524 A CN202210368524 A CN 202210368524A CN 114656657 B CN114656657 B CN 114656657B
Authority
CN
China
Prior art keywords
cnt
conductivity
agnws
organic hydrogel
aerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210368524.0A
Other languages
English (en)
Other versions
CN114656657A (zh
Inventor
从怀萍
戴靖
秦海利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202210368524.0A priority Critical patent/CN114656657B/zh
Publication of CN114656657A publication Critical patent/CN114656657A/zh
Application granted granted Critical
Publication of CN114656657B publication Critical patent/CN114656657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种高导电性、自愈合纳米复合有机水凝胶的制备方法,以焙烧后的高导电率的银纳米线与银颗粒改性碳纳米管组装成的AgNWs@Ag‑CNT气凝胶为骨架,通过将聚丙烯酰胺有机水凝胶前驱体溶液与高导电率AgNWs@Ag‑CNT气凝胶骨架原位聚合,形成稳定的三维蜂窝状网络结构,具有高导电性与优异的机械性能;同时,以贵金属与硫的动态配位键和聚合物氢键的键合作用为愈合机理,以及水/乙二醇二元醇的防冻特性,并拥有优异的自愈合性能和耐低温性能,最终获得高导电性、耐低温、自愈合纳米复合有机水凝胶。

Description

一种高导电性、自愈合纳米复合有机水凝胶的制备方法
技术领域
本发明涉及一种高导电性、自愈合纳米复合有机水凝胶的制备方法,属于纳米材料技术领域。
背景技术
可穿戴设备的出现和发展为许多领域,特别是人工智能系统和可穿戴医疗保健设备提供了新的方向。目前,人们普遍期望高导电柔性可穿戴设备能够很好地粘附在皮肤上并能够准确地进行健康监测。然而,可穿戴设备仍然局限于常规形式,例如手环。关键的原因是设备不能灵活和可拉伸,使设备不能变形或粘附在皮肤上。因此,柔性、可拉伸和高导电材料在广泛的应用中备受期待。
作为可穿戴设备的有希望的候选者,水凝胶表现出优异的柔韧性和拉伸性。导电水凝胶在用作可穿戴设备中的装置时需要保持稳定。例如,它们在室温或更高的温度下不应失水,否则它们的导电性会发生变化。目前的技术已经能够通过在水凝胶表面包裹弹性体(如聚二甲基硅氧烷)来完全防止水分流失。然而,导电水凝胶仍然有一个不可避免的缺陷:在寒冷的环境中,水凝胶中的水会被冻结,这将使基于导电水凝胶的设备失效。因此,采用了一系列防止水凝胶在低温下冻结的策略势在必行。乙二醇可与水以任何比例混溶,可将混合溶剂的冰点降低至最低-55℃,这有利于制备具有防冻性能的凝胶并将其应用于可穿戴设备。
然而,当可穿戴设备在使用过程中,不可避免的会因为变形或者意外切割而发生机械性损伤,电子设备的可靠设稳定性将受到这些故障的限制。自愈材料能否恢复其机械完整性和导电性并能延长其使用寿命和耐久性尤为重要。然而,传统的软质水凝胶由于内部水分的冻结或挥发,会变得脆性,容易断裂或收缩,在极端条件下不能保证水凝胶的离子电导率和力学性能的恢复。此外,由于断裂的凝胶只是物理接触,没有任何化学键,因此很难恢复它们的电子导电性。
因此,开发一种本质上具有可再生性以及在室温和零下温度下具有出色高导电性以及自愈性的多功能纳米复合有机水凝胶势在必行,但具有挑战性。这种有机水凝胶应该具有高导电性、以及聚合物链在低温下的可逆化学/物理相互作用。重要的是,它可以在故障的情况下通过一个简单的过程恢复上述特征。所有这些要求都促使我们合理设计一种新型的纳米复合高导电有机水凝胶结构来实现多功能。此类研究的发现将为智能和可持续储能技术的发展提供新的见解。
发明内容
本发明旨在提供一种高导电性、自愈合纳米复合有机水凝胶的制备方法,以高导电性气凝胶为骨架,基于水/乙二醇这种二元溶剂的抗冻性能,以及利用动态金属配位键和动态氢键的键合作用,制备出高导电性、耐低温、自愈合纳米复合有机水凝胶。
本发明高导电性、自愈合纳米复合有机水凝胶的制备方法,首先通过使用水/乙二醇这种二元溶剂作为分散介质,含硫分子为交联方式,成功合成出抗结冰的聚丙烯酰胺(PAM)的有机水凝胶前驱体溶液;其次,将PAM有机水凝胶前驱体溶液通过原位聚合在银纳米线(AgNWs)与银颗粒改性碳纳米管(Ag-CNT)组装成的高导电性AgNWs@Ag-CNT气凝胶骨架上,形成强烈的动态金属与硫的配位作用以及动态氢键的键合作用,成功制备出具有高导电性、耐低温性,自修复性的纳米复合有机水凝胶。
本发明高导电性、自愈合纳米复合有机水凝胶的制备方法,包括如下步骤:
步骤1:耐低温有机水凝胶前驱体溶液的制备
在氮气保护下,依次将亲水性单体、含硫交联剂、热引发剂溶解于水/乙二醇的二元醇溶剂中;将配制好的有机水凝胶前驱体溶液置于0℃保存。
步骤1中,所述亲水性单体为丙烯酸或丙烯酰胺,亲水性单体的添加质量为整体溶液的16%;含硫交联剂为N,N'-双(丙稀酰)胱胺,添加质量为单体质量的0.2%;热引发剂为过二硫酸钾或过硫酸铵,添加质量为单体质量的2.5%。
步骤1中,二元醇溶剂由水和乙二醇构成,其中乙二醇的体积占二元醇溶剂总体积的5%~80%。不同的乙二醇含量V%,所处的冰点不一样。当乙二醇含量为66%时,最低冰点到达-68℃。
步骤2:AgNWs@Ag-CNT导电气凝胶的制备
将不同含量的前驱体纳米混合水溶液使用冰膜板法进行组装合成。采用单向冷冻冰模板法,将不同含量的AgNWs与Ag-CNT混合水溶液置于硅橡胶模具中,将模具置于钢块表面,通过不断添加液氮的量来调节钢块表面温度;待混合水溶液冻结后迅速将其转移到冷冻干燥机中(-56℃,10Pa),冷冻干燥2天,得到AgNWs@Ag-CNT导电气凝胶。
步骤2中,所述AgNWs纳米材料分散液通过包括如下步骤的方法制备获得:
首先,将10g聚乙烯吡咯烷酮(PVP)和400mL甘油加入到1000ml烧杯中,机械搅拌;然后,PVP于160℃溶解50分钟;待PVP溶液冷却到室温时,添加浓度为166.7%的硝酸银水溶液和浓度为15%的氯化钠水溶液,搅拌10分钟;将得到的混合物置于烘箱中于180℃反应16小时;最后,将产品分散在水中,静置一周,得到AgNWs沉淀物。
步骤2中,所述Ag-CNT纳米材料分散液通过包括如下步骤的方法制备获得:
将1mg多壁碳纳米管(CNT)粉末超声分散在5mL乙醇中得到CNT分散液;然后将8mg/mL的苄基硫醇溶液加入到CNT分散液中,超声2小时,苄基硫醇中的苯环通过π-π相互作用吸附在碳纳米管上(s-CNT);然后用乙醇/水离心洗涤3次,将得到的s-CNT沉淀物在AgCF3COO溶液中浸泡5分钟,原位合成Ag-CNT,最后用去离子水对产物进行多次纯化。
步骤2中,所述AgNWs与Ag-CNT混合水溶液中,AgNWs的浓度为50~80mg/mL,Ag-CNT的浓度为10~50mg/mL。随着Ag-CNT的浓度增加,AgNWs@Ag-CNT导电气凝胶导电性相应增加。
步骤2中,所述温度为-30℃~-150℃(钢块表面温度)。
步骤2中,AgCF3COO溶液为质量分数为10%~30%溶液,溶剂为乙醇。
步骤3:高导电性AgNWs@Ag-CNT气凝胶的制备
将步骤2获得的AgNWs@Ag-CNT导电气凝胶,在氢气的保护下,用管式炉在不同高温下焙烧1小时,得到高导电性AgNWs@Ag-CNT气凝胶。
步骤3中,焙烧温度为100℃~300℃。
步骤4:高导电性、自愈合纳米复合有机水凝胶的制备
将步骤1获得的耐低温有机水凝胶前驱体溶液通过0.1MPa真空干燥箱的抽滤诱导灌装到步骤3获得的高导电性AgNWs@Ag-CNT气凝胶骨架中,然后置于50℃烘箱10分钟,通过原位聚合获得高导电性、自愈合纳米复合有机水凝胶。
本发明的有益效果体现在:
本发明在制备高导电性、自愈合纳米复合有机水凝胶时,通过预组装的高导电性气凝胶骨架与PAM有机水凝胶的交联与协同作用,提供了优异的导电性与拉伸性能。首先是由于三维蜂窝状结构对高导电有机水凝胶的机械性能提供了很大的贡献,其在变形的过程中,能够有效的缓解局部施加的力。同时高导电性气凝胶骨架与N,N'-双(丙稀酰)胱胺交联剂形成金属-硫动态配位键,作为一个整体的大交联剂,能进一步保护网络的破坏。基于水/乙二醇体系的有机水凝胶具有耐低温性能。从而获得了高导电、自愈合、耐低温的有机水凝胶。
综上,本发明提供了一种全新的高导电性、自愈合纳米复合有机水凝胶的制备方法。主要利用高导电性AgNWs@Ag-CNT气凝胶骨架提供有机水凝胶的高导电性,同时利用气凝胶中的贵金属与聚合物之间的动态配位作用,实现快速自修复性能。由于水/乙二醇二元醇溶剂的防冻性能,实现了耐低温、自修复的目的。本发明为高导电性、自愈合纳米柔性电极的制备提供了全新的思路和理论基础,并为有机水凝胶在弹性导体等领域的发展提供力技术支持。
附图说明
图1是本发明所制备的银纳米线的透射电镜照片。从图1中可以看出本发明制备的银纳米线溶液分散均匀。
图2是本发明所制备的银颗粒改性碳纳米管(Ag-CNT)的透射电镜照片。从图2中可以看出本发明制备的Ag-CNT溶液分散均匀。
图3是本发明所制备的高导电性AgNWs@Ag-CNT气凝胶的扫描电镜照片。从图3中可以看出气凝胶的三维蜂窝状结构。
图4是本发明制备的高导电性气凝胶在不同焙烧温度下的导电率。从图4中可以看出随着焙烧温度的升高,气凝胶的导电性升高,导电率高达1000S/cm以上。
图5是在-35℃下,自愈合后的高导电有机水凝胶的拉伸性能及电学性能的光学照片。从图5中可以看出通过低温下自修复后的高导电有机水凝胶仍具有良好的机械性能和电学性能。
具体实施方式
本发明所使用的试剂原料及设备均为市售产品,可通过市场购买。
实施例1:气凝胶前驱体溶液的制备
1、首先,将10g聚乙烯吡咯烷酮(PVP)和400mL甘油加入到1000ml烧杯中,机械搅拌,搅拌速度为400转。然后,PVP于160℃溶解50分钟;PVP溶液冷却到室温时,添加5g的硝酸银溶于3mL水溶液和0.3g的氯化钠2mL水溶液,搅拌10分钟。然后,得到混合物的放在烘箱在180℃反应16小时;最后,将产品分散在水中,静置一周,得到AgNWs沉淀物。
2、将1mg多壁碳纳米管(CNT)粉末超声分散溶解在5mL乙醇中得到CNT分散液。然后将8mg/mL的苄基硫醇溶液加入到碳纳米管的分散液中,超声2小时后,苄基硫醇中的苯环通过π-π相互作用吸附在碳纳米管上。然后用乙醇/水离心洗涤3次,离心速率为4000转。然后将得到的s-CNT沉淀物在质量分数为20%AgCF3COO的乙醇溶液中浸泡5分钟,原位合成Ag-CNT。最后用去离子水对产物进行多次纯化。
实施例2:
1、耐低温有机水凝胶前驱体溶液的制备
首先依次将1g亲水性丙烯酰胺单体,2mgN,N'-双(丙稀酰)胱胺交联剂,25mg过二硫酸钾引发剂,在氮气保护下,溶解于水/乙二醇的二元醇溶剂中,其乙二醇为二元醇总溶液体积的20%。将配置好的有机水凝胶前驱体溶液置于0℃保存。
2、AgNWs@Ag-CNT导电气凝胶的制备
将实施例1中合成的纳米水溶液材料通过单向冷冻方法制备气凝胶骨架。将2mL75mg/mLAgNWs与2mL 10mg/mLAg-CNT混合水溶液放到硅橡胶模具里,钢块温度控制在-50℃,通过冰模板法,冷冻5分钟。冻住之后迅速将其转移到冷冻干燥机(-56℃,10Pa)里,冷冻干燥2天后得到AgNWs@Ag-CNT气凝胶。
3、高导电性AgNWs@Ag-CNT气凝胶的制备
将步骤2中的导电性AgNWs@Ag-CNT气凝胶,在氢气的保护下,用管式炉在100℃焙烧1小时。得到高导电性AgNWs@Ag-CNT气凝胶。
4、高导电性、自愈合纳米复合有机水凝胶的制备
将步骤1中的耐低温有机水凝胶前驱体溶液通过真0.1MPa空干燥箱的抽滤诱导灌装到步骤3中的高导电性AgNWs@Ag-CNT气凝胶骨架中,然后置于50℃烘箱10分钟,通过原位聚合获得高导电性、自愈合纳米复合有机水凝胶。
实施例3:
1、耐低温有机水凝胶前驱体溶液的制备
首先依次将1g亲水性丙烯酰胺单体,2mgN,N'-双(丙稀酰)胱胺交联剂,25mg过二硫酸钾引发剂,在氮气保护下,溶解于水/乙二醇的二元醇溶剂中,其乙二醇为二元醇总溶液体积的40%。将配置好的有机水凝胶前驱体溶液置于0℃保存。
2、AgNWs@Ag-CNT导电气凝胶的制备
将实例1中合成的纳米水溶液材料通过单向冷冻方法制备气凝胶骨架。将2mL75mg/mL AgNWs与2mL20mg/mLAg-CNT混合溶液放到硅橡胶模具里,温度控制在-100℃,通过冰模板法,冷冻5分钟。冻住之后迅速将其转移到冷冻干燥机(-56℃,10Pa),冷冻干燥2天后得到AgNWs@Ag-CNT气凝胶。
3、高导电性AgNWs@Ag-CNT气凝胶的制备
将步骤2中的导电性AgNWs@Ag-CNT气凝胶,在氢气的保护下,用管式炉在200℃焙烧1小时。得到高导电性AgNWs@Ag-CNT气凝胶。
4、高导电性、自愈合纳米复合有机水凝胶的制备
将步骤1中的耐低温有机水凝胶前驱体溶液通过0.1MPa真空干燥箱的抽滤诱导灌装到步骤3中的高导电性AgNWs@Ag-CNT气凝胶骨架中,然后置于50℃烘箱10分钟,通过原位聚合获得高导电性、自愈合纳米复合有机水凝胶。
本发明高导电性、自愈合纳米复合有机水凝胶,以高导电性AgNWs@Ag-CNT气凝胶骨架为高导电核心,以及贵金属与硫动态配位键为愈合机理,通过将PAM有机水凝胶与高导电AgNWs@Ag-CNT气凝胶骨架进行预聚组装,形成稳定的网络结构,具有高导电性及优异的机械性能,其导电率高达1000S/cm。同时由于水/乙二醇二元醇的防冻特性,并拥有优异的耐低温性能。当柔性电极受到破坏时,金属与硫的动态配位键以及聚合物的氢键键合作用,在电极表面会发生界面重组而达到自愈合的目的。

Claims (4)

1.一种高导电性、自愈合纳米复合有机水凝胶的制备方法,其特征在于:
首先以水/乙二醇的二元溶剂作为分散介质,含硫分子为交联方式,合成出抗结冰的聚丙烯酰胺有机水凝胶前驱体溶液;随后,将聚丙烯酰胺有机水凝胶前驱体溶液通过原位聚合在银纳米线与银颗粒改性碳纳米管组装成的高导电性AgNWs@Ag-CNT气凝胶骨架上,形成强烈的动态金属与硫的配位作用以及动态氢键的键合作用,获得具有高导电性、耐低温性,自修复性的纳米复合有机水凝胶;包括如下步骤:
步骤1:耐低温有机水凝胶前驱体溶液的制备
在氮气保护下,依次将亲水性单体、含硫交联剂、热引发剂溶解于水/乙二醇的二元醇溶剂中;将配制好的有机水凝胶前驱体溶液置于0℃保存;
步骤2:AgNWs@Ag-CNT导电气凝胶的制备
采用单向冷冻冰模板法,将不同含量的AgNWs与Ag-CNT混合水溶液置于硅橡胶模具中,将模具置于钢块表面,通过不断添加液氮的量来调节钢块表面温度;待混合水溶液冻结后迅速将其转移到冷冻干燥机中,冷冻干燥2天,得到AgNWs@Ag-CNT导电气凝胶;
步骤3:高导电性AgNWs@Ag-CNT气凝胶的制备
将步骤2获得的AgNWs@Ag-CNT导电气凝胶,在氢气的保护下,用管式炉在不同高温下焙烧1小时,得到高导电性AgNWs@Ag-CNT气凝胶;
步骤4:高导电性、自愈合纳米复合有机水凝胶的制备
将步骤1获得的耐低温有机水凝胶前驱体溶液通过0.1MPa真空干燥箱的抽滤诱导灌装到步骤3获得的高导电性AgNWs@Ag-CNT气凝胶骨架中,然后置于50℃烘箱10分钟,通过原位聚合获得高导电性、自愈合纳米复合有机水凝胶;
步骤1中,所述亲水性单体为丙烯酸或丙烯酰胺,亲水性单体的添加质量为整体溶液的16%;所述含硫交联剂为N,N'-双(丙烯酰)胱胺,添加质量为单体质量的0.2%;所述热引发剂为过二硫酸钾或过硫酸铵,添加质量为单体质量的2.5%;
步骤1中,二元醇溶剂由水和乙二醇构成,其中乙二醇的体积占二元醇溶剂总体积的5%~ 80%;
步骤2中,所述AgNWs纳米材料分散液通过包括如下步骤的方法制备获得:
首先,将10g PVP和400mL甘油加入到1000ml烧杯中,机械搅拌,搅拌速度为400转;然后,PVP于160℃溶解50分钟;PVP溶液冷却到室温时,添加5g的硝酸银溶于3 mL水溶液和0.3g的氯化钠2 mL水溶液,搅拌10分钟;然后,得到混合物的放在烘箱在180℃反应 16小时;最后,将产品分散在水中,静置一周,得到AgNWs沉淀物;
步骤2中,所述Ag-CNT纳米材料分散液通过包括如下步骤的方法制备获得:
将1mg CNT粉末超声分散在5mL乙醇中得到CNT分散液;然后将8mg/mL的苄基硫醇溶液加入到CNT分散液中,超声2小时,苄基硫醇中的苯环通过π-π相互作用吸附在碳纳米管上;然后用乙醇/水离心洗涤3次,将得到的s-CNT沉淀物在AgCF3COO溶液中浸泡5分钟,原位合成Ag-CNT,最后用去离子水对产物进行多次纯化。
2.根据权利要求1所述的制备方法,其特征在于:
步骤2中,所述AgNWs与Ag-CNT混合水溶液中,AgNWs的浓度为50~80 mg/mL,Ag-CNT的浓度为10~50 mg/mL。
3.根据权利要求1所述的制备方法,其特征在于:
步骤2中,AgCF3COO溶液为质量分数为10%~30%溶液,溶剂为乙醇。
4.根据权利要求1所述的制备方法,其特征在于:
步骤3中,焙烧温度为100℃~300℃。
CN202210368524.0A 2022-04-06 2022-04-06 一种高导电性、自愈合纳米复合有机水凝胶的制备方法 Active CN114656657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210368524.0A CN114656657B (zh) 2022-04-06 2022-04-06 一种高导电性、自愈合纳米复合有机水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210368524.0A CN114656657B (zh) 2022-04-06 2022-04-06 一种高导电性、自愈合纳米复合有机水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN114656657A CN114656657A (zh) 2022-06-24
CN114656657B true CN114656657B (zh) 2024-01-30

Family

ID=82035041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210368524.0A Active CN114656657B (zh) 2022-04-06 2022-04-06 一种高导电性、自愈合纳米复合有机水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN114656657B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115177783B (zh) * 2022-06-27 2024-01-23 中国人民解放军空军军医大学 一种双载智能水凝胶

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936357A (zh) * 2012-10-31 2013-02-20 北京化工大学 一种银纳米线官能化碳纳米管抗静电剂及制备方法
CN106633110A (zh) * 2016-12-30 2017-05-10 合众(佛山)化工有限公司 一种基于水性atrp聚合法的复合型水凝胶
CN106747572A (zh) * 2017-01-23 2017-05-31 贵阳学院 一种碳纳米管气凝胶的制备方法
CA2955235A1 (en) * 2016-01-19 2017-07-19 Xerox Corporation Conductive polymer composite
CN108440899A (zh) * 2018-03-26 2018-08-24 中国科学技术大学 具有纳米纤维网络结构的酚醛树脂气凝胶和碳气凝胶材料及其制备方法
CN109847661A (zh) * 2019-01-28 2019-06-07 合肥工业大学 一种氧化石墨烯与银纳米线组装三元弹性水凝胶的制备方法
CN110054856A (zh) * 2019-04-22 2019-07-26 常州大学 耐低温自愈合水凝胶的制备方法及其应用
CN110743397A (zh) * 2019-11-26 2020-02-04 天津工业大学 一种含磷酸银的海藻酸钙抗菌水凝胶过滤膜的制备方法
CN111302320A (zh) * 2020-02-01 2020-06-19 复旦大学 一类纳米化工材料及其通用合成方法
CN112538176A (zh) * 2020-06-24 2021-03-23 四川大学 一种自愈合导电水凝胶及其制备方法与应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936357A (zh) * 2012-10-31 2013-02-20 北京化工大学 一种银纳米线官能化碳纳米管抗静电剂及制备方法
CA2955235A1 (en) * 2016-01-19 2017-07-19 Xerox Corporation Conductive polymer composite
CN106633110A (zh) * 2016-12-30 2017-05-10 合众(佛山)化工有限公司 一种基于水性atrp聚合法的复合型水凝胶
CN106747572A (zh) * 2017-01-23 2017-05-31 贵阳学院 一种碳纳米管气凝胶的制备方法
CN108440899A (zh) * 2018-03-26 2018-08-24 中国科学技术大学 具有纳米纤维网络结构的酚醛树脂气凝胶和碳气凝胶材料及其制备方法
CN109847661A (zh) * 2019-01-28 2019-06-07 合肥工业大学 一种氧化石墨烯与银纳米线组装三元弹性水凝胶的制备方法
CN110054856A (zh) * 2019-04-22 2019-07-26 常州大学 耐低温自愈合水凝胶的制备方法及其应用
CN110743397A (zh) * 2019-11-26 2020-02-04 天津工业大学 一种含磷酸银的海藻酸钙抗菌水凝胶过滤膜的制备方法
CN111302320A (zh) * 2020-02-01 2020-06-19 复旦大学 一类纳米化工材料及其通用合成方法
CN112538176A (zh) * 2020-06-24 2021-03-23 四川大学 一种自愈合导电水凝胶及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
(法)勒巴日(J.F.Lepage).接触催化 工业催化剂原理、制备及其应用.石油工业出版社,1984,(第1版),102. *
Electrical and thermal conductivity improvement of carbon nanotube and silver composites;Abiodun Oluwalowo et al;Carbon;第146卷;224-231 *
Ultrastretchable and Self-Healing Conductors with Double Dynamic Network for Omni-Healable Capacitive Strain Sensors;Pan-Pan Jiang et al;nano letters;第22卷(第3期);1433-1442 *
姜姗姗等.现代纳米材料及其技术应用研究.中国原子能出版社,2020,(第1版),96. *
沈青.分子酸碱化学.上海科学技术出版社,2012,(第1版),490. *

Also Published As

Publication number Publication date
CN114656657A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
Li et al. Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors
Cheng et al. Conductive hydrogel‐based electrodes and electrolytes for stretchable and self‐healable supercapacitors
Han et al. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors
Peng et al. Recent advances in designing conductive hydrogels for flexible electronics
Chen et al. Multifunctional conductive hydrogels and their applications as smart wearable devices
Lu et al. Rational design of antifreezing organohydrogel electrolytes for flexible supercapacitors
Qin et al. Multifunctional supramolecular gel polymer electrolyte for self-healable and cold-resistant supercapacitor
Wang et al. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor
Feng et al. Long-term anti-freezing active organohydrogel based superior flexible supercapacitor and strain sensor
Dai et al. A self-healing conductive and stretchable aligned carbon nanotube/hydrogel composite with a sandwich structure
Mohanta et al. Stretchable electrolytes for stretchable/flexible energy storage systems–Recent developments
Mondal et al. High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties
Zhang et al. Conductive hydrogels for bioenergy harvesting and self-powered application
CN114656657B (zh) 一种高导电性、自愈合纳米复合有机水凝胶的制备方法
Guo et al. Tough, stretchable dual-network liquid metal-based hydrogel toward high-performance intelligent on-off electromagnetic interference shielding, human motion detection and self-powered application
Jiang et al. Functional hydrogel-based supercapacitors for wearable bioelectronic devices
Guo et al. Ultra-stretchable and anti-freezing conductive organohydrogel reinforced with ionic clusters for wearable strain sensors
Wang et al. Molybdenum disulfide enhanced polyacrylamide-acrylic acid-Fe3+ ionic conductive hydrogel with high mechanical properties and anti-fatigue abilities as strain sensors
Deng et al. From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels
CN113185715B (zh) 一种自愈合导电聚乙烯醇基水凝胶及其制备方法与应用
Pang et al. Self-adhesive frost-resistant conductive hydrogel electrolytes based on TA@ WSCA-Zn autocatalytic system for flexible and foldable solid-state capacitors
Li et al. Lignosulfonate sodium assisted PEDOT-based all-gel supercapacitors with enhanced supercapacitance and wide temperature tolerance
Yang et al. Stretchable conductive hydrogel with super resistance-strain stability and ultrahigh durability enabled by specificity crosslinking strategy for high-performance flexible electronics
Wang et al. Reversibly stretchable organohydrogel-based soft electronics with robust and redox-active interfaces enabled by polyphenol-incorporated double networks
Wu et al. Highly Stretchable, self-recoverable, and conductive double-network gels containing deep eutectic solvent for a flexible supercapacitor and strain sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant