WO2018094805A1 - Coa型液晶面板的制作方法及coa型液晶面板 - Google Patents

Coa型液晶面板的制作方法及coa型液晶面板 Download PDF

Info

Publication number
WO2018094805A1
WO2018094805A1 PCT/CN2016/112533 CN2016112533W WO2018094805A1 WO 2018094805 A1 WO2018094805 A1 WO 2018094805A1 CN 2016112533 W CN2016112533 W CN 2016112533W WO 2018094805 A1 WO2018094805 A1 WO 2018094805A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
color resist
liquid crystal
metal layer
Prior art date
Application number
PCT/CN2016/112533
Other languages
English (en)
French (fr)
Inventor
董成才
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/325,233 priority Critical patent/US20180180956A1/en
Priority to EP16922378.1A priority patent/EP3547015A4/en
Priority to KR1020197015220A priority patent/KR20190071789A/ko
Priority to JP2019527442A priority patent/JP6943361B2/ja
Publication of WO2018094805A1 publication Critical patent/WO2018094805A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133519Overcoatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for fabricating a COA type liquid crystal panel capable of improving pixel aperture ratio and a COA type liquid crystal panel.
  • Liquid crystal display device Liquid Crystal Display, LCD
  • LCD Liquid Crystal Display
  • PDA personal digital assistant
  • digital camera computer screen or laptop screen.
  • a liquid crystal display device includes a housing, a liquid crystal panel disposed in the housing, and a backlight module disposed in the housing (Backlight) Module).
  • the structure of the liquid crystal panel is mainly composed of a thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT Array). Substrate), a color filter substrate (Color Filter, CF), and a liquid crystal layer (Liquid Crystal Layer) disposed between the two substrates
  • TFT Array Thin Film Transistor Array Substrate
  • CF color filter substrate
  • Liquid Crystal Layer Liquid Crystal Layer
  • COA Color filter On Array
  • the COA structure reduces the coupling of the pixel electrode and the metal trace, and the delay condition of the signal on the metal line is improved.
  • the COA structure can significantly reduce the size of the parasitic capacitance, increase the panel aperture ratio, and improve the panel display quality.
  • FIG. 1 is a schematic diagram of a pixel design of a conventional COA type liquid crystal panel
  • FIG. 2 is a schematic cross-sectional view of the via hole shown in FIG.
  • Each of the sub-pixel regions on the array substrate of the COA type liquid crystal panel includes a first metal layer 21, a first insulating layer 22 disposed on the first metal layer 21, and a first insulating layer 22 disposed on the first insulating layer 22.
  • the via structure needs to be realized by dicing holes in the insulating layer and the color resist layer, and the diameter of the holes 261 on the color resist layer is larger than the diameter of the holes on the insulating layer. This via structure loses a large portion of the pixel aperture ratio.
  • An object of the present invention is to provide a method for fabricating a COA liquid crystal panel and a COA liquid crystal panel, which can simplify the process and increase the pixel aperture ratio.
  • the present invention provides a method for fabricating a COA type liquid crystal panel, comprising the steps of: providing a first substrate, and sequentially forming a first metal layer and a first insulating layer on the first substrate; a color resist layer and a second insulating layer are sequentially formed on the first insulating layer, wherein the color resist layer is formed by a coating, exposing, and developing process, wherein the color resist layer structure adopts a monochromatic resist layer, a two-color resist layer, and Any one of a trichromatic layer; a semiconductor layer and a second metal layer are formed on the second insulating layer, and a third insulating layer covering the second insulating layer is formed on the second metal layer; A via hole is formed on the third insulating layer, and a pixel electrode layer is formed on the third insulating layer, wherein the pixel electrode layer is in contact with the second metal layer via the via hole.
  • the present invention provides a method for fabricating a COA type liquid crystal panel, comprising the steps of: providing a first substrate, and sequentially forming a first metal layer and a first insulating layer on the first substrate; a color resist layer and a second insulating layer are sequentially formed on the first insulating layer; a semiconductor layer and a second metal layer are formed on the second insulating layer, and the second insulating layer is formed on the second metal layer a third insulating layer of the layer; a via hole is formed on the third insulating layer, and a pixel electrode layer is formed on the third insulating layer, wherein the pixel electrode layer is via the via hole and the The second metal layer is in contact.
  • the present invention further provides a COA type liquid crystal panel including an array substrate; the array substrate includes a plurality of pixel regions, each of the pixel regions including a first metal layer, a first insulating layer, and a color sequentially disposed a resistive layer and a second insulating layer, a semiconductor layer and a second metal layer disposed on the second insulating layer, and a third insulating layer disposed on the second metal layer and covering the second insulating layer a pixel electrode layer on the third insulating layer; a via hole is formed on the third insulating layer, and the pixel electrode layer is in contact with the second metal layer via the via hole.
  • the invention has the advantages that by forming the film and pattern of the color resist layer before the second metal layer, the via hole structure can be formed only by burrowing the third insulating layer, thereby avoiding burrowing on the color resist layer. , simplifying the process and increasing the pixel aperture ratio.
  • FIG. 1 is a schematic diagram of pixel design of a conventional COA type liquid crystal panel
  • FIG. 2 is a schematic cross-sectional view of the via hole shown in FIG. 1;
  • FIG. 3 is a flow chart showing a method of fabricating a COA liquid crystal panel according to an embodiment of the invention.
  • 4A-4C are schematic views showing an embodiment of a color resist layer structure of a COA type liquid crystal panel according to the present invention.
  • Fig. 5 is a cross-sectional view showing a via hole of a COA type liquid crystal panel according to the present invention.
  • FIG. 3 is a flowchart of a method for fabricating a COA liquid crystal panel according to an embodiment of the present invention; the method includes the following steps: S31: providing a first substrate, and sequentially forming a first metal on the first substrate a layer and a first insulating layer; S32: sequentially forming a color resist layer and a second insulating layer on the first insulating layer; S33: forming a semiconductor layer and a second metal layer on the second insulating layer, and forming on the second metal layer a third insulating layer covering the second insulating layer; S34: forming a via hole on the third insulating layer, and forming a pixel electrode layer on the third insulating layer, wherein the pixel electrode layer is via the pixel electrode layer The via hole is in contact with the second metal layer; a detailed explanation is given below.
  • S31 providing a first substrate, and sequentially forming a first metal layer and a first insulating layer on the first substrate.
  • the first metal layer is formed on the first substrate by a deposition and patterning process, and then the first insulating layer is deposited on the first metal layer; the first insulating layer may be SiNx Membrane layer.
  • the first substrate may be an array substrate of a COA type liquid crystal panel; the first metal layer includes a gate, and the first insulating layer is a gate insulating layer disposed on the gate; A scan line connected to the gate is further disposed on the array substrate.
  • the color resist layer is formed on the first insulating layer by a coating, exposing, and developing process, and then the second insulating layer is deposited on the color resist layer.
  • the second insulating layer may be a SiNx film layer.
  • the color resist layer structure adopts any one of a monochromatic resist layer, a two-color resist layer, and a three-color resist layer.
  • 4A-4C are schematic views of an embodiment of a color resist layer structure of a COA type liquid crystal panel according to the present invention.
  • 4A shows a color resist layer structure of a monochromatic resist layer, and the monochromatic resist layer may be a single red, green or blue color; the figure is blue (B).
  • 4B shows the color resist layer structure of the two-color resist layer.
  • the two-color resist layer can be any two colors of red, green and blue, and the stacking order is not limited; the illustration is superimposed with green and red (G, R).
  • 4C shows a color resist layer structure of a three-color resist layer, and the three-color resist layer is composited in three colors of red, green, and blue, and the order of superposition is not limited; the illustration is superimposed with blue, green, and red (B). , G, R). If a three-color resist layer is used, in the COA process, the coating, exposure, and development processes are repeated three times to form a three-color resist layer composed of three colors of red, green, and blue.
  • S33 forming a semiconductor layer and a second metal layer on the second insulating layer, and forming a third insulating layer covering the second insulating layer on the second metal layer.
  • a semiconductor film is deposited on the second insulating layer and etched to form a semiconductor layer, and a second metal layer is formed on the second insulating layer by a deposition and patterning process, and the second metal layer is formed
  • a third insulating layer is deposited thereon. Wherein the second metal layer is in contact with the semiconductor layer, and the third insulating layer covers the second insulating layer.
  • the second insulating layer and the third insulating layer are both SiNx film layers; the material of the semiconductor layer may be amorphous silicon (a-Si).
  • the first substrate may be an array substrate of a COA type liquid crystal panel;
  • the second metal layer includes a source/drain, and the third insulating layer is disposed on the source/drain and covers the a passivation layer of the second insulating layer, the source/drain being in contact with the semiconductor layer.
  • the array substrate is further provided with a data line connected to the source/drain; the data line is disposed on the second insulating layer and vertically intersects with the scan line in a horizontal direction.
  • the step S33 may be specifically: sequentially depositing an ia-Si layer and a na-Si layer, a patterned ia-Si layer on a position corresponding to the gate on the gate insulating layer; and depositing and patterning on the second insulating layer
  • the process forms a source/drain and a data line, and the source/drain are in contact with the semiconductor layer, the data line is connected to the source/drain; the na-Si layer is etched; and the SiNx film layer is deposited.
  • the via hole is formed on the third insulating layer by a patterning process corresponding to the second metal layer, and the pixel electrode is formed on the third insulating layer by a deposition and patterning process.
  • a layer; the pixel electrode layer is in contact with the second metal layer via the via hole.
  • the pixel electrode layer is in contact with the source/drain via the via hole; the material of the pixel electrode layer may be indium tin oxide (ITO).
  • the first substrate as the array substrate has been fabricated, and then the first substrate and the second substrate are grouped and poured into the liquid crystal layer, thereby completing the fabrication of the entire COA type liquid crystal panel.
  • a black matrix is disposed on the second substrate, and a common electrode layer is disposed on the black matrix; and the material of the common electrode layer may be indium tin oxide.
  • the film formation and patterning of the color resist layer are disposed in front of the second metal layer, and the via hole structure can be formed by avoiding burrowing on the color resist layer, thereby simplifying the process. Increases the pixel aperture ratio.
  • the COA type liquid crystal panel includes an array substrate; the array substrate includes a plurality of pixel regions, and each of the pixel regions includes a first metal layer 51, a first insulating layer 52, a color resist layer 53, and a second insulating layer disposed in this order.
  • a semiconductor layer 55 and a second metal layer 56 disposed on the second insulating layer 54 are disposed on the second metal layer 56 and cover the third insulating layer 57 of the second insulating layer 54.
  • a pixel electrode layer 58 on the third insulating layer 57; a via hole 59 is disposed on the third insulating layer 57, and the pixel electrode layer 58 and the second metal layer via the via hole 59 56 contacts.
  • the first insulating layer 52, the second insulating layer 54, and the third insulating layer 57 may all be SiNx film layers;
  • the pixel electrode layer material may be indium tin oxide (ITO);
  • the material of the semiconductor layer may be Amorphous silicon (a-Si).
  • the first metal layer 51 includes a gate
  • the first insulating layer 52 is a gate insulating layer disposed on the gate
  • the array substrate is further connected to the gate.
  • the second metal layer 56 includes a source/drain
  • the third insulating layer 57 is a passivation layer disposed on the source/drain and covering the second insulating layer 54.
  • the source/drain Contacting the semiconductor layer 55 (the second metal layer 56 is shown above the semiconductor layer 55 in FIG. 5, and the second insulating layer 54 can be directly deposited and patterned on the array substrate except for the via 59
  • a second metal layer 56 including a source/drain is formed, and the pixel electrode layer 58 is in contact with the source/drain via the via hole 59.
  • the array substrate is further provided with data lines connected to the source/drain electrodes; the data lines are disposed on the second insulating layer 54 and vertically intersected with the scan lines in a horizontal direction.
  • the color resist layer structure adopts any one of a monochromatic resist layer, a two-color resist layer, and a three-color resist layer.
  • the structure of the color resist layer can be referred to FIG. 4A-4C and the corresponding description, and details are not described herein again.
  • the COA type liquid crystal panel further includes a glass substrate disposed opposite to the array substrate, and a liquid crystal layer between the array substrate and the glass substrate; the glass substrate is provided with a black matrix and the black matrix A common electrode layer is disposed; the material of the common electrode layer may be indium tin oxide.
  • the film formation and patterning of the color resist layer are disposed before the second metal layer, and the via hole structure can be formed only by burrowing the hole on the third insulating layer, which simplifies the process and improves the process. Pixel aperture ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

一种COA型液晶面板的制作方法及COA型液晶面板,通过将色阻层(53)的成膜和图形化设置在第二金属层(56)之前,仅在第三绝缘层(57)上挖洞便能形成导通孔(59)结构,避免在色阻层(53)上挖洞,简化了制程,提高了像素开口率。

Description

COA型液晶面板的制作方法及COA型液晶面板 技术领域
本发明涉及显示技术领域,尤其是涉及一种可以提高像素开口率的COA型液晶面板的制作方法及COA型液晶面板。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。如:液晶电视、移动电话、个人数字助理 (PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等。
通常液晶显示装置包括壳体、设于壳体内的液晶面板及设于壳体内的背光模组(Backlight module)。其中,液晶面板的结构主要是由一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)、一彩色滤光片基板(Color Filter,CF)、以及配置于两基板间的液晶层(Liquid Crystal Layer) 所构成,其工作原理是通过在两片玻璃基板上施加驱动电压来控制液晶层的液晶分子的旋转,将背光模组的光线折射出来产生画面。
COA(Color filter On Array)是一种将CF基板上的色阻层制备于阵列基板上的技术,COA结构因减小了像素电极与金属走线的耦合,金属线上信号的延迟状况得到改善。COA结构可明显减小寄生电容大小,并提高面板开口率,改善面板显示品质。
参考图1-2,其中,图1为现有COA型液晶面板的像素设计示意图,图2为图1所示导通孔处的剖面示意图。所述COA型液晶面板的阵列基板上每一子像素区域包括第一金属层21、设于所述第一金属层21上的第一绝缘层22、设于所述第一绝缘层22上的半导体层23、设于所述半导体层23上的第二金属层24、设于所述第二金属层24上的第二绝缘层25、设于所述第二绝缘层25上的色阻层26、设于所述色阻层26上的第三绝缘层27、设于所述第三绝缘层27上的像素电极层28。所述第二绝缘层25、色阻层26及第三绝缘层27上对应所述第二金属层24的上方设有导通孔(VIA Hole)29,所述像素电极层28经由所述导通孔29与所述第二金属层24相接触。
但是,在目前的成膜顺序下,导通孔结构需要通过在绝缘层和色阻层上挖孔实现,且在色阻层上的孔洞261直径大于绝缘层上的孔洞直径。这种导通孔结构会损失掉很大一部分的像素开口率。
因此,需要对现有COA型液晶面板的像素设计方式进行改进,以简化制程,提高像素开口率。
技术问题
本发明的目的在于,提供一种COA型液晶面板的制作方法及COA型液晶面板,可以简化制程,提高像素开口率。
技术解决方案
为实现上述目的,本发明提供了一种COA型液晶面板的制作方法,包括如下步骤:提供第一基板,并在所述第一基板上依次形成第一金属层以及第一绝缘层;在所述第一绝缘层上依次形成色阻层以及第二绝缘层,其中,采用涂布、曝光以及显影制程形成所述色阻层,所述色阻层结构采用单色阻层、双色阻层以及三色阻层的任意一种;在所述第二绝缘层上形成半导体层以及第二金属层,并在所述第二金属层上形成覆盖所述第二绝缘层的第三绝缘层;在所述第三绝缘层上形成导通孔,并在所述第三绝缘层上形成像素电极层,其中,所述像素电极层经由所述导通孔与所述第二金属层相接触。
为实现上述目的,本发明提供了一种COA型液晶面板的制作方法,包括如下步骤:提供第一基板,并在所述第一基板上依次形成第一金属层以及第一绝缘层;在所述第一绝缘层上依次形成色阻层以及第二绝缘层;在所述第二绝缘层上形成半导体层以及第二金属层,并在所述第二金属层上形成覆盖所述第二绝缘层的第三绝缘层;在所述第三绝缘层上形成导通孔,并在所述第三绝缘层上形成像素电极层,其中,所述像素电极层经由所述导通孔与所述第二金属层相接触。
为实现上述目的,本发明还提供了一种COA型液晶面板,包括阵列基板;所述阵列基板包括多个像素区域,每一像素区域包括依次设置的第一金属层、第一绝缘层、色阻层以及第二绝缘层,设于所述第二绝缘层上的半导体层以及第二金属层,设于所述第二金属层上并覆盖所述第二绝缘层的第三绝缘层,设于所述第三绝缘层上的像素电极层;所述第三绝缘层上设有导通孔,所述像素电极层经由所述导通孔与所述第二金属层相接触。
有益效果
本发明的优点在于,通过将色阻层的成膜和图形化设置在第二金属层之前,仅在第三绝缘层上挖洞便能形成导通孔结构,避免在色阻层上挖洞,简化了制程,提高了像素开口率。
附图说明
图1,现有COA型液晶面板的像素设计示意图;
图2为图1所示导通孔处的剖面示意图;
图3,本发明一实施例所述的COA型液晶面板的制作方法的流程图;
图4A-4C,本发明所述的COA型液晶面板的色阻层结构实施例的示意图
图5,本发明所述的COA型液晶面板的导通孔处的剖面示意图。
本发明的最佳实施方式
下面结合附图以及实施例,对本发明提供的COA型液晶面板的制作方法及COA型液晶面板作详细说明。显然,所描述的实施例仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参考图3,本发明一实施例所述的COA型液晶面板的制作方法的流程图;所述方法包括如下步骤:S31:提供第一基板,并在所述第一基板上依次形成第一金属层以及第一绝缘层; S32:在所述第一绝缘层上依次形成色阻层以及第二绝缘层;S33:在所述第二绝缘层上形成半导体层以及第二金属层,并在所述第二金属层上形成覆盖所述第二绝缘层的第三绝缘层;S34:在所述第三绝缘层上形成导通孔,并在所述第三绝缘层上形成像素电极层,其中,所述像素电极层经由所述导通孔与所述第二金属层相接触;以下给出详细解释。
S31:提供第一基板,并在所述第一基板上依次形成第一金属层以及第一绝缘层。
具体的,在所述第一基板上采用沉积并图案化制程形成所述第一金属层,之后在所述第一金属层上沉积所述第一绝缘层;所述第一绝缘层可以为SiNx膜层。
具体的,所述第一基板可以为COA型液晶面板的阵列基板;所述第一金属层包括栅极、所述第一绝缘层为设于所述栅极上的栅极绝缘层;所述阵列基板上还设有与所述栅极连接的扫描线。
S32:在所述第一绝缘层上依次形成色阻层以及第二绝缘层。
具体的,在所述第一绝缘层上采用涂布、曝光以及显影制程形成所述色阻层,之后在所述色阻层上沉积所述第二绝缘层。所述第二绝缘层可以为SiNx膜层。
可选的,所述色阻层结构采用单色阻层、双色阻层以及三色阻层的任意一种。参考图4A-4C,本发明所述的COA型液晶面板的色阻层结构实施例的示意图。其中,图4A所示为单色阻层的色阻层结构,单色阻层可为单独的红色、绿色或蓝色;图示采用蓝色(B)。图4B所示为双色阻层的色阻层结构,双色阻层可为红色、绿色、蓝色中任选两种颜色叠加,且叠加顺序不限;图示采用绿色、红色依次叠加(G、R)。图4C所示为三色阻层的色阻层结构,三色阻层为红色、绿色、蓝色三种颜色复合,且叠加顺序不限;图示采用蓝色、绿色、红色依次叠加(B、G、R)。若采用三色阻层,则在COA制程中,需三次重复涂布、曝光以及显影制程形成红色、绿色、蓝色三种颜色复合的三色阻层。
S33:在所述第二绝缘层上形成半导体层以及第二金属层,并在所述第二金属层上形成覆盖所述第二绝缘层的第三绝缘层。
具体的,在所述第二绝缘层上沉积半导体薄膜并刻蚀形成半导体层,以及在所述第二绝缘层上采用沉积并图案化制程形成第二金属层,并在所述第二金属层上沉积第三绝缘层。其中,所述第二金属层与所述半导体层相接触,所述第三绝缘层覆盖所述第二绝缘层。所述第二绝缘层以及第三绝缘层均为SiNx膜层;所述半导体层的材料可以为非晶硅(a-Si)。
具体的,所述第一基板可以为COA型液晶面板的阵列基板;所述第二金属层包括源/漏极、所述第三绝缘层为设于所述源/漏极上并覆盖所述第二绝缘层的钝化层,所述源/漏极与所述半导体层的相接触。所述阵列基板上还设有与所述源/漏极连接的数据线;所述数据线设于所述第二绝缘层上且在水平方向上与所述扫描线垂直交叉排列。
步骤S33具体可以为:在所述栅极绝缘层上对应栅极的位置依次沉积i-a-Si层及n-a-Si层、图案化i-a-Si层;在所述第二绝缘层上采用沉积并图案化制程形成源/漏极以及数据线,且源/漏极与所述半导体层相接触,数据线与所述源/漏极连接;刻蚀n-a-Si层;沉积SiNx膜层。
S34:在所述第三绝缘层上形成导通孔,并在所述第三绝缘层上形成像素电极层,其中,所述像素电极层经由所述导通孔与所述第二金属层相接触。
具体的,在所述第三绝缘层上对应所述第二金属层的上方通过图案化制程形成所述导通孔,在所述第三绝缘层上采用沉积并图案化制程形成所述像素电极层;所述像素电极层经由所述导通孔与所述第二金属层相接触。具体的,所述像素电极层经由所述导通孔与所述源/漏极相接触;所述像素电极层的材料可以为氧化铟锡(ITO)。
至此,作为阵列基板的第一基板已制作完毕,之后将第一基板与第二基板对组并灌入液晶层,即完成整个COA型液晶面板的制作。所述第二基板上设有黑色矩阵、所述黑色矩阵上设有公共电极层;所述公共电极层的材料可以为氧化铟锡。
本发明所述的COA型液晶面板的制作方法,将色阻层的成膜和图形化设置在第二金属层之前,避免在色阻层上挖洞便能形成导通孔结构,简化了制程,提高了像素开口率。
参考图5,本发明所述的COA型液晶面板的导通孔处的剖面示意图。所述的COA型液晶面板包括阵列基板;所述阵列基板包括多个像素区域,每一像素区域包括依次设置的第一金属层51、第一绝缘层52、色阻层53以及第二绝缘层54,设于所述第二绝缘层54上的半导体层55以及第二金属层56,设于所述第二金属层56上并覆盖所述第二绝缘层54的第三绝缘层57,设于所述第三绝缘层57上的像素电极层58;所述第三绝缘层57上设有导通孔59,所述像素电极层58经由所述导通孔59与所述第二金属层56相接触。
具体的,第一绝缘层52、第二绝缘层54以及第三绝缘层57可以均为SiNx膜层;所述像素电极层材料可以为氧化铟锡(ITO);所述半导体层的材料可以为非晶硅(a-Si)。
具体的,所述第一金属层51包括栅极、所述第一绝缘层52为设于所述栅极上的栅极绝缘层;所述阵列基板上还设有与所述栅极连接的扫描线。所述第二金属层56包括源/漏极、所述第三绝缘层57为设于所述源/漏极上并覆盖所述第二绝缘层54的钝化层,所述源/漏极与所述半导体层55相接触(图5中示出第二金属层56位于半导体层55上方,在阵列基板上除导通孔59外的其它地方,第二绝缘层54上可以直接沉积并图案化形成包括源/漏极的第二金属层56),所述像素电极层58经由所述导通孔59与所述源/漏极相接触。所述阵列基板上还设有与所述源/漏极连接的数据线;所述数据线设于所述第二绝缘层54上且在水平方向上与所述扫描线垂直交叉排列。
可选的,所述色阻层结构采用单色阻层、双色阻层以及三色阻层的任意一种。色阻层结构可参考图4A-4C以及对应描述,此处不再赘述。
所述的COA型液晶面板还包括与所述阵列基板相对设置的玻璃基板、及位于所述阵列基板与玻璃基板之间的液晶层;所述玻璃基板上设有黑色矩阵、所述黑色矩阵上设有公共电极层;所述公共电极层的材料可以为氧化铟锡。
本发明所述的COA型液晶面板,色阻层的成膜和图形化设置在第二金属层之前,仅在第三绝缘层上挖洞便能形成导通孔结构,简化了制程,提高了像素开口率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (16)

  1. 一种COA型液晶面板的制作方法,其中,包括如下步骤:
    提供第一基板,并在所述第一基板上依次形成第一金属层以及第一绝缘层;
    在所述第一绝缘层上依次形成色阻层以及第二绝缘层,其中,采用涂布、曝光以及显影制程形成所述色阻层,所述色阻层结构采用单色阻层、双色阻层以及三色阻层的任意一种;
    在所述第二绝缘层上形成半导体层以及第二金属层,并在所述第二金属层上形成覆盖所述第二绝缘层的第三绝缘层;
    在所述第三绝缘层上形成导通孔,并在所述第三绝缘层上形成像素电极层,其中,所述像素电极层经由所述导通孔与所述第二金属层相接触。
  2. 如权利要求1所述的方法,其中,采用沉积并图案化制程形成所述第一金属层、第二金属层以及像素电极层。
  3. 如权利要求1所述的方法,其中,采用图案化制程形成所述导通孔。
  4. 如权利要求1所述的方法,其中,所述第一金属层包括栅极、所述第一绝缘层为设于所述栅极上的栅极绝缘层;所述第二金属层包括源/漏极、所述第三绝缘层为设于所述源/漏极上并覆盖所述第二绝缘层的钝化层,所述源/漏极与所述半导体层相接触,所述像素电极层经由所述导通孔与所述源/漏极相接触。
  5. 如权利要求1所述的方法,其中,所述像素电极层的材料为氧化铟锡。
  6. 一种COA型液晶面板的制作方法,其中,包括如下步骤:
    提供第一基板,并在所述第一基板上依次形成第一金属层以及第一绝缘层;
    在所述第一绝缘层上依次形成色阻层以及第二绝缘层;
    在所述第二绝缘层上形成半导体层以及第二金属层,并在所述第二金属层上形成覆盖所述第二绝缘层的第三绝缘层;
    在所述第三绝缘层上形成导通孔,并在所述第三绝缘层上形成像素电极层,其中,所述像素电极层经由所述导通孔与所述第二金属层相接触。
  7. 如权利要求6所述的方法,其中,采用沉积并图案化制程形成所述第一金属层、第二金属层以及像素电极层。
  8. 如权利要求6所述的方法,其中,采用涂布、曝光以及显影制程形成所述色阻层。
  9. 如权利要求6所述的方法,其中,采用图案化制程形成所述导通孔。
  10. 如权利要求6所述的方法,其中,所述第一金属层包括栅极、所述第一绝缘层为设于所述栅极上的栅极绝缘层;所述第二金属层包括源/漏极、所述第三绝缘层为设于所述源/漏极上并覆盖所述第二绝缘层的钝化层,所述源/漏极与所述半导体层相接触,所述像素电极层经由所述导通孔与所述源/漏极相接触。
  11. 如权利要求6所述的方法,其中,所述像素电极层的材料为氧化铟锡。
  12. 如权利要求6所述的方法,其中,所述色阻层结构采用单色阻层、双色阻层以及三色阻层的任意一种。
  13. 一种COA型液晶面板,包括阵列基板;其中,
    所述阵列基板包括多个像素区域,每一像素区域包括依次设置的第一金属层、第一绝缘层、色阻层以及第二绝缘层,设于所述第二绝缘层上的半导体层以及第二金属层,设于所述第二金属层上并覆盖所述第二绝缘层的第三绝缘层,设于所述第三绝缘层上的像素电极层;所述第三绝缘层上设有导通孔,所述像素电极层经由所述导通孔与所述第二金属层相接触。
  14. 如权利要求13所述的液晶面板,其中,所述第一金属层包括栅极、所述第一绝缘层为设于所述栅极上的栅极绝缘层;所述第二金属层包括源/漏极、所述第三绝缘层为设于所述源/漏极上并覆盖所述第二绝缘层的钝化层,所述源/漏极与所述半导体层相接触,所述像素电极层经由所述导通孔与所述源/漏极相接触。
  15. 如权利要求13所述的液晶面板,其中,所述像素电极层的材料为氧化铟锡。
  16. 如权利要求13所述的液晶面板,其中,所述色阻层结构采用单色阻层、双色阻层以及三色阻层的任意一种。
PCT/CN2016/112533 2016-11-22 2016-12-28 Coa型液晶面板的制作方法及coa型液晶面板 WO2018094805A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/325,233 US20180180956A1 (en) 2016-11-22 2016-12-28 Method For Manufacturing COA Type Liquid Crystal Panel, and COA Type Liquid Crystal Panel
EP16922378.1A EP3547015A4 (en) 2016-11-22 2016-12-28 PRODUCTION PROCESS FOR LIQUID CRYSTAL DISPLAY OF THE COA TYPE AND LIQUID CRYSTAL DISPLAY OF THE COA TYPE
KR1020197015220A KR20190071789A (ko) 2016-11-22 2016-12-28 Coa형 액정 패널의 제조방법 및 coa형 액정 패널
JP2019527442A JP6943361B2 (ja) 2016-11-22 2016-12-28 Coa型液晶パネルの製造方法及びcoa型液晶パネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611046276.9 2016-11-22
CN201611046276.9A CN106646969A (zh) 2016-11-22 2016-11-22 Coa型液晶面板的制作方法及coa型液晶面板

Publications (1)

Publication Number Publication Date
WO2018094805A1 true WO2018094805A1 (zh) 2018-05-31

Family

ID=58811712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112533 WO2018094805A1 (zh) 2016-11-22 2016-12-28 Coa型液晶面板的制作方法及coa型液晶面板

Country Status (6)

Country Link
US (1) US20180180956A1 (zh)
EP (1) EP3547015A4 (zh)
JP (1) JP6943361B2 (zh)
KR (1) KR20190071789A (zh)
CN (1) CN106646969A (zh)
WO (1) WO2018094805A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061058A (zh) * 2018-04-17 2019-07-26 京东方科技集团股份有限公司 阵列基板及其制备方法、显示装置
CN109709734A (zh) * 2019-02-27 2019-05-03 深圳市华星光电半导体显示技术有限公司 显示面板及其检测方式

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040109110A1 (en) * 2002-12-10 2004-06-10 Lg.Philips Lcd Co., Ltd. Array substrate of liquid crystal display device having thin film transistor on color filter structure and method of fabricating the same
CN103035640A (zh) * 2012-11-02 2013-04-10 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN104319277A (zh) * 2014-10-15 2015-01-28 深圳市华星光电技术有限公司 一种coa基板及其制作方法
CN104952879A (zh) * 2015-05-05 2015-09-30 深圳市华星光电技术有限公司 采用coa技术的双栅极tft基板结构
CN105353570A (zh) * 2015-10-08 2016-02-24 武汉华星光电技术有限公司 Coa型阵列基板及其制作方法
CN105372889A (zh) * 2015-10-23 2016-03-02 深圳市华星光电技术有限公司 显示装置、coa基板及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978539B2 (en) * 2002-07-17 2005-12-27 Compal Electronics, Inc. Method for attaching an integrated circuit package to a circuit board
TWI222546B (en) * 2003-05-28 2004-10-21 Au Optronics Corp TFT LCD and manufacturing method thereof
WO2007049371A1 (ja) * 2005-10-24 2007-05-03 National Institute For Materials Science ビスターピリジン型モノマーとその製造方法、および、該モノマーから誘導された高分子材料とその製造方法、および、エレクトロクロミック素子
KR101451375B1 (ko) * 2008-04-30 2014-10-21 삼성디스플레이 주식회사 표시기판 및 그 제조방법
JP6340269B2 (ja) * 2014-07-02 2018-06-06 株式会社ジャパンディスプレイ 表示装置およびその製造方法
CN104157612A (zh) * 2014-08-21 2014-11-19 深圳市华星光电技术有限公司 Tft阵列基板的制作方法及tft阵列基板结构
JP6599608B2 (ja) * 2014-10-27 2019-10-30 株式会社ジャパンディスプレイ 液晶表示装置
CN104656325B (zh) * 2015-03-18 2017-06-27 深圳市华星光电技术有限公司 Coa型液晶面板的制作方法及coa型液晶面板
CN105404048A (zh) * 2015-12-17 2016-03-16 武汉华星光电技术有限公司 液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040109110A1 (en) * 2002-12-10 2004-06-10 Lg.Philips Lcd Co., Ltd. Array substrate of liquid crystal display device having thin film transistor on color filter structure and method of fabricating the same
CN103035640A (zh) * 2012-11-02 2013-04-10 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN104319277A (zh) * 2014-10-15 2015-01-28 深圳市华星光电技术有限公司 一种coa基板及其制作方法
CN104952879A (zh) * 2015-05-05 2015-09-30 深圳市华星光电技术有限公司 采用coa技术的双栅极tft基板结构
CN105353570A (zh) * 2015-10-08 2016-02-24 武汉华星光电技术有限公司 Coa型阵列基板及其制作方法
CN105372889A (zh) * 2015-10-23 2016-03-02 深圳市华星光电技术有限公司 显示装置、coa基板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3547015A4 *

Also Published As

Publication number Publication date
KR20190071789A (ko) 2019-06-24
JP2019536106A (ja) 2019-12-12
US20180180956A1 (en) 2018-06-28
EP3547015A4 (en) 2020-07-08
CN106646969A (zh) 2017-05-10
EP3547015A1 (en) 2019-10-02
JP6943361B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
JP4364952B2 (ja) 液晶表示装置の製造方法
WO2017166341A1 (zh) Tft基板的制作方法及制得的tft基板
US6927814B2 (en) Array substrate for LCD and method of fabricating the same
WO2017147974A1 (zh) 阵列基板的制作方法及制得的阵列基板
JP4486554B2 (ja) 低分子有機半導体物質を利用する液晶表示装置及びその製造方法
JP2011023728A (ja) Tft−lcdアレイ基板及びその製造方法
US9281325B2 (en) Array substrate, manufacturing method thereof and display device
WO2017024605A1 (zh) 一种ffs阵列基板的制造方法
TW573155B (en) Liquid crystal display device and fabricating method thereof
US10896921B2 (en) Manufacturing method of array substrate
US7397519B2 (en) Liquid crystal display device and method of fabrication thereof having dummy layer and plurality of contact holes formed through ohmic contact, semiconductive and gate insulating layers
WO2019114064A1 (zh) 显示装置、半透半反的阵列基板及其制造方法
WO2018094805A1 (zh) Coa型液晶面板的制作方法及coa型液晶面板
WO2017117827A1 (zh) 液晶显示面板、tft基板及其制造方法
US20010025988A1 (en) Thin film transistor substrate and fabricating method thereof
WO2017121065A1 (zh) 液晶显示面板及其制作方法
WO2019210850A1 (zh) 像素结构及其制作方法、阵列基板和显示装置
CN106940507B (zh) 阵列基板及其制备方法、显示面板
CN112382638B (zh) 阵列基板及其制备方法、显示装置
CN107919321A (zh) Ffs型薄膜晶体管阵列基板及其制作方法
US10558102B2 (en) Method for forming liquid crystal display panel and liquid crystal display panel
WO2017096659A1 (zh) 薄膜晶体管阵列基板及其制造方法
KR20020076449A (ko) 액정 표시 장치용 어레이 기판 및 그의 제조 방법
CN215183963U (zh) 阵列基板、显示面板和显示装置
KR101285535B1 (ko) 박막 트랜지스터 기판 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15325233

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197015220

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016922378

Country of ref document: EP

Effective date: 20190624