WO2018092813A1 - レーザ共振器、及びレーザ共振器の設計方法 - Google Patents

レーザ共振器、及びレーザ共振器の設計方法 Download PDF

Info

Publication number
WO2018092813A1
WO2018092813A1 PCT/JP2017/041126 JP2017041126W WO2018092813A1 WO 2018092813 A1 WO2018092813 A1 WO 2018092813A1 JP 2017041126 W JP2017041126 W JP 2017041126W WO 2018092813 A1 WO2018092813 A1 WO 2018092813A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
laser
mirrors
laser resonator
optical
Prior art date
Application number
PCT/JP2017/041126
Other languages
English (en)
French (fr)
Inventor
眞幸 桂川
千彰 大饗
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Priority to JP2018551667A priority Critical patent/JP7176738B2/ja
Publication of WO2018092813A1 publication Critical patent/WO2018092813A1/ja
Priority to US16/411,572 priority patent/US10763634B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0816Configuration of resonator having 4 reflectors, e.g. Z-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/08045Single-mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/0805Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers

Definitions

  • the present invention relates to a laser resonator and a method for designing a laser resonator.
  • Laser light is used in various fields such as optical communication, absorption / excitation spectrum measurement, high-resolution measurement of substances, and spectroscopy.
  • an external resonator type semiconductor laser having a narrow oscillation spectrum width and high wavelength selectivity is widely used.
  • the external resonator type semiconductor laser has a resonator disposed outside an end face coated with an antireflection (AR) film of a solid-state laser medium, and outputs oscillation light tuned to the resonance wavelength of the resonator.
  • AR antireflection
  • a solid-state laser crystal is placed in the optical path of a ring type resonator consisting of three mirrors or a bow-tie type resonator consisting of four mirrors to resonate the oscillation light.
  • the structure to make is known (for example, refer patent document 1).
  • the optical components constituting the laser resonator are damaged by the high-intensity light.
  • the problem of damage to optical components can be solved by increasing the beam diameter of laser light that reciprocates or circulates in the resonator to reduce the light intensity per unit area.
  • the beam diameter is increased, it becomes difficult to obtain a laser beam in a single transverse mode having a uniform cross-sectional intensity distribution.
  • the laser resonator comprises: A set of optical elements forming a tightly narrowed first optical path; One or more mirrors forming a second optical path of substantially parallel light connected to the first optical path; A laser medium disposed in the second optical path; And stimulated emission light from the laser medium reciprocates or circulates a path formed by the first optical path and the second optical path.
  • a method for designing a laser resonator includes: A pair of concave mirrors forming a first optical path having a tightly narrowed beam waist, and one or more mirrors forming a second optical path of substantially parallel light connected to the first optical path And constitute a resonator, A laser medium is disposed in the second optical path; The distance between the pair of concave mirrors is adjusted to expand the beam diameter of the first optical path to a desired size.
  • the optical damage of the resonator can be prevented and single transverse mode oscillation can be maintained. This realizes a stable high-power laser.
  • FIG. 6 is a schematic diagram of a laser resonator according to Modification 1.
  • FIG. 10 is a schematic diagram of a laser resonator according to Modification 2.
  • FIG. 10 is a schematic diagram of a laser resonator according to Modification 3.
  • FIG. FIG. 10 is a diagram showing a change in the beam diameter of the oscillation output according to the distance between the concave mirrors in the arrangement of FIG. 9. It is a figure which shows the evaluation result of the beam quality of the output light of FIG. It is a figure which shows the example of application to the Z-type resonator of the structure of FIG. It is a figure which shows another example of the arrangement
  • 10 is a schematic diagram of a laser resonator according to Modification 4.
  • FIG. 12 is a diagram illustrating another configuration example of Modification Example 4.
  • one method for increasing the transverse mode diameter is to configure a laser resonator using a mirror having a large curvature radius.
  • An example using a Fabry-Perot type resonator will be described.
  • L 300 mm
  • the radius of curvature R of the mirror constituting the resonator is 10 meters (m)
  • the side of TEM 00 in the resonator is The mode diameter is 1.0 mm to 1.1 mm. This light is almost parallel light.
  • the transverse mode diameter of TEM 00 in the resonator becomes 2.0 mm ⁇ 2.1 mm.
  • the beam diameter is doubled and the cross-sectional area is four times larger.
  • TEM 01 which is the next higher-order mode of TEM 00
  • TEM 10 is close to the fundamental mode frequency of TEM 00 , and it is not easy to obtain single transverse mode oscillation.
  • a method of selecting TEM 00 to increase the finesse of the laser resonator to achieve single transverse mode oscillation is also conceivable.
  • the finesse is raised more than necessary, the light intensity in the resonator increases, which also causes damage problems. appear.
  • FIG. 2 is a schematic diagram of the laser resonator 10 of the embodiment.
  • the laser resonator 10 has a so-called bow tie type resonator arrangement and includes four mirrors M1, M2, M3, and M4.
  • the mirrors M1 and M2 are concave mirrors having a predetermined curvature, and the mirrors M3 and M4 are plane mirrors.
  • the radius of curvature r1 of the mirror M1 is set to 100 millimeters (mm)
  • the radius of curvature r2 of the mirror M2 is set to 100 millimeters (mm).
  • This mirror arrangement has a portion where the beam diameter is tightly focused (a path including a tightly narrowed beam waist) and a portion that can be regarded as almost parallel light (parallel light path).
  • the term “substantially parallel light” does not include a tightly focused beam waist and can be regarded as parallel rays within the scope of optical common sense described later with reference to FIG. Say.
  • the beam diameter is tightly narrowed between the mirrors M1 and M2, and the other paths, that is, between the mirrors M2 and M3, between the mirrors M3 and M4, and between the mirrors M4 and M1, are almost the same.
  • Parallel light The laser medium 12 is disposed in the parallel light portion.
  • the path between the mirrors M1 and M2 having a tightly narrowed beam waist has an optical path length that is at least 10 times the Rayleigh length defined by the beam diameter at the beam waist position.
  • the Rayleigh length indicates the distance until the beam diameter becomes ⁇ 2 times, and is uniquely determined when the beam diameter is given.
  • the beam diameter at the beam waist between the mirrors M1 and M2 is small, and an appropriate resonator arrangement is realized by making the optical path length 10 times or more of the Rayleigh length.
  • These parallel light paths may be set to an optical path length that is not more than twice the Rayleigh length determined by the beam diameter at the position where the beam diameter of the parallel light is the smallest.
  • the laser medium 12 is disposed between the mirrors M3 and M4 from the viewpoint of efficiently extracting output light, but a parallel light path between the mirrors M1 and M4 or between the mirrors M2 and M3. You may arrange in.
  • the base material, the added element, the composition, and the like of the laser medium 12 are appropriately selected based on the target wavelength, the absorption rate with respect to the excitation light, and the like.
  • a titanium sapphire crystal reffractive index 1.76, Brewster angle 60.4 °
  • the laser medium 12 is arranged in a tightly focused portion in a normal configuration.
  • the laser medium 12 by placing the laser medium 12 in the parallel light portion, all the optical components including the mirrors M1 to M4 and the laser medium 12 are arranged at a position where the beam diameter is large. Avoid the problems of light damage.
  • FIG. 3 is a diagram showing the beam diameter in the laser resonator 10 having the arrangement shown in FIG.
  • the horizontal axis represents the position in the resonator, specifically, the distance (optical path length) from the mirror M1.
  • the vertical axis represents the beam diameter (mm).
  • the distance between the mirrors M1 and M2 is 103.6 mm
  • the distance between the mirrors M2 and M3 is 130 mm
  • the distance from the mirror M3 to the incident surface of the titanium sapphire crystal as the laser medium 12 is 44 mm.
  • the crystal length of the titanium sapphire crystal is 17 mm (optical path length is 29.9 mm), the distance from the exit surface of the titanium sapphire crystal to the mirror M4 is 50.4 mm, and the distance between the mirrors M4 and M1 is 114 mm.
  • This beam is orthogonal to the direction of travel of the beam and is parallel to the plane of the paper (horizontal component or meridional ray) and perpendicular to the direction of travel of the beam and perpendicular to the plane of the paper (vertical component or sagittal ray).
  • the beam diameter is narrowed down by both the vertical component and the horizontal component.
  • the beam diameter in the direction perpendicular to the paper surface is approximately 2 mm
  • the beam diameter in the direction parallel to the paper surface is parallel light having a beam diameter of approximately 0.6 mm.
  • FIG. 4 is an enlarged view of the beam waist region A of FIG. In this region, the beam diameter of the vertical component is narrowed down compared to the beam diameter of the horizontal component.
  • the beam cross section at the center of the mirrors M1 and M2 is the smallest, the light confinement is strong, and the intensity per unit area increases.
  • no optical component is disposed in the path P2 including the beam waist region A.
  • the arrangement of FIG. 2 has another feature that the beam diameter in the parallel light portion can be made variable while maintaining a single transverse mode, in addition to preventing damage to the optical components.
  • FIG. 5 shows changes in the beam diameter when the distance L between the mirrors M1 and M2 is changed. It shows the diameters of both the component in the direction perpendicular to the paper surface (vertical component or sagittal component) and the component in the direction horizontal to the paper surface (horizontal component or meridional component) in the plane orthogonal to the beam traveling direction.
  • the beam diameter in a portion close to parallel light can be continuously increased without changing the curvature of the mirror. For example, by setting the distance L between the mirrors M1 and M2 to 105 mm in the arrangement example of FIG.
  • a beam profile close to a perfect circle having a beam diameter of about 1 mm can be obtained.
  • the diameter of the vertical component can be increased and the beam cross-sectional area can be increased.
  • the beam diameter of the horizontal component is uniquely determined.
  • TEM 01 and TEM 10 which are the next higher order modes of TEM 00 are located at approximately the center of the longitudinal mode (axis mode) interval, and can select transverse mode oscillation with TEM 00 alone without raising finesse. it can. This is because the resonator arrangement is such that a tightly narrowed waist is formed in the resonator.
  • a stable resonator arrangement an arrangement in which a transverse mode profile in an oscillation resonator is determined by stable oscillation using optical confinement.
  • the beam diameter of the parallel light part is increased using a reasonable radius of curvature of the curved mirror, and a high output is obtained with a sufficiently large frequency interval between adjacent high-order transverse modes.
  • a laser can be realized.
  • even-order higher-order transverse modes are close to TEM 00 , but the spatial profile of these even-order modes has a shape that extends considerably outward as compared to the TEM 00 mode. Therefore, even-order modes can be sufficiently removed by matching the excitation light with the spatial profile of TEM 00 , or by arranging an aperture or the like in the resonator.
  • the spatial profile of TEM 01 mode and TEM 10 mode has a large overlap with TEM 00 mode and it is difficult to differentiate from TEM 00 spatially compared to TEM 02 and TEM 20; The frequency interval can be kept large.
  • FIG. 6 shows an application example to a standing wave type (Z type) resonator instead of the bow tie type resonator of FIG.
  • the effects of avoiding optical damage of the above-described optical components and adjusting the beam diameter by finely adjusting the distance between M1 and M2 can also be obtained by the standing wave type (Z type) resonator of FIG.
  • the laser resonator 10A includes mirrors M1 and M2 having curvature and plane mirrors M3 and M4.
  • the laser medium 12 is inserted into a path of parallel light other than the path between the mirrors M1 and M2 where the beam is tightly focused, and is inserted as an example between the mirrors M3 and M4.
  • the excitation light can be incident from the side of the mirror M4, but is not limited to this example.
  • Incident excitation light excites the laser medium 12.
  • the oscillation light is sequentially reflected by the mirror M3 and the mirror M1, and is turned back by the mirror M2.
  • the light reciprocates between the mirror M4 and the mirror M2. When the light energy is sufficiently amplified, the light is output to the outside from the mirror M4.
  • FIG. 7 is a schematic diagram of the laser resonator 20 of the first modification.
  • transparent plates 15 and 16 having a thickness satisfying a predetermined condition are inserted in a path between the mirrors M1 and M2 having curvature.
  • the transparent plate 15 and the transparent plate 16 are respectively inserted obliquely with respect to the optical axis.
  • the correction amount of astigmatism is defined by the thickness t of the transparent plates 15 and 16, the refractive index n, and the angle of the transparent plate from the optical axis.
  • n 1 is a refractive index of light in a medium (for example, air) before incidence
  • n 2 is a refractive index of light in the transparent plates 15 and 16.
  • FIG. 8 is a schematic diagram of a laser resonator 30 according to the second modification. 2 and 6, the laser medium 12 is arranged in a parallel light path having a large beam diameter while the optical confinement is enhanced by mirrors M1 and M2 having realistic curvatures, thereby avoiding optical damage of optical components.
  • the single transverse mode can be maintained. However, a tightly focused beam waist is formed in the resonator, and air discharge at the beam waist can occur when the laser output is increased.
  • FIG. 9 is a schematic diagram of the laser resonator 40 of the third modification.
  • the vacuum cell of Modification 2 and the oblique transparent plate of Modification 1 are combined to prevent both astigmatism and air discharge.
  • the laser resonator 40 includes mirrors M1 and M2 having curvature and plane mirrors M3 and M4, and the vacuum cell 18 is disposed in the beam waist region.
  • the vacuum cell 18 has transparent plates 21 and 22 having a predetermined thickness, which are disposed obliquely with respect to the optical axis on the incident side and the emission side, respectively. Astigmatism is relieved by the transparent plates 21 and 22, and air discharge is prevented by the vacuum cell 18.
  • reflection loss can be prevented.
  • the laser medium 12 is arranged in the optical path excluding the beam waist path (path between M1 and M2), as in FIGS.
  • a simple and stable laser resonator design is realized.
  • 10 and 11 are diagrams showing the characteristics of the laser oscillation output light in the arrangement of FIG. Injection-locked nanosecond pulsed laser oscillation light is used as the laser oscillation output light.
  • seed light is injected into the titanium sapphire laser medium 12 of FIG. 9 from the outside, and oscillation based on the seed light is dominantly generated before spontaneous emission of the laser medium 12.
  • the oscillation output is a stable output that matches the longitudinal mode of the seed light.
  • the horizontal axis indicates the distance (mm) between the concave mirrors
  • the vertical axis indicates the beam diameter (mm).
  • the cross-sectional shape of the beam is almost circular and the diameter is about 1 mm.
  • the beam shape observed at this time is shown by an image (a-2).
  • image (a-1) By changing the distance between the concave mirrors to 89.05 mm, it is possible to obtain output light having a substantially circular cross section with a beam diameter of 2 mm.
  • the beam shape observed at this time is shown by an image (a-1).
  • FIG. 11 shows the evaluation result of the beam quality (lateral mode) of the output light (a-1) in FIG.
  • the beam diameter is measured at a plurality of points along the optical axis from the focal point.
  • the upper diagram of FIG. 11 shows the characteristics of the component perpendicular to the paper surface (sagittal component), and the lower diagram of FIG.
  • the beam quality is evaluated by the M 2 method.
  • the M 2 value is an indicator of how close the beam is to the single mode TEM00 beam
  • M 2 ( ⁇ / 4 ⁇ ) w 0 ⁇ ⁇ 0
  • is the wavelength used
  • w 0 is the radius at the beam waist
  • ⁇ 0 is the spread angle from the optical axis.
  • the value of M 2 is approximately 1 for both the vertical component and the horizontal component. This indicates that it is close to a single mode Gaussian beam.
  • FIG. 12 shows an example in which the configuration of FIG. 9 is applied to a standing wave type (Z type) resonator.
  • the laser resonator 40A includes mirrors M1 and M2 having curvature and plane mirrors M3 and M4.
  • a vacuum cell 18 is disposed in the beam waist region between the mirrors M1 and M2, and the laser medium 12 is inserted into a parallel light path excluding the path where the beam is focused.
  • the vacuum cell 18 has transparent plates 21 and 22 having a predetermined thickness that are disposed obliquely with respect to the optical axis on the incident side and the emission side, respectively, to reduce astigmatism and prevent air discharge. It is desirable that the angles of the transparent plates 21 and 22 with respect to the optical axis satisfy the Brewster condition.
  • FIG. 13 is a diagram illustrating another example of the arrangement of the laser medium 12.
  • the laser medium 12 does not necessarily need to be between the mirrors M3 and M4 as long as the laser medium 12 is inserted into a path of substantially parallel light while avoiding a tightly narrowed beam waist.
  • the laser medium 12 is disposed between the mirrors M2 and M3, but the present invention is not limited to this example, and the laser medium 12 may be disposed between the mirrors M1 and M4.
  • the selection of the arrangement position of the laser medium 12 also applies to the Z-type resonator arrangement of FIG. In the example of FIG. 12, the laser medium 12 may be disposed between the mirrors M1 and M3.
  • FIG. 14 is a schematic diagram of a laser resonator 50A of the fourth modification.
  • a combination of the plane mirror M11 and the convex lens 51 is used instead of the concave mirror M1
  • a combination of the plane mirror M12 and the convex lens 52 is used instead of the concave mirror M2.
  • FIG. 15 shows a laser resonator 50B as another configuration example of the fourth modification.
  • the entrance surface and the exit surface of the vacuum cell 55 are formed by convex lenses 57 and 58. This configuration can reduce the number of parts and can prevent astigmatism and air discharge.
  • the laser medium 12 is arranged between the mirrors M3 and M4, but may be arranged in another parallel light path as shown in FIG.
  • damage to optical components in the resonator can be prevented even when the laser output is increased, and stable in a single transverse mode without increasing the finesse of the laser resonator. Oscillation can be obtained.
  • the laser device may be configured by combining the laser resonator of FIG. 2 and Modifications 1 to 4 and an external excitation light source.
  • the excitation light from the excitation light source is incident on the laser medium 12 to excite the laser medium 12 and cause laser oscillation.
  • Such a laser device is also within the scope of the present invention.

Abstract

共振器の共振器の光損傷を防止し、かつ単一横モード発振を維持することのできるレーザ共振器を提供する。レーザ共振器は、タイトに絞られたビームウエストを有する第1の光パスを形成する1組の光学素子と、前記第1の光パスに接続されるほぼ平行光の第2の光パスを形成する1以上のミラーと、前記第2の光パスに配置されるレーザ媒質とを有し、前記レーザ媒質からの誘導放出光が前記第1の光パスと第2の光パスで形成されるパスを往復または周回する。

Description

レーザ共振器、及びレーザ共振器の設計方法
 本発明は、レーザ共振器とレーザ共振器の設計方法に関する。
 レーザ光は、光通信、吸収/励起スペクトルの測定、物質の高解像測定、分光等、多様な分野で用いられている。単一縦モード発振のレーザ光源として、発振スペクトル幅が狭く波長選択性の高い外部共振器型半導体レーザが広く用いられている。外部共振器型半導体レーザは、固体レーザ媒質の反射防止(AR)膜で被膜された端面の外側に共振器を配置し、共振器の共振波長に同調した発振光を出力する。外部共振器として、3枚のミラーで構成したリング型共振器、あるいは4枚のミラーで構成したボウタイ(Bow-tie)型の共振器の光パスに固体レーザ結晶を配置して発振光を共振させる構成が知られている(たとえば、特許文献1参照)。
特開2008-34457号公報
 レーザを高出力化しようとすると、高強度の光によって、レーザ共振器を構成する光学部品が損傷を受けるという問題が生じる。光学部品の損傷の問題は、共振器内を往復または周回するレーザ光のビーム径を大きして単位面積当たりの光強度を下げることで解決され得る。しかし、ビーム径を大きくすると均一な断面強度分布を持つ単一横モードのレーザ出力を得るのが困難になる。
 本発明は、共振器の光損傷を防止し、かつ単一横モード発振を維持することのできるレーザ共振器の設計を提供することを目的とする。
 本発明の一つの側面では、レーザ共振器は、
 タイトに絞り込まれた第1の光パスを形成する1組の光学素子と、
 前記第1の光パスに接続されるほぼ平行光の第2の光パスを形成する1以上のミラーと、
 前記第2の光パスに配置されるレーザ媒質と、
を有し、前記レーザ媒質からの誘導放出光が前記第1の光パスと第2の光パスで形成されるパスを往復または周回する。
 本発明の別の側面では、レーザ共振器の設計方法は、
 タイトに絞られたビームウエストを有する第1の光パスを形成する1組の凹面ミラーと、前記第1の光パスに接続されるほぼ平行光の第2の光パスを形成する1以上のミラーとで共振器を構成し、
 前記第2の光パスにレーザ媒質を配置し、
 前記1組の凹面ミラー間の距離を調整して前記第1の光パスのビーム径を所望のサイズに拡張する。
 共振器の光損傷を防止し、かつ単一横モード発振を維持することができる。これにより安定した高出力レーザが実現される。
ビーム径を大きくすることで生じる問題を説明する図である。 実施形態のレーザ共振器の概略図である。 図2の配置のレーザ共振器内のビーム径を示す図である。 図3のタイトに絞り込まれたビームウエスト領域の拡大図である。 実施形態で用いる凹面ミラー(M1-M2)間の距離を調整することで、ビーム径を所望のサイズに拡張する一例を示す図である。 Z型共振器への適用例を示す図である。 変形例1のレーザ共振器の概略図である。 変形例2のレーザ共振器の概略図である。 変形例3のレーザ共振器の概略図である。 図9の配置において、凹面ミラー間の距離に応じた発振出力のビーム径の変化を示す図である。 図10の出力光のビーム品質の評価結果を示す図である。 図9の構成のZ型共振器への適用例を示す図である。 レーザ媒質の配置箇所の別の例を示す図である。 変形例4のレーザ共振器の概略図である。 変形例4の別の構成例を示す図である。
 本発明のレーザ共振器の躯体的な構成を示す前に、共振器内を往復する光のビーム径を大きくすることにより生じる問題点を説明する。共振器内でビーム径を大きくする、特に光学部品が置かれた位置でのビーム径を大きくすることで、高出力レーザの共振器内の光学部品の損傷は解決され得る。ただし、発振レーザ光が単一横モードであることが条件となる。レーザ出力が単一横モードでないと、均一な断面強度分布の光が得られないだけでなく、出力光を回折限界まで絞り込めないなど、応用の観点でデメリットが発生するからである。
 図1に示すように、横モード径を大きくする一つの方法は、曲率半径の大きいミラーを用いてレーザ共振器を構成することである。ファブリ-ペロー型の共振器を用いた例で説明する。図1の右図のように、共振器間隔L=300mmのファブリ-ペロー共振器において、共振器を構成するミラーの曲率半径Rを10メートル(m)とすると、共振器内のTEM00の横モード直径は1.0mm~1.1mmになる。この光はほぼ平行光に近い。
 一方、図1の左図のように、同じ配置でミラーの曲率半径Rを100メートル(m)にすると、共振器内のTEM00の横モード直径は2.0mm~2.1mmになる。曲率半径R=10mのミラーと比較して、ビーム直径で2倍、断面積で4倍大きくなる。この場合は、R=10mの共振器設計に比べて、光学部品の損傷の問題を生じさせることなく、4倍大きいエネルギーの光出力を得ることができる。このことは、リング型の共振器配置をとったときも同様に当てはまる。
 一見、これで損傷の問題が解決するようにみえるが、実際にはこの設計は十分に機能しない。ひとつの現実的な問題は、このような大きい曲率半径(R=100m)のミラーの製作が容易でないこと、また、製作してもその曲率半径にばらつきが大きく、安定したスペックのミラーを入手することが困難なことにある。
 もう一つの問題は、図1に示すように、ビーム径が大きくなるにつれて高次の横モード(TEM:Transverse Electromagnetic Mode)の共振周波数、特にTEM00の次の高次モードであるTEM01、あるいはTEM10がTEM00の基本モードの周波数に近接し、単一横モード発振を得るのが容易でなくなることにある。レーザ共振器のフィネスを上げて、単一横モード発振となるようTEM00を選択する方法も考えられるが、フィネスを必要以上に上げると共振器内の光強度が高くなり、やはり損傷の問題が発生する。
 本発明は、以上のような問題意識を背景として、これらの問題を解決するためのレーザ共振器の新しい設計を提供する。
<基本構成>
 図2は、実施形態のレーザ共振器10の概略図である。レーザ共振器10はいわゆるボウタイ型の共振器配置を有し、4枚のミラーM1、M2、M3、M4を有する。ミラーM1とM2は所定の曲率を有する凹面ミラー、ミラーM3とM4は平面ミラーである。この例では、ミラーM1の曲率半径r1は100ミリメートル(mm)ミラーM2の曲率半径r2は100ミリメートル(mm)に設定されている。これらの設定値は一例であって、M1-M2間でビーム径を光閉じ込めに適したサイズに絞ることのできる任意の曲率半径を選択することができる。
 このミラー配置は、ビーム径がタイトに集光された部分(タイトに絞られたビームウエストを含むパス)と、ほぼ平行光とみなせる部分(平行光パス)を有する。この明細書と特許請求の範囲で「ほぼ平行光」というときは、タイトに絞られたビームウエストを含まず、図3を参照して後述する光学的な常識の範囲内で平行光線とみなせるものをいう。ビーム径がタイトに絞られているのはミラーM1とM2の間であり、それ以外のパス、すなわちミラーM2とM3の間、ミラーM3とM4の間、及びミラーM4とM1の間は、ほぼ平行光である。そして、平行光の部分に、レーザ媒質12が配置される。
 タイトに絞られたビームウエストを有するミラーM1とM2の間のパスは、ビームウエスト位置でのビーム径で規定されるレーリー長の10倍以上の光路長を有する。レーリー長は、ビーム径が√2倍になるまでの距離を指し、ビーム径が与えられると一義的に決まる。ミラーM1とM2の間のビームウエスト部分でのビーム径は小さく、光路長をレーリー長の10倍以上にすることで適切な共振器配置を実現する。
 ほぼ平行光のパスとなるミラーM2とM3の間、ミラーM3とM4の間、及びミラーM4とM1の間では、ビームウエスト部分とビームウエスト以外の部分でのビーム径の差は小さい。これらの平行光パスは、ほぼ平行光のビーム径が最も小さくなる位置でのビーム径で決まるレーリー長の2倍以下の光路長に設定されてもよい。
 図2の例では、効率良く出力光を取り出す観点から、レーザ媒質12をミラーM3とM4の間に配置しているが、ミラーM1とM4の間、あるいはミラーM2とM3の間の平行光パスに配置してもよい。レーザ媒質12の母体材料、添加される元素、組成等は、目的とする波長、励起光に対する吸収率等に基づいて適宜選択される。この例では、レーザ媒質12としてチタンサファイア結晶(屈折率1.76、ブリュースター角60.4°)を用いる。
 レーザ媒質12での増幅を高めるためには、通常の構成ではタイトにフォーカスされた部分にレーザ媒質12が配置される。これに対して、図2では平行光の部分にレーザ媒質12を置くことで、ミラーM1~M4とレーザ媒質12を含めた全ての光学部品がビーム径の大きい位置に配置され、高出力レーザでの光損傷の問題を避けることができる。
 図3は、図2の配置のレーザ共振器10内のビーム径を示す図である。横軸は共振器内での位置、具体的にはミラーM1からの距離(光路長)である。分かりやすくするため、横軸に沿って共振器内での光学素子の配置位置を示している。縦軸はビーム直径(mm)である。実験に用いた配置では、ミラーM1とM2の間の距離が103.6mm、ミラーM2とM3の間の距離が130mm、ミラーM3からレーザ媒質12としてのチタンサファイア結晶の入射面までの距離が44mm、チタンサファイア結晶の結晶長は17mm(光路長は29.9mm)、チタンサファイア結晶の出射面からミラーM4までの距離は50.4mm、ミラーM4とM1の間の距離は114mmである。このビームは、ビームの進行方向に直交し、かつ紙面と水平な方向の成分(水平成分またはメリジオナル光線)とビームの進行方向に直交し、かつ紙面と垂直な方向の成分(垂直成分またはサジタル光線)で径の異なる楕円プロファイルを有する。これは、曲率を持った凹面ミラーM1,M2を用いることによる非点収差の影響による。後述するように、この非点収差の影響は追加の光学素子を用いることで補正可能である。
 図3からわかるように、ミラーM1とM2の間でビーム径は垂直方向の成分、水平方向の成分の双方で絞り込まれている。それ以外のパスでは、紙面と垂直な方向のビーム径が約2mm、紙面と水平な方向のビーム径は約0.6mmの平行光である。
 図4は、図3のビームウエスト領域Aの拡大図である。この領域では、垂直成分のビーム径のほうが水平成分のビーム径よりも絞り込まれている。ミラーM1とM2の中央部でのビーム断面が最も小さくなり、光閉じ込めが強く単位面積当たりの強度が増大する。図2の構成では、このビームウエスト領域Aを含むパスP2に光学部品は配置されない。
<レンズ間距離の調整によるビーム径の調整>
 図2の配置は、光学部品の損傷防止以外に、単一横モードを維持したまま平行光部分でのビーム径を可変にできるという、もうひとつの特徴を有する。
 図5は、ミラーM1-M2間の距離Lを変化させたときのビーム径の変化を示す。ビームの進行方向と直交する面内で紙面と垂直な方向の成分(垂直成分またはサジタル成分)と紙面と水平な方向の成分(水平成分またはメリジオナルメ成分)の双方の径を示している。図5からわかるように、曲率を持ったミラーM1-M2間の距離を微調整することで、ミラーの曲率を変えずに平行光に近い部分のビーム径を連続的に増大させることができる。たとえば、図2の配置例でミラーM1とM2間の距離Lを105mmに設定することで、ビーム径が約1mmの真円に近いビームプロファイルが得られる。距離Lを104mmにすることで垂直成分の径を増大させてビーム断面積を大きくすることができる。合理的な範囲内で垂直成分のどのようなビーム径を選択したとしても、水平成分のビーム径が一義的に決まる。一例として、垂直方向の径を2mm(L=103.6mm)に設定する。垂直方向のビーム径をたとえば1mmから2倍の2mmに変化させる場合でも、凹面ミラーの曲率半径を現実的な値、たとえば100mm程度に固定することができ、安定したスペックのミラーを容易に入手することができる。
 さらに、図2の構成は単一横モードの選択性も良い。TEM00の次の高次モードであるTEM01、及びTEM10は、縦モード(軸モード)間隔のほぼ中央に位置し、フィネスを上げることなくTEM00単一で横モード発振を選択することができる。共振器内にタイトに絞り込まれたウエストが形成されるような共振器配置となっているからである。この明細書では、光閉じ込めを用いた安定発振で発振共振器中の横モードプロファイルが確定する配置を「安定共振器配置」と呼ぶ。安定共振器配置において、曲面ミラーの合理的な曲率半径を用いて平行光部分のビーム径を大きくし、隣接する高次横モードとの間の周波数間隔を十分に大きく保った状態で高出力のレーザを実現することができる。
 なお、偶数次の高次横モード(TEM02、TEM20等)はTEM00に近接するが、これらの偶数次モードの空間プロファイルはTEM00モードに比べてかなり外側に広がる形状になる。したがって、励起光をTEM00の空間プロファイルにマッチングさせる、共振器内にアパーチャ等を配置するなどして、偶数次モードを十分に除去することができる。TEM01モードやTEM10モードの空間プロファイルはTEM00モードとのオーバーラップが大きく空間的にTEM00と差別化することはTEM02、TEM20に比べて困難であるが、上記の構成によりモード間の周波数間隔を大きく保つことができる。
 図6は、図2のボウタイ型共振器に替えて、定在波型(Z型)の共振器への適用例を示す。上述した光学部品の光損傷の回避と、M1-M2間距離の微調整によるビーム径調整の効果は、図6の定在波型(Z型)共振器でも得られる。レーザ共振器10Aは、曲率を持ったミラーM1、M2と、平面ミラーM3、M4を有する。レーザ媒質12は、ビームがタイトに絞られるミラーM1とM2の間のパス以外の平行光のパスに挿入され、一例としてミラーM3とM4の間に挿入される。
 励起光は、一例としてミラーM4の側から入射し得るがこの例に限定されない。入射励起光はレーザ媒質12を励起する。発振光はミラーM3、ミラーM1で順次反射され、ミラーM2で折り返す。光はミラーM4とミラーM2の間を往復する。光のエネルギーが十分に増幅されるとミラーM4から外部に出力される。
 図6の構成でも、ミラーM1とM2間の距離を微調整することで、平行光部分のビーム径は拡張され、単位面積当たりの強度が緩和されている。ミラーM1とM2の曲率は安定共振器配置となる適切な曲率に設定されている。
<変形例1>
 図7は、変形例1のレーザ共振器20の概略図である。図7では、曲率を持つミラーM1とM2の間のパスに、所定の条件を満たす厚さの透明板15,16を挿入する。
 一般に、ボウタイ型またはZ型の共振器配置で曲率を持つ球面ミラーを用いると、非点収差が生じ、ビーム径が楕円になり、かつ楕円の長軸方向と短軸方向のそれぞれで異なるビームダイバージェンスをもつ。これは図3、4にも現れている。非点収差の影響を低減するため、透明板15と透明板16をそれぞれ光軸に対して斜めに挿入する。非点収差の補正量は、透明板15、16の厚さt、屈折率n、光軸からの透明板の角度で規定される。
 透明板15、16へのビームの入射角θをブリュースター角とすることで、透明板15,16を挿入することによる反射ロスを回避することができる。ブリュースター角は、透明板15、16への入射角θがθ=tan-1(n2/n1)を満たすときの角度であり、このときP偏波は全く反射されなくなる。ここで、n1は入射前の媒質(たとえば空気)での光の屈折率、n2は透明板15,16中での光の屈折率である。ブリュースター角で透明板15、16を挿入することで、透明板15、16の表明反射による損失を最小にし、かつ凹面を有するミラーM1、M2を用いることによる非点収差の影響を低減することができる。
<変形例2>
 図8は、変形例2のレーザ共振器30の概略図である。図2及び図6の構成は、現実的な曲率を持つミラーM1、M2で光閉じ込めを高めつつ、ビーム径の大きい平行光パスにレーザ媒質12を配置して、光学部品の光損傷を回避しつつ単一横モードを維持できる。ただし、共振器内にタイトに集光されたビームウエストが形成され、レーザ出力を高くしたときに、ビームウエストでの空気放電が発生し得る。
 変形例2では、ビームウエスト領域を真空にすることで空気放電を防止する。レーザ共振器30は、曲率を有するミラーM1、M2と平面ミラーM3、M4を有し、ビームウエスト領域に真空セル17が配置される。レーザ媒質12がビームウエストのパス(M1-M2間のパス)を除く光パスに配置されていることは図2,6,7と同様である。なお、レーザ共振器30の全体を真空チャンバーに配置してもよい。図8のようにビームウエスト領域にだけ真空セル17を配置することでレーザ装置を小型に保つことができる。
<変形例3>
 図9は、変形例3のレーザ共振器40の概略図である。変形例3では、変形例2の真空セルと変形例1の斜めの透明板を組み合わせて、非点収差と空気放電の両方を防止する。レーザ共振器40は、曲率を有するミラーM1、M2と平面ミラーM3、M4を有し、ビームウエスト領域に真空セル18が配置される。真空セル18は、入射側と出射側にそれぞれ光軸に対して斜めに配置される所定の厚さの透明板21と22を有する。透明板21及び22により非点収差を緩和し、かつ真空セル18で空気放電を防止する。真空セル18の窓となる透明板21,22の角度をブリュースター条件を満たすように設定することで、反射ロスを防止することができる。レーザ媒質12がビームウエストのパス(M1-M2間のパス)を除く光パスに配置されていることは図2,6,7と同様である。図9の構成では、シンプルで安定したレーザ共振器の設計が実現される。
図10と図11は、図9の配置におけるレーザ発振出力光の特性を示す図である。レーザ発振出力光として、注入同期ナノ秒パルスレーザ発振光を用いている。具体的には、図9のチタンサファイアのレーザ媒質12に、外部からシード光を注入し、レーザ媒質12の自然放出よりも前にシード光に基づく発振を支配的に生じさせる。その結果、発振出力はシード光の縦モードと一致した安定出力となる。
 図10の横軸は、凹面ミラー間の距離(mm)を示し、縦軸は、ビーム直径(mm)を示す。図9のミラーM1とM2の間パスに透明板21,22を有する真空セル18を挿入した状態で、ミラーM1とM2の間の距離(パス長)を変える。距離の変化にともなって発振出力光の径が変化する。
 凹面ミラー間距離が89.7mmのときにビームの断面形状はほぼ円形であり、直径は約1mmである。このときに観察されるビーム形状を画像(a-2)で示す。凹面ミラー間距離を89.05mmに変えることで、ビーム径が2mmのほぼ円形断面の出力光を得ることができる。このときに観察されるビーム形状を画像(a-1)で示す。
 図9のレーザ共振器40では、凹面ミラー間に挿入された透明板21、22により、非点収差がほぼ取り除かれている。したがって、図10で垂直成分と水平成分を表わす2本の曲線は互いに近接しており、凹面ミラー間の距離の変化にかかわらず、ビーム断面形状はほぼ円形に維持されている。
 図11は、図10の出力光(a-1)のビーム品質(横モード)の評価結果を示す。集光点から光軸に沿って複数の点でビーム径を測定する。図11の上図がビームの紙面と垂直な成分(サジタル成分)、図11の下図が紙面と水平な成分(メリジオナル成分)の特性である。ビーム品質は、M2法で評価する。M2値はビームがシングルモードTEM00ビームにどれだけ近いかを表わす指標であり、
   M2=(π/4λ)w0×θ0
で計算される。ここで、λは使用波長、w0はビームウエストでの半径、θ0は光軸からの広がり角である。計算の結果、垂直成分、水平成分ともに、M2の値はほぼ1である。これはシングルモードのガウシアンビームに近いことを示す。
 図12は、図9の構成を定在波型(Z型)の共振器に適用した例を示す。レーザ共振器40Aは、曲率を持ったミラーM1、M2と、平面ミラーM3、M4を有する。ミラーM1とM2の間のビームウエスト領域に真空セル18が配置され、レーザ媒質12は、ビームが絞られるパスを除く平行光のパスに挿入される。真空セル18は、入射側と出射側にそれぞれ光軸に対して斜めに配置される所定の厚さの透明板21と22を有し、非点収差を緩和するとともに空気放電を防止する。透明板21、22の光軸に対する角度は、ブリュースター条件を満たしていることが望ましい。
 図13は、レーザ媒質12の配置の別の例を示す図である。上述のように、レーザ媒質12は、タイトに絞られたビームウエスト部分を避けてほぼ平行光のパスに挿入されるならば、必ずしもミラーM3とM4の間である必要はない。図13のレーザ共振器40Bでは、レーザ媒質12をミラーM2とM3の間に配置するが、この例に限定されず、ミラーM1とM4の間にレーザ媒質12を置いてもよい。レーザ媒質12の配置位置の選択は、図12のZ型の共振器配置にも当てはまる。図12の例では、ミラーM1とM3の間にレーザ媒質12を配置してもよい。レーザ媒質をほぼ平行光のパスに配置することで、単一横モード発振の安定共振器において光学素子に対する光損傷を防止することができる。
<変形例4>
 図14は、変形例4のレーザ共振器50Aの概略図である。レーザ共振器50Aでは、凹面ミラーM1に替えて、平面ミラーM11と凸レンズ51の組み合わせを用い、凹面ミラーM2に替えて、平面ミラーM12と凸レンズ52の組合せを用いる。この構成例ではレーザ光が凸レンズ51、52に垂直に入射するので、非点収差の問題を回避することができ、光パス中に非点収差補正用の透明板15,16、21、22(図7及び図9参照)を挿入する必要はない。ただし、タイトに絞り込まれたビームウエスト付近で空気放電が問題となり得る場合は、凸レンズ51と凸レンズ52の間に真空セル17を配置するのが望ましい。このとき、凸レンズ51、52と真空セル17の光窓は無反射コートされていることが望ましい。
 図15は、変形例4の別の構成例としてレーザ共振器50Bを示す。レーザ共振器50Bでは、真空セル55の入射面と出射面が凸レンズ57及び58で形成されている。この構成は部品点数を減らすことができ、かつ非点収差と空気放電を防止することができる。
 図14及び図15の例では、レーザ媒質12はミラーM3とM4の間に配置されているが、図13のように別の平行光パスに配置されてもよい。
 以上述べたように、実施例及び変形例の構成によると、レーザ出力を上げても共振器内の光学部品の損傷を防止でき、かつレーザ共振器のフィネスを上げることなく単一横モードで安定した発振を得ることができる。
 図2及び変形例1~4のレーザ共振器と、外部の励起光源を組み合わせてレーザ装置を構成してもよい。励起光源からの励起光をレーザ媒質12に入射することでレーザ媒質12を励起してレーザ発振させる。このようなレーザ装置も本発明の範囲内である。
 この出願は、2016年11月16日に日本国特許庁に出願された特許出願第2016-223000号に基づき、その全内容を含むものである。
1 レーザ装置
10、10A、20、30、40、40A、40B、50A、50B レーザ共振器
12 レーザ媒質
15、16、21、22 透明板
17、18、55 真空セル
51、52、57、58 凸レンズ
M1、M2 曲率を有するミラー(凹面ミラー)
M3、M4、M11、M12 平面ミラー

Claims (11)

  1.  タイトに絞られたビームウエストを有する第1の光パスを形成する1組の光学素子と、
     前記第1の光パスに接続されるほぼ平行光の第2の光パスを形成する1以上のミラーと
     前記第2の光パスに配置されるレーザ媒質と、
    を有し、前記レーザ媒質からの誘導放出光が前記第1の光パスと第2の光パスで形成されるパスを往復または周回することを特徴とするレーザ共振器。
  2.  前記第1の光パスの光路長は、前記ビームウエストの位置でのビーム径で規定されるレーリー長の10倍以上であることを特徴とする請求項1に記載のレーザ共振器。
  3.  前記第2の光パスの光路長は、前記第2の光パスのビーム径で規定されるレーリー長の2倍以下であることを特徴とする請求項1または2に記載のレーザ共振器。
  4.  前記第1の光パスの前記ビームウエストは真空環境に置かれていることを特徴とする請求項1~3のいずれか1項に記載のレーザ共振器。
  5.  前記第1の光パスの前記ビームウエストに配置される真空セル、
    をさらに有することを特徴とする請求項1~4のいずれか1項に記載のレーザ共振器。
  6.  前記真空セルは前記第1の光パスの光軸に対してブリュースター角を満たす角度で斜めに配置される所定の厚さの透明板を有することを特徴とする請求項5に記載のレーザ共振器。
  7.  前記第1の光パスに配置される非点収差補正手段、
    をさらに有することを特徴とする請求項1~5のいずれか1項に記載のレーザ共振器。
  8.  前記1組の光学素子は所定の曲率の凹面を有する第1ミラーと第2ミラーであり、
     前記1以上のミラーは、平面型のミラーであることを特徴とする請求項1~7のいずれか1項に記載のレーザ共振器。
  9.  前記1組の光学素子は、一対の凸レンズであることを特徴とする請求項1~7のいずれか1項に記載のレーザ共振器。
  10.  請求項1~9のいずれか1項に記載のレーザ共振器と、
     前記レーザ共振器の外部に配置されて前記レーザ媒質を励起する励起光源と、
    を有することを特徴とするレーザ装置。
  11.  タイトに絞られたビームウエストを有する第1の光パスを形成する1組の光学素子と、前記第1の光パスに接続されるほぼ平行光の第2の光パスを形成する1以上のミラーとで共振器を形成し、
     前記第2の光パスにレーザ媒質を配置し、
     前記1組の光学素子間の距離を調整して前記第1の光パスのビーム径を所望のサイズに拡張する、
    ことを特徴とするレーザ共振器の設計方法。
PCT/JP2017/041126 2016-11-16 2017-11-15 レーザ共振器、及びレーザ共振器の設計方法 WO2018092813A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018551667A JP7176738B2 (ja) 2016-11-16 2017-11-15 レーザ共振器、及びレーザ共振器の設計方法
US16/411,572 US10763634B2 (en) 2016-11-16 2019-05-14 Laser resonator, and method of designing laser resonator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-223000 2016-11-16
JP2016223000 2016-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/411,572 Continuation US10763634B2 (en) 2016-11-16 2019-05-14 Laser resonator, and method of designing laser resonator

Publications (1)

Publication Number Publication Date
WO2018092813A1 true WO2018092813A1 (ja) 2018-05-24

Family

ID=62145127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041126 WO2018092813A1 (ja) 2016-11-16 2017-11-15 レーザ共振器、及びレーザ共振器の設計方法

Country Status (3)

Country Link
US (1) US10763634B2 (ja)
JP (1) JP7176738B2 (ja)
WO (1) WO2018092813A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6771442B2 (ja) * 2017-09-20 2020-10-21 株式会社東芝 光学素子
JP2022014651A (ja) * 2020-07-07 2022-01-20 住友重機械工業株式会社 ビーム整形光学装置及び真円度調整方法
US11777635B2 (en) * 2021-08-31 2023-10-03 Corning Research & Development Corporation Diffraction compensated compact wavelength division multiplexing devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222792A (ja) * 1995-02-17 1996-08-30 Mitsubishi Electric Corp レーザ増幅器およびレーザ発振器
JPH08292306A (ja) * 1995-04-24 1996-11-05 Fuji Photo Optical Co Ltd 非点収差補正素子
JPH0936467A (ja) * 1995-07-17 1997-02-07 Terumo Corp 固体レーザ共振素子及び固体レーザ共振器
JPH09326516A (ja) * 1996-06-06 1997-12-16 Sony Corp レーザ光発生装置
JP2005217281A (ja) * 2004-01-30 2005-08-11 Toyota Motor Corp マルチパス増幅器
JP2008021798A (ja) * 2006-07-12 2008-01-31 Hamamatsu Photonics Kk 光増幅装置
JP2009212405A (ja) * 2008-03-06 2009-09-17 Ihi Corp レーザ共振器
US20100014543A1 (en) * 2006-03-13 2010-01-21 Lighthouse Technologies Pty Ltd Laser and a method for operating the laser
JP2011066300A (ja) * 2009-09-18 2011-03-31 Shimadzu Corp レーザ共振器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112072U (ja) * 1988-01-22 1989-07-27
JP2666509B2 (ja) * 1990-02-22 1997-10-22 富士電機株式会社 固体レーザ装置
JPH06181357A (ja) * 1992-12-11 1994-06-28 Nippon Steel Corp 波長可変固体レーザ発振装置
JPH0745887A (ja) * 1993-07-30 1995-02-14 Mitsubishi Electric Corp 固体レーザ装置、レーザ加工装置ならびに光ファイバのコーティング方法
US5412683A (en) 1994-02-04 1995-05-02 Spectra-Physics Lasers, Inc Confocal diode pumped laser
JPH0878762A (ja) * 1994-09-07 1996-03-22 Mitsubishi Electric Corp Qスイッチレーザ
US5572542A (en) * 1995-04-13 1996-11-05 Amoco Corporation Technique for locking an external cavity large-area laser diode to a passive optical cavity
JPH1187807A (ja) * 1997-09-04 1999-03-30 Amada Eng Center:Kk ガスレーザ発振器
JP3244172B2 (ja) 1998-12-24 2002-01-07 日本電気株式会社 D/a変換回路
US7130321B2 (en) * 2003-10-09 2006-10-31 Coherent, Inc. Intracavity frequency-tripled CW laser with traveling-wave ring-resonator
JP4367836B2 (ja) * 2003-12-04 2009-11-18 株式会社小松製作所 Mopo方式2ステージレーザ装置
JP5382975B2 (ja) * 2004-07-06 2014-01-08 株式会社小松製作所 高出力ガスレーザ装置
JP2006186230A (ja) * 2004-12-28 2006-07-13 Osaka Univ 光増幅モジュール、光増幅器およびレーザ発振器
KR20160104751A (ko) 2005-11-01 2016-09-05 이 아이 듀폰 디 네모아 앤드 캄파니 불포화 플루오로카본을 포함하는 발포체 형성을 위한 발포제
JP5001598B2 (ja) 2006-07-26 2012-08-15 富士フイルム株式会社 固体レーザ発振装置および固体レーザ増幅装置
JP2008042061A (ja) 2006-08-09 2008-02-21 National Institute Of Advanced Industrial & Technology レーザー再生増幅器
JP4826558B2 (ja) 2007-07-30 2011-11-30 ソニー株式会社 レーザー装置
JP2014531777A (ja) 2011-10-07 2014-11-27 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. カー効果に基づくモード同期を用いたレーザ装置、およびその動作
JP5975461B2 (ja) 2012-02-03 2016-08-23 大学共同利用機関法人 高エネルギー加速器研究機構 レーザーコンプトン散乱装置
GB2499471B (en) * 2012-06-01 2014-09-10 M Squared Lasers Ltd Method and apparatus for locking and scanning the output frequency from a laser cavity
WO2014062173A1 (en) * 2012-10-17 2014-04-24 Ipg Photonics Corporation Resonantly enhanced frequency converter
JP2013065903A (ja) * 2013-01-15 2013-04-11 Gigaphoton Inc ガスレーザ装置
JP6283374B2 (ja) 2013-01-16 2018-02-21 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. 非球面ミラーを含む増強共振器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222792A (ja) * 1995-02-17 1996-08-30 Mitsubishi Electric Corp レーザ増幅器およびレーザ発振器
JPH08292306A (ja) * 1995-04-24 1996-11-05 Fuji Photo Optical Co Ltd 非点収差補正素子
JPH0936467A (ja) * 1995-07-17 1997-02-07 Terumo Corp 固体レーザ共振素子及び固体レーザ共振器
JPH09326516A (ja) * 1996-06-06 1997-12-16 Sony Corp レーザ光発生装置
JP2005217281A (ja) * 2004-01-30 2005-08-11 Toyota Motor Corp マルチパス増幅器
US20100014543A1 (en) * 2006-03-13 2010-01-21 Lighthouse Technologies Pty Ltd Laser and a method for operating the laser
JP2008021798A (ja) * 2006-07-12 2008-01-31 Hamamatsu Photonics Kk 光増幅装置
JP2009212405A (ja) * 2008-03-06 2009-09-17 Ihi Corp レーザ共振器
JP2011066300A (ja) * 2009-09-18 2011-03-31 Shimadzu Corp レーザ共振器

Also Published As

Publication number Publication date
JPWO2018092813A1 (ja) 2019-10-17
US10763634B2 (en) 2020-09-01
JP7176738B2 (ja) 2022-11-22
US20190267769A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US7289548B2 (en) Laser oscillator incorporating transverse mode rotation in the laser resonator
JP4883503B2 (ja) 多重光路の固体スラブレーザロッドまたは非線形光学結晶を用いたレーザ装置
WO2018092813A1 (ja) レーザ共振器、及びレーザ共振器の設計方法
CN105210245B (zh) 具有圆形输出光束的高效单通型谐波发生器
CN101420101B (zh) 气体激光器件
US7620092B2 (en) Multimode MOPA with thermal lens compensation
US7991028B1 (en) Tunable solid state laser system
US8295319B2 (en) Ceramic gas laser having an integrated beam shaping waveguide
KR101219444B1 (ko) 고출력 레이저 장치
CN109217077B (zh) 一种自混频可调谐空心激光器
JP3621623B2 (ja) レーザ共振器
US9431785B2 (en) High power ultra-short laser device
JP2006203008A (ja) 2ステージレーザシステム
JP4333139B2 (ja) レーザ装置
US20170149199A1 (en) Laser device
TWI533543B (zh) 光學放大器配置
CN115769139A (zh) 用于激光脉冲的频谱展宽的设备以及激光系统
JP5347127B2 (ja) 異方性レーザー結晶を利用したダイオードポンピングされたレーザー装置
JP2017526975A (ja) キャビティ増強広帯域パルス内差周波数を生成する方法および装置
JP4721654B2 (ja) 波長変換レーザ装置
JP2019530220A (ja) 波長区別スラブレーザ
US9304402B2 (en) Light exposure apparatus and method of controlling the same
Mollenauer et al. General principles and some common features
van Eijkelenborg et al. Higher order transverse modes of an unstable-cavity laser
Mostafazadeh et al. Pulse energy optimization in multipass-cavity mode-locked femtosecond lasers

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872499

Country of ref document: EP

Kind code of ref document: A1