WO2018092298A1 - 車両制御装置及び車両制御方法 - Google Patents

車両制御装置及び車両制御方法 Download PDF

Info

Publication number
WO2018092298A1
WO2018092298A1 PCT/JP2016/084399 JP2016084399W WO2018092298A1 WO 2018092298 A1 WO2018092298 A1 WO 2018092298A1 JP 2016084399 W JP2016084399 W JP 2016084399W WO 2018092298 A1 WO2018092298 A1 WO 2018092298A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
host vehicle
stop
traffic participant
control
Prior art date
Application number
PCT/JP2016/084399
Other languages
English (en)
French (fr)
Inventor
華山賢
向井拓幸
田中潤
井深純
堀井宏明
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2018550991A priority Critical patent/JP6954918B2/ja
Priority to CN201680091006.1A priority patent/CN109982908B/zh
Priority to US16/462,037 priority patent/US11130488B2/en
Priority to PCT/JP2016/084399 priority patent/WO2018092298A1/ja
Publication of WO2018092298A1 publication Critical patent/WO2018092298A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/32Vehicle surroundings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method including an automatic operation control unit that automatically performs stop control of the host vehicle.
  • Japanese Patent Application Laid-Open No. 2016-122362 provides assistance for preventing entry based on a stop line when the ECU of the host vehicle detects a stop signal (red signal) and can detect a stop line corresponding to the stop signal.
  • a traffic support device to perform is disclosed. Specifically, for example, in a situation where a stop line is provided in front of the pedestrian crossing, if the ECU of the host vehicle determines that there is a possibility that the host vehicle cannot stop at the stop line, Even if the deceleration of the host vehicle is insufficient, the automatic brake is activated.
  • the present invention has been made in consideration of such problems.
  • a sense of security is provided to traffic participants traveling through the crossing area. It is an object of the present invention to provide a vehicle control device and a vehicle control method that can be given, and can give a passenger a further sense of security when the vehicle starts automatically.
  • the vehicle control device includes an automatic driving control unit that automatically performs stop control of the host vehicle, and a crossing that determines whether or not a crossing region that a traffic participant crosses exists in the traveling direction of the host vehicle.
  • An area determination unit, and a stop line position acquisition unit that acquires position information of a stop line, and when the automatic operation control unit determines that the crossing region does not exist in the crossing region determination unit, Based on the position information of the stop line, when the own vehicle is controlled to stop at the reference target stop position corresponding to the stop line, and the crossing region is present in the crossing region determination unit
  • the host vehicle is controlled to stop so that the host vehicle is stopped before the reference target stop position based on the position information of the stop line.
  • the host vehicle when there is a crossing region in the traveling direction of the host vehicle, the host vehicle is stopped before the reference target stop position, so that the distance between the crossing region and the host vehicle is relatively wide. Can do. Thereby, a sense of security can be given to the traffic participant who is passing the crossing area. Moreover, since the time until the host vehicle reaches the crossing region when the host vehicle starts automatically can be made relatively long, the grace time corresponding to an unexpected situation can be increased. Therefore, it is possible to give the passengers a greater sense of security.
  • the vehicle control device includes a traffic participant recognition unit that recognizes the traffic participant in the vicinity of the crossing region, and the automatic driving control unit is configured to When the traffic participant is not recognized, the host vehicle is controlled to stop so that the host vehicle is stopped at the first target stop position before the reference target stop position. When the traffic participant is recognized by the traffic participant recognition unit, the host vehicle is controlled to stop so that the host vehicle is stopped at a second target stop position before the first target stop position. May be.
  • the host vehicle stops at the first target stop position that is relatively close to the stop line, thereby suppressing the driver from feeling uncomfortable.
  • the host vehicle stops at the second target stop position relatively far from the stop line, so that it is possible to give the traffic participant a further sense of security.
  • the automatic driving control unit increases a separation distance from the stop line to the second target stop position as the number of the traffic participants recognized by the traffic participant recognition unit increases. You may correct
  • the automatic driving control unit may automatically perform the start control of the own vehicle when receiving the start request signal of the own vehicle after the stop control of the own vehicle is completed.
  • the host vehicle can be started automatically based on the start request signal.
  • the automatic operation control unit when the automatic operation control unit receives the start request signal, the start required time from when the start request signal is received until the start of the own vehicle is The vehicle is controlled to start so that the time when the crossing region is determined to be present by the crossing region determination unit is longer than when the crossing region is determined not to exist by the region determination unit. Also good.
  • traffic participants who appear around the crossing area enter the crossing area after the own vehicle is allowed to proceed (for example, after the traffic light for the own vehicle is permitted to proceed).
  • the start timing of the host vehicle can be delayed to make the grace time corresponding to the unexpected situation longer.
  • the automatic driving control unit when the traffic participant is recognized around the crossing region by the traffic participant recognition unit, the traffic participant recognition unit
  • the host vehicle may be controlled to start so that the required start time is longer than when the traffic participant is not recognized in the vicinity.
  • the start timing of the own vehicle is delayed and unexpected.
  • the grace time corresponding to the situation can be made longer.
  • the automatic driving control unit corrects the required start time so that the required start time becomes longer as the number of the traffic participants recognized by the traffic participant recognition unit increases. May be.
  • the start timing of the own vehicle is delayed and an unexpected situation occurs.
  • the corresponding grace time can be made longer.
  • the start acceleration of the host vehicle is determined by the crossing region determination unit to determine that the crossing region does not exist.
  • the host vehicle may be controlled to start so that the time when the crossing region determination unit determines that the crossing region exists is smaller than when the crossing region is determined.
  • the traffic participant can be given a sense of security and unexpected.
  • the grace time corresponding to the situation can be lengthened.
  • the automatic driving control unit recognizes the traffic participant around the crossing area when the traffic participant recognition unit recognizes the traffic participant around the crossing area.
  • the host vehicle may be subjected to start control so that the start acceleration is smaller than when the start is not performed.
  • the automatic driving control unit corrects the start acceleration so that the start acceleration becomes smaller as the number of the traffic participants recognized by the traffic participant recognition unit increases. Also good.
  • the vehicle control method includes a crossing region determination step for determining whether or not a crossing region crossed by a traffic participant exists in the traveling direction of the host vehicle, and a stop for automatically performing stop control of the host vehicle.
  • a reference target stop position corresponding to the stop line based on position information of the stop line when it is determined in the stop area determining step that the crossing area does not exist. If the vehicle is controlled to stop so that the vehicle is stopped at a later time and the crossing region is determined to be present in the crossing region determining step, the reference target stop is based on the position information of the stop line.
  • the own vehicle is controlled to stop so that the own vehicle is stopped before the position.
  • a traffic participant recognition process for recognizing the traffic participants in the vicinity of the crossing region is performed, and in the stop control process, the traffic participant recognition process is performed in the traffic participant recognition process while the host vehicle is running. If the participant is not recognized, the host vehicle is controlled to stop so that the host vehicle stops at a first target stop position before the reference target stop position.
  • the own vehicle may be controlled to stop so that the own vehicle is stopped at the second target stop position before the first target stop position.
  • the greater the number of the traffic participants recognized in the traffic participant recognition step the longer the separation distance from the stop line to the second target stop position. You may correct
  • a vehicle control apparatus 10 As shown in FIG. 1, a vehicle control apparatus 10 according to the present embodiment is incorporated in a host vehicle 100 (see FIG. 3), and the host vehicle 100 is operated in a manual operation mode (non-automatic operation) by a mode change switch or the like (not shown). Mode) and automatic operation mode.
  • the vehicle control device 10 is configured to partially and automatically perform the driving operation of the host vehicle 100 in the automatic driving mode.
  • the vehicle control device 10 may perform the driving operation of the host vehicle 100 completely automatically in the state of the automatic driving mode.
  • the vehicle control apparatus 10 may perform fully automatic driving in which the occupant is not involved in driving work at all (no mode switching).
  • the vehicle control device 10 basically includes an input system device group 12, an output system device group 14, and a control system 16. Each device forming the input system device group 12 and the output system device group 14 is connected to the control system 16 via a communication line.
  • the input system device group 12 includes an external sensor 18, a communication device 20, a navigation device 22, and a vehicle sensor 24.
  • the outside world sensor 18 acquires information indicating the outside world state of the host vehicle 100 (hereinafter, outside world information) and outputs the outside world information to the control system 16.
  • the external sensor 18 includes a plurality of cameras 26, a plurality of radars 28, and a plurality of LIDARs 30 (Light (Detection and Ranging, Laser ⁇ Imaging Detection and Ranging; light detection and ranging).
  • the communication device 20 is configured to be able to communicate with roadside units, other vehicles, and external devices including a server. For example, information related to traffic equipment, information related to other vehicles, probe information, or the latest map information 32. Send and receive.
  • the map information 32 is stored in a predetermined memory area of the storage device 42 described later or in the navigation device 22.
  • the navigation device 22 includes a satellite positioning device 34 that can detect the current position of the host vehicle 100 and a user interface (for example, a touch panel display, a speaker, and a microphone). The navigation device 22 calculates a route to the designated destination based on the current position of the host vehicle 100 or a position designated by the user, and outputs the route to the control system 16.
  • a satellite positioning device 34 that can detect the current position of the host vehicle 100 and a user interface (for example, a touch panel display, a speaker, and a microphone).
  • the navigation device 22 calculates a route to the designated destination based on the current position of the host vehicle 100 or a position designated by the user, and outputs the route to the control system 16.
  • the vehicle sensor 24 includes a speed sensor, an acceleration sensor, a lateral G sensor, a yaw rate sensor, an orientation sensor, a gradient sensor, and the like, and outputs a detection signal from each sensor to the control system 16.
  • the output system device group 14 includes a driving force device 36, a steering device 38, and a braking device 40.
  • the driving force device 36 includes a driving force ECU (Electronic Control Unit) and a driving source including an engine and a driving motor.
  • the driving force device 36 generates a traveling driving force (torque) of the host vehicle 100 according to the vehicle control value input from the control system 16 and transmits it to the wheels via a transmission or directly.
  • the steering device 38 has an EPS (electric power steering system) ECU and an EPS device.
  • the steering device 38 changes the direction of the wheels (steering wheels) according to the vehicle control value input from the control system 16.
  • the braking device 40 is, for example, an electric servo brake that uses a hydraulic brake together, and includes a brake ECU and a brake actuator.
  • the braking device 40 brakes the wheel according to the vehicle control value input from the control system 16.
  • the control system 16 includes one or a plurality of ECUs, and includes a storage device 42 and various function implementation units.
  • the function implementation unit is a software function unit in which functions are realized by a CPU (central processing unit) executing a program stored in the storage device 42. It can also be realized by a hardware function unit consisting of an integrated circuit such as Programmable (Gate Array).
  • the storage device 42 includes, for example, a random access memory (hereinafter referred to as “RAM”).
  • RAM random access memory
  • a volatile memory such as a register and a non-volatile memory such as a flash memory can be used.
  • the storage device 42 may include a read only memory (hereinafter referred to as “ROM”).
  • the map information 32, the target stop position information 44, the required start time information 46, and the acceleration information 48 described above are stored in advance.
  • the target stop position information 44 is information regarding the target stop position with respect to the stop line 106 (see FIG. 3 and the like), and includes a reference target stop position P1, a first target stop position P2, and a second target stop position P3.
  • the reference target stop position P1 is set before the stop line 106
  • the first target stop position P2 is set before the reference target stop position P1
  • the second target stop position P3 is set before the first target stop position P2.
  • the separation distance from the stop line 106 to the first target stop position P2 is longer than the separation distance from the stop line 106 to the reference target stop position P1, and from the separation distance from the stop line 106 to the second target stop position P3. Also short.
  • the required start time information 46 is information related to the time required from when an automatic driving control unit 60 (described later) receives a start request signal until the host vehicle 100 actually starts, and includes the reference start required time ⁇ T, the first start time It includes a required time ⁇ T1 and a second required start time ⁇ T2.
  • the first required start time ⁇ T1 is longer than the reference required start time ⁇ T and shorter than the second required start time ⁇ T2.
  • the acceleration information 48 is information relating to acceleration at the time of starting of the host vehicle 100, and includes a reference starting acceleration G, a first starting acceleration G1, and a second starting acceleration G2.
  • the first start acceleration G1 is smaller than the reference start acceleration G and larger than the second start acceleration G2.
  • control system 16 includes a crossing region determination unit 50, a stop line position acquisition unit 52, a traffic participant recognition unit 54, a vehicle stop determination unit 56, a vehicle start determination unit 58, and an automatic driving control unit 60.
  • the crossing area determination unit 50 determines whether or not the crossing area 108 in which the traffic participant 114 (see FIG. 5) passes (crosses) exists in the traveling direction of the host vehicle 100.
  • the traffic participants 114 include pedestrians, bicycle drivers, and the like. 4 and 5, the crossing region 108 includes a pedestrian crossing 110 and a bicycle crossing band 112. However, the crossing region 108 may be only one of the pedestrian crossing 110 and the bicycle crossing band 112.
  • the stop line position acquisition unit 52 acquires the position information of the stop line 106 in front of the crossing region 108 based on the external environment information of the external sensor 18 (for example, image information of the camera 26). However, the stop line position acquisition unit 52 may acquire the position information of the stop line 106 based on the map information 32.
  • the traffic participant recognition unit 54 recognizes the traffic participant 114 in the vicinity of the crossing region 108 based on the outside world information (for example, image information of the camera 26) of the outside world sensor 18.
  • the outside world information for example, image information of the camera 26
  • the vehicle stop determining unit 56 determines whether to stop the traveling vehicle 100 based on the external information of the external sensor 18. In addition, when the vehicle stop determination unit 56 determines to stop the host vehicle 100, the vehicle stop determination unit 56 outputs a stop request signal to the automatic driving control unit 60.
  • the vehicle start determination unit 58 determines whether or not to start the own vehicle 100 that is stopped based on the external information of the external sensor 18. In addition, when the vehicle start determination unit 58 determines that the host vehicle 100 is to start, the vehicle start determination unit 58 outputs a start request signal to the automatic driving control unit 60.
  • the automatic driving control unit 60 When the automatic driving control unit 60 receives the stop request signal, the automatic driving control unit 60 controls the driving force device 36, the steering device 38, and the braking device 40 to perform stop control of the host vehicle 100. In addition, when receiving the start request signal, the automatic driving control unit 60 controls the driving force device 36, the steering device 38, and the braking device 40 to perform the start control of the host vehicle 100.
  • the vehicle control device 10 is basically configured as described above. Next, stop control (vehicle control method) of the host vehicle 100 by the vehicle control device 10 is a flowchart of FIG. Will be described mainly with reference to FIG.
  • the host vehicle 100 the leading vehicle, stops based on the position information of the stop line 106 at the intersection 102 in response to a stop instruction (traffic sign) of the traffic light 104 installed at the intersection 102.
  • a stop instruction traffic sign
  • step S1 the automatic driving control unit 60 determines whether or not it is an automatic driving mode in which the stop control of the host vehicle 100 is automatically performed.
  • step S1: NO the current stop control is ended.
  • step S1 determines that the automatic driving mode is set (step S1: YES), whether or not the automatic driving control unit 60 has received a stop request signal from the vehicle stop determining unit 56 in step S2. judge.
  • step S2 NO
  • the current stop control ends.
  • step S3 crossing region determination step
  • the crossing region determination unit 50 automatically determines based on the image information of the camera 26 or the map information 32. It is determined whether or not the crossing region 108 exists in the traveling direction of the vehicle 100.
  • step S4 stop control process
  • the automatic operation control unit 60 As shown in FIG. Based on the position information of the stop line 106 acquired by the position acquisition unit 52, the host vehicle 100 is controlled to stop at the reference target stop position P1 corresponding to the stop line 106. That is, the host vehicle 100 stops at a position separated from the stop line 106 by D1. At this stage, stop control of the host vehicle 100 by the vehicle control device 10 ends.
  • step S3 when it is determined by the crossing region determination unit 50 that the crossing region 108 exists (step S3: YES), the traffic participant recognition unit 54 determines that the outside world sensor 18 has the outside world in step S5 (traffic participant recognition step). Based on the information, the crossing area 108 and traffic participants 114 around the crossing area 108 are recognized.
  • step S6 stop control process
  • the automatic driving control unit 60 As shown in FIG.
  • the host vehicle 100 is stopped at the first target stop position P2 before the reference target stop position P1. That is, the host vehicle 100 stops at a position separated by D2 from the stop line 106.
  • the distance between the crossing area 108 and the host vehicle 100 can be increased appropriately, and traffic participation that appears around the crossing area 108 after the host vehicle 100 stops while suppressing the driver from feeling uncomfortable. A sense of security can be given to the person 114.
  • step S7 stop control process
  • the automatic driving control unit 60 As shown in FIG.
  • the host vehicle 100 is stopped at a second target stop position P3 that is in front of the first target stop position P2. That is, the host vehicle 100 stops at a position separated from the stop line 106 by D3.
  • the traffic participant 114 can be given a further sense of security.
  • the automatic driving control unit 60 increases the distance (D3) from the stop line 106 to the second target stop position P3 as the number of the traffic participants 114 recognized in step S5 increases.
  • the own vehicle 100 is stopped and controlled.
  • the automatic driving control unit 60 stores the second target stop stored in the storage device 42 so that the distance from the stop line 106 to the second target stop position P3 increases as the number of traffic participants 114 increases.
  • the position P3 is corrected.
  • the automatic driving control unit 60 stops the host vehicle 100 at the corrected second target stop position P3. As a result, it is possible to give a sense of security to the traffic participants 114 who pass through the crossing region 108 to the own vehicle 100 side.
  • the start control (vehicle control method) of the host vehicle 100 by the vehicle control device 10 will be described with reference mainly to the flowchart of FIG.
  • step S10 the automatic driving control unit 60 determines whether or not it is an automatic driving mode in which the start control of the host vehicle 100 is automatically performed.
  • step S10: NO the start control of the host vehicle 100 by the current vehicle control device 10 ends.
  • step S10 determines that the automatic driving mode is set (step S10: YES)
  • step S11 determines whether or not the automatic driving control unit 60 has received a start request signal from the vehicle start determining unit 58 in step S11. To do.
  • step S11: NO the start control of the host vehicle 100 by the current vehicle control device 10 ends.
  • step S12 crossing region determination step
  • the crossing region determination unit 50 crosses based on the image information or the map information 32 of the camera 26. It is determined whether or not the area 108 exists.
  • step S ⁇ b> 13 start time control step
  • the automatic operation control unit 60 starts starting the host vehicle 100 after a reference start required time ⁇ T has elapsed (time t1) from when the start request signal is received (time t0).
  • step S14 starting acceleration control step
  • the automatic driving control unit 60 starts the host vehicle 100 with the reference starting acceleration G.
  • step S12 determines that the crossing area 108 exists (step S12: YES)
  • the traffic participant recognition unit 54 recognizes the traffic participants 114 around the crossing area 108 in step S15.
  • step S16 start time control step
  • the automatic driving control unit 60 receives the start request signal ( The start of the host vehicle 100 is started after elapse of a first required start time ⁇ T1 that is longer than the reference required start time ⁇ T from time t0) (time t2).
  • the start timing of the host vehicle 100 is delayed when there is a possibility that a traffic participant 114 that appears in the vicinity of the crossing region 108 after the traffic signal 104 for the host vehicle 100 has been permitted to proceed enters the crossing region 108. be able to.
  • step S17 starting acceleration control step
  • the automatic driving control unit 60 starts the host vehicle 100 with a first starting acceleration G1 smaller than the reference starting acceleration G.
  • step S15 When the traffic participant 114 is recognized by the traffic participant recognition unit 54 (step S15: YES), when the automatic driving control unit 60 receives the start request signal in step S18 (start time control step) (time) The start of the host vehicle 100 is started after elapse of a second required start time ⁇ T2 (time t3) that is longer than the first required start time ⁇ T1 from t0). Thereby, when the traffic participant 114 in the vicinity of the crossing area 108 may enter the crossing area 108 after the traffic signal 104 for the own vehicle 100 is permitted to proceed, the start timing of the own vehicle 100 is delayed. Can do.
  • the automatic driving control unit 60 starts the start of the host vehicle 100 so that the second start required time ⁇ T2 becomes longer as the number of the traffic participants 114 recognized in step S15 increases.
  • the automatic driving control unit 60 corrects the second required start time ⁇ T2 stored in the storage device 42 so that the second required start time ⁇ T2 becomes longer as the number of traffic participants 114 increases.
  • the automatic driving control unit 60 starts the start of the host vehicle 100 after elapse of the second required start time ⁇ T2 corrected from when the start request signal is received. Accordingly, the start timing of the host vehicle 100 can be delayed as the probability that the traffic participant 114 in the vicinity of the crossing region 108 enters the crossing region 108 after the traffic signal 104 for the host vehicle 100 is permitted to proceed is increased. .
  • step S19 starting acceleration control step
  • the automatic driving control unit 60 starts the host vehicle 100 with a second starting acceleration G2 smaller than the first starting acceleration G1. Thereby, a sense of security can be given to the traffic participant 114 in the vicinity of the crossing region 108.
  • step S19 the automatic driving control unit 60 starts the host vehicle 100 so that the second start acceleration G2 decreases as the number of traffic participants 114 recognized in step S15 increases.
  • the automatic driving control unit 60 corrects the second start acceleration G2 stored in the storage device 42 so that the second start acceleration G2 decreases as the number of traffic participants 114 increases, and the correction is performed.
  • the host vehicle 100 is started at the second start acceleration G2. Thereby, it is possible to give a sense of security to the traffic participants 114 in the vicinity of the crossing area 108.
  • the host vehicle 100 when the crossing region 108 exists in the traveling direction of the host vehicle 100, the host vehicle 100 is stopped before the reference target stop position P1, so that the interval between the crossing region 108 and the host vehicle 100 is set. Can be relatively wide. Thereby, a sense of security can be given to the traffic participant 114 who is passing through the crossing area 108.
  • an unexpected situation for example, traffic to the crossing region 108 when the host vehicle 100 starts automatically.
  • the grace time corresponding to the entry of the participant 114 or the like can be increased. Therefore, it is possible to give the passengers a greater sense of security.
  • the host vehicle 100 stops at the first target stop position P2 that is relatively close to the stop line 106, so that the driver is prevented from feeling uncomfortable, It is possible to give a sense of security to the traffic participant 114 who appears in the crossing area 108 after the host vehicle 100 stops.
  • the host vehicle 100 stops at the second target stop position P3 that is relatively far from the stop line 106, so that the traffic participant 114 is given further security. Can do.
  • the traffic participants 114 can easily pass out of the crossing area 108.
  • the greater the number of traffic participants 114 the longer the separation distance from the stop line 106 to the second target stop position P3. Therefore, there is a sense of security for the traffic participants 114 that pass through the crossing region 108. Can be given.
  • the automatic operation control unit 60 makes the required start time longer when the crossing region 108 exists than when the crossing region 108 does not exist. As a result, if there is a possibility that a traffic participant 114 appearing in the vicinity of the crossing area 108 after entering the crossing area 108 after the own vehicle 100 enters the travel permission state, the start timing of the own vehicle 100 is delayed and unforeseen. The grace time corresponding to the situation can be made longer.
  • the automatic driving control unit 60 increases the time required for starting when the traffic participant 114 is recognized around the crossing region 108 as compared to when the traffic participant 114 is not recognized around the crossing region 108. ing. As a result, if there is a possibility that a traffic participant 114 in the vicinity of the crossing area 108 may enter the crossing area 108 after the own vehicle 100 enters the passage-permitted state, the start timing of the own vehicle 100 is delayed and unexpected. The grace time corresponding to the situation can be made longer.
  • the automatic operation control unit 60 increases the time required for starting as the number of traffic participants 114 increases. As a result, as the probability that the traffic participant 114 in the vicinity of the crossing area 108 enters the crossing area 108 after the own vehicle 100 enters the progress permitted state, the start timing of the own vehicle 100 is delayed and an unexpected situation occurs. The corresponding grace time can be made longer.
  • the automatic operation control unit 60 makes the starting acceleration smaller when the crossing region 108 exists than when the crossing region 108 does not exist. Thereby, even if the traffic participant 114 appears in the vicinity of the crossing area 108 after the own vehicle 100 is allowed to proceed, it is possible to give the traffic participant 114 a sense of security and an unexpected situation. The grace time corresponding to can be increased.
  • the automatic driving control unit 60 reduces the start acceleration when the traffic participant 114 is recognized around the crossing region 108 as compared with the case where the traffic participant 114 is not recognized around the crossing region 108. Yes. Thereby, when the traffic participant 114 exists in the periphery of the crossing area
  • the automatic driving control unit 60 decreases the start acceleration as the number of traffic participants 114 increases. As a result, it is possible to effectively give a sense of security to the traffic participants 114 around the crossing area 108 when the host vehicle 100 starts, and the grace time corresponding to an unexpected situation is increased as the number of traffic participants 114 increases. can do.
  • the stop control of the host vehicle 100 by the vehicle control device 10 can be used also when the host vehicle 100 is stopped based on the position information of the stop line 106 using a temporary stop sign. Further, the intersection 102 may be omitted.
  • step S14, step S17 and step S19 in FIG. 6 without performing the control related to the start required time (step S13, step S16 and step S18 in FIG. 6). May be performed. Further, in the start control of the host vehicle 100, the control related to the required start time (step S13, step S16 and step S18 in FIG. 6) without performing the control related to the start acceleration (step S14, step S17 and step S19 in FIG. 6). May be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両制御装置(10)は、自車両(100)の停止制御を自動的に行う自動運転制御部(60)を備える。自動運転制御部(60)は、横断領域判定部(50)にて横断領域(108)が存在しないと判定された場合、停止線(106)の位置情報に基づいて停止線(106)に対応する基準目標停止位置(P1)に自車両(100)が停止されるように自車両(100)を停止制御し、横断領域判定部(50)にて横断領域(108)が存在すると判定された場合、停止線(106)の位置情報に基づいて基準目標停止位置(P1)よりも手前に自車両(100)が停止されるように自車両(100)を停止制御する。

Description

車両制御装置及び車両制御方法
 本発明は、自車両の停止制御を自動的に行う自動運転制御部を備えた車両制御装置及び車両制御方法に関する。
 特開2016-122362号公報には、自車両のECUが停止信号(赤信号)を検出し、その停止信号に対応する停止線を検出可能である場合に、停止線を基準として進入抑制支援を実行する交通支援装置が開示されている。具体的には、例えば、横断歩道の手前に停止線が設けられている状況において、自車両のECUは、自車両が停止線で停止できない可能性があると判定した場合、警報を行い、警報によっても自車両の減速度が不十分である場合に、自動ブレーキを作動させている。
 ところで、横断歩道や自転車横断帯等の横断領域の手前にある停止線の直前の位置で自車両を停止制御により停止させた場合、自車両が横断領域に比較的近いため、横断歩道を通行する歩行者や自転車の運転者等の交通参加者に不快感又は圧迫感を与える可能性がある。また、停止線の直前に停止した自車両は、自動発進した際に比較的短い時間で横断領域に到達する。そのため、乗員によっては、不測の事態(例えば、自車両の自動発進時に横断領域に交通参加者が進入すること等)に対応する猶予時間をより長くして一層の安心感を得たいと感じる場合があり、このような乗員の要望に応えることが望まれる。
 本発明は、このような課題を考慮してなされたものであり、横断領域の手前の停止線に基づいて自車両を停止させた場合に、横断領域を通行中の交通参加者に安心感を与えることができ、且つ自車両の自動発進時に乗員に一層の安心感を与えることができる車両制御装置及び車両制御方法を提供することを目的とする。
 本発明に係る車両制御装置は、自車両の停止制御を自動的に行う自動運転制御部と、交通参加者が横断する横断領域が前記自車両の進行方向に存在するか否かを判定する横断領域判定部と、停止線の位置情報を取得する停止線位置取得部と、を備え、前記自動運転制御部は、前記横断領域判定部にて前記横断領域が存在しないと判定された場合、前記停止線の前記位置情報に基づいて前記停止線に対応する基準目標停止位置に前記自車両が停止されるように前記自車両を停止制御し、前記横断領域判定部にて前記横断領域が存在すると判定された場合、前記停止線の前記位置情報に基づいて前記基準目標停止位置よりも手前に前記自車両が停止されるように前記自車両を停止制御することを特徴とする。
 このような構成によれば、自車両の進行方向に横断領域が存在する場合、基準目標停止位置よりも手前に自車両を停止させるため、横断領域と自車両との間隔を比較的広くすることができる。これにより、横断領域を通行中の交通参加者に安心感を与えることができる。また、自車両の自動発進時に自車両が横断領域に到達するまでの時間を比較的長くすることができるため、不測の事態に対応する猶予時間を長くすることができる。そのため、乗員に一層の安心感を与えることができる。
 上記の車両制御装置において、前記横断領域の周辺における前記交通参加者を認識する交通参加者認識部を備え、前記自動運転制御部は、前記自車両の走行中に前記交通参加者認識部にて前記交通参加者が認識されなかった場合、前記基準目標停止位置よりも手前の第1目標停止位置に前記自車両が停止されるように前記自車両を停止制御し、前記自車両の走行中に前記交通参加者認識部にて前記交通参加者が認識された場合、前記第1目標停止位置よりも手前の第2目標停止位置に前記自車両が停止されるように前記自車両を停止制御してもよい。
 このような構成によれば、交通参加者が認識されなかった場合には、自車両が停止線に対して比較的近い第1目標停止位置に停止するため、運転者に違和感を与えることを抑えつつ、自車両の停止後に横断領域の周辺に現れた交通参加者に対しても安心感を与えることができる。また、交通参加者が認識された場合には、自車両が停止線に対して比較的遠い第2目標停止位置に停止するため、交通参加者に一層の安心感を与えることができる。
 上記の車両制御装置において、前記自動運転制御部は、前記交通参加者認識部にて認識された前記交通参加者の数が多いほど、前記停止線から前記第2目標停止位置までの離間距離が長くなるように当該第2目標停止位置を補正してもよい。
 ところで、交通参加者は、その数が多くなるほど、横断領域からはみ出して通行し易くなる。しかしながら、このような構成によれば、交通参加者の数が多いほど、停止線から第2目標停止位置までの離間距離が長くなるため、横断領域をはみ出して通行する交通参加者に対しても安心感を与えることができる。
 上記の車両制御装置において、前記自動運転制御部は、前記自車両の停止制御の終了後に前記自車両の発進要求信号を受信した場合、前記自車両の発進制御を自動的に行ってもよい。
 このような構成によれば、発進要求信号に基づいて自車両を自動的に発進させることができる。
 上記の車両制御装置において、前記自動運転制御部は、前記発進要求信号を受信した場合、前記発進要求信号を受信した時から前記自車両の発進が開始されるまでの発進所要時間が、前記横断領域判定部にて前記横断領域が存在しないと判定されたときよりも前記横断領域判定部にて前記横断領域が存在すると判定されたときの方が長くなるように前記自車両を発進制御してもよい。
 このような構成によれば、自車両が進行許可状態になった後(例えば、自車両に対する信号機が進行許可になった後)に横断領域の周辺に現れた交通参加者が横断領域に進入する可能性のある場合に、自車両の発進タイミングを遅らせて不測の事態に対応する猶予時間をより長くすることができる。
 上記の車両制御装置において、前記自動運転制御部は、前記交通参加者認識部にて前記横断領域の周辺に前記交通参加者が認識された場合、前記交通参加者認識部にて前記横断領域の周辺に前記交通参加者が認識されなかった場合に比べて前記発進所要時間が長くなるように前記自車両を発進制御してもよい。
 このような構成によれば、自車両が進行許可状態になった後に横断領域の周辺にいる交通参加者が横断領域に進入する可能性のある場合に、自車両の発進タイミングを遅らせて不測の事態に対応する猶予時間をより長くすることができる。
 上記の車両制御装置において、前記自動運転制御部は、前記交通参加者認識部にて認識された前記交通参加者の数が多いほど前記発進所要時間が長くなるように当該発進所要時間を補正してもよい。
 このような構成によれば、自車両が進行許可状態になった後に横断領域の周辺にいる交通参加者が横断領域に進入する蓋然性が高くなるほど、自車両の発進タイミングを遅らせて不測の事態に対応する猶予時間をより長くすることができる。
 上記の車両制御装置において、前記自動運転制御部は、前記発進要求信号を受けた場合、前記自車両の発進時の発進加速度が、前記横断領域判定部にて前記横断領域が存在しないと判定されたときよりも前記横断領域判定部にて前記横断領域が存在すると判定されたときの方が小さくなるように前記自車両を発進制御してもよい。
 このような構成によれば、自車両が進行許可状態になった後に横断領域の周辺に交通参加者が現れた場合であっても、この交通参加者に安心感を与えることができるとともに不測の事態に対応する猶予時間を長くすることができる。
 上記の車両制御装置において、前記自動運転制御部は、前記交通参加者認識部にて前記横断領域の周辺に前記交通参加者が認識された場合、前記横断領域の周辺に前記交通参加者が認識されなかった場合に比べて前記発進加速度が小さくなるように前記自車両を発進制御してもよい。
 このような構成によれば、自車両の発進時に横断領域の周辺に交通参加者が存在する場合に、この交通参加者に安心感を与えることができるとともに不測の事態に対応する猶予時間を一層長くすることができる。
 上記の車両制御装置において、前記自動運転制御部は、前記交通参加者認識部にて認識された前記交通参加者の数が多いほど、前記発進加速度が小さくなるように前記発進加速度を補正してもよい。
 このような構成によれば、自車両の発進時に横断領域の周辺の交通参加者に効果的に安心感を与えることができるとともに交通参加者の数が多いほど不測の事態に対応する猶予時間を長くすることができる。
 本発明に係る車両制御方法は、交通参加者が横断する横断領域が自車両の進行方向に存在するか否かを判定する横断領域判定工程と、前記自車両の停止制御を自動的に行う停止制御工程と、を行い、前記停止制御工程では、前記横断領域判定工程にて前記横断領域が存在しないと判定された場合、停止線の位置情報に基づいて前記停止線に対応する基準目標停止位置に前記自車両が停止されるように前記自車両を停止制御し、前記横断領域判定工程にて前記横断領域が存在すると判定された場合、前記停止線の前記位置情報に基づいて前記基準目標停止位置よりも手前に前記自車両が停止されるように前記自車両を停止制御することを特徴とする。
 上記の車両制御方法において、前記横断領域の周辺における前記交通参加者を認識する交通参加者認識工程を行い、前記停止制御工程では、前記自車両の走行中に前記交通参加者認識工程で前記交通参加者が認識されなかった場合、前記基準目標停止位置よりも手前の第1目標停止位置に前記自車両が停止されるように前記自車両を停止制御し、前記自車両の走行中に前記交通参加者認識工程で前記交通参加者が認識された場合、前記第1目標停止位置よりも手前の第2目標停止位置に前記自車両が停止されるように前記自車両を停止制御してもよい。
 上記の車両制御方法において、前記停止制御工程では、前記交通参加者認識工程にて認識された前記交通参加者の数が多いほど、前記停止線から前記第2目標停止位置までの離間距離が長くなるように当該第2目標停止位置を補正してもよい。
本発明の一実施形態に係る車両制御装置の構成を示すブロック図である。 前記車両制御装置の停止制御の一例を示すフローチャートである。 自車両が基準目標停止位置に停止した状態を示す模式的説明図である。 自車両が第1目標停止位置に停止した状態を示す模式的説明図である。 自車両が第2目標停止位置に停止した状態を示す模式的説明図である。 前記車両制御装置の発進制御の一例を示すフローチャートである。 自車両の発進タイミング及び発進加速度を説明するためのグラフである。
 以下、本発明に係る車両制御装置及び車両制御方法について好適な実施形態を例示し、添付の図面を参照しながら説明する。
 図1に示すように、本実施形態に係る車両制御装置10は、自車両100(図3参照)に組み込まれており、図示しないモード切り替えスイッチ等によって自車両100を手動運転モード(非自動運転モード)と自動運転モードとに切り替え可能に構成されている。具体的には、この車両制御装置10は、自動運転モードの状態で、自車両100の運転作業を部分的に自動で行うように構成されている。ただし、車両制御装置10は、自動運転モードの状態で自車両100の運転作業を完全に自動で行うものであってもよい。また、車両制御装置10は、乗員が運転作業に全く関与しない(モード切り替えのない)完全自動運転を行うものであってもよい。
 車両制御装置10は、基本的には、入力系装置群12、出力系装置群14及び制御システム16を備える。入力系装置群12及び出力系装置群14をなす各々の装置は、制御システム16に通信線を介して接続されている。
 入力系装置群12は、外界センサ18、通信装置20、ナビゲーション装置22及び車両センサ24を備える。外界センサ18は、自車両100の外界状態を示す情報(以下、外界情報)を取得し、当該外界情報を制御システム16に出力する。外界センサ18は、具体的には、複数のカメラ26と、複数のレーダ28と、複数のLIDAR30(Light Detection and Ranging、Laser Imaging Detection and Ranging;光検出と測距)を含んで構成される。
 通信装置20は、路側機、他の車両、及びサーバを含む外部装置と通信可能に構成されており、例えば、交通機器に関わる情報、他の車両に関わる情報、プローブ情報又は最新の地図情報32を送受信する。この地図情報32は、後述する記憶装置42の所定メモリ領域内に、或いはナビゲーション装置22に記憶される。
 ナビゲーション装置22は、自車両100の現在位置を検出可能な衛星測位装置34と、ユーザインタフェース(例えば、タッチパネル式のディスプレイ、スピーカ及びマイク)を含んで構成される。ナビゲーション装置22は、自車両100の現在位置又はユーザによる指定位置に基づいて、指定した目的地までの経路を算出し、制御システム16に出力する。
 車両センサ24は、速度センサ、加速度センサ、横Gセンサ、ヨーレートセンサ、方位センサ、勾配センサ等を含み、各々のセンサから検出信号を制御システム16に出力する。
 出力系装置群14は、駆動力装置36、操舵装置38及び制動装置40を備える。駆動力装置36は、駆動力ECU(電子制御装置;Electronic Control Unit)と、エンジン・駆動モータを含む駆動源とを有する。駆動力装置36は、制御システム16から入力される車両制御値に従って自車両100の走行駆動力(トルク)を生成し、トランスミッションを介して、或いは直接的に車輪に伝達する。
 操舵装置38は、EPS(電動パワーステアリングシステム)ECUと、EPS装置とを有する。操舵装置38は、制御システム16から入力される車両制御値に従って車輪(操舵輪)の向きを変更する。
 制動装置40は、例えば、油圧式ブレーキを併用する電動サーボブレーキであって、ブレーキECUと、ブレーキアクチュエータとを有する。制動装置40は、制御システム16から入力される車両制御値に従って車輪を制動する。
 制御システム16は、1つ又は複数のECUにより構成され、記憶装置42と各種機能実現部とを備える。なお、機能実現部は、この実施形態では、CPU(中央処理ユニット)が記憶装置42に記憶されているプログラムを実行することにより機能が実現されるソフトウエア機能部であるが、FPGA(Field-Programmable Gate Array)等の集積回路からなるハードウエア機能部により実現することもできる。
 記憶装置42は、例えば、ランダム・アクセス・メモリ(以下「RAM」という。)を備える。RAMとしては、レジスタ等の揮発性メモリと、フラッシュメモリ等の不揮発性メモリとを用いることができる。また、記憶装置42は、RAMに加え、リード・オンリー・メモリ(以下「ROM」という。)を有してもよい。
 記憶装置42には、上述した地図情報32、目標停止位置情報44、発進所要時間情報46、加速度情報48が予め記憶されている。
 目標停止位置情報44は、停止線106(図3等参照)に対する目標停止位置に関する情報であって、基準目標停止位置P1、第1目標停止位置P2、第2目標停止位置P3を含む。基準目標停止位置P1は停止線106よりも手前に設定され、第1目標停止位置P2は基準目標停止位置P1よりも手前に設定され、第2目標停止位置P3は第1目標停止位置P2よりも手前に設定される。すなわち、停止線106から第1目標停止位置P2までの離間距離は、停止線106から基準目標停止位置P1までの離間距離よりも長く、停止線106から第2目標停止位置P3までの離間距離よりも短い。
 発進所要時間情報46は、後述する自動運転制御部60が発進要求信号を受信してから実際に自車両100が発進するまでに要する時間に関する情報であって、基準発進所要時間ΔT、第1発進所要時間ΔT1、第2発進所要時間ΔT2を含む。第1発進所要時間ΔT1は、基準発進所要時間ΔTよりも長く、第2発進所要時間ΔT2よりも短い。
 加速度情報48は、自車両100の発進時の加速度に関する情報であって、基準発進加速度G、第1発進加速度G1、第2発進加速度G2を含む。第1発進加速度G1は、基準発進加速度Gよりも小さく、第2発進加速度G2よりも大きい。
 制御システム16は、上記の記憶装置42の他、横断領域判定部50、停止線位置取得部52、交通参加者認識部54、車両停止判定部56、車両発進判定部58及び自動運転制御部60を有する。
 横断領域判定部50は、交通参加者114(図5参照)が通行(横断)する横断領域108が自車両100の進行方向に存在するか否かを判定する。ここで、交通参加者114とは、歩行者、自転車運転者等を含む。図4及び図5において、横断領域108は、横断歩道110、自転車横断帯112を含む。ただし、横断領域108は、横断歩道110及び自転車横断帯112のいずれかのみであってもよい。
 停止線位置取得部52は、外界センサ18の外界情報(例えば、カメラ26の画像情報)に基づいて横断領域108よりも手前の停止線106の位置情報を取得する。ただし、停止線位置取得部52は、地図情報32に基づいて停止線106の位置情報を取得してもよい。
 交通参加者認識部54は、外界センサ18の外界情報(例えば、カメラ26の画像情報)に基づいて横断領域108の周辺における交通参加者114を認識する。
 車両停止判定部56は、外界センサ18の外界情報に基づいて走行中の自車両100を停止させるか否かを判定する。また、車両停止判定部56は、自車両100を停止させると判定した場合には、停止要求信号を自動運転制御部60に出力する。
 車両発進判定部58は、外界センサ18の外界情報に基づいて停止中の自車両100を発進させるか否かを判定する。また、車両発進判定部58は、自車両100を発進させると判定した場合には、発進要求信号を自動運転制御部60に出力する。
 自動運転制御部60は、停止要求信号を受信した場合、駆動力装置36、操舵装置38及び制動装置40を制御して自車両100の停止制御を行う。また、自動運転制御部60は、発進要求信号を受信した場合、駆動力装置36、操舵装置38及び制動装置40を制御して自車両100の発進制御を行う。
 本実施形態に係る車両制御装置10は、基本的には以上のように構成されるものであり、次に、車両制御装置10による自車両100の停止制御(車両制御方法)について図2のフローチャートを主に参照しながら説明する。
 ここでは、図3~図5に示すように、交差点102に設置された信号機104の停止指示(交通標識)によって先頭車両である自車両100が交差点102の停止線106の位置情報に基づいて停止する場面について説明する。
 まず、ステップS1において、自動運転制御部60は、自車両100の停止制御を自動的に行う自動運転モードであるか否かを判定する。自動運転制御部60にて自動運転モードでない(手動運転モードである)と判定された場合(ステップS1:NO)、今回の停止制御は終了する。
 自動運転制御部60にて自動運転モードであると判定された場合(ステップS1:YES)、ステップS2において、自動運転制御部60が車両停止判定部56から停止要求信号を受信したか否かを判定する。自動運転制御部60が停止要求信号を受信していない場合(ステップS2:NO)、今回の停止制御は終了する。
 自動運転制御部60が停止要求信号を受信した場合(ステップS2:YES)、ステップS3(横断領域判定工程)において、横断領域判定部50は、カメラ26の画像情報又は地図情報32に基づいて自車両100の進行方向に横断領域108が存在しているか否かを判定する。
 横断領域判定部50にて横断領域108が存在しないと判定された場合(ステップS3:NO)、ステップS4(停止制御工程)において、自動運転制御部60は、図3に示すように、停止線位置取得部52で取得された停止線106の位置情報に基づいて停止線106に対応する基準目標停止位置P1に自車両100を停止制御する。つまり、自車両100は、停止線106から手前にD1だけ離間した位置に停止する。この段階で、車両制御装置10による自車両100の停止制御が終了する。
 一方、横断領域判定部50にて横断領域108が存在すると判定された場合(ステップS3:YES)、ステップS5(交通参加者認識工程)において、交通参加者認識部54は、外界センサ18の外界情報に基づいて横断領域108及び横断領域108の周辺の交通参加者114を認識する。
 交通参加者認識部54にて交通参加者114が認識されなかった場合(ステップS5:NO)、ステップS6(停止制御工程)において、自動運転制御部60は、図4に示すように、停止線位置取得部52で取得された停止線106の位置情報に基づいて基準目標停止位置P1よりも手前の第1目標停止位置P2に自車両100を停止させる。つまり、自車両100は、停止線106から手前にD2だけ離間した位置に停止する。
 これにより、横断領域108と自車両100との間隔を適度に広くすることができるため、運転者に違和感を与えることを抑えつつ、自車両100の停止後に横断領域108の周辺に現れた交通参加者114に対しても安心感を与えることができる。
 交通参加者認識部54にて交通参加者114が認識された場合(ステップS5:YES)、ステップS7(停止制御工程)において、自動運転制御部60は、図5に示すように、停止線位置取得部52で取得された停止線106の位置情報に基づいて第1目標停止位置P2よりも手前の第2目標停止位置P3に自車両100を停止させる。つまり、自車両100は、停止線106から手前にD3だけ離間した位置に停止する。これにより、交通参加者114に一層の安心感を与えることができる。
 また、このステップS7では、自動運転制御部60は、ステップS5で認識された交通参加者114の数が多いほど、停止線106から第2目標停止位置P3までの距離(D3)が長くなるように自車両100を停止制御する。換言すれば、自動運転制御部60は、交通参加者114の数が多いほど停止線106から第2目標停止位置P3までの距離が長くなるように記憶装置42に記憶されている第2目標停止位置P3を補正する。そして、自動運転制御部60は、補正された第2目標停止位置P3に自車両100を停止させる。これにより、横断領域108を自車両100側にはみ出して通行する交通参加者114に対しても安心感を与えることができる。
 続いて、車両制御装置10による自車両100の発進制御(車両制御方法)について図6のフローチャートを主に参照しながら説明する。ここでは、上述した停止制御によって停止した状態の自車両100が発進する場面について説明する。
 まず、ステップS10において、自動運転制御部60は、自車両100の発進制御を自動的に行う自動運転モードであるか否かを判定する。自動運転制御部60にて自動運転モードでない(手動運転モードである)と判定された場合(ステップS10:NO)、今回の車両制御装置10による自車両100の発進制御は終了する。
 自動運転制御部60にて自動運転モードであると判定された場合(ステップS10:YES)、ステップS11において自動運転制御部60が車両発進判定部58から発進要求信号を受信したか否かを判定する。自動運転制御部60が発進要求信号を受信していない場合(ステップS11:NO)、今回の車両制御装置10による自車両100の発進制御は終了する。
 自動運転制御部60が発進要求信号を受信した場合(ステップS11:YES)、ステップS12(横断領域判定工程)において、横断領域判定部50は、カメラ26の画像情報又は地図情報32に基づいて横断領域108が存在しているか否かを判定する。
 図6及び図7に示すように、横断領域判定部50にて横断領域108が存在しないと判定された場合(ステップS12:NO)、ステップS13(発進時間制御工程)において、自動運転制御部60は、発進要求信号を受信した時(時刻t0)から基準発進所要時間ΔTの経過後(時刻t1)に自車両100の発進を開始させる。そして、ステップS14(発進加速度制御工程)において、自動運転制御部60は、基準発進加速度Gで自車両100を発進させる。
 横断領域判定部50にて横断領域108が存在すると判定された場合(ステップS12:YES)、ステップS15において、交通参加者認識部54は、横断領域108の周辺の交通参加者114を認識する。交通参加者認識部54にて交通参加者114が認識されなかった場合(ステップS15:NO)、ステップS16(発進時間制御工程)において、自動運転制御部60は、発進要求信号を受信した時(時刻t0)から基準発進所要時間ΔTよりも長い第1発進所要時間ΔT1の経過後(時刻t2)に自車両100の発進を開始させる。これにより、自車両100に対する信号機104が進行許可になった後に横断領域108の周辺に現れた交通参加者114が横断領域108に進入する可能性のある場合に、自車両100の発進タイミングを遅らせることができる。
 また、ステップS17(発進加速度制御工程)において、自動運転制御部60は、基準発進加速度Gよりも小さい第1発進加速度G1で自車両100を発進させる。これにより、自車両100に対する信号機104が進行許可になった後に横断領域108の周辺に現れた交通参加者114に安心感を与えることができる。
 交通参加者認識部54にて交通参加者114が認識された場合(ステップS15:YES)、ステップS18(発進時間制御工程)において、自動運転制御部60は、発進要求信号を受信した時(時刻t0)から第1発進所要時間ΔT1よりも長い第2発進所要時間ΔT2の経過後(時刻t3)に自車両100の発進を開始させる。これにより、自車両100に対する信号機104が進行許可になった後に横断領域108の周辺にいる交通参加者114が横断領域108に進入する可能性のある場合に、自車両100の発進タイミングを遅らせることができる。
 また、このステップS18では、自動運転制御部60は、ステップS15で認識された交通参加者114の数が多いほど、第2発進所要時間ΔT2が長くなるように自車両100の発進を開始させる。換言すれば、自動運転制御部60は、交通参加者114の数が多いほど第2発進所要時間ΔT2が長くなるように記憶装置42に記憶されている第2発進所要時間ΔT2を補正する。そして、自動運転制御部60は、発進要求信号を受信した時から補正された第2発進所要時間ΔT2の経過後に自車両100の発進を開始させる。これにより、自車両100に対する信号機104が進行許可になった後に横断領域108の周辺にいる交通参加者114が横断領域108に進入する蓋然性が高くなるほど、自車両100の発進タイミングを遅らせることができる。
 続いて、ステップS19(発進加速度制御工程)において、自動運転制御部60は、第1発進加速度G1よりも小さい第2発進加速度G2で自車両100を発進させる。これにより、横断領域108の周辺にいる交通参加者114に安心感を与えることができる。
 また、このステップS19では、自動運転制御部60は、ステップS15で認識された交通参加者114の数が多いほど、第2発進加速度G2が小さくなるように自車両100を発進させる。換言すれば、自動運転制御部60は、交通参加者114の数が多いほど第2発進加速度G2が小さくなるように記憶装置42に記憶されている第2発進加速度G2を補正し、補正された第2発進加速度G2で自車両100を発進させる。これにより、横断領域108の周辺にいる交通参加者114に一層の安心感を与えることができる。
 本実施形態によれば、自車両100の進行方向に横断領域108が存在する場合、基準目標停止位置P1よりも手前に自車両100を停止させるため、横断領域108と自車両100との間隔を比較的広くすることができる。これにより、横断領域108を通行中の交通参加者114に安心感を与えることができる。また、自車両100の自動発進時に自車両100が横断領域108に到達するまでの時間を比較的長くすることができるため、不測の事態(例えば、自車両100の自動発進時に横断領域108に交通参加者114が進入すること等)に対応する猶予時間を長くすることができる。そのため、乗員に一層の安心感を与えることができる。
 また、交通参加者114が認識されなかった場合には、自車両100が停止線106に対して比較的近い第1目標停止位置P2に停止するため、運転者に違和感を与えることを抑えつつ、自車両100の停止後に横断領域108に現れた交通参加者114に対しても安心感を与えることができる。
 さらに、交通参加者114が認識された場合には、自車両100が停止線106に対して比較的遠い第2目標停止位置P3に停止するため、交通参加者114に一層の安心感を与えることができる。
 ところで、交通参加者114は、その数が多くなるほど、横断領域108からはみ出して通行し易くなる。しかしながら、交通参加者114の数が多いほど、停止線106から第2目標停止位置P3までの離間距離が長くなるため、横断領域108をはみ出して通行する交通参加者114に対しても安心感を与えることができる。
 本実施形態では、自動運転制御部60は、横断領域108が存在する場合、横断領域108が存在しない場合に比べて発進所要時間を長くしている。これにより、自車両100が進行許可状態になった後に横断領域108の周辺に現れた交通参加者114が横断領域108に進入する可能性のある場合に、自車両100の発進タイミングを遅らせて不測の事態に対応する猶予時間をより長くすることができる。
 また、自動運転制御部60は、横断領域108の周辺に交通参加者114が認識された場合、横断領域108の周辺に交通参加者114が認識されなかった場合に比べて発進所要時間を長くしている。これにより、自車両100が通行許可状態になった後に横断領域108の周辺にいる交通参加者114が横断領域108に進入する可能性のある場合に、自車両100の発進タイミングを遅らせて不測の事態に対応する猶予時間をより長くすることができる。
 さらに、自動運転制御部60は、交通参加者114の数が多いほど発進所要時間を長くしている。これにより、自車両100が進行許可状態になった後に横断領域108の周辺にいる交通参加者114が横断領域108に進入する蓋然性が高くなるほど、自車両100の発進タイミングを遅らせて不測の事態に対応する猶予時間をより長くすることができる。
 本実施形態において、自動運転制御部60は、横断領域108が存在する場合、横断領域108が存在しない場合よりも発進加速度を小さくしている。これにより、自車両100が進行許可状態になった後に横断領域108の周辺に交通参加者114が現れた場合であっても、この交通参加者114に安心感を与えることができるとともに不測の事態に対応する猶予時間を長くすることができる。
 また、自動運転制御部60は、横断領域108の周辺に交通参加者114が認識された場合、横断領域108の周辺に交通参加者114が認識されなかった場合に比べて発進加速度を小さくしている。これにより、自車両100の発進時に横断領域108の周辺に交通参加者114が存在する場合に、この交通参加者114に安心感を与えることができるとともに不測の事態に対応する猶予時間を一層長くすることができる。
 さらに、自動運転制御部60は、交通参加者114の数が多いほど発進加速度を小さくしている。これにより、自車両100の発進時に横断領域108の周辺の交通参加者114に効果的に安心感を与えることができるとともに交通参加者114の数が多いほど不測の事態に対応する猶予時間を長くすることができる。
 本実施形態は、上述した構成及び制御に限定されない。例えば、車両制御装置10による自車両100の停止制御は、一時停止標識によって停止線106の位置情報に基づいて自車両100を停止させる場合等にも用いることができる。また、交差点102は、無くても構わない。
 また、自車両100の発進制御において、発進所要時間に関する制御(図6のステップS13、ステップS16及びステップS18)を行うことなく、発進加速度に関する制御(図6のステップS14、ステップS17及びステップS19)を行うようにしてもよい。また、自車両100の発進制御において、発進加速度に関する制御(図6のステップS14、ステップS17及びステップS19)を行うことなく、発進所要時間に関する制御(図6のステップS13、ステップS16及びステップS18)を行ってもよい。
 上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。

Claims (13)

  1.  自車両の停止制御を自動的に行う自動運転制御部と、
     交通参加者が横断する横断領域が前記自車両の進行方向に存在するか否かを判定する横断領域判定部と、
     停止線の位置情報を取得する停止線位置取得部と、
     を備え、
     前記自動運転制御部は、
     前記横断領域判定部にて前記横断領域が存在しないと判定された場合、前記停止線の前記位置情報に基づいて前記停止線に対応する基準目標停止位置に前記自車両が停止されるように前記自車両を停止制御し、
     前記横断領域判定部にて前記横断領域が存在すると判定された場合、前記停止線の前記位置情報に基づいて前記基準目標停止位置よりも手前に前記自車両が停止されるように前記自車両を停止制御する、
     ことを特徴とする車両制御装置。
  2.  請求項1記載の車両制御装置において、
     前記横断領域の周辺における前記交通参加者を認識する交通参加者認識部を備え、
     前記自動運転制御部は、
     前記自車両の走行中に前記交通参加者認識部にて前記交通参加者が認識されなかった場合、前記基準目標停止位置よりも手前の第1目標停止位置に前記自車両が停止されるように前記自車両を停止制御し、
     前記自車両の走行中に前記交通参加者認識部にて前記交通参加者が認識された場合、前記第1目標停止位置よりも手前の第2目標停止位置に前記自車両が停止されるように前記自車両を停止制御する、
     ことを特徴とする車両制御装置。
  3.  請求項2記載の車両制御装置において、
     前記自動運転制御部は、前記交通参加者認識部にて認識された前記交通参加者の数が多いほど、前記停止線から前記第2目標停止位置までの離間距離が長くなるように当該第2目標停止位置を補正する、
     ことを特徴とする車両制御装置。
  4.  請求項2又は3に記載の車両制御装置において、
     前記自動運転制御部は、前記自車両の停止制御の終了後に前記自車両の発進要求信号を受信した場合、前記自車両の発進制御を自動的に行う、
     ことを特徴とする車両制御装置。
  5.  請求項4記載の車両制御装置において、
     前記自動運転制御部は、前記発進要求信号を受信した場合、前記発進要求信号を受信した時から前記自車両の発進が開始されるまでの発進所要時間が、前記横断領域判定部にて前記横断領域が存在しないと判定されたときよりも前記横断領域判定部にて前記横断領域が存在すると判定されたときの方が長くなるように前記自車両を発進制御する、
     ことを特徴とする車両制御装置。
  6.  請求項5記載の車両制御装置において、
     前記自動運転制御部は、前記交通参加者認識部にて前記横断領域の周辺に前記交通参加者が認識された場合、前記交通参加者認識部にて前記横断領域の周辺に前記交通参加者が認識されなかった場合に比べて前記発進所要時間が長くなるように前記自車両を発進制御する
     ことを特徴とする車両制御装置。
  7.  請求項6記載の車両制御装置において、
     前記自動運転制御部は、前記交通参加者認識部にて認識された前記交通参加者の数が多いほど前記発進所要時間が長くなるように当該発進所要時間を補正する、
     ことを特徴とする車両制御装置。
  8.  請求項4~7のいずれか1項に記載の車両制御装置において、
     前記自動運転制御部は、前記発進要求信号を受けた場合、前記自車両の発進時の発進加速度が、前記横断領域判定部にて前記横断領域が存在しないと判定されたときよりも前記横断領域判定部にて前記横断領域が存在すると判定されたときの方が小さくなるように前記自車両を発進制御する、
     ことを特徴とする車両制御装置。
  9.  請求項8記載の車両制御装置において、
     前記自動運転制御部は、前記交通参加者認識部にて前記横断領域の周辺に前記交通参加者が認識された場合、前記横断領域の周辺に前記交通参加者が認識されなかった場合に比べて前記発進加速度が小さくなるように前記自車両を発進制御する、
     ことを特徴とする車両制御装置。
  10.  請求項9記載の車両制御装置において、
     前記自動運転制御部は、前記交通参加者認識部にて認識された前記交通参加者の数が多いほど、前記発進加速度が小さくなるように前記発進加速度を補正する、
     ことを特徴とする車両制御装置。
  11.  交通参加者が横断する横断領域が自車両の進行方向に存在するか否かを判定する横断領域判定工程と、
     前記自車両の停止制御を自動的に行う停止制御工程と、を行い、
     前記停止制御工程では、
     前記横断領域判定工程にて前記横断領域が存在しないと判定された場合、停止線の位置情報に基づいて前記停止線に対応する基準目標停止位置に前記自車両が停止されるように前記自車両を停止制御し、
     前記横断領域判定工程にて前記横断領域が存在すると判定された場合、前記停止線の前記位置情報に基づいて前記基準目標停止位置よりも手前に前記自車両が停止されるように前記自車両を停止制御する、
     ことを特徴とする車両制御方法。
  12.  請求項11記載の車両制御方法において、
     前記横断領域の周辺における前記交通参加者を認識する交通参加者認識工程を行い、
     前記停止制御工程では、
     前記自車両の走行中に前記交通参加者認識工程で前記交通参加者が認識されなかった場合、前記基準目標停止位置よりも手前の第1目標停止位置に前記自車両が停止されるように前記自車両を停止制御し、
     前記自車両の走行中に前記交通参加者認識工程で前記交通参加者が認識された場合、前記第1目標停止位置よりも手前の第2目標停止位置に前記自車両が停止されるように前記自車両を停止制御する、
     ことを特徴とする車両制御方法。
  13.  請求項12記載の車両制御方法において、
     前記停止制御工程では、前記交通参加者認識工程にて認識された前記交通参加者の数が多いほど、前記停止線から前記第2目標停止位置までの離間距離が長くなるように当該第2目標停止位置を補正する、
     ことを特徴とする車両制御方法。
PCT/JP2016/084399 2016-11-21 2016-11-21 車両制御装置及び車両制御方法 WO2018092298A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018550991A JP6954918B2 (ja) 2016-11-21 2016-11-21 車両制御装置及び車両制御方法
CN201680091006.1A CN109982908B (zh) 2016-11-21 2016-11-21 车辆控制装置和车辆控制方法
US16/462,037 US11130488B2 (en) 2016-11-21 2016-11-21 Vehicle control device and vehicle control method
PCT/JP2016/084399 WO2018092298A1 (ja) 2016-11-21 2016-11-21 車両制御装置及び車両制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084399 WO2018092298A1 (ja) 2016-11-21 2016-11-21 車両制御装置及び車両制御方法

Publications (1)

Publication Number Publication Date
WO2018092298A1 true WO2018092298A1 (ja) 2018-05-24

Family

ID=62146281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084399 WO2018092298A1 (ja) 2016-11-21 2016-11-21 車両制御装置及び車両制御方法

Country Status (4)

Country Link
US (1) US11130488B2 (ja)
JP (1) JP6954918B2 (ja)
CN (1) CN109982908B (ja)
WO (1) WO2018092298A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197467A (ja) * 2018-05-11 2019-11-14 トヨタ自動車株式会社 車両制御装置
JP2020021295A (ja) * 2018-08-01 2020-02-06 日産自動車株式会社 運転支援方法及び運転支援装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517480B (zh) * 2019-07-23 2021-07-20 江苏大学 面向人机共驾智能网联车辆的驾驶权切换及碰撞预警系统
CN110550026B (zh) * 2019-09-25 2021-05-28 清华大学 一种基于中时距信息的自动制动控制方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099078A (ja) * 2012-11-15 2014-05-29 Toyota Motor Corp 運転支援装置及び運転支援方法
WO2016052507A1 (ja) * 2014-09-30 2016-04-07 エイディシーテクノロジー株式会社 自動運転制御装置
JP2016122362A (ja) * 2014-12-25 2016-07-07 本田技研工業株式会社 交通支援装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050128063A1 (en) * 2003-11-28 2005-06-16 Denso Corporation Vehicle driving assisting apparatus
US9302678B2 (en) * 2006-12-29 2016-04-05 Robotic Research, Llc Robotic driving system
KR20100105670A (ko) * 2007-12-13 2010-09-29 콘티넨탈 테베스 아게 운트 코. 오하게 차량 오퍼레이터를 지원하는 방법 및 디바이스
JP2011240852A (ja) * 2010-05-19 2011-12-01 Toyota Motor Corp 衝突被害軽減装置、及びその方法
CN202641673U (zh) * 2011-11-30 2013-01-02 富士重工业株式会社 停车线识别装置以及使用该装置的车辆用驾驶辅助装置
US8571743B1 (en) * 2012-04-09 2013-10-29 Google Inc. Control of vehicles based on auditory signals
JP6109139B2 (ja) * 2014-12-26 2017-04-05 本田技研工業株式会社 車両用衝突回避支援装置及び車両の衝突回避支援方法
WO2017010826A1 (en) * 2015-07-14 2017-01-19 Samsung Electronics Co., Ltd. Apparatus and method for providing service in vehicle to everything communication system
CN107851373A (zh) * 2015-07-21 2018-03-27 日产自动车株式会社 场景评估装置、行驶辅助装置、场景评估方法
US10005464B2 (en) * 2015-08-27 2018-06-26 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle operation at multi-stop intersections
JP6814153B2 (ja) * 2015-10-27 2021-01-13 株式会社小糸製作所 車両用照明装置、車両システム及び車両
WO2017130643A1 (ja) * 2016-01-29 2017-08-03 日産自動車株式会社 車両の走行制御方法および車両の走行制御装置
CN108604421B (zh) * 2016-01-29 2019-11-01 日产自动车株式会社 车辆的行驶控制方法及车辆的行驶控制装置
JP6347262B2 (ja) * 2016-02-12 2018-06-27 マツダ株式会社 車両の制御装置
DE112017005834T5 (de) * 2016-11-18 2019-09-05 Panasonic Intellectual Property Management Co., Ltd. Benachrichtigungsvorrichtung, automatisch fahrendes Fahrzeug, Benachrichtigungsverfahren, Programm, nichtflüchtiges Aufzeichnungsmedium und Benachrichtigungssystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099078A (ja) * 2012-11-15 2014-05-29 Toyota Motor Corp 運転支援装置及び運転支援方法
WO2016052507A1 (ja) * 2014-09-30 2016-04-07 エイディシーテクノロジー株式会社 自動運転制御装置
JP2016122362A (ja) * 2014-12-25 2016-07-07 本田技研工業株式会社 交通支援装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197467A (ja) * 2018-05-11 2019-11-14 トヨタ自動車株式会社 車両制御装置
JP2020021295A (ja) * 2018-08-01 2020-02-06 日産自動車株式会社 運転支援方法及び運転支援装置
JP7033508B2 (ja) 2018-08-01 2022-03-10 日産自動車株式会社 運転支援方法及び運転支援装置

Also Published As

Publication number Publication date
CN109982908A (zh) 2019-07-05
JP6954918B2 (ja) 2021-10-27
US11130488B2 (en) 2021-09-28
CN109982908B (zh) 2022-03-29
US20190329765A1 (en) 2019-10-31
JPWO2018092298A1 (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7032170B2 (ja) 車両制御装置
JP6209232B2 (ja) 車線変更支援装置
US11731632B2 (en) Vehicle travel control method and travel control device
US10131306B2 (en) Travel control method and travel control apparatus
EP3330942B1 (en) Method for controlling travel control device, and travel control device
JP6086106B2 (ja) 運転支援装置
US10019003B2 (en) Autonomous vehicle control apparatus and method
WO2018092298A1 (ja) 車両制御装置及び車両制御方法
CN110171421B (zh) 车辆控制装置
US10807609B2 (en) Vehicle control device
JP6817413B2 (ja) 車両制御装置
KR102077201B1 (ko) 차량의 통합 제어 장치 및 방법
EP3838701B1 (en) Vehicle travel control method and travel control device
JP7078660B2 (ja) 走行制御装置、車両、走行制御方法及びプログラム
JP6880222B2 (ja) 車両制御装置
US11334067B2 (en) Apparatus and method for providing safety strategy in vehicle
JP6391395B2 (ja) 車両の走行制御装置
JP6635001B2 (ja) 車両制御装置
JP6723903B2 (ja) 車両制御装置及び車両制御方法
JP2020111248A (ja) 出庫支援装置、及び出庫支援装置の制御方法
US11180166B2 (en) Vehicle control device
JP2022097185A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921870

Country of ref document: EP

Kind code of ref document: A1