WO2018088628A1 - 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물 - Google Patents

스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물 Download PDF

Info

Publication number
WO2018088628A1
WO2018088628A1 PCT/KR2016/015368 KR2016015368W WO2018088628A1 WO 2018088628 A1 WO2018088628 A1 WO 2018088628A1 KR 2016015368 W KR2016015368 W KR 2016015368W WO 2018088628 A1 WO2018088628 A1 WO 2018088628A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
butadiene rubber
weight
rubber
compound
Prior art date
Application number
PCT/KR2016/015368
Other languages
English (en)
French (fr)
Inventor
이세은
김병윤
조인성
이재민
최우석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680059355.5A priority Critical patent/CN108291059B/zh
Priority to EP16915409.3A priority patent/EP3345961B1/en
Priority to US15/761,329 priority patent/US10654994B1/en
Publication of WO2018088628A1 publication Critical patent/WO2018088628A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C15/0603Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/005Compositions of the bead portions, e.g. clinch or chafer rubber or cushion rubber
    • B60C2001/0058Compositions of the bead apexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a styrene-butadiene rubber compound having excellent rigidity and hardness and a rubber composition for a tire bead filler comprising the same.
  • Tire bead filler rubber requires higher stiffness and hardness than other parts of the rubber compound to support the load of the vehicle delivered to the rim when the rim is mounted on the tire, and prevents bead separation that may occur when driving the vehicle. High rubber stiffness is required to achieve this.
  • a method of increasing the hardness and rigidity of the rubber by increasing the content of an inorganic material such as clay is used.
  • an inorganic material such as clay
  • the clay content is high, the rubber hardness increases, but heat generation between clay and rubber increases, thereby reducing rolling resistance, deteriorating rubber compounding properties, and lowering tensile strength.
  • clays conventionally used have a low oil adsorption amount and a low reinforcing effect on the rubber composition.
  • Korean Patent Publication No. 2011-0071605 uses two kinds of carbon blacks having different physical properties for raw rubber, and in 2016-0077895, thermoplastic elastomer is used for raw rubber to improve the rigidity of the rubber. Promoted. These methods showed some improvement in stiffness but did not yield satisfactory results. In particular, in the above patent, due to the low compatibility with the synthetic rubber added with the natural rubber as a rubber composition, the hardness of the final bead filler also could not be sufficiently secured.
  • the present inventors conducted a study to increase the hardness and rigidity with only synthetic rubber when manufacturing the tire bead filler, when the styrene-butadiene rubber mixed with different styrene content is used to improve the hardness and rigidity of the natural rubber and phenol
  • the present invention was completed by confirming that it could be used as an alternative to the resin.
  • first styrene-butadiene rubber having a styrene content of 60 to 95% by weight, a particle size of 100 to 200 nm, and a Mooney viscosity difference ( ⁇ MV) of 3 to 7 before and after blending;
  • a styrene-butadiene rubber compound characterized in that it comprises a second styrene-butadiene rubber having a styrene content of 5 to 10% by weight.
  • the present invention also provides a rubber bead filler rubber composition
  • a rubber bead filler rubber composition comprising a styrene-butadiene rubber compound as described above in the composition for a tire bead filler comprising a rubber, a reinforcing agent and an additive.
  • the rubber composition proposed in the present invention excludes resins such as phenolic resins, which have conventional rigidity problems, and is possible to substitute natural rubber and phenolic resins, thereby enabling the production of tires made of only synthetic rubber.
  • the present invention provides a compound and a composition for a tire bead filler including the same, which can improve physical properties such as strength and stiffness using only synthetic rubber without using natural rubber and phenolic resin used in tire bead filler manufacturing.
  • Styrene-butadiene rubber consists of styrene repeating units and butadiene repeating units.
  • the standard styrene-butadiene rubber has a total styrene content of 23.5% by weight in butadiene rubber, the higher styrene content is called high styrene-butadiene rubber, and the lower styrene content is low styrene. -It is called low styrene butadiene rubber.
  • styrene contents that is, high styrene-butadiene rubber (hereinafter referred to as 'first styrene-butadiene rubber') and low styrene-butadiene rubber (hereinafter referred to as 'second styrene-butadiene rubber' To be used).
  • 'first styrene-butadiene rubber' high styrene-butadiene rubber
  • 'second styrene-butadiene rubber' low styrene-butadiene rubber
  • the low second styrene-butadiene rubber uses a controlled polymerization process, and has excellent thermal stability after blending, and improves workability and adhesion during processing, thereby improving physical properties, particularly stiffness (tensile strength) and hardness. It allows for the production of improved molded articles.
  • the first styrene-butadiene rubber as the first component of the rubber composition according to the present invention has a styrene content of 60 to 95% by weight, preferably 80 to 90% by weight, as mentioned above, and has a crosslinked structure.
  • the use of styrene-butadiene rubbers with different styrene contents can theoretically secure a complementary effect on physical properties, it has various problems when applied to the actual process due to its low miscibility.
  • the first styrene-butadiene rubber of the present invention has a particle size of 100 to 200 nm, and a Mooney viscosity (ML (1 + 4) at and before and after blending ). The miscibility between these can be improved by using the thing (DELTA MV) of 100 degreeC) 3-7.
  • the particle size of the first styrene-butadiene rubber can be measured by a device used for measuring a conventional latex particle size, wherein the average particle diameter has the above range, that is, 100 to 200 nm, preferably 120 to 180 nm. If it falls within the particle size range, the miscibility with the second styrene-butadiene rubber may be increased, and the improvement effect of the stiffness and hardness obtained through the mixed use thereof may be expected. If the particle size is too small, agglomeration may occur between the particles to form a uniform blend with the second styrene-butadiene rubber, and if too large, the desired level of rigidity and hardness specification may not be achieved.
  • the 1st styrene-butadiene rubber of this invention uses the thing in which the difference of the Mooney viscosity before mix
  • Mooney Viscosity is a measure of the viscosity of a rubber or rubber compound (or compound) with temperature.
  • the measurement conditions are expressed in ML 1 + 4 (at 100 ° C), where ML is the size of the rotor (LARGE, 1). +4 is the time for warming up the specimen at the specified temperature, 1 minute, 4 minutes for measurement, and 100 ° C for the measured temperature.
  • Mooney viscosity expresses numerically how much force at what temperature and time.
  • the Mooney viscosity of 3 means preheating 1 minute using a Large Disc at a temperature of 100 °C, and means that the viscosity resin measured after 4 minutes is 3.
  • the first styrene-butadiene rubber is difficult to measure the gel content unlike the second styrene-butadiene rubber having a linear structure in a crosslinked form.
  • Such gel content can be predicted through a change in Mooney viscosity before and after blending, and preferably, a Mooney viscosity difference ( ⁇ MV) before and after blending is 3 to 7, preferably 3 to 6.7, by ASTM standard formulation method.
  • the first styrene-butadiene rubber according to the present invention uses one in which the average particle diameter and the Mooney viscosity are simultaneously defined. If the average particle diameter as the first styrene-butadiene rubber satisfies the above range, when the Mooney viscosity difference exceeds the above range, the stiffness and hardness are lowered, and the Mooney viscosity difference satisfies the above range, but the average particle diameter falls outside the above range. This also causes a problem that the rigidity and hardness are lowered.
  • the first styrene-butadiene rubber of the present invention has a weight average molecular weight of 100,000 g / mol to 2,000,000 g / mol, specifically 300,000 g / mol to 2,000,000 g / mol, more specifically 500,000 g / mol to 2,000,000 g / mol is used.
  • the first styrene-butadiene rubber proposed in the present invention is a crosslinked styrene and butadiene is prepared through emulsion polymerization.
  • the first styrene-butadiene rubber usually has a form crosslinked by a crosslinking agent and has a high level of gel content.
  • the first styrene-butadiene rubber of the present invention is crosslinked with only styrene and butadiene as monomers without using a crosslinking agent.
  • the crosslinking is performed through the control of the polymerization reaction temperature and the polymerization conversion rate.
  • crosslinking is performed without a crosslinking agent as described above, the content of styrene can be further increased, and the crosslinking content and density control can be easily performed through the use of a molecular weight modifier.
  • the preparation of the first styrene-butadiene rubber may be prepared by emulsion polymerization by adding an emulsifier, an initiator, and a molecular weight modifier to the styrene and butadiene monomers.
  • the monomer is used in 80 to 95% by weight of styrene and 5 to 20% by weight of butadiene within 100% by weight of the total monomer, it is possible to manufacture a rubber with a high content of styrene within these ranges.
  • the styrene may be, in addition to styrene, further ⁇ -methyl styrene, o-methyl styrene, p-methyl styrene, m-methyl styrene, ethyl styrene, i-butyl styrene, t-butyl styrene or alkyl styrene having equivalent properties; And at least one selected from the group consisting of o-bromo styrene, p-bromo styrene, m-bromo styrene, o-chloro styrene, p-chloro styrene, m-chloro styrene or halogenated styrene having equivalent properties.
  • butadiene may impart flexibility to the styrene-butadiene-based latex, and may act as a crosslinking agent, and may be 1,3-butadiene, 1,4-butadiene, 2,3-dimethyl-1,3-butadiene, or 2 Butadiene or derivatives thereof, such as -ethyl-1,3-butadiene, and the like; in addition to these, 2-methyl-1,3-pentadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, It may further include a conjugated diene monomer such as 4-methyl-1,3-pentadiene, 1,3-hexadiene or 2,4-hexadiene.
  • a conjugated diene monomer such as 4-methyl-1,3-pentadiene, 1,3-hexadiene or 2,4-hexadiene.
  • the styrene and butadiene monomers are introduced in a method of introducing the monomer mixture into the polymerization reactor at once, a method of continuously adding the monomer mixture into the polymerization reactor, a part of the monomer mixture is introduced into the polymerization reactor, and the remaining monomers are continuously added to the polymerization reactor.
  • the emulsifier is not particularly limited in the present invention, it is possible to use commonly in this field.
  • known ones such as phosphate type, carboxylate type, sulfate type, succinate type, sulfosuccinate type, sulfonate type, and disulfonate type can be used, and the present invention is not particularly limited. Do not.
  • one or a combination of two or more selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfates, sulfonated alkyl esters, soaps of fatty acids and alkali salts of rosin acids can be used.
  • Such emulsifiers are used in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the total monomers. If the content is less than the above range, the stability during polymerization is lowered. On the contrary, if the content exceeds the above range, foaming increases.
  • the molecular weight modifier is not particularly limited, but for example, mercaptans such as a-methylstyrene dimer, t-dodecylmercaptan, n-dodecylmercaptan, octyl mercaptan, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide, tetra Sulfur-containing compounds such as ethyl thiuram disulfide, dipentamethylene thiuram disulfide, diisopropylquixanthogen di sulfide.
  • mercaptans such as a-methylstyrene dimer, t-dodecylmercaptan, n-dodecylmercaptan, octyl mercaptan, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide,
  • the molecular weight regulator may be added in an amount of 0.2 to 0.6 parts by weight based on 100 parts by weight of the total monomers, but is not limited thereto.
  • the polymerization initiator may control the molecular weight, gel content and gel structure of the first styrene-butadiene rubber, and is not particularly limited, but a radical initiator may be used.
  • a radical initiator inorganic peroxides, such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-mentane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide Organic peroxides such as oxides, 3,5,5-trimethylhexanol peroxide, t-butyl peroxy isobutyrate; At least one selected from the group consisting of azobis isobutyronitrile, azo
  • the amount of the polymerization initiator is included in an amount of 0.01 to 2 parts by weight, preferably 0.02 to 1.5 parts by weight, based on 100 parts by weight of the total monomers. If the content is less than the above range, the polymerization rate is lowered, making it difficult to manufacture the final product. On the contrary, if the content exceeds the above range, the polymerization rate is too fast to control the polymerization.
  • additives such as a molecular weight regulator, an activator, a chelating agent, a dispersing agent, a pH adjusting agent, a deoxygenating agent, a particle size adjusting agent, an antioxidant, and an oxygen scavenger may be added.
  • the first styrene-butadiene rubber proposed in the present invention may perform crosslinking without a crosslinking agent by controlling the polymerization temperature and the polymerization conversion rate.
  • high temperature rubber or hot polymer
  • rubber with high gel content and excellent processability is obtained.
  • cold polymer
  • the polymerization is carried out at a high temperature, preferably at a high temperature of 40 to 80 °C, preferably 45 to 75 °C, the polymerization is terminated after the polymerization conversion reaches 90% or more.
  • the first styrene-butadiene rubber prepared in latex form is obtained in a powder state by performing a conventional post-treatment procedure such as solidification and washing.
  • Coagulation is carried out through the addition of coagulants, wherein coagulants are such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; metal chlorides; Nitrates such as barium nitrate, calcium nitrate and zinc nitrate; Acetates such as barium acetate, calcium acetate and zinc acetate; Sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate. Of these, calcium chloride and magnesium sulfate are preferred.
  • the coagulation may be coagulation at 50 to 100 ° C., and coagulation agent may be 5 wt% or less based on the total amount of the total salt used for coagulation.
  • the washing can be carried out at 50 to 90 ° C. through the use of distilled water or the like.
  • the second styrene-butadiene rubber which is the second component of the rubber composition according to the present invention, is a rubber having a linear structure having a styrene content of 1 to 15% by weight, preferably 5 to 10% by weight.
  • the second styrene-butadiene rubber is prepared by emulsion polymerization, but is prepared by emulsion polymerization at low temperature using a mixture of aliphatic organic acids and sulfonate compounds.
  • a monomer, an emulsifier, a polymerization initiator, a molecular weight regulator, and deionized water are added to a polymerization reactor.
  • styrene and butadiene are used as the monomer.
  • styrene is used in 1 to 15% by weight, preferably 5 to 10% by weight
  • butadiene is used in 85 to 99% by weight, preferably 90 to 95% by weight within 100% by weight of the total monomers. If the content is outside the third range, it is difficult to prepare low styrene-butadiene rubber having a desired level of physical properties.
  • the second styrene-butadiene rubber of the present invention is prepared by using a specific emulsifier used in emulsion polymerization and carrying out polymerization at low temperature.
  • an aliphatic organic acid and a sulfonate compound are used together.
  • the aliphatic organic acid may be, for example, an aliphatic organic acid having 12 to 18 carbon atoms, or may be an aliphatic organic acid having 14 to 18 carbon atoms or 16 to 18 carbon atoms.
  • Specific examples include oleic acid, lauric acid, myristic acid, myristic acid, palmitic acid, stearic acid, naphthalene sulfonic acid, and eicosanoic acid. One or more selected from among them can be used.
  • the sulfonate compound includes one selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfates, sulfonated alkyl esters, alkali salts of rosin acids, naphthalene sulfonic acids, and combinations thereof.
  • SANS uses Sodium 1- (n-Alkyl-Naphthalene-4-Sulfonate) and SDBS (Sodium Dodecyl Benzene Sulfonate), but is not limited thereto.
  • Such sulfonate compounds are used in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the total monomers. If the content is less than the above range, the stability during polymerization is lowered. On the contrary, if the content exceeds the above range, foaming increases.
  • the aliphatic organic acid and the sulfonate compound are used in a weight ratio of 1: 1 to 10: 1. If an excessive amount of aliphatic organic acid is used, there is a problem that the coagulum in the produced second styrene-butadiene rubber latex increases, and an excessive use of a sulfonate compound causes a long polymerization time, so it is appropriately used within the above range. do.
  • the polymerization initiator, the reaction terminator, and the like used together follow the description of the first styrene-butadiene rubber.
  • the polymerization temperature may be performed at a low temperature of 5 to 20 ° C., preferably 5 to 15 ° C., and may be performed so that the required time for reaching the polymerization conversion rate of 80% is 7 to 8 hours. have. This time is a time reduced by 1 to 2 hours or more as compared with the usual required time, which can shorten the overall reaction process time.
  • the completion of the polymerization usually terminates the polymerization at a polymerization conversion rate of 80% to obtain a second styrene-butadiene rubber in latex form.
  • the second styrene-butadiene rubber thus prepared has a weight average molecular weight of 10,000 g / mol to 2,000,000 g / mol, specifically 100,000 g / mol to 1,000,000 g / mol, more specifically 150,000 g / mol to 800,000 g / mol I use that.
  • the first styrene-butadiene rubber and the second styrene-butadiene rubber as described above are combined with each other to produce a compound.
  • the compound includes 75 to 99.5% by weight of the first styrene-butadiene rubber, preferably 80 to 95% by weight so that the total amount is 100% by weight, and 0.5 to 25% by weight of the second styrene-butadiene rubber, preferably 5 to When it contains 20% by weight, it is possible to secure high rigidity and hardness.
  • the content of the first styrene-butadiene rubber is less than the above range or the content of the second styrene-butadiene rubber is more than the above range, sufficient level of rigidity and hardness may not be secured, on the contrary, the first styrene-butadiene
  • the modulus and elastic properties are lowered, so it is suitably used within the above range.
  • the total styrene content of the styrene-butadiene rubber compound according to the invention as described above is 23 ⁇ 2% by weight and the Mooney viscosity (ML (1 + 4) / 100 ° C.) has 46 ⁇ 3.
  • Such compounds are applicable to a variety of technical fields, and may be particularly preferably applied to the production of bead fillers for tires.
  • Tire bead fillers are required to support the load of the vehicle being transferred to the tire rim and require high rigidity and hardness.
  • the tire bead filler is a natural rubber, phenol resin, carbon black, and additives as a basic component, when using the styrene-butadiene compound proposed in the present invention can be used in place of the natural rubber and phenol resin.
  • the performance of the bead fillers depends on the macrostructures of styrene-butadiene rubber (molecular weight, molecular weight distribution, macromolecular chains, crystallinity, etc.) and microstructures (array of monomers, polystyrene content, polydiene content, vinyl content), and chemical functionalization. It is greatly affected. That is, the glass transition temperature (Tg) increases, the tensile strength decreases, and the wear resistance decreases, but the wet road braking force tends to increase according to the styrene content.
  • Tg glass transition temperature
  • the remaining components of the rubber composition constituting the tire bead filler, carbon black, reinforcing agents such as silica, vulcanizing agents, vulcanizing accelerators, processing oils, fillers, coupling agents, antioxidants, softeners or adhesives may be further included. have.
  • Sulfur is used as a vulcanizing agent, and peroxide-based compounds may be used in addition, but sulfur crosslinking systems are generally used.
  • the vulcanization accelerator serves to improve the vulcanization efficiency and reaction rate by allowing the vulcanization reaction to occur uniformly at the rubber reaction site.
  • the vulcanizing accelerator may be at least one selected from the group consisting of thiazole-based, thiuram-based, thiourea-based, guanine-based and thiocarbamate-based activators. have. Specific examples of the thiazole type include N-t-butyl-2-benzothiazole sulfenamide (TBBS).
  • the processing oil acts as a softener in the rubber composition, specifically, may be a paraffinic, naphthenic, or aromatic compound, and more specifically, aromatic process oil, hysteresis loss and low temperature in consideration of tensile strength and wear resistance. In consideration of properties, naphthenic or paraffinic process oils may be used.
  • the processing oil may be included in an amount of 100 parts by weight or less based on 100 parts by weight of compound, and when included in the content, it is possible to prevent the degradation of tensile strength, low heat generation (low fuel efficiency) of the vulcanized rubber.
  • the anti-aging agent examples include N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 6-ethoxy- And 2,2,4-trimethyl-1,2-dihydroquinoline or high-temperature condensates of diphenylamine and acetone.
  • the anti-aging agent may be used in an amount of 0.1 parts by weight to 6 parts by weight based on 100 parts by weight of the compound.
  • the rubber composition according to an embodiment of the present invention can be obtained by kneading using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc. by the above formulation, and also has low heat resistance and abrasion resistance by a vulcanization process after molding. This excellent rubber composition can be obtained.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • the rubber molded article manufactured by such a composition and method is applied to a bead filler of a tire, in particular a tire, wherein the tire may be an automobile tire, a bus tire, a truck tire, an airplane tire, a motorcycle tire, and the like.
  • the particles of the prepared first styrene-butadiene rubber were measured using a particle size analyzer, and the average particle diameter was measured to be 120 nm.
  • Particles of the prepared second styrene-butadiene rubber were measured using a particle size analyzer, and the average particle diameter was measured to be 250 nm.
  • the prepared styrene-butadiene rubber coagulum was blended according to ASTM D3187 using a Bunbury mixer to prepare a specimen.
  • a rubber compound specimen was prepared in the same manner as in Example 1 except that the first styrene-butadiene rubber having an average particle diameter of 140 nm was prepared and used.
  • a rubber compound specimen was prepared in the same manner as in Example 1 except that the first styrene-butadiene rubber having an average particle diameter of 180 nm was prepared and used.
  • a rubber compound specimen was prepared in the same manner as in Example 1 except that the first styrene-butadiene rubber having an average particle diameter of 80 nm was prepared and used.
  • a rubber compound specimen was prepared in the same manner as in Example 1 except that the first styrene-butadiene rubber having an average particle diameter of 90 nm was prepared and used.
  • a rubber compound specimen was prepared in the same manner as in Example 1 except that the first styrene-butadiene rubber having an average particle diameter of 100 nm was prepared and used.
  • a rubber compound specimen was prepared in the same manner as in Example 1 except that the first styrene-butadiene rubber having an average particle diameter of 130 nm was prepared and used.
  • a rubber compound specimen was prepared in the same manner as in Example 1 except that the first styrene-butadiene rubber having an average particle diameter of 210 nm was prepared and used.
  • Example 1 8 2 120 6.7
  • Example 2 8: 2 140 5.0
  • the vulcanization profile and its related analytical data were measured on a Monsanto MDR2000 rheometer according to ASTM D5289-95.
  • Vmax (vulcanization speed): It means the maximum torque required for 100% vulcanization.
  • Durometer hardness JIS A, Shore type
  • ASTM D2240 Hardness: Durometer hardness (JIS A, Shore type) was used according to ASTM D2240 to measure the hardness of the prepared vulcanizate.
  • the thickness of the vulcanized sample was made to be at least 6 mm so that the needle was perpendicular to the measurement surface of the test piece, and the average value was determined after measuring three times at the center of the test piece with a load of about 2 kg (19.6 N).
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Rubber Compound Properties MV 47 46 45 47 45 43 46 41 Compound thermal stability (5-point method) 39.1 38.2 39.2 41.2 42.0 43.2 40.0 39.9 MDR (160 °C, 30min) T5 (min) 1.31 1.34 1.39 1.08 1.13 1.2 1.32 1.4 Vmax (N.M) 24.7 25.1 25.9 21.2 22.1 26.2 21.8 24.1 Mechanical properties Tensile strength (kgf / cm 2 ) 187 185 193 171 156 167 156 178 % Elongation 332 374 347 298 275 277 374 362 100% Modulus (kgf / cm 2 ) 59 51 56 48 52 55 45 45 45 Hardness 80 79 78 78 77 77 76 75
  • the rubber compound and the bead filler prepared using the present invention can be applied to various tires such as automobile tires, bus tires, truck tires, aircraft tires, motorcycle tires.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

본 발명은 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물에 관한 것으로, 더욱 상세하게는 종래 천연 고무 및 페놀계 수지의 조합을 대체하여 서로 다른 스티렌의 함량을 갖는 스티렌-부타디엔 고무를 사용하더라도 강성 및 경도가 향상시킬 수 있는 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물에 관한 것이다.

Description

스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물
본 출원은 2016년 11월 10일자 한국 특허 출원 제10-2016-0149391호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 우수한 강성 및 경도를 갖는 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물에 관한 것이다.
타이어 비드 필러 고무는 타이어에 림이 장착될 때 림으로 전달되는 차량의 하중을 지지하기 위해 다른 부분의 고무 컴파운드에 비해 높은 강성과 경도가 요구되며, 또 차량 운행시 발생할 수 있는 비드 이탈 현상을 방지하기 위해 높은 고무강성이 요구된다.
이러한 타이어 비드 필러 고무의 강성을 향상시키기 위해 클레이와 같은 무기물의 함량을 높여 고무의 경도와 강성을 높이는 방법이 이용된다. 그러나 이처럼 클레이의 함량이 높으면 고무경도는 높아지나 클레이와 고무 간의 발열이 증가하여 구름저항 성능이 저하되고, 고무배합 특성이 열화되며, 인장강도가 낮아지는 문제점이 있다. 또, 종래 사용된 클레이는 오일 흡착량이 낮아 고무 조성물에 대한 보강 효과가 낮다.
또한, 타이어 비드 필러 고무의 강성을 향상시키기 위한 또 다른 방법으로 노볼락형의 페놀계 수지 또는 개질된 페놀계 수지를 사용하여 강성 및 경도를 향상시키는 방법이 제안되었다. 이러한 방법은 강성 및 경도 향상이라는 이점이 있으나 타이어 취부 후 운행 조건인 고온에서 수지의 강성이 하락됨에 따라 고무의 강성 또한 함께 하락한다는 단점이 있다.
이에 대한 대안으로, 대한민국 공개특허 제2011-0071605호는 원료 고무에 서로 다른 물성을 갖는 2종류의 카본 블랙을 사용하고, 제2016-0077895호에서는 원료 고무에 열가소성 엘라스토머를 사용하여 고무의 강성 향상 효과를 도모하였다. 이러한 방법들은 강성의 어느 정도의 향상을 보였으나 만족스러운 결과를 나타내지 못하였다. 특히 상기 특허에서는 고무 조성으로 천연 고무를 사용함에 따라 이와 함께 첨가되는 합성 고무와의 낮은 상용성으로 인해, 최종 제조된 비드 필러의 경도 또한 충분히 확보할 수 없었다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제1998-0009357호 (1998.04.30), 타이어의 비드 필러용 고무 조성물
대한민국 공개특허 제2011-0071605호 (2011.06.29), 타이어 비드 필러용 고무 조성물 및 이를 이용하여 제조한 타이어
대한민국 공개특허 제2016-0077895호 (2016.07.04), 타이어 비드 필러용 고무 조성물 및 이를 이용하여 제조한 타이어
이에 본 발명자들은 타이어 비드 필러 제조시 합성 고무만으로 경도 및 강성을 높이기 위한 연구를 수행한 결과, 스티렌의 함량이 서로 다른 스티렌-부타디엔 고무를 혼합하여 사용할 경우 경도 및 강성이 향상되어 상기 천연 고무 및 페놀계 수지의 대체재로서 사용 가능함을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 높은 경도 및 강성을 갖는 타이어 비드 필러용 고무 조성물을 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은
a) 스티렌 함량이 60 내지 95 중량%이며, 입자 크기가 100 내지 200nm이고, 배합 전후의 무니 점도 차이(ΔMV)가 3 내지 7인 제1스티렌-부타디엔 고무; 및
b) 스티렌 함량이 5 내지 10 중량%인 제2스티렌-부타디엔 고무를 포함하는 것을 특징으로 하는 스티렌-부타디엔 고무 컴파운드를 제공한다.
또한, 본 발명은 고무, 보강제 및 첨가제를 포함하는 타이어 비드 필러용 조성물에 있어서, 상기 고무로서 전술한 바의 스티렌-부타디엔 고무 컴파운드를 포함하는 것을 특징으로 하는 타이어 비드 필러용 고무 조성물을 제공한다.
본 발명에서 제시하는 고무 조성물은 종래 강성 문제가 있는 페놀계 수지와 같은 레진을 배제하고, 천연 고무와 페놀계 수지의 대체 사용이 가능하여 합성 고무만으로 제조되는 타이어의 제작을 가능케 한다.
본 발명은 타이어 비드 필러 제조시 사용하는 천연 고무 및 페놀계 수지를 사용하지 않고 합성 고무만으로 강도 및 강성과 같은 물성을 개선시킬 수 있는 컴파운드 및 이를 포함하는 타이어 비드 필러용 조성물을 제시한다.
스티렌-부타디엔 고무는 스티렌 반복단위와 부타디엔 반복단위로 이루어진다.
표준적인 스티렌-부타디엔 고무는 부타디엔 고무 내에서 총 스티렌 함량이 23.5 중량%이며, 이것보다 스티렌의 함량이 높은 것을 하이 스티렌-부타디엔 고무(high styrene butadiene rubber)라고 하며, 스티렌의 함량이 낮은 것을 로우 스티렌-부타디엔 고무(low styrene butadiene rubber)라고 한다.
본 발명에서 제시하는 컴파운드는 스티렌의 함량이 서로 다른, 즉, 하이 스티렌-부타디엔 고무(이하, 제1스티렌-부타디엔 고무'라 한다)와 로우 스티렌-부타디엔 고무(이하, 제2스티렌-부타디엔 고무'라 한다)를 혼합하여 사용한다. 종래 서로 다른 스티렌 함량을 갖는 스티렌-부타디엔 고무의 배합은 용이하지 않다는 문제가 있으나, 본 발명에서는 스티렌 함량이 높은 제1스티렌-부타디엔 고무는 입자 크기와 무니 점도가 조절된 것을 사용하고, 스티렌 함량이 낮은 제2스티렌-부타디엔 고무는 중합 과정이 조절된 것을 사용하여, 배합 이후 열 안정성이 우수하고, 가공 시 가공성 및 점착성이 개선되어 물성, 특히 강성(인장강도, tensile strength) 및 경도(hardness)가 향상된 성형품의 제조를 가능케 한다.
이하 각각의 스티렌-부타디엔 고무에 대해 상세히 설명한다.
제1스티렌-부타디엔 고무
본 발명에서 제시하는 고무 조성물의 제1 구성요소인 제1스티렌-부타디엔 고무는 이미 언급한 바와 같이 스티렌 함량이 60 내지 95 중량%, 바람직하기로는 80 내지 90 중량%를 가지며, 가교화된 구조를 갖는다.
스티렌 함량이 서로 다른 스티렌-부타디엔 고무의 사용은 이론적으로 물성의 상호 보완 효과를 확보할 수 있다고는 하나, 혼화성이 낮아 실제 공정에 적용 시 여러 가지 문제를 안고 있다. 그러나 본 발명의 제1스티렌-부타디엔 고무는 입자 크기가 100 내지 200nm이고, 배합 전후의 무니 점도(ML(1+4) at 100℃)의 차이(ΔMV)가 3 내지 7인 것을 사용함으로써 이들 간의 혼화성을 높일 수 있다.
제1스티렌-부타디엔 고무의 입자 크기는 통상의 라텍스 입자 크기 측정에 사용되는 장치로 측정이 가능하며, 이때 평균 입경이 상기 범위, 즉 100 내지 200nm, 바람직하기로 120 내지 180nm의 범위를 갖는다. 상기 입자 크기 범위에 속할 경우 제2스티렌-부타디엔 고무와의 혼화성이 높아져 이의 혼합 사용을 통해 얻어지는 강성 및 경도의 향상 효과를 기대할 수 있다. 만약 입자 크기가 너무 작을 경우 입자끼리 응집이 일어나 제2스티렌-부타디엔 고무와 균일한 배합을 이룰 수 없고, 이와 반대로 너무 크게 되면 원하는 수준의 강성 및 경도 스펙을 달성할 수 없다.
또한, 본 발명의 제1스티렌-부타디엔 고무는 배합 전의 무니 점도와 배합 이후 무니 점도의 차이가 소정 범위를 갖는 것을 사용한다.
무니 점도란 고무 또는 고무 컴파운드(또는 컴파운드)의 온도에 따른 점성 거동을 수치화한 것으로, ML1+4 (at 100℃)으로 측정조건을 표시하는데 여기서 ML이란 로터(ROTOR)의 크기가 LARGE, 1+4는 규정의 온도에서 시편을 워밍업 해주는 시간 1분, 측정시간 4분, 100℃는 측정온도를 나타낸다. 즉, 무니 점도는 어떤 온도, 시간에서 얼마의 힘을 받고 있는지를 수치로 표현한다. 이때 무니 점도가 3의 의미는 100℃의 온도에서 Large Disc를 사용하여 1분을 예열하고, 4분 후에 측정된 점도 수지가 3인 것을 의미한다.
제1스티렌-부타디엔 고무는 가교화된 형태로 선형 구조의 제2스티렌-부타디엔 고무와는 달리 겔 함량의 측정이 어렵다. 이러한 겔 함량은 배합 전후의 무니 점도의 변화를 통해 예측 가능하며, 바람직하기로 ASTM 표준배합 방법으로 배합 전후의 무니 점도 차이(ΔMV)가 3 내지 7, 바람직하기로 3 내지 6.7인 것을 사용한다.
상기 제시한 바와 같이, 본 발명에 따른 제1스티렌-부타디엔 고무는 평균 입경과 무니 점도가 동시에 한정된 것을 사용한다. 만약, 상기 제1스티렌-부타디엔 고무로서 평균 입경은 상기 범위를 만족하더라도 무니 점도 차이가 상기 범위를 초과하면 강성 및 경도가 저하되고, 무니 점도 차이는 상기 범위를 만족하는데 평균 입경이 상기 범위를 벗어날 경우 이 또한 강성 및 경도가 저하되는 문제가 발생한다.
또한, 본 발명의 제1스티렌-부타디엔 고무는 중량평균분자량이 100,000 g/mol 내지 2,000,000 g/mol, 구체적으로는 300,000 g/mol 내지 2,000,000 g/mol, 보다 구체적으로는 500,000 g/mol 내지 2,000,000 g/mol인 것을 사용한다.
한편, 본 발명에서 제시하는 제1스티렌-부타디엔 고무는 스티렌과 부타디엔이 가교화된 것으로 유화 중합을 통해 제조된다.
제1스티렌-부타디엔 고무는 통상 가교제에 의해 가교된 형태를 가지며, 높은 수준의 겔 함량을 갖는다. 본 발명의 제1스티렌-부타디엔 고무는 가교제를 사용하지 않고 단량체인 스티렌과 부타디엔만으로 가교화를 진행한다. 이때 가교화는 중합 반응 온도 및 중합 전환율의 조절을 통해 가교화를 수행한다. 이렇게 가교제 없이 가교화를 수행할 경우 스티렌의 함량을 더욱 높일 수 있고, 가교 함량 및 밀도 조절을 분자량 조절제의 사용을 통해 용이하게 수행할 수 있다.
구체적으로, 제1스티렌-부타디엔 고무의 제조는 스티렌과 부타디엔 단량체에 유화제, 개시제 및 분자량 조절제를 첨가하여 유화 중합에 의해 제조되어 라텍스 형태로 제조 후 응집을 통해 분말 형태로 회수되어 배합될 수 있다.
상기 단량체는 전체 단량체의 합 100 중량% 내에서 스티렌 80 내지 95 중량% 및 부타디엔 5 내지 20 중량%로 사용하며, 이들 범위 내에서 스티렌의 함량이 높은 고무의 제조가 가능하다.
상기 스티렌은 스티렌 이외에, 추가로 α-메틸 스티렌, o-메틸 스티렌, p-메틸 스티렌, m-메틸 스티렌, 에틸 스티렌, i-부틸 스티렌, t-부틸 스티렌 또는 이와 동등한 성질을 가지는 알킬 스티렌; 및 o-브로모 스티렌, p-브로모 스티렌, m-브로모 스티렌, o-클로로 스티렌, p-클로로 스티렌, m-클로로 스티렌 또는 이와 동등한 성질을 가지는 할로겐화 스티렌;으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또한, 부타디엔은 스티렌-부타디엔계 라텍스에 유연성을 부여할 수 있고, 가교 역할을 할 수 있으며, 1,3-부타디엔, 1,4-부타디엔, 2,3-디메틸-1,3-부타디엔, 또는 2-에틸-1,3-부타디엔 등의 부타디엔 또는 그 유도체를 들 수 있고, 이들 이외에 2-메틸-1,3-펜타디엔, 1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔, 1,3-헥사디엔 또는 2,4-헥사디엔 등의 공액 디엔계 단량체를 더욱 포함할 수 있다.
이때 스티렌과 부타디엔 단량체의 투입 방법은 단량체 혼합물을 중합 반응기에 한꺼번에 투입하는 방법, 단량체 혼합물을 중합 반응기에 연속적으로 투입하는 방법, 단량체 혼합물의 일부를 중합 반응기에 투입하고, 나머지 단량체를 중합 반응기에 연속적으로 공급하는 방법 중 어느 방법을 사용해도 무방하다.
유화제로는 본 발명에서 특별히 한정하지 않으며, 이 분야에서 통상적으로 사용하는 것이 가능하다. 일례로, 상기 유화제로는 포스페이트계, 카르복실레이트계, 설페이트계, 석시네이트계, 설포석시네이트계, 설포네이트계, 디설포네이트계 등 공지의 것이 사용 가능하며, 본 발명에서 특별히 한정하지 않는다. 일례로, 예컨대 알킬 아릴 설포네이트, 알카리 메틸 알킬 설페이트, 설포네이트화된 알킬에스테르, 지방산의 비누 및 로진산의 알카리염으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 조합을 사용할 수 있다.
이러한 유화제는 전체 단량체의 총합 100 중량부에 대하여 0.1 내지 5 중량부, 바람직하기로는 0.5 내지 3 중량부로 사용된다. 만약, 그 함량이 상기 범위 미만이면 중합시 안정성이 저하되며, 이와 반대로 상기 범위를 초과하면 거품 발생이 많아지는 문제점이 있다.
상기 분자량 조절제는 특별히 한정되는 것은 아니나, 예컨대 a-메틸스티렌다이머, t-도데실머캅탄, n-도데실머캅탄, 옥틸 머캅탄과 같은 머캅탄류, 사염화탄소, 염화메틸렌, 브롬화메틸렌과 같은 할로겐화 탄화수소, 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 디이소프로필키산토겐 다이 설파이드와 같은 황 함유 화합물일 수 있다. 바람직하게는 t-도데실머캅탄일 수 있다.
또한, 상기 분자량 조절제는 전체 단량체의 총합 100 중량부에 대하여 0.2 내지 0.6 중량부로 첨가할 수 있으나, 이에 제한되는 것은 아니다.
중합 개시제는 제1스티렌-부타디엔 고무의 분자량, 겔 함량 및 겔 구조를 조절할 수 있으며, 특별히 한정되진 않지만, 라디칼 개시제가 사용될 수 있다. 상기 라디칼 개시제로서는 과황산나트륨, 과황산칼륨, 과황산암모늄, 과인산칼륨, 과산화수소 등의 무기 과산화물; t-부틸 퍼옥사이드, 큐멘 하이드로퍼옥사이드, p-멘탄하이드로퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부티레이트 등의 유기 과산화물; 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스시클로헥산 카르보니트릴, 및 아조비스 이소 낙산(부틸산)메틸로 이루어진 그룹으로부터 선택된 1종 이상의 것이며, 이러한 라디칼 개시제 중에서 무기 과산화물이 보다 바람직하고, 이 중에서도 과황산염이 바람직하게 사용될 수 있다.
상기 중합 개시제의 사용량은 전체 단량체의 총합 100 중량부에 대하여 0.01 내지 2 중량부, 바람직하기로는 0.02 내지 1.5 중량부로 포함된다. 만약, 그 함량이 상기 범위 미만이면 중합 속도가 저하되어 최종 제품을 제조하기 어렵고, 이와 반대로 상기 범위를 초과하면 중합 속도가 너무 빨라져 중합 조절을 할 수 없다.
이때 상기 조성 이외에 필요에 따라 분자량 조절제, 활성화제, 킬레이트제, 분산제, pH 조절제, 탈산소제, 입경조정제, 노화방지제, 산소포착제(oxygen scavenger) 등의 부재료를 첨가할 수 있음은 물론이다.
본 발명에서 제시하는 제1스티렌-부타디엔 고무는 이미 언급한 바와 같이, 중합 온도와 중합 전환율의 조절을 통해 가교제 없이 가교를 수행할 수 있다.
고무 제조시 중합 온도를 40℃ 이상에서 수행하게 되는 고온 고무(또는 hot polymer)라 하고 겔 함량이 높으며 가공성이 우수한 고무가 얻어지고, 중합 온도를 10℃ 이내에서 수행하면 겔 함량이 낮은 저온 고무(또는 cold polymer)가 제조된다.
본 발명에서는 고온에서 중합을 수행하며, 바람직하기로 40 내지 80℃, 바람직하게는 45 내지 75℃의 고온에서 수행하고, 중합 전환율이 90% 이상에 도달한 이후 중합을 종료한다.
중합 종료 이후 라텍스 형태로 제조되는 제1스티렌-부타디엔 고무는 응고 및 세척 등의 통상의 후처리 절차를 수행하여 분말 상태로 얻는다.
응고는 응고제의 첨가를 통해 수행하며, 이때 응고제는 바륨 클로라이드, 염화칼슘, 염화마그네슘, 염화아연 및 염화알루미늄 등과 같음 금속 염화물(halide); 질산바륨, 질산칼슘 및 질산아연과 같은 질산염; 바륨 아세테이트, 칼슘 아세테이트 및 징크 아세테이트와 같은 아세트산염; 황산칼슘, 황산마그네슘 및 황산알루미늄과 같은 황산염 등이 있다. 이들 중 염화칼슘과 황산마그네슘이 바람직하다. 상기 응고는 50 내지 100℃에서 응고시키고, 응고시 응고에 사용되는 전체 염의 총량을 기준으로 5 중량% 이하의 응고제가 잔류하는 것일 수 있다.
세척은 증류수 등의 사용을 통해 50 내지 90℃에서 수행할 수 있다.
제2스티렌-부타디엔 고무
또한, 본 발명에서 제시하는 고무 조성물의 제2 구성요소인 제2스티렌-부타디엔 고무는 스티렌의 함량이 1 내지 15 중량%, 바람직하기로 5 내지 10 중량%인 선형 구조를 갖는 고무이다.
상기 제2스티렌-부타디엔 고무는 유화 중합을 통해 제조하되, 지방족 유기산과 설포네이트계 화합물을 혼합 사용하여 저온에서 유화 중합을 통해 제조된 것을 사용한다.
먼저, 중합 반응기에 단량체, 유화제, 중합 개시제, 분자량 조절제 및 탈이온수를 첨가한다.
단량체로는 스티렌 및 부타디엔이 사용된다. 이때 스티렌은 전체 단량체의 합 100 중량% 내에서 1 내지 15 중량%, 바람직하기로 5 내지 10 중량%로 사용하고, 부타디엔은 85 내지 99 중량%, 바람직하기로 90 내지 95 중량%로 사용한다. 만약 그 함량이 삼기 범위를 벗어나면 원하는 수준의 물성을 갖는 저스티렌-부타디엔 고무의 제조가 어렵다.
특히, 본 발명의 제2스티렌-부타디엔 고무는 유화 중합시 사용하는 특정 유화제를 사용하고 저온에서 중합을 수행하여 제조한다.
상기 유화제로는 지방족 유기산과 설포네이트계 화합물을 함께 사용한다.
지방족 유기산은 일례로 탄소수 12 내지 18의 지방족 유기산일 수 있고, 혹은 탄소수 14 내지 18 혹은 탄소수 16 내지 18의 지방족 유기산일 수 있다. 구체적인 예로, 올레인산(oleic acid), 라우르산(lauric acid), 미리스틴산(myristic acid), 팔미트산(palmitic acid), 스테아르산(stearic acid), 나프탈렌 설포닉산 및 에이코산산(eicosanoic acid) 중에서 1종 이상 선택된 것을 사용할 수 있다.
설포네이트계 화합물로는 알킬 아릴 설포네이트, 알카리메틸 알킬 설페이트, 설포네이트화된 알킬에스테르, 로진산의 알카리염, 나프탈렌 설폰산류, 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하고, 바람직하기로는 SANS(Sodium 1-(n-Alkyl-Naphthalene-4-Sulfonate), SDBS(Sodium Dodecyl Benzene Sulfonate)를 사용하나, 이에 한정되는 것은 아니다.
이러한 설포네이트계 화합물은 전체 단량체의 총합 100 중량부에 대하여 0.1 내지 5 중량부, 바람직하기로는 0.5 내지 3 중량부로 사용된다. 만약, 그 함량이 상기 범위 미만이면 중합시 안정성이 저하되며, 이와 반대로 상기 범위를 초과하면 거품 발생이 많아지는 문제점이 있다.
또한, 상기 지방족 유기산과 설포네이트계 화합물은 1:1 내지 10:1의 중량비로 사용한다. 만약 지방족 유기산을 과량 사용하면 생성된 제2스티렌-부타디엔 고무 라텍스 내 응고물이 많아지는 문제가 발생하고, 설포네이트계 화합물을 과량 사용하면 중합 시간이 길어지는 문제가 발생하므로 상기 범위 내에서 적절히 사용한다.
이때 함께 사용하는 중합 개시제, 반응 종결제 등은 제1스티렌-부타디엔 고무에서 언급한 바를 따른다.
다만, 중합 온도와 관련하여 유화 중합 시 중합 온도는 5 내지 20℃, 바람직하게는 5 내지 15℃의 저온에서 수행하고, 중합 전환율 80%에 도달하는 소요 시간이 7 내지 8시간이 되도록 수행될 수 있다. 이러한 시간은 통상의 소요 시간에 비해 1 내지 2시간 이상 저감된 시간으로, 전체적인 반응 공정 시간을 단축시킬 수 있다.
중합 완료는 통상 중합 전환율 80%에서 중합을 종료하며 라텍스 형태의 제2스티렌-부타디엔 고무를 얻는다.
이렇게 제조된 제2스티렌-부타디엔 고무는 중량평균분자량이 10,000 g/mol 내지 2,000,000 g/mol, 구체적으로는 100,000 g/mol 내지 1,000,000 g/mol, 보다 구체적으로는 150,000 g/mol 내지 800,000 g/mol인 것을 사용한다.
전술한 바의 제1스티렌-부타디엔 고무와 제2스티렌-부타디엔 고무는 서로 배합하여 컴파운드를 제조한다.
이때 컴파운드는 전체 100 중량%가 되도록 제1스티렌-부타디엔 고무 75 내지 99.5 중량%, 바람직하기로 80 내지 95 중량%로 포함하고, 제2스티렌-부타디엔 고무 0.5 내지 25 중량%, 바람직하기로 5 내지 20 중량%를 포함할 경우 높은 강성 및 경도를 확보할 수 있다.
만약, 제1스티렌-부타디엔 고무의 함량이 상기 범위 미만이거나 제2스티렌-부타디엔 고무의 함량이 상기 범위를 초과할 경우에는 충분한 수준의 강성 및 경도를 확보할 수 없고, 이와 반대로 제1스티렌-부타디엔 고무의 함량이 상기 범위를 초과하거나 제2스티렌-부타디엔 고무의 함량이 상기 범위를 미만일 경우에는 모듈러스 및 탄성 물성이 저하되므로, 상기 범위 내에서 적절히 사용한다.
전술한 바의 본 발명에 따른 스티렌-부타디엔 고무 컴파운드의 총 스티렌 함량이 23±2 중량%이고, 무니 점도(ML(1+4)/100℃)가 46±3을 갖는다. 이러한 컴파운드는 다양한 기술 분야에 적용 가능하며, 특히 타이어의 비드 필러 제조에 바람직하게 적용될 수 있다.
타이어 비드 필러는 타이어 림에 전달되는 차량의 하중을 지지하는데 필요한 것으로 높은 강성 및 경도가 요구된다. 통상 타이어 비드 필러는 천연고무, 페놀수지, 카본 블랙, 및 첨가제를 기본 성분으로 하며, 본 발명에서 제시하는 스티렌-부타디엔 컴파운드를 사용할 경우 상기 천연 고무와 페놀수지를 대체하여 사용할 수 있다.
기존에 천연 고무에 추가 고무 성분으로 스티렌-부타디엔 고무를 사용하는 기술이 알려져 있으나, 본 발명에서는 천연 고무를 원천적으로 차단하여 합성 고무로만 타이어 비드 필러의 제조를 가능케 한다.
비드 필러의 성능은 스티렌-부타디엔 고무의 거시구조(분자량, 분자량 분포, 고분자 곁가지 사슬, 결정도 등)와 미세구조(단량체의 배열, 폴리스티렌의 함량, 폴리디엔의 비닐 함량 등) 및 화학적 관능기화 등에 크게 영향을 받는다. 즉, 스티렌의 함량에 따라 유리전이온도(Tg)는 증가하고, 인장강도는 감소하며, 상대적으로 내마모성은 하락하나, 젖은 노면 제동력은 증가하는 경향을 갖는다.
이에 본 발명에서 제시하는 스티렌이 서로 다른 고무가 일정 비로 배합된 컴파운드를 사용함으로써 상기 비드 필러에 요구되는 강성 및 경도를 충분히 확보한다.
타이어 비드 필러를 구성하는 고무 조성물의 나머지 성분, 카본 블랙, 실리카 등의 보강제, 가황제, 가황 촉진제, 프로세싱 오일, 충진제, 커플링제, 노화방지제, 연화제 또는 점착제 등의 각종의 첨가제를 더 포함할 수 있다.
가황제는 황(sulfur)이 사용되며, 이외에 퍼옥사이드(peroxide)계 화합물이 사용될 수 있으나 일반적으로 황 가교 시스템이 널리 사용된다.
가황 촉진제는 가황 반응이 고무 반응 자리에서 균일하게 일어나도록 하여, 가황 효율과 반응속도를 향상시키는 역할을 한다. 상기 가황 촉진제로는 티아졸(thiazole)계, 티우람(thiuram)계, 티오우레아(thiourea)계, 구아닌(guanine)계 및 티오카르바메이트 (thiocarbamate)계 활성제로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 티아졸계의 구체적인 예로는 N-t-부틸-2-벤조티아졸 설펜아미드(N-t-butyl-2-benzothiazole sulfenamide: TBBS)가 있다.
상기 프로세싱 오일은 고무 조성물 내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족 계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 프로세싱 오일은 컴파운드 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 컴파운드 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이러한 조성 및 방법으로 제조된 고무 성형품은 타이어, 특히 타이어의 비드 필러에 적용하며, 상기에서 타이어는 자동차용 타이어, 버스용 타이어, 트럭용 타이어, 항공기용 타이어, 오토바이용 타이어 등일 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
(1) 제1스티렌-부타디엔계 고무의 제조
반응 용기에 1,4-부타디엔 12 중량부, 스티렌 88 중량부로 이루어진 단량체 100 중량부에 대하여, 유화제로 로진산 칼륨염 1.2 중량부 및 올레인산 포타슘염 1.5 중량부와 도데실머캅탄 0.05 중량부, 큐멘 하이드로퍼옥사이드 0.5 중량부, 물 200 중량부를 첨가하여 10℃에서 유화 중합을 통해 제조하였다. 반응 종료는 중합 전환율 90% 시점에 종료하였다.
얻어진 제1스티렌-부타디엔 고무 라텍스 100 중량부(고형분)에 염화칼슘 2 중량부를 첨가하여 70℃로 승온시키고 20분 동안 숙성 후 냉각하여 응고물을 얻고, 이온 교환수로 2 내지 3회 세척하여 잔류 모노머를 제거한 후, 이를 여과기를 사용하여 탈수시켰다. 이어서 롤 건조기를 이용하여 건조하여 하이스티렌-부타디엔 고무를 제조하였다.
상기 제조된 제1스티렌-부타디엔 고무의 입자는 입도 측정기를 이용하여 측정한 결과 평균 입경이 120nm로 측정되었다.
(2) 제2스티렌-부타디엔계 고무의 제조
반응 용기에 1,4-부타디엔 94 중량부, 스티렌 6 중량부로 이루어진 단량체 100 중량부에 대하여, 지방족 유기산(Fatty acid (회사명: ㈜ LG 생활 건강, 상품명: elofad TP 200) 3.5 중량부, SANS(Sodium 1-(n-Alkyl-Naphthalene-4-Sulfonate) 0.5 중량부, 도데실머캅탄 0.05 중량부, 큐멘 하이드로퍼옥사이드 0.5 중량부, 물 200 중량부를 첨가하여 10℃에서 유화 중합을 통해 제조하였다. 반응 종료는 중합 전환율 80% 시점에 종료하였다.
상기 제조된 제2스티렌-부타디엔 고무의 입자는 입도 측정기를 이용하여 측정한 결과 평균 입경이 250nm로 측정되었다.
(3) 컴파운드 제조
상기 (1) 및 (2)에서 얻어진 제1스티렌-부타디엔 고무와 제2스티렌-부타디엔 고무를 8:2 중량비가 되도록 라텍스 블렌딩한 후, 블렌딩 라텍스 100 중량부(고형분)에 염화칼슘 2 중량부를 첨가하여 70℃로 승온시키고 20분 동안 숙성 후 냉각하여 응고물을 얻고, 이온 교환수로 2 내지 3회 세척하여 잔류 모노머를 제거한 후, 이를 여과기를 사용하여 탈수시켰다. 이어서 롤 건조기를 이용하여 건조하여 응고물 상태의 컴파운드를 제조하였다.
상기에서 제조된 스티렌-부타디엔 고무 응고물을 번버리 믹서를 이용하여 ASTM D3187에 따라 배합하여 시편을 제작하였다.
실시예 2
평균 입경이 140nm인 제1스티렌-부타디엔 고무를 제조하고, 이를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 고무 컴파운드 시편을 제작하였다.
실시예 3
평균 입경이 180nm인 제1스티렌-부타디엔 고무를 제조하고, 이를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 고무 컴파운드 시편을 제작하였다.
비교예 1
평균 입경이 80nm인 제1스티렌-부타디엔 고무를 제조하고, 이를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 고무 컴파운드 시편을 제작하였다.
비교예 2
평균 입경이 90nm인 제1스티렌-부타디엔 고무를 제조하고, 이를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 고무 컴파운드 시편을 제작하였다.
비교예 3
평균 입경이 100nm인 제1스티렌-부타디엔 고무를 제조하고, 이를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 고무 컴파운드 시편을 제작하였다.
비교예 4
평균 입경이 130nm인 제1스티렌-부타디엔 고무를 제조하고, 이를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 고무 컴파운드 시편을 제작하였다.
비교예 5
평균 입경이 210nm인 제1스티렌-부타디엔 고무를 제조하고, 이를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 고무 컴파운드 시편을 제작하였다.
함량비(중량) 제1스티렌-부타디엔 고무
제1스티렌-부타디엔 고무/제2스티렌-부타디엔 고무 입자 크기(nm) 컴파운딩 후 무니 점도 차이(△MV)
실시예 1 8:2 120 6.7
실시예 2 8:2 140 5.0
실시예 3 8:2 180 3.0
비교예 1 8:2 80 5.0
비교예 2 8:2 90 6.0
비교예 3 8:2 100 8.0
비교예 4 8:2 130 2.5
비교예 5 8:2 210 5.0
실험예 1
상기 실시예 및 비교예에서 제조한 고무 시편의 물성을 하기에 의거하여 측정하고, 그 결과를 하기 표 2에 나타내었다.
(1) 컴파운드 특성
* MV(무니 점도, Mooney viscosity): DIN 53523/3에 의거하여 측정하였다.
* 배합 열 안정성 평가 조건
160℃ 롤러에서 0.2mm 두께로 Milling 작업 실시(시료량 200g)하여 1.5, 5, 10, 15, 20, 25, 30, 40, 50, 60분 간격으로 Aging된 시편을 채취하여 배합시의 색상 안정성 평가하였다. 평가는 5점법으로 하였으며, 0~5점에서 그 점수가 낮을수록 배합 열 안정성 저하된 것을 의미한다.
(2) 가류 특성(MDR: Moving DieRheometer )>:
가황 프로필 및 이것의 관련 분석데이터를 ASTM D5289-95에 따라 몬산토 MDR2000 레오미터에서 측정하였다.
* T5: 5% 가류시까지의 소요시간을 측정하였다(160℃, 3분).
* Vmax(가황속도): 100% 가류에 소요되는 최대 토크(torque)를 의미한다.
(3) 기계적 물성
* 인장강도(TS: tensile strength, kgf/cm2): 상기 컴파운드를 145℃에서 45분 가류 후, 300% 가류물의 인장강도를 측정하였다.
* 신율(elongation, %): 상기 컴파운드를 145℃에서 45분 가류 후, 가류물의 신율을 측정하였다.
* 100% 모듈러스(modulus, kgf/cm2): 상기 컴파운드를 145℃에서 45분 가류 후, 100% 신장시의 모듈러스를 측정하였다.
* 경도: 제조된 가황물의 경도 (hardness)를 측정하기 위하여 ASTM D2240 에 따라 Durometer hardness (JIS A, Shore type)를 이용하였다. 가황된 시료의 두께는 최소 6 mm 로 제작하여 바늘이 시험편의 측정 면에서 수직이 되도록 하고 약 2 kg (19.6 N)의 하중으로 시험편의 중심에서 3회 측정한 후 평균값을 구하였다.
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
고무 컴파운드 물성 MV 47 46 45 47 45 43 46 41
배합열안정성(5점법) 39.1 38.2 39.2 41.2 42.0 43.2 40.0 39.9
MDR (160℃,30min) T5(min) 1.31 1.34 1.39 1.08 1.13 1.2 1.32 1.4
Vmax(N.M) 24.7 25.1 25.9 21.2 22.1 26.2 21.8 24.1
기계적 물성 인장강도(kgf/cm2) 187 185 193 171 156 167 156 178
신율(%) 332 374 347 298 275 277 374 362
100% 모듈러스(kgf/cm2) 59 51 56 48 52 55 45 45
경도 80 79 78 78 77 77 76 75
상기 표 2를 참조하면, 본 발명에 따라 입자 크기 및 무니 점도가 한정된 실시예의 제1스티렌-부타디엔 고무를 사용한 고무 컴파운드의 경우, 비교예의 컴파운드 대비 모든 물성에서 동등 이상의 결과를 보였으며, 특히 강성 및 경도면에서 크게 향상되는 결과를 나타내었다.
구체적으로, 비교예 1 및 2와 같이 제1스티렌-부타디엔 고무 입자가 너무 작을 경우 전체적인 물성이 낮았다. 또, 비교예 5와 같이 평균 입경이 큰 경우 신율 특성은 높아지나 강성 및 경도는 동일하게 오히려 저하되는 결과는 나타내었다. 더불어, 비교예 3 및 4의 경우 평균 입경은 본 발명에 해당되나 무니 점도가 높거나 낮을 경우 강성, 신율, 모듈러스 및 경도 모든 면에서 실시예 1 내지 3의 컴파운드 대비 낮은 결과를 나타내었다.
본 발명에서 제시하는 고무 컴파운드 및 이를 이용하여 제조된 비드 필러는 자동차용 타이어, 버스용 타이어, 트럭용 타이어, 항공기용 타이어, 오토바이용 타이어 등 각종 타이어에 적용 가능하다.

Claims (10)

  1. a) 스티렌 함량이 60 내지 95 중량%이며, 입자 크기가 100 내지 200nm이고, 배합 전후의 무니 점도 차이(ΔMV)가 3 내지 7인 제1스티렌-부타디엔 고무; 및
    b) 스티렌 함량이 5 내지 10 중량%인 제2스티렌-부타디엔 고무를 포함하는 것을 특징으로 하는 스티렌-부타디엔 고무 컴파운드.
  2. 제1항에 있어서,
    상기 고무 컴파운드는 제1스티렌-부타디엔 고무 75 내지 99.5 중량%와 제2스티렌-부타디엔 고무 0.5 내지 25 중량%를 포함하는 것을 특징으로 하는 스티렌-부타디엔 고무 컴파운드.
  3. 제1항에 있어서,
    상기 스티렌-부타디엔 고무 컴파운드의 총 스티렌 함량은 23±2 중량%이고, 무니 점도(ML(1+4)/100℃)는 46±3인 것을 특징으로 하는 스티렌-부타디엔 고무 컴파운드.
  4. 제1항에 있어서,
    상기 제1스티렌-부타디엔 고무는 중량평균분자량이 1,000 g/mol 내지 2,000,000 g/mol인 것을 특징으로 하는 스티렌-부타디엔 고무 컴파운드.
  5. 제1항에 있어서,
    상기 제2스티렌-부타디엔 고무는 중량평균분자량이 1,000 g/mol 내지 2,000,000 g/mol인 것을 특징으로 하는 스티렌-부타디엔 고무 컴파운드.
  6. 제1항에 있어서,
    상기 제1스티렌-부타디엔 고무 및 제2스티렌-부타디엔 고무는 유화 중합을 통해 제조된 것을 특징으로 하는 스티렌-부타디엔 고무 컴파운드.
  7. 제1항에 있어서,
    상기 제2스티렌-부타디엔 고무는 유화제로 지방족 유기산과 설포네이트계 화합물을 사용하여 제조된 것을 특징으로 하는 스티렌-부타디엔 고무 컴파운드.
  8. 고무, 보강제 및 첨가제를 포함하는 타이어 비드 필러용 조성물에 있어서,
    상기 고무는 제1항 내지 제7항 중 어느 한 항에 따른 스티렌-부타디엔 고무 컴파운드를 포함하는 것을 특징으로 하는 타이어 비드 필러용 고무 조성물.
  9. 제8항에 있어서,
    상기 보강제는 카본 블랙 및 실리카를 포함하는 것을 특징으로 하는 타이어 비드 필러용 고무 조성물.
  10. 제8항에 있어서,
    상기 첨가제는 가황제, 가황 촉진제, 프로세싱 오일, 충진제, 커플링제, 노화방지제, 연화제 및 점착제로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 타이어 비드 필러용 고무 조성물.
PCT/KR2016/015368 2016-11-10 2016-12-28 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물 WO2018088628A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680059355.5A CN108291059B (zh) 2016-11-10 2016-12-28 苯乙烯-丁二烯橡胶复合物和包含其的用于轮胎胎边芯的橡胶组合物
EP16915409.3A EP3345961B1 (en) 2016-11-10 2016-12-28 Styrene-butadiene rubber compound and rubber composition comprising same for tire bead filler
US15/761,329 US10654994B1 (en) 2016-11-10 2016-12-28 Styrene-butadiene rubber compound and rubber composition for tire bead fillers comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160149391A KR101950707B1 (ko) 2016-11-10 2016-11-10 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물
KR10-2016-0149391 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018088628A1 true WO2018088628A1 (ko) 2018-05-17

Family

ID=62109530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015368 WO2018088628A1 (ko) 2016-11-10 2016-12-28 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물

Country Status (5)

Country Link
US (1) US10654994B1 (ko)
EP (1) EP3345961B1 (ko)
KR (1) KR101950707B1 (ko)
CN (1) CN108291059B (ko)
WO (1) WO2018088628A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866131A (en) * 1985-03-05 1989-09-12 Bridgestone Corporation Rubber composition for high-performance tire tread
US6265454B1 (en) * 1999-08-27 2001-07-24 Bridgestone/Firestone Research, Inc. Rubber compositions containing ground tire rubber
KR20110071605A (ko) 2009-12-21 2011-06-29 한국타이어 주식회사 타이어 비드 필러용 고무 조성물 및 이를 이용하여 제조된 타이어 비드 필러용 고무
US20120267026A1 (en) * 2011-04-22 2012-10-25 Tatsuya Miyazaki Rubber composition for tire, and pneumatic tire
WO2013132631A1 (ja) * 2012-03-08 2013-09-12 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
KR20130119018A (ko) * 2012-04-23 2013-10-31 금호타이어 주식회사 타이어트레드용 고무조성물
KR20160077895A (ko) 2014-12-24 2016-07-04 한국타이어 주식회사 타이어 비드필러용 고무 조성물 및 이를 이용하여 제조한 타이어

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157493A (ko) 1974-06-12 1975-12-19
GB1593778A (en) 1977-12-19 1981-07-22 Int Synthetic Rubber Polymerisation of vinyl monomers
JPH0249214B2 (ja) * 1982-01-18 1990-10-29 Asahi Chemical Ind Suchirenkeijushifuirumu
JPS62190238A (ja) * 1986-02-18 1987-08-20 Yokohama Rubber Co Ltd:The タイヤトレツド用ゴム組成物
JP2702701B2 (ja) 1986-06-09 1998-01-26 住友ゴム工業株式会社 自動二輪車用タイヤ
JPH0725974B2 (ja) * 1987-03-27 1995-03-22 出光石油化学株式会社 スチレン系樹脂組成物
JP2594809B2 (ja) 1988-04-02 1997-03-26 日本ゼオン株式会社 タイヤトレッド用ゴム組成物
KR950005857A (ko) 1993-08-16 1995-03-20 김흥기 내충격성 고무·수지 마스터배치의 제조방법
US5663002A (en) * 1995-02-23 1997-09-02 W. R. Grace & Co.-Conn. Oriented film with improved heat sealability
KR980009357A (ko) 1996-07-26 1998-04-30 홍건희 타이어의 비드 필러용 고무 조성물
DE19701488A1 (de) 1997-01-17 1998-07-23 Bayer Ag SBR-Kautschukgele enthaltende Kautschukmischungen
SG165133A1 (en) 1998-03-11 2010-10-28 Goodyear Tire & Rubber Emulsion styrene-butadiene rubber
US6458883B1 (en) 1999-01-14 2002-10-01 Jsr Corporation Conductive rubber composition and manufacturing method and conductive rubber member thereof
EP1159322B1 (en) * 1999-02-09 2009-04-29 Dow Global Technologies Inc. High impact monovinylidene aromatic polymers
EP1291369B1 (en) * 2000-06-07 2006-03-29 Zeon Corporation Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber
US6467520B2 (en) 2000-12-19 2002-10-22 The Goodyear Tire & Rubber Company Tire with apex rubber containing in-situ resin
JP2006022243A (ja) * 2004-07-09 2006-01-26 Ube Ind Ltd シリカ配合用ゴム組成物
WO2009084667A1 (ja) * 2007-12-28 2009-07-09 Bridgestone Corporation タイヤ
FR2933417B1 (fr) 2008-07-04 2011-12-30 Michelin Soc Tech Bande de roulement de pneumatique
KR101187270B1 (ko) 2010-01-21 2012-10-04 주식회사 엘지화학 용액 중합 폴리스티렌-부타디엔 고무 및 이의 제조방법
CN102408639B (zh) * 2010-09-21 2014-08-06 中国石油天然气股份有限公司 抗冲聚苯乙烯树脂组合物及其制备方法
US8312905B2 (en) 2010-09-24 2012-11-20 The Goodyear Tire & Rubber Company Pneumatic tire
CN102432927B (zh) * 2010-09-29 2013-05-01 中国石油化工股份有限公司 一种丁苯橡胶组合物及其制备方法
KR101527624B1 (ko) 2011-01-31 2015-06-10 주식회사 엘지화학 니트릴 고무의 제조방법
US20130331480A1 (en) * 2011-02-23 2013-12-12 Bridgestone Corporation Rubber composition and tire produced using same, and process of producing rubber composition
CN103012882A (zh) * 2011-09-28 2013-04-03 北京橡胶工业研究设计院 一种具有低滚动阻力的橡胶组合物
US9290643B2 (en) * 2011-10-26 2016-03-22 China Petroleum & Chemical Corporation Modified rubber masterbatch, and rubber composition and vulcanized rubber produced therefrom, and the preparation processes for them
EP2814881A1 (en) * 2012-02-16 2014-12-24 Synthos S.A. Functionalized-esbr with acrylate functional base group
US20140256858A1 (en) * 2013-03-11 2014-09-11 Robert Anthony Bethea Solution polymerization prepared styrene/butadiene elastomer containing liquid styrene/butadiene polymer and tire with component
JP5933497B2 (ja) * 2013-09-17 2016-06-08 住友ゴム工業株式会社 空気入りタイヤ
KR101673063B1 (ko) 2013-12-10 2016-11-04 주식회사 엘지화학 니트릴계 공중합체 고무의 제조방법
CN105175829A (zh) * 2014-06-23 2015-12-23 北京橡胶工业研究设计院 一种具有低滚动阻力和良好抗湿滑及耐磨性的橡胶组合物
CN105175832A (zh) * 2015-09-18 2015-12-23 山东显元化工研究院有限公司 一种sbr丁苯颗粒橡胶及其制备方法
KR101950705B1 (ko) 2015-11-30 2019-02-21 주식회사 엘지화학 결합 스티렌 함량이 낮은 스티렌-부타디엔 고무의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866131A (en) * 1985-03-05 1989-09-12 Bridgestone Corporation Rubber composition for high-performance tire tread
US6265454B1 (en) * 1999-08-27 2001-07-24 Bridgestone/Firestone Research, Inc. Rubber compositions containing ground tire rubber
KR20110071605A (ko) 2009-12-21 2011-06-29 한국타이어 주식회사 타이어 비드 필러용 고무 조성물 및 이를 이용하여 제조된 타이어 비드 필러용 고무
US20120267026A1 (en) * 2011-04-22 2012-10-25 Tatsuya Miyazaki Rubber composition for tire, and pneumatic tire
WO2013132631A1 (ja) * 2012-03-08 2013-09-12 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
KR20130119018A (ko) * 2012-04-23 2013-10-31 금호타이어 주식회사 타이어트레드용 고무조성물
KR20160077895A (ko) 2014-12-24 2016-07-04 한국타이어 주식회사 타이어 비드필러용 고무 조성물 및 이를 이용하여 제조한 타이어

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3345961A4

Also Published As

Publication number Publication date
EP3345961A1 (en) 2018-07-11
US10654994B1 (en) 2020-05-19
CN108291059B (zh) 2020-02-18
KR101950707B1 (ko) 2019-02-21
US20200131345A1 (en) 2020-04-30
CN108291059A (zh) 2018-07-17
KR20180052263A (ko) 2018-05-18
EP3345961B1 (en) 2023-03-22
EP3345961A4 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
CA2353503C (en) Improved processability of silica-filled rubber stocks
US6015850A (en) Rubber composition
WO2017078408A1 (ko) 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체
WO2018030645A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
TW201533139A (zh) 橡膠組成物
WO2016093649A1 (ko) 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2016072577A1 (ko) 니트릴계 고무의 제조방법
WO2021125837A1 (ko) 수소첨가 석유수지 및 이를 포함하는 고무 조성물
EP1475408A1 (en) Rubber composition and pneumatic tire made therefrom
US3451962A (en) Process for improved sulfur-vulcanization of mixtures of elastomers containing ethylene propylene terpolymers
WO2017150852A1 (ko) 아자실란계 변성제 및 이를 이용한 변성 공액디엔계 중합체의 제조방법
WO2019124744A1 (ko) 공액디엔계 공중합체 조성물, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2016089035A1 (ko) 아민기를 포함하는 음이온 말단을 갖는 음이온 중합 개시제, 이를 이용한 변성 공역디엔계 공중합체의 제조방법, 및 이에 따라 제조한 변성 공역디엔계 공중합체를 포함하는 고무 조성물
WO2019045319A1 (ko) 공액디엔계 공중합체 제조방법, 이로부터 제조된 공액디엔계 공중합체 및 이를 포함하는 고무 조성물
WO2018128330A1 (ko) 아민 화합물, 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 및 변성 공액디엔계 중합체의 제조방법
WO2016111445A1 (ko) 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
WO2021107434A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018088628A1 (ko) 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물
WO2019156418A1 (ko) 고무 조성물
WO2019045504A1 (ko) 고무 조성물
WO2017095087A1 (ko) 결합 스티렌 함량이 낮은 스티렌-부타디엔 고무의 제조방법
WO2017105144A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2022108143A1 (ko) 수지 조성물, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2016085143A1 (ko) 분산제를 포함하는 공역디엔계 중합체 고무 조성물

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE