WO2017078408A1 - 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체 - Google Patents

유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체 Download PDF

Info

Publication number
WO2017078408A1
WO2017078408A1 PCT/KR2016/012537 KR2016012537W WO2017078408A1 WO 2017078408 A1 WO2017078408 A1 WO 2017078408A1 KR 2016012537 W KR2016012537 W KR 2016012537W WO 2017078408 A1 WO2017078408 A1 WO 2017078408A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
modified conjugated
based polymer
formula
polymer
Prior art date
Application number
PCT/KR2016/012537
Other languages
English (en)
French (fr)
Inventor
이호영
김노마
문민식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16862424.5A priority Critical patent/EP3255052B1/en
Priority to JP2017559845A priority patent/JP6564882B2/ja
Priority to CN201680026594.0A priority patent/CN107614506B/zh
Priority to US15/555,729 priority patent/US10059149B2/en
Publication of WO2017078408A1 publication Critical patent/WO2017078408A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to an organic lithium compound, a method for producing a modified conjugated diene-based polymer using the same, and a modified conjugated diene-based polymer.
  • rubber which is a material of a tire tread, which has good workability and excellent wet road resistance and mechanical strength, and low rolling resistance.
  • the present invention has been made to solve the problems of the prior art, and an object thereof is to provide an organolithium compound having a novel structure.
  • Another object of the present invention is to provide a modified conjugated diene-based polymer comprising the functional group derived from the organolithium compound.
  • Another object of the present invention is to provide a method for producing a modified conjugated diene polymer using the organolithium compound as a polymerization initiator.
  • another object of the present invention is to provide a modified conjugated diene-based polymer rubber composition comprising the modified conjugated diene-based polymer. Furthermore, another object of the present invention is to provide a tire comprising the rubber composition.
  • the present invention provides an organolithium compound represented by the following formula (1).
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1-5.
  • the present invention provides a modified conjugated diene-based polymer represented by the following formula (3).
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer from 1 to 5
  • P is a conjugated diene polymer chain.
  • the present invention provides a method for producing a modified conjugated diene polymer comprising the step of polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of an organolithium compound represented by the formula (1) in a hydrocarbon solvent. to provide.
  • the present invention provides a rubber composition comprising the modified conjugated diene-based polymer and a tire including the rubber composition.
  • the organolithium compound represented by Formula 1 according to the present invention may be used as a polymerization initiator of a conjugated diene-based polymer to provide functional functional groups to the conjugated diene-based polymer chain.
  • the modified conjugated diene-based polymer according to the present invention can be excellent in affinity with the filler, in particular, silica-based filler by the functional group derived from the organolithium compound represented by the formula (1) in the polymer chain.
  • the modified conjugated diene-based polymer may be easily prepared by using the organolithium compound represented by the formula (1).
  • the rubber composition according to the present invention may be excellent in workability by including a modified conjugated diene-based polymer having excellent affinity with the filler, and as a result, molded articles, such as tires, prepared from the rubber composition may have tensile strength, wear resistance, and low fuel consumption.
  • the rolling resistance may be low while the castle and wet road resistance are excellent.
  • the present invention provides an organolithium compound of a novel structure that can be used as a polymerization initiator in the preparation of a polymer containing a conjugated diene monomer-derived unit.
  • the organolithium compound according to an embodiment of the present invention is characterized in that represented by the following formula (1).
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1-5.
  • R 1 , R 2, and R 5 are independently a monovalent hydrocarbon having 1 to 10 carbon atoms, and specifically, R 1 , R 2, and R 5 are independently alkyl groups having 1 to 10 carbon atoms. It may be selected from the group consisting of a cycloalkyl group having 3 to 10 carbon atoms and an arylalkyl group having 6 to 10 carbon atoms.
  • R 3 and R 4 are independently of each other a divalent hydrocarbon group having 1 to 10 carbon atoms, specifically, R 3 and R 4 are independently of each other methylene group, ethylene group or propylene group Alkylene groups having 1 to 10 carbon atoms; Or an arylene group having 6 to 10 carbon atoms such as a phenylene group.
  • R 1 , R 2 and R 5 are each independently an alkyl group having 1 to 6 carbon atoms
  • R 3 and R 4 are independently an alkylene group having 1 to 6 carbon atoms
  • n May be an integer of 1 to 3. More specifically, Formula 1 may be represented by the following formula (2).
  • the organolithium compound according to an embodiment of the present invention may be used as a polymerization initiator in the preparation of the polymer.
  • the organolithium compound may be used as a polymerization initiator in the preparation of the polymer to introduce functional functional groups into the polymer chain, and may serve to modify the structure, properties, and physical properties of the polymer.
  • the polymer may be a polymer including a conjugated diene-based monomer derived unit. That is, the organolithium compound may be a polymerization initiator for a polymer including a conjugated diene monomer-derived unit.
  • the present invention provides a modified conjugated diene-based polymer represented by the following formula (3).
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer from 1 to 5
  • P is a conjugated diene polymer chain.
  • Modified conjugated diene-based polymer according to an embodiment of the present invention may be prepared using an organolithium compound represented by the formula (1) through the manufacturing method described below, the functional group derived from the organic lithium compound represented by the formula (1) By including the physical properties can be improved.
  • the modified conjugated diene-based polymer represented by Formula 3 may include an amine group derived from the organolithium compound represented by Formula 1, which may be excellent in affinity with a filler such as silica Abrasion resistance, low fuel consumption characteristics and workability of a rubber composition including the modified conjugated diene-based polymer and a molded article such as a tire manufactured therefrom may be improved.
  • a filler such as silica Abrasion resistance, low fuel consumption characteristics and workability of a rubber composition including the modified conjugated diene-based polymer and a molded article such as a tire manufactured therefrom may be improved.
  • the modified conjugated diene-based polymer represented by Formula 3 may be represented by the following [Formula 4].
  • P is a conjugated diene polymer chain.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may be a homopolymer or a copolymer, it may be prepared by the manufacturing method described below.
  • the modified conjugated diene-based polymer when it is a homopolymer, it may be a conjugated diene-based monomer homopolymer, and in Chemical Formula 3, P may be a polymer chain derived from a conjugated diene-based monomer.
  • P in the formula (3) is an air derived from the conjugated diene monomer and aromatic vinyl monomer It may be a coalescing chain.
  • the modified conjugated diene-based polymer is a copolymer, the copolymer may be a random copolymer.
  • the conjugated diene-based copolymer chain is 0.0001 parts by weight to 50 parts by weight, specifically 10 parts by weight, based on 100 parts by weight of the sum of the conjugated diene-based monomer derived units and the aromatic vinyl monomer derived units. It may be a polymer chain comprising about 40 parts by weight or 15 to 40 parts by weight.
  • the "random copolymer” may indicate that the structural units constituting the copolymer are randomly arranged.
  • the modified conjugated diene-based polymer may have a molecular weight distribution (Mw / Mn) of 0.5 to 10, specifically 0.5 to 5, more specifically 1 to 5.
  • Mw / Mn molecular weight distribution
  • the molecular weight distribution of the modified conjugated diene-based polymer satisfies this range, mixing with inorganic particles is excellent, so that physical properties may be improved, and workability may be greatly improved.
  • modified conjugated diene-based polymer may have a vinyl content of 5% by weight or more, specifically 8% by weight to 70% by weight.
  • the vinyl content means the content of a monomer having a vinyl group, or the content of 1,2-added modified conjugated diene monomer rather than 1,4-addition based on 100% by weight of the conjugated diene monomer.
  • the glass transition temperature of the polymer is increased to not only satisfy the properties required for the tire such as running resistance and braking force when applied to the tire, but also consume fuel. Has the effect of reducing
  • the present invention also provides a method for producing a modified conjugated diene-based polymer using an organolithium compound represented by the following formula (1).
  • a method for producing the modified conjugated diene-based polymer comprising the step of polymerizing a conjugated diene-based monomer or a conjugated diene-based monomer and an aromatic vinyl-based monomer in the presence of an organolithium compound represented by Formula 1 below in a hydrocarbon solvent: To provide.
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1-5.
  • organolithium compound represented by Formula 1 may be as described above.
  • Step A is a step for preparing an active polymer in which a functional group derived from an organolithium compound represented by Chemical Formula 1 is bonded to at least one end thereof, and conjugated diene monomer or conjugated diene in the presence of the compound represented by Chemical Formula 1 in a hydrocarbon solvent. It may be carried out by polymerizing a monomer and an aromatic vinyl monomer.
  • the polymerization of step A may be one using a conjugated diene monomer alone or a conjugated diene monomer and an aromatic vinyl monomer together. That is, the polymer prepared by the above production method according to an embodiment of the present invention may be a conjugated diene monomer homopolymer or a copolymer derived from a conjugated diene monomer and an aromatic vinyl monomer.
  • the conjugated diene monomer is not particularly limited, but for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene and 2-phenyl It may be one or more selected from the group consisting of -1,3-butadiene.
  • the conjugated diene monomer may include 60% by weight or more of the unit derived from the conjugated diene monomer in the finally prepared modified conjugated diene polymer. 60 wt% to 90 wt%, more specifically, 60 wt% to 85 wt%.
  • the aromatic vinyl monomer is not particularly limited, but for example, styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p It may be one or more selected from the group consisting of -methylphenyl) styrene and 1-vinyl-5-hexylnaphthalene.
  • the aromatic vinyl monomer may be 40 wt% or less of the aromatic vinyl monomer-derived unit in the finally prepared modified conjugated diene polymer. It may be used in an amount comprised from 10% by weight to 40% by weight, more specifically 15% by weight to 40% by weight.
  • the hydrocarbon solvent is not particularly limited but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the organolithium compound may be used in an amount of 0.01 mmol to 10 mmol, 0.05 mmol to 5 mmol, 0.1 mmol to 2 mmol, or 0.1 mmol to 1 mmol, based on 100 g of the total monomers.
  • an optimal conjugated diene-based polymer for preparing a modified conjugated diene-based polymer may be made.
  • the polymerization of step A may be carried out by further adding a polar additive as needed, the polar additive is 0.001 g to 50 g, 0.001 g to 10 g, 0.005 g to 1 g or based on a total of 100 g of monomers It may be added at 0.005 g to 0.2 g.
  • the polar additive may be used in 0.001 g to 10 g, 0.005 g to 1 g, or 0.005 g to 0.2 g based on a total of 1 mmol of the organolithium compound introduced.
  • the polar additives include tetrahydrofuran, ditetrahydrofurylpropane, diethyl ether, cycloamal ether, dipropyl ether, ethylene dimethyl ether, ethylene dimethyl ether, diethyl glycol, dimethyl ether, tert-butoxyethoxyethane, bis It may be one or more selected from the group consisting of (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine and tetramethylethylenediamine.
  • the reaction rate can be easily compensated for by forming a random copolymer. Can be induced.
  • the polymerization in the polymerization step may be, for example, anionic polymerization, and specifically, the polymerization may be a living anion polymerization in which an active terminal is obtained by a growth reaction by anions.
  • the polymerization may be, for example, elevated temperature polymerization or constant temperature polymerization.
  • the elevated temperature polymerization refers to a polymerization method including a step of increasing the reaction temperature by adding heat optionally after adding the organolithium compound, and the constant temperature polymerization refers to a polymerization method in which no heat is optionally added after adding the organometallic compound. .
  • the polymerization temperature during the polymerization may be, for example, -20 °C to 200 °C, 0 °C to 150 °C or 10 °C to 120 °C.
  • the present invention provides a rubber composition comprising the modified conjugated diene-based polymer.
  • the rubber composition according to an embodiment of the present invention comprises 100 parts by weight of the modified conjugated diene polymer; And 0.1 part by weight to 150 parts by weight of a filler.
  • the rubber composition may be one containing 10 parts by weight to 150 parts by weight, or 50 parts by weight to 100 parts by weight.
  • the rubber composition may further include other rubber components as needed in addition to the modified conjugated diene-based polymer, wherein the rubber components may be included in an amount of 90% by weight or less based on the total weight of the rubber composition.
  • the modified conjugated diene copolymer may be included in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight.
  • the rubber component may be natural rubber or synthetic rubber, for example, the rubber component may include natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber obtained by modifying or refining the general natural rubber; Styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), butyl rubber (IIR), ethylene-propylene copolymer, polyisobutylene-co-isoprene, neoprene, poly (ethylene-co- Propylene), poly (styrene-co-butadiene), poly (styrene-co-isoprene), poly (styrene-co-isoprene-co-butadiene), poly (isoprene-co-butadiene), poly (ethylene-co-propylene -Co-d
  • the filler may be at least one selected from the group consisting of silica-based fillers, carbon black, and mixtures thereof.
  • the filler is a silica-based filler, dispersibility is greatly improved, and the hysteresis loss is greatly reduced by bonding the silica particles with the terminal of the modified conjugated diene-based polymer of the present invention.
  • a silane coupling agent may be used together to improve reinforcement and low heat generation.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane , 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasul Feed, 3-triethoxysilylpropyl-N, N
  • the silane coupling agent may be bis (3-triethoxysilylpropyl) polysulfide or 3-trimethoxysilylpropylbenzothiazyl tetrasulfide.
  • a modified conjugated diene-based polymer having a functional group having a high affinity with a silica-based filler as an active moiety is used as the rubber component.
  • the compounding amount can be reduced than usual.
  • the silane coupling agent may be used in an amount of 1 to 20 parts by weight based on 100 parts by weight of the silica-based filler. When used in the above range, the gelation of the rubber component can be prevented while the effect as a coupling agent is sufficiently exhibited. More specifically, the silane coupling agent may be used in 5 parts by weight to 15 parts by weight based on 100 parts by weight of silica.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and thus may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically sulfur powder, and may be included in an amount of 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the rubber component. When included in the content range, it is possible to ensure the required elastic modulus and strength of the vulcanized rubber composition, and at the same time obtain a low fuel consumption.
  • the rubber composition according to an embodiment of the present invention in addition to the above components, various additives commonly used in the rubber industry, in particular, vulcanization accelerators, process oils, plasticizers, anti-aging agents, anti-scoring agents, zinc white (zinc white) ), Stearic acid, a thermosetting resin, or a thermoplastic resin may be further included.
  • the said vulcanization accelerator is not specifically limited, Specifically, M (2-mercapto benzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2- benzothiazyl sulfenamide), etc. Thiazole compounds, or guanidine compounds such as DPG (diphenylguanidine) can be used.
  • the vulcanization accelerator may be included in an amount of 0.1 parts by weight to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, specifically, may be a paraffinic, naphthenic, or aromatic compound, and more specifically, aromatic process oil, hysteresis loss in consideration of tensile strength and wear resistance. And naphthenic or paraffinic process oils may be used when considering low temperature properties.
  • the process oil may be included in an amount of 100 parts by weight or less with respect to 100 parts by weight of the rubber component, when included in the content, it is possible to prevent the degradation of tensile strength, low heat generation (low fuel consumption) of the vulcanized rubber.
  • the anti-aging agent specifically N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 6- Methoxy-2,2,4-trimethyl-1,2-dihydroquinoline, or a high temperature condensate of diphenylamine and acetone.
  • the anti-aging agent may be used in an amount of 0.1 parts by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention can be obtained by kneading using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc. by the above formulation, and also has low heat resistance and abrasion resistance by a vulcanization process after molding. This excellent rubber composition can be obtained.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • the rubber composition may be used for tire members such as tire treads, under treads, sidewalls, carcass coated rubbers, belt coated rubbers, bead fillers, pancreapers, or bead coated rubbers, dustproof rubbers, belt conveyors, hoses, and the like. It may be useful for the production of various industrial rubber products.
  • the present invention provides a tire comprising the rubber composition.
  • the tire may include a tire or a tire tread.
  • the present invention also relates to a tire or tire tread comprising the modified conjugated diene-based polymer rubber composition.
  • the tire or tire tread may be manufactured by using the rubber composition, and thus has excellent advantages such as tensile strength, wear resistance, wet road resistance, and low rolling resistance.
  • a styrene-butadiene copolymer was prepared in the same manner as in Example, except that 0.4 mmol of n-butyllithium was used instead of the organolithium compound represented by Chemical Formula 2 as a polymerization initiator.
  • MV-2000 manufactured by ALPHA Technologies, Inc. was preheated for 1 minute using two or more specimens weighing 15 g and then measured at 100 ° C. for 4 minutes.
  • SM Styrene derived units
  • the maximum peak molecular weight (Mp), weight average molecular weight (Mw), and number average molecular weight (Mn) of each copolymer were measured by GPC (Gel Permeation Chromathgraph) analysis under 40 ° C.
  • the column was a combination of two PLgel Olexis columns and one PLgel mixed-C column from Polymer Laboratories, and all of the newly replaced columns were mixed bed type columns.
  • PS Polystyrene
  • the polydispersity index (PDI) was calculated as the ratio (Mw / Mn) of the weight average molecular weight and the number average molecular weight measured by the above method.
  • Each rubber composition was prepared through the first stage kneading and the second stage kneading.
  • the amount of the material except the modified styrene-butadiene copolymer is shown based on 100 parts by weight of the copolymer.
  • 100 parts by weight of each copolymer, 70 parts by weight of silica, and bis (3-triethoxysilylpropyl) tetrasulfate as a silane coupling agent were used at 80 rpm using a short-variety mixer equipped with a temperature controller.
  • Tensile properties were prepared by a test specimen (thickness 25 mm, length 80 mm) by the tensile test method of ASTM 412, and the tensile strength at the time of cutting and tensile stress (300% modulus) at 300% elongation of each test piece was measured. . Specifically, Instron's Universal Test Machine 4204 tensile tester was used and measured at a rate of 50 cm / min at room temperature to obtain tensile strength and tensile stress at 300% elongation.
  • Viscoelastic properties were used by TA mechanical dynamic analyzer. Tan ⁇ was measured by varying the strain at a frequency of 10 Hz and each measurement temperature (-60 ° C. to 60 ° C.) in the torsion mode. The higher the low temperature 0 [deg.] C. Tan ⁇ , the better the wet road surface resistance. The lower the high temperature 60 [deg.] C. Tan ⁇ , the lower the hysteresis loss.
  • the tensile and viscoelastic properties of the rubber composition comprising the modified styrene-butadiene copolymer of the example prepared by using the organolithium compound according to the example of the present invention as a polymerization initiator are styrene of the comparative example. It was confirmed that the rubber composition containing butadiene copolymer is superior to the composition.
  • a styrene-butadiene copolymer of Comparative Example in which a rubber composition comprising a modified styrene-butadiene copolymer of an example prepared using an organolithium compound according to an embodiment of the present invention as a polymerization initiator is prepared using a general polymerization initiator. It was confirmed that the Tan ⁇ value at 0 ° C. increased and the Tan ⁇ value at 60 ° C. decreased compared with the rubber composition including the coalescence.
  • modified styrene-butadiene copolymer prepared by using the organolithium compound according to one embodiment of the present invention as a polymerization initiator has excellent wet traction and rolling resistance (RR) characteristics and high fuel efficiency. The results indicate that it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Abstract

본 발명은 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체에 관한 것으로, 무기 충진제와의 상용성이 우수하고, 가공성이 개선된 변성 공액디엔계 중합체를 제공할 수 있으며, 이러한 변성 공액디엔계 중합체를 포함하는 고무 조성물을 이용하여, 발열성, 인장강도, 내마모성, 저연비성 및 젖은 노면 저항성 등이 뛰어나면서도 구름 저항이 낮은 타이어를 제공할 수 있다.

Description

유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체
[관련출원과의 상호인용]
본 출원은 2015.11.02자 한국 특허 출원 제10-2015-0153294호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체에 관한 것이다.
최근의 자동차 산업계의 동향을 살펴보면, 내구성 및 저연비화의 필요성이 끊임없이 요구되고 있으며 그러한 수요를 충족시키고자 하는 노력이 계속 진행되고 있다. 특히, 자동차용 타이어, 그 중에서도 지면과 직접 접하는 타이어 트레드의 재료인 고무의 물성을 보강하기 위한 여러 시도가 있어 왔다. 종래 타이어 트레드는 공액디엔계 고무에 상기와 같은 물성을 보강하기 위해 무기 충진제 등을 배합하여 사용하였으나, 히스테리시스 손실이 크거나 분산성이 떨어지는 문제가 있었다.
따라서 자동차 타이어의 성능을 개선하기 위해 타이어 트레드의 재료로서, 가공성이 좋으면서도 동시에 젖은 노면 저항성 및 기계적 강도가 뛰어나고, 구름 저항(rolling resistance)이 낮은 고무의 개발이 필요하다.
이를 위하여, 예를 들어 WO2005-097845 A1에서, 변성 공액디엔계 중합체 제조 방법에 대한 연구가 진행되었으나, 그 효과가 충분하지 않은 실정이다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 신규한 구조를 갖는 유기 리튬 화합물을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기 유기 리튬 화합물 유래 작용기를 포함하는 변성 공액디엔계 중합체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 유기 리튬 화합물을 중합 개시제로서 사용한변성 공액디엔계 중합체의 제조방법을 제공하는 것이다.
아울러, 본 발명의 또 다른 목적은 상기 변성 공액디엔계 중합체를 포함하는변성 공액디엔계 중합체 고무 조성물을 제공하는 것이다. 더 나아가, 본 발명의 또 다른 목적은 상기 고무 조성물을 포함하는 타이어를 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 유기 리튬 화합물을 제공한다.
[화학식 1]
Figure PCTKR2016012537-appb-I000001
상기 화학식 1에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기이며,
n은 1 내지 5의 정수이다.
또한, 본 발명은 하기 화학식 3으로 표시되는 변성 공액디엔계 중합체를 제공한다.
[화학식 3]
Figure PCTKR2016012537-appb-I000002
상기 화학식 3에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기이고,
n은 1 내지 5의 정수이며,
P는 공액디엔계 중합체 사슬이다.
아울러, 본 발명은 탄화수소 용매 중에서, 상기 화학식 1로 표시되는 유기 리튬 화합물 존재 하 공액디엔계 단량체 또는 공액디엔계 단량체와 방향족 비닐계 단량체를 중합시키는 단계를 포함하는 변성 공액디엔계 중합체의 제조방법을 제공한다.
더 나아가, 본 발명은 상기의 변성 공액디엔계 중합체를 포함하는 고무 조성물 및 상기 고무 조성물을 포함하는 타이어를 제공한다.
본 발명에 따른 화학식 1로 표시되는 유기 리튬 화합물은 공액디엔계 중합체의 중합 개시제로서 사용되어 상기 공액디엔계 중합체 사슬에 관능성 작용기를 제공할 수 있다.
본 발명에 따른 변성 공액디엔계 중합체는 중합체 사슬에 화학식 1로 표시되는 유기 리튬 화합물 유래의 작용기가 결합되어 있음으로써 충진제, 특히 실리카계 충진제와의 친화성이 우수할수 있다.
또한, 본 발명에 따른 제조방법은 화학식 1로 표시되는 유기 리튬 화합물을 이용함으로써 변성 공액디엔계 중합체를 용이하게 제조할 수 있다.
아울러, 본 발명에 따른 고무 조성물은 충진제와의 친화성이 우수한 변성 공액디엔계 중합체를 포함함으로써 가공성이 우수할 수 있으며, 결과적으로 상기 고무 조성물로부터 제조된 성형품, 예컨대 타이어는 인장강도, 내마모성, 저연비성 및 젖은 노면 저항성 등이 뛰어나면서도 구름 저항이 낮을 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 공액디엔계 단량체 유래단위를 포함하는 중합체의 제조시 중합 개시제로서 사용할 수 있는 신규한 구조의 유기 리튬 화합물을 제공한다.
본 발명의 일 실시예에 따른 상기 유기 리튬 화합물은 하기 화학식 1로 표시되는 것인 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2016012537-appb-I000003
상기 화학식 1에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기이며,
n은 1 내지 5의 정수이다.
상기 화학식 1에서 있어서, R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소인 것이고, 구체적으로는 R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 사이클로알킬기 및 탄소수 6 내지 10의 아릴알킬기로 이루어진 군에서 선택되는 것일 수 있다.
또한, 상기 화학식 1에 있어서, 상기 R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기인 것이고, 구체적으로는 R3 및 R4는 서로 독립적으로 메틸렌기, 에틸렌기 또는 프로필렌기 등과 같은 탄소수 1 내지 10의 알킬렌기; 또는 페닐렌기 등과 같은 탄소수 6 내지 10의 아릴렌기인 것일 수 있다.
구체적으로, 상기 유기 리튬 화합물은 화학식 1에서 R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 6의 알킬기이고, R3 및 R4는 서로 독립적으로 탄소수 1 내지 6의 알킬렌기이며, n은 1 내지 3의 정수인 것일 수 있다. 더욱 구체적으로는, 상기 화학식 1은 하기 화학식 2로 표시되는 것일 수 있다.
[화학식 2]
Figure PCTKR2016012537-appb-I000004
본 발명의 일 실시예에 따른 상기 유기 리튬 화합물은 중합체의 제조시 중합개시제로서 사용되는 것일 수 있다. 구체적으로, 상기 유기 리튬 화합물은 중합체의 제조시 중합 개시제로 사용되어 중합체 사슬에 관능성 작용기를 도입시키는 것일 수 있으며, 이에 중합체의 구조, 성질 및 물성 등을 변성시키는 역할을 수행하는 것일 수 있다. 이때, 상기 중합체는 공액디엔계 단량체 유래단위를 포함하는 중합체인 것일 수 있다. 즉, 상기 유기 리튬 화합물은 공액디엔계 단량체 유래단위를 포함하는 중합체용 중합 개시제인 것일 수 있다.
또한, 본 발명은 하기 화학식 3으로 표시되는 변성 공액디엔계 중합체를 제공한다.
[화학식 3]
Figure PCTKR2016012537-appb-I000005
상기 화학식 3에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기이고,
n은 1 내지 5의 정수이며,
P는 공액디엔계 중합체 사슬이다.
본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 후술하는 제조방법을 통해 상기 화학식 1로 표시되는 유기 리튬 화합물을 이용하여 제조되는 것일 수 있으며, 이에 상기 화학식 1로 표시되는 유기 리튬 화합물 유래 작용기를 포함함으로써 물성적 특성이 개선될 수 있다.
구체적으로, 상기 화학식 3으로 표시되는 변성 공액디엔계 중합체는 상기 화학식 1로 표시되는 유기 리튬 화합물 유래의 아민기를 포함하는 것일 수 있으며, 이에 실리카와 같은 충진제와의 친화성이 우수할 수 있어 결과적으로 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물 및 이로부터 제조된 타이어 등의 성형품의 내마모성, 저연비특성 및 가공성이 개선될 수 있다.
구체적으로, 상기 화학식 3으로 표시되는 변성 공액디엔계 중합체는 하기 [화학식 4]로 표시되는 것일 수 있다.
[화학식 4]
Figure PCTKR2016012537-appb-I000006
상기 화학식 4에서, P는 공액디엔계 중합체 사슬이다.
한편, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 단독 중합체이거나, 공중합체인 것일 수 있으며, 후술하는 제조방법에 의하여 제조되는 것일 수 있다.
구체적으로, 상기 변성 공액디엔계 중합체가 단독 중합체인 경우 공액디엔계 단량체 단독 중합체인 것일 수 있으며, 상기 화학식 3에서 P는 공액디엔계 단량체 유래의 중합체 사슬인 것일 수 있다. 또한, 상기 변성 공액디엔계 중합체가 공중합체인 경우 공액디엔계 단량체 유래단위 및 방향족 비닐계 단량체 유래단위를 포함하는 것일 수 있으며, 상기 화학식 3에서 P는 공액디엔계 단량체와 방향족 비닐계 단량체 유래의 공중합체 사슬인 것일 수 있다. 또한, 상기 변성 공액디엔계 중합체가 공중합체인 경우에는, 상기 공중합체는 랜덤 공중합체인 것일 수 있다. 이때, 상기 공액디엔계 공중합체 사슬은 공액디엔계 단량체 유래단위와 방향족 비닐계 단량체 유래단위를 합한 총 100 중량부를 기준으로 방향족 비닐계 단량체 유래단위 0.0001 중량부 내지 50 중량부, 구체적으로는 10 중량부 내지 40 중량부 또는 15 내지 40 중량부를 포함하여 이루어진 중합체 사슬인 것일 수 있다.
여기에서, 상기 "랜덤 공중합체(random copolymer)"는 공중합체를 이루는 구성단위가 무질서하게 배열된 것을 나타내는 것일 수 있다.
또한, 상기 변성 공액디엔계 중합체는 0.5 내지 10, 구체적으로는 0.5 내지 5, 더욱 구체적으로는 1 내지 5의 분자량 분포 (Mw/Mn)를 가질 수 있다. 상기 변성 공액디엔계 중합체의 분자량 분포가 이러한 범위를 만족하는 경우, 무기물 입자와의 혼용이 탁월해서 물성이 향상되고, 가공성이 매우 향상될 수 있다.
또한, 상기 변성 공액디엔계 중합체는, 비닐 함량이 5 중량% 이상, 구체적으로는 8 중량% 내지 70 중량%일 수 있다.
상기 비닐 함량은 비닐기를 갖는 단위체의 함량, 또는 공액디엔계 단량체 100 중량%에 대하여 1,4-첨가가 아닌 1,2-첨가된 개질 공액디엔계 단량체의 함량을 의미한다.
상기 변성 공액디엔계 중합체의 비닐 함량이 이러한 범위를 만족하는 경우, 중합체의 유리전이온도가 상승되어 타이어에 적용 시 주행저항 및 제동력과 같은 타이어에 요구되는 물성을 만족시킬 수 있을 뿐만 아니라, 연료소모를 줄이는 효과가 있다.
또한, 본 발명은 하기 화학식 1로 표시되는 유기 리튬 화합물을 이용한 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 제조방법은
탄화수소 용매 중에서, 하기 화학식 1로 표시되는 유기 리튬 화합물 존재 하 공액디엔계 단량체 또는 공액디엔계 단량체와 방향족 비닐계 단량체를 중합시키는 단계(단계 A)를 포함하는 상기의 변성 공액디엔계 중합체의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2016012537-appb-I000007
상기 화학식 1에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기이며,
n은 1 내지 5의 정수이다.
구체적인, 화학식 1로 표시되는 유기 리튬 화합물은 전술한 바와 같을 수 있다.
상기 단계 A는 적어도 일 말단에 상기 화학식 1로 표시되는 유기 리튬 화합물 유래 작용기가 결합된 활성 중합체를 제조하기 위한 단계로, 탄화수소 용매 중에서 상기 화학식 1로 표시되는 화합물 존재 하 공액디엔계 단량체 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 중합함으로써 수행할 수 있다.
상기 단계 A의 중합은 단량체로서 공액디엔계 단량체 단독 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 함께 사용하는 것일 수 있다. 즉, 본 발명의 일 실시예에 따른 상기 제조방법을 통해 제조된 중합체는 공액디엔계 단량체 단독 중합체 또는 공액디엔계 단량체 및 방향족 비닐계 단량체 유래의 공중합체일 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 단량체로 공액디엔계 단량체와 방향족 비닐계 단량체를 함께 사용하는 경우, 상기 공액디엔계 단량체는 최종적으로 제조된 변성 공액디엔계 중합체 내 상기 공액디엔계 단량체 유래 단위가 60 중량% 이상, 구체적으로는 60 중량% 내지 90 중량%, 더 구체적으로는 60 중량% 내지 85 중량%로 포함되는 양으로 사용하는 것일 수 있다.
상기 방향족 비닐계 단량체는 특별히 제한되는 것은 아니나, 예컨대 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 단량체로 공액디엔계 단량체와 방향족 비닐계 단량체를 함께 사용하는 경우, 상기 방향족 비닐계 단량체는 최종적으로 제조된 변성 공액디엔계 중합체 내 상기 방향족 비닐계 단량체 유래 단위가 40 중량% 이하, 구체적으로는 10 중량% 내지 40 중량%, 더욱 구체적으로는 15 중량% 내지 40 중량%로 포함되는 양으로 사용하는 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 유기 리튬 화합물은 상기 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol, 0.05 mmol 내지 5 mmol, 0.1 mmol 내지 2 mmol 또는 0.1 mmol 내지 1 mmol로 사용될 수 있다. 상기 유기 리튬 화합물의 함량이 이러한 범위를 만족하는 경우 변성 공액디엔계 중합체를 제조하기 위한 최적의 공액디엔계 중합체를 만들 수 있다.
상기 단계 A의 중합은 필요에 따라 극성 첨가제를 더 첨가하여 수행하는 것일 수 있으며, 상기 극성 첨가제는 단량체 총 100 g을 기준으로 0.001 g 내지 50 g, 0.001 g 내지 10 g, 0.005 g 내지 1 g 또는 0.005 g 내지 0.2 g으로 첨가하는 것일 수 있다.
또한, 상기 극성 첨가제는 투입되는 상기 유기 리튬 화합물 총 1 mmol을 기준으로 0.001 g 내지 10 g, 0.005 g 내지 1 g, 또는 0.005 g 내지 0.2 g으로 사용될 수 있다.
상기 극성 첨가제는 테트라하이드로퓨란, 디테트라하이드로퓨릴프로판, 디에틸에테르, 시클로아말에테르, 디프로필에테르, 에틸렌디메틸에테르, 에틸렌디메틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 상기의 극성 첨가제를 사용함으로써 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도할 수 있다.
상기 중합시키는 단계의 중합은 일례로 음이온 중합일 수 있고, 구체적으로는 상기 중합은 음이온에 의한 성장반응에 의해 활성 말단을 얻는 리빙 음이온 중합일 수 있다.
또한, 상기 중합은 일례로 승온 중합 또는 정온 중합일 수 있다.
상기 승온 중합은 유기 리튬 화합물을 투입한 이후 임의로 열을 가해 반응 온도를 높이는 단계를 포함하는 중합 방법을 의미하고, 상기 정온 중합은 유기금속 화합물을 투입한 이후 임의로 열을 가하지 않는 중합방법을 의미한다.
상기 중합 시의 중합 온도는 일례로 -20℃ 내지 200℃, 0℃ 내지 150℃ 또는 10℃ 내지 120℃일 수 있다.
아울러, 본 발명은 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기 변성 공액디엔계 중합체 100 중량부; 및 충진제 0.1 중량부 내지 150 중량부를 포함하는 것을 특징으로 한다.
구체적으로, 상기 고무 조성물은 충진제를 10 중량부 내지 150 중량부, 또는50 중량부 내지 100 중량부로 포함하는 것일 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 공액디엔계 공중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에틸렌클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 충진제는 실리카계 충진제, 카본블랙, 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 충진제가 실리카계 충진제인 경우, 분산성이 크게 개선되고, 또한 실리카 입자가 본 발명의 변성 공액디엔계 중합체의 말단과 결합함으로써 히스테리시스 손실이 크게 감소되는 효과가 있다.
한편, 상기 충전제로서 실리카계 충진제가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 상기 고무 조성물에 있어서는, 고무 성분으로서 활성 부위에 실리카계 충전제와의 친화성이 높은 관능기가 도입된 변성 공액디엔계 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있다. 구체적으로, 상기 실란 커플링제는 실리카계 충전제 100 중량부에 대하여 1 중량부 내지 20 중량부로 사용될 수 있다. 상기한 범위로 사용될 때, 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지할 수 있다. 보다 구체적으로는 상기 실란 커플링제는 실리카 100 중량부에 대하여 5 중량부 내지 15 중량부로 사용될 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
더 나아가, 본 발명은 상기 고무 조성물을 포함하는 타이어를 제공한다.
상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
또 본 발명은 상기 변성 공액디엔계 중합체 고무 조성물을 포함하는 타이어 또는 타이어 트레드에 대한 것이다.
상기 타이어 또는 타이어 트레드는 상기의 고무 조성물을 이용하여 제조된 것일 수 있고, 이에 인장강도, 내마모성, 및 젖은 노면 저항성 등이 뛰어나면서도 구름 저항이 낮은 장점이 있다.
이하 비한정적인 실시예를 통하여 본 발명을 구체적으로 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
제조예
플라스크에 시클로헥산 60 g에 N,N'-디메틸프로판-1,3-디아민(2.04 g, 0.02 mol)과 1-브로모-3-클로로프로판 (6.93 g, 0.044 mol)을 반응시켜 60℃에서 4시간 동안 교반하였다. 상기 용액에 Li(1.39 g, 0.2 mol)을 첨가하여 40℃에서 12시간 동안 교반한 후 미반응 물질을 제거하고, 여기에 이소프렌(2.72 g, 0.04 mol)을 첨가한 후 40℃에서 1시간 동안 교반하여 하기 화학식 2로 표시되는 유기 리튬 화합물을 제조하였다. 제조된 화학식 2로 표시되는 유기 리튬 화합물은 디페닐아세트산을 이용한 적정법을 통하여 활성 Li 농도를 측정하였으며, 측정된 활성 Li 농도는 0.55 M(이론 활성 Li 농도(0.66 M) 대비 83% 수준)이었다.
[화학식 2]
Figure PCTKR2016012537-appb-I000008
실시예
20L 오토클레이브 반응기에 스티렌 270g, 1,3-부타디엔 710g 및 노말헥산 5,000g, 극성 첨가제로 2,2-비스(2-옥소라닐)프로판 1.3g을 넣은 후 반응기 내부온도를 40℃으로 승온하였다. 반응기 내부 온도가 40℃에 도달했을 때, 상기 제조예에서 제조한 화학식 2의 유기 리튬 화합물 0.4 mmol을 반응기에 투입하여 단열 승온 반응을 진행시켰다. 20여 분 경과 후 1,3-부타디엔 20 g을 투입하고, 5분 후 비스(3-트리에톡시메틸실릴프로필)-N-메틸아민 0.7 g을 투입하고 15분간 반응시켰다. 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 BHT(부틸레이티드하이드록시톨루엔)가 헥산에 0.3 중량% 녹아있는 용액 5 ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 스티렌-부타디엔 공중합체를 제조하였다.
비교예
중합 개시제로 상기 화학식 2로 표시되는 유기 리튬 화합물 대신 n-부틸리튬(n-butyllithium) 0.4 mmol을 사용한 것을 제외하고는 실시예와 같은 방법으로 스티렌-부타디엔 공중합체를 제조하였다.
실험예 1
상기 실시예의 변성 스티렌-부타디엔 공중합체 및 비교예의 스티렌-부타디엔 공중합체에 대하여 각각 분자량 분석, 성분분석 및 무니점도(MU)를 측정하였다. 결과를 하기 표 1에 나타내었다.
1) 무니점도
ALPHA Technologies 社의 MV-2000을 이용하여 시편 무게 15 g 이상 2개를 이용하여 1분 동안 예열한 후 100℃에서 4분 동안 측정하였다.
2) 성분분석
각 공중합체 내 스티렌 유래단위(SM) 및 비닐 함량은 NMR을 이용하여 측정하였다.
3) 분자량 분석
각 공중합체의 최대피크 분자량(Mp), 중량평균분자량(Mw), 수평균분자량(Mn)은 40℃ 조건하에서 GPC(Gel Permeation Chromathgraph) 분석으로 측정하였다. 이때 컬럼(Column)은 Polymer Laboratories 社의 PLgel Olexis 컬럼 두 자루와 PLgel mixed-C 컬럼 한 자루를 조합하였고, 새로 교체한 컬럼은 모두 mixed bed 타입의 컬럼을 사용하였다. 또한, 분자량 계산시 GPC 기준물질 (Standard material)로서 PS (Polystyrene)를 사용하였다. 다분산지수(PDI)는 상기 방법으로 측정된 중량평균분자량과 수평균분자량의 비(Mw/Mn)으로 계산하였다.
구분 실시예 비교예
무니점도 (MV) 88 77
NMR 스티렌 27 27
비닐 42 43
GPC(x104) Mp 28.2 24.9
Mn 25.3 24.0
Mw 29.1 25.7
PDI 1.15 1.07
실험예 2
상기 실시예 및 비교예의 각 공중합체를 포함하는 고무 조성물 및 이로부터제조된 타이어의 물성을 비교분석하기 위하여, 인장특성 및 점탄성 특성을 측정하였다. 결과를 하기 표 2에 나타내었다.
1) 고무 조성물의 제조
각 고무 조성물은 제1단 혼련과 제2단 혼련을 거쳐 제조하였다. 이때, 변성 스티렌-부타디엔 공중합체를 제외한 물질의 사용량은 상기 공중합체 100 중량부를 기준으로 하여 나타낸 것이다. 제1단 혼련에서는 온도제어장치를 부속한 반바리 믹서를 사용하여 80 rpm 조건으로 상기 각 공중합체 100 중량부, 실리카 70 중량부, 실란 커플링제로서 비스(3-트리에톡시실릴프로필)테트라술피드 11.2 중량부, 노화방지제(TMDQ) 2 중량부, 산화방지제 2 중량부, 산화아연(ZnO) 3 중량부, 스테아린산 2 중량부 및 왁스 1 중량부를 배합하여 혼련하였다. 이때, 혼련기의 온도를 제어하고, 145℃ 내지 150℃의 배출 온도에서 1차 배합물을 얻었다. 제2단 혼련에서는 상기 1차 배합물을 실온까지 냉각한 후 혼련기에 고무 촉진제(CZ) 1.75 중량부, 황분말 1.5 중량부 및 가황촉진제 2 중량부를 첨가하고, 100℃ 이하의 온도에서 믹싱을 하여 2차 배합물을 얻었다. 이후, 180℃에서 t90+10분 동안 가황프레스로 가황하여 각 가황고무를 제조하였다.
2) 인장특성
인장특성은 ASTM 412의 인장시험법에 의해 시험편(두께 25 mm, 길이 80 mm)을 제조하고, 상기 각 시험편의 절단시의 인장강도 및 300% 신장시의 인장응력(300% 모듈러스)을 측정하였다. 구체적으로, Instron 社의 Universal Test Machine 4204 인장 시험기를 이용하였으며 실온에서 50 cm/min의 속도로 측정하여 인장강도 및 300% 신장시의 인장응력 값을 얻었다.
2) 점탄성 특성
점탄성 특성은 TA 社의 동적 기계 분석기를 사용하였다. 비틀림 모드로 주파수 10 Hz, 각 측정 온도(-60℃ ~ 60℃)에서 변형을 변화시켜서 Tan δ를 측정하였다. 저온 0℃ Tan δ가 높은 것일수록 젖은 노면저항성이 우수하고, 고온 60 ℃의 Tan δ가 낮을수록 히스테리시스 손실이 적고, 타이어의 저구름 저항성, 즉 저연비성이 우수함을 나타낸다.
시료 실시예 비교예
300% 모듈러스(Kgf/cm2) 132 130
인장강도(Kgf/cm2) 201 197
Tan at 0℃ 0.967 0.922
Tan at 60℃ 0.101 0.120
상기 표 2에 나타낸 바와 같이, 본 발명의 일 실시예에 따른 유기 리튬 화합물을 중합 개시제로 사용하여 제조된 실시예의 변성 스티렌-부타디엔 공중합체를 포함하는 고무 조성물의 인장특성 및 점탄성 특성이 비교예의 스티렌-부타디엔 공중합체를 포함하는 고무 조성물 대비 우수한 것을 확인하였다.
구체적으로, 본 발명의 일 실시예에 따른 유기 리튬 화합물을 중합 개시제로 사용하여 제조된 실시예의 변성 스티렌-부타디엔 공중합체를 포함하는 고무 조성물이 일반적인 중합 개시제를 사용하여 제조된 비교예의 스티렌-부타디엔 공중합체를 포함하는 고무 조성물 대비 0℃에서의 Tan δ값이 증가하고, 60℃에서의 Tan δ값이 감소하는 것을 확인하였다. 이는, 본 발명의 일 실시예에 따른 유기 리튬 화합물을 중합 개시제로서 사용하여 제조된 변성 스티렌-부타디엔 공중합체가 젖은 노면 저항(wet traction) 및 구름저항(RR) 특성이 우수하고, 연비 효율이 높을 수 있음을 나타내는 결과이다.

Claims (20)

  1. 하기 화학식 1로 표시되는 유기 리튬 화합물:
    [화학식 1]
    Figure PCTKR2016012537-appb-I000009
    상기 화학식 1에서,
    R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소기이고,
    R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기이며,
    n은 1 내지 5의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서,
    R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 6의 알킬기이고,
    R3 및 R4는 서로 독립적으로 탄소수 1 내지 6의 알킬렌기이며,
    n은 1 내지 3의 정수이다.
  3. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 유기 리튬 화합물은 하기 화학식 2로 표시되는 것인 유기 리튬 화합물:
    [화학식 2]
    Figure PCTKR2016012537-appb-I000010
  4. 청구항 1에 있어서,
    상기 유기 리튬 화합물은 공액디엔계 단량체 유래단위를 포함하는 중합체용 중합 개시제인 것인 유기 리튬 화합물.
  5. 하기 화학식 3으로 표시되는 변성 공액디엔계 중합체:
    [화학식 3]
    Figure PCTKR2016012537-appb-I000011
    상기 화학식 3에서,
    R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소기이고,
    R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기이고,
    n은 1 내지 5의 정수이며,
    P는 공액디엔계 중합체 사슬이다.
  6. 청구항 5에 있어서,
    상기 화학식 3으로 표시되는 변성 공액디엔계 중합체는 하기 화학식 4로 표시되는 것인 변성 공액디엔계 중합체:
    [화학식 4]
    Figure PCTKR2016012537-appb-I000012
    상기 화학식 4에서,
    P는 공액디엔계 중합체 사슬이다.
  7. 청구항 5에 있어서,
    상기 변성 공액디엔계 중합체는 공액디엔계 단량체 단독 중합체 또는 공액디엔계 단량체와 방향족 비닐계 단량체의 공중합체인 것인 변성 공액디엔계 중합체.
  8. 청구항 5에 있어서,
    상기 변성 공액디엔계 중합체는 0.5 내지 10의 분자량 분포(Mw/Mn)를 가지는 것인 변성 공액디엔계 중합체.
  9. 청구항 5에 있어서,
    상기 변성 공액디엔계 중합체는, 비닐 함량이 5 중량% 이상인 것인 변성 공액디엔계 중합체.
  10. 탄화수소 용매 중에서, 하기 화학식 1로 표시되는 유기 리튬 화합물 존재 하에 공액디엔계 단량체 또는 공액디엔계 단량체와 방향족 비닐계 단량체를 중합시키는 단계를 포함하는 청구항 5의 변성 공액디엔계 중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2016012537-appb-I000013
    상기 화학식 1에서,
    R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 1가 탄화수소기이고,
    R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 2가 탄화수소기이며,
    n은 1 내지 5의 정수이다.
  11. 청구항 10에 있어서,
    상기 화학식 1로 표시되는 유기 리튬 화합물은 하기 화학식 2로 표시되는 것인 변성 공액디엔계 중합체의 제조방법:
    [화학식 2]
    Figure PCTKR2016012537-appb-I000014
    .
  12. 청구항 10에 있어서,
    상기 유기 리튬 화합물은 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol로 사용되는 것인 변성 공액디엔계 중합체의 제조방법.
  13. 청구항 10에 있어서,
    상기 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
  14. 청구항 10에 있어서,
    상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
  15. 청구항 10에 있어서,
    상기 중합은 극성 첨가제를 사용하여 수행하는 것인 변성 공액디엔계 중합체의 제조방법.
  16. 청구항 15에 있어서,
    상기 극성 첨가제는 상기 유기 리튬 화합물 총 1 mmol을 기준으로 0.001 g 내지 10 g으로 투입되는 것인 변성 공액디엔계 중합체의 제조방법.
  17. 청구항 15에 있어서,
    상기 극성 첨가제는 테트라히드로퓨란, 디테트라히드로프릴프로판, 디에틸에테르, 시클로아밀에테르, 디프로필에테르, 에틸렌디메틸에테르, 에틸렌디메틸에테르, 디에틸렌글리콜, 디메틸에테르, 3차 부톡시에톡시에탄 비스(2-디메틸아미노에틸)에테르, (디메틸아미노에틸) 에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민, 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
  18. 청구항 5에 기재된 변성 공액디엔계 중합체 100 중량부; 및
    충진제 0.1 중량부 내지 150 중량부를 포함하는 고무 조성물.
  19. 청구항 18에 있어서,
    상기 충진제는 실리카계 충진제, 카본 블랙계 충진제 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상인 것인 고무 조성물.
  20. 청구항 19에 기재된 고무 조성물을 포함하는 타이어.
PCT/KR2016/012537 2015-11-02 2016-11-02 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체 WO2017078408A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16862424.5A EP3255052B1 (en) 2015-11-02 2016-11-02 Organolithium compound, method for production of modified conjugated diene-based polymer using same, and modified conjugated diene-based polymer
JP2017559845A JP6564882B2 (ja) 2015-11-02 2016-11-02 有機リチウム化合物、これを利用した変性共役ジエン系重合体の製造方法及び変性共役ジエン系重合体
CN201680026594.0A CN107614506B (zh) 2015-11-02 2016-11-02 有机锂化合物及其用途
US15/555,729 US10059149B2 (en) 2015-11-02 2016-11-02 Organolithium compound, method for preparing modified conjugated diene-based polymer using the same, and modified conjugated diene-based polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0153294 2015-11-02
KR20150153294 2015-11-02

Publications (1)

Publication Number Publication Date
WO2017078408A1 true WO2017078408A1 (ko) 2017-05-11

Family

ID=58662780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012537 WO2017078408A1 (ko) 2015-11-02 2016-11-02 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체

Country Status (6)

Country Link
US (1) US10059149B2 (ko)
EP (1) EP3255052B1 (ko)
JP (1) JP6564882B2 (ko)
KR (1) KR101943408B1 (ko)
CN (1) CN107614506B (ko)
WO (1) WO2017078408A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268011A (zh) * 2017-08-24 2019-09-20 Lg化学株式会社 改性聚合引发剂和包括由其衍生的官能团的改性的基于共轭二烯的聚合物
JP2020515674A (ja) * 2017-10-23 2020-05-28 エルジー・ケム・リミテッド 連続式反応器を用いた変性重合開始剤の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039835A2 (ko) * 2017-08-24 2019-02-28 주식회사 엘지화학 변성 중합 개시제 및 이의 유래 작용기를 포함하는 변성 공액디엔계 중합체
KR102617159B1 (ko) * 2017-12-05 2023-12-26 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102617161B1 (ko) * 2017-12-05 2023-12-26 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR102622328B1 (ko) * 2017-12-05 2024-01-09 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
EP3636652B1 (en) * 2018-03-16 2021-02-17 Lg Chem, Ltd. Modified polymerization initiator and preparation method therefor
EP3680229B1 (en) * 2018-06-20 2023-08-02 Lg Chem, Ltd. Modification polymerization initiator and method for preparing the same
KR102501595B1 (ko) * 2018-07-03 2023-02-20 주식회사 엘지화학 연속식 반응을 통한 변성 중합 개시제의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040070047A (ko) * 2003-01-31 2004-08-06 스미또모 가가꾸 고오교오 가부시끼가이샤 개질 디엔 중합체 고무의 제조 방법
WO2005097845A1 (ja) * 2004-04-05 2005-10-20 Bridgestone Corporation 変性共役ジエン系重合体、重合開始剤及びそれらの製造方法、並びにゴム組成物
WO2013090885A2 (en) * 2011-12-15 2013-06-20 Bridgestone Corporation Stabilized multi-valent anionic polymerization initiators and methods for preparing the same
KR20150056484A (ko) * 2013-11-15 2015-05-26 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153159A (en) * 1990-04-09 1992-10-06 Bridgestone/Firestone, Inc. Elastomers and products having reduced hysteresis
JPH08231658A (ja) 1994-10-25 1996-09-10 Bridgestone Corp アミン含有ポリマー類およびそれらからの製品
JP2000072837A (ja) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd ジリチウム開始剤を用いたブロックコポリマーの製造方法
GB2368845B (en) 2000-08-31 2004-06-30 Goodyear Tire & Rubber Synthesis of a functionalized lithium initiator from a dilithium initiator and an alkylaminoaryl compound
CN1330678C (zh) * 2003-02-27 2007-08-08 住友化学工业株式会社 制备改性二烯聚合物橡胶的方法
WO2008013090A1 (fr) 2006-07-24 2008-01-31 Asahi Kasei Chemicals Corporation Polymère de diène conjugué modifié et procédé de production de celui-ci
WO2008029814A1 (fr) 2006-09-04 2008-03-13 Bridgestone Corporation Composition de caoutchouc et bandage pneumatique utilisant celle-ci
KR101044070B1 (ko) * 2008-09-23 2011-06-27 주식회사 엘지화학 이관능성 유기 리튬 개시제 및 이를 이용하여 생산되는 공역디엔계 공중합체 및 이들의 제조방법
BR112012005519B1 (pt) 2009-09-10 2021-01-26 Bridgestone Corporation composições e métodos para a produção de iniciadores de polimerização poli-aminofuncionalizados e polímeros correspondentes
ES2530075T3 (es) 2010-12-30 2015-02-26 Bridgestone Corporation Iniciadores de aminosilano y polímeros funcionalizados preparados a partir de los mismos
DE102011076133A1 (de) 2011-05-19 2012-11-22 Robert Bosch Gmbh Prüfvorrichtung für eine Kamera sowie ein Verfahren zur Prüfung einer Kamera
JP5871011B2 (ja) * 2011-12-23 2016-03-01 Jsr株式会社 変性共役ジエン系重合体及びその製造方法
JP6202779B2 (ja) 2011-12-28 2017-09-27 住友ゴム工業株式会社 共重合体、ゴム組成物及び空気入りタイヤ
US9109073B1 (en) 2014-08-19 2015-08-18 The Goodyear Tire & Rubber Company Bifunctionalized polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040070047A (ko) * 2003-01-31 2004-08-06 스미또모 가가꾸 고오교오 가부시끼가이샤 개질 디엔 중합체 고무의 제조 방법
WO2005097845A1 (ja) * 2004-04-05 2005-10-20 Bridgestone Corporation 変性共役ジエン系重合体、重合開始剤及びそれらの製造方法、並びにゴム組成物
WO2013090885A2 (en) * 2011-12-15 2013-06-20 Bridgestone Corporation Stabilized multi-valent anionic polymerization initiators and methods for preparing the same
KR20150056484A (ko) * 2013-11-15 2015-05-26 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETERSON, D. J. ET AL.: "Functionally-substituted N,N-dialkyl Aminomethyllithium Compounds", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 66, no. 2, 1974, pages 209 - 217, XP055381600 *
See also references of EP3255052A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268011A (zh) * 2017-08-24 2019-09-20 Lg化学株式会社 改性聚合引发剂和包括由其衍生的官能团的改性的基于共轭二烯的聚合物
JP2020510122A (ja) * 2017-08-24 2020-04-02 エルジー・ケム・リミテッド 変性重合開始剤及びその由来官能基を含む変性共役ジエン系重合体
US11254801B2 (en) 2017-08-24 2022-02-22 Lg Chem, Ltd. Modified polymerization initiator and modified conjugated diene- based polymer including functional group derived therefrom
JP2020515674A (ja) * 2017-10-23 2020-05-28 エルジー・ケム・リミテッド 連続式反応器を用いた変性重合開始剤の製造方法
US11472818B2 (en) 2017-10-23 2022-10-18 Lg Chem, Ltd. Method for preparing modification polymerization initiator using continuous type reactor

Also Published As

Publication number Publication date
CN107614506B (zh) 2019-09-06
EP3255052A1 (en) 2017-12-13
KR20170051368A (ko) 2017-05-11
EP3255052A4 (en) 2018-02-28
US10059149B2 (en) 2018-08-28
US20180056716A1 (en) 2018-03-01
KR101943408B1 (ko) 2019-01-30
JP2018517022A (ja) 2018-06-28
EP3255052B1 (en) 2019-02-20
CN107614506A (zh) 2018-01-19
JP6564882B2 (ja) 2019-08-21

Similar Documents

Publication Publication Date Title
WO2017078408A1 (ko) 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체
WO2018030645A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128290A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2015056898A1 (ko) 변성 공액 디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2017150852A1 (ko) 아자실란계 변성제 및 이를 이용한 변성 공액디엔계 중합체의 제조방법
WO2019216645A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020013638A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021125837A1 (ko) 수소첨가 석유수지 및 이를 포함하는 고무 조성물
WO2015056994A1 (ko) 말단 기능성 공액 디엔계 중합체 및 이의 제조방법
WO2017105012A1 (ko) 변성 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2016204575A1 (ko) 관능기가 도입된 아미노실란계 말단변성제를 이용하는 고무 조성물의 제조방법 및 이에 따라 제조한 고무 조성물
WO2018128330A1 (ko) 아민 화합물, 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 및 변성 공액디엔계 중합체의 제조방법
WO2016093496A1 (ko) 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
WO2015057021A1 (ko) 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2021085829A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018105845A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이들의 제조방법
WO2021107434A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2017061831A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018066943A1 (ko) 변성 개시제 및 이를 포함하는 변성 공액디엔계 중합체
WO2016111445A1 (ko) 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15555729

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016862424

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017559845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE