WO2017061831A1 - 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물 - Google Patents

변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물 Download PDF

Info

Publication number
WO2017061831A1
WO2017061831A1 PCT/KR2016/011276 KR2016011276W WO2017061831A1 WO 2017061831 A1 WO2017061831 A1 WO 2017061831A1 KR 2016011276 W KR2016011276 W KR 2016011276W WO 2017061831 A1 WO2017061831 A1 WO 2017061831A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
modified conjugated
polymer
carbon atoms
based polymer
Prior art date
Application number
PCT/KR2016/011276
Other languages
English (en)
French (fr)
Inventor
전문석
이수용
이성두
김노마
권경안
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680009779.0A priority Critical patent/CN107207655B/zh
Priority to US15/546,119 priority patent/US10414841B2/en
Priority to EP16853947.6A priority patent/EP3246344B1/en
Priority to JP2017538314A priority patent/JP6503075B2/ja
Publication of WO2017061831A1 publication Critical patent/WO2017061831A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/14Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • C08F36/16Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/14Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/12Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a modified conjugated diene-based polymer having excellent affinity with a filler, a preparation method thereof, a rubber composition comprising the same, and a tire manufactured using the rubber composition.
  • a method of reducing the hysteresis loss of the vulcanized rubber In order to reduce the rolling resistance of the tire, there is a method of reducing the hysteresis loss of the vulcanized rubber.
  • a repulsive elasticity of 50 ° C. to 80 ° C., tan ⁇ , Goodrich heating and the like are used as an evaluation index of the vulcanized rubber. That is, a rubber material having a high rebound elasticity at the above temperature or a small tan ⁇ or good rich heat generation is preferable.
  • conjugated diene-based (co) polymers such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) have been produced by emulsion polymerization or solution polymerization and used as rubber for tires. .
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • the greatest advantage of solution polymerization over emulsion polymerization is that the vinyl structure content and styrene content that define rubber properties can be arbitrarily controlled, and molecular weight and physical properties can be adjusted by coupling or modification. It can be adjusted. Therefore, it is easy to change the structure of the final SBR or BR rubber, and the movement of the chain ends by the binding or modification of the chain ends and the binding force with fillers such as silica or carbon black can be increased. Is widely used as a rubber material for tires.
  • the vinyl content in the SBR is increased to increase the glass transition temperature of the rubber, thereby controlling tire required properties such as running resistance and braking force, and properly adjusting the glass transition temperature. By adjusting the fuel consumption can be reduced.
  • the solution polymerization SBR is prepared using an anionic polymerization initiator, and is used by binding or modifying the chain ends of the formed polymer using various modifiers.
  • US Pat. No. 4,397,994 discloses a technique in which the active anion at the chain end of a polymer obtained by polymerizing styrene-butadiene in a nonpolar solvent using alkyllithium, which is a monofunctional initiator, is bound using a binder such as a tin compound. It was.
  • carbon black and silica are used as reinforcing fillers for tire treads.
  • silica is used as reinforcing fillers, low hysteresis loss and wet skid resistance are improved.
  • the hydrophilic surface silica has a disadvantage of poor dispersibility due to low affinity with rubber compared to the hydrophobic surface carbon black, so that a separate silane coupler may be used to improve dispersibility or to impart a bond between silica and rubber. It is necessary to use a ring agent.
  • Patent Document 1 US 4,397,994 A
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a modified conjugated diene polymer having excellent affinity with a filler.
  • Another object of the present invention is to provide a method for producing the modified conjugated diene polymer.
  • Still another object of the present invention is to provide a rubber composition comprising the modified conjugated diene-based polymer.
  • Another object of the present invention is to provide a tire manufactured using the rubber composition.
  • the present invention provides a modified conjugated diene-based polymer represented by the formula (1).
  • R, R 4 and R 5 are each independently a hydrocarbon group having 1 to 20 carbon atoms
  • R 2 and R 3 are each independently a hydrocarbon group of 1 to 20 carbon atoms or a hydrocarbon group of 1 to 20 carbon atoms containing oxygen or nitrogen,
  • R 2 and R 3 may be connected to each other to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms,
  • P is a modified conjugated diene polymer chain
  • X is a halogen group
  • A is a tertiary amine
  • a and b are each independently an integer of 1 to 4,
  • the present invention is to prepare an active polymer in which alkali metals are bonded to both terminals by polymerizing conjugated diene monomer or aromatic vinyl monomer and conjugated diene monomer in the presence of a polyfunctional anionic polymerization initiator in a hydrocarbon solvent (Step 1 ); Reacting the polymer with a tin-based compound represented by Formula 2 (step 2); And it provides a method for producing the modified conjugated diene polymer represented by the formula (1) comprising the step (step 3) of reacting with the amino silane compound represented by the formula (3) after the reaction.
  • R, R 4 and R 5 are each independently a hydrocarbon group having 1 to 20 carbon atoms
  • R 1 , R 2 and R 3 are each independently a hydrocarbon group having 1 to 20 carbon atoms; Or a hydrocarbon group of 1 to 20 carbon atoms containing oxygen or nitrogen,
  • R 2 and R 3 may be connected to each other to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms,
  • P is a modified conjugated diene polymer chain
  • X is a halogen group
  • A is a tertiary amine
  • a, b and m are each independently an integer from 1 to 4,
  • the present invention provides a rubber composition comprising the modified conjugated diene-based polymer and a tire produced using the rubber composition.
  • the modified conjugated diene-based polymer according to the present invention has a tin compound-derived group bound to one end and a silane compound-derived group bound to the other end thereof, thereby having excellent affinity with not only silica filler but also carbon black filler. Can be.
  • the processability of the rubber composition comprising the modified conjugated diene-based polymer may be excellent, and as a result, the processed product (eg, a tire) manufactured using the rubber composition may have excellent tensile strength, wear resistance, and viscoelastic properties. .
  • the present invention provides a modified conjugated diene-based polymer having excellent affinity with not only silica-based fillers but also carbon black-based fillers, thereby improving workability.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention is characterized in that the compound represented by the formula (1).
  • R, R 4 and R 5 are each independently a hydrocarbon group having 1 to 20 carbon atoms
  • R 2 and R 3 are each independently a hydrocarbon group of 1 to 20 carbon atoms or a hydrocarbon group of 1 to 20 carbon atoms containing oxygen or nitrogen,
  • R 2 and R 3 may be connected to each other to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms,
  • P is a modified conjugated diene polymer chain
  • X is a halogen group
  • A is a tertiary amine
  • a and b are each independently an integer of 1 to 4,
  • R, R 4 and R 5 are independently an alkyl group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently an alkyl group having 1 to 10
  • R, R 4 and R 5 are independently an alkyl group having 1 to 6 carbon atoms, and R 2 and R 3 are independently of each other an alkyl group having 1 to 6 carbon atoms or containing carbon 1 It may be an alkyl group of 6 to.
  • X may be selected from F, Cl, Br, and I.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention as shown in the structure of Formula 1, a group derived from a tin-based compound represented by Formula 2 described below is bonded to one end of the polymer, and the other end thereof is described later.
  • An amino silane compound derived group represented by the formula (3) may be combined. That is, the modified conjugated diene-based polymer according to an embodiment of the present invention may be a different functional group bonded to both ends.
  • the modified conjugated diene-based polymer may contain 50 ppm to 550 ppm of tin (Sn), and may contain 80 ppm to 700 ppm of silica (Si).
  • the tin may be one component constituting the tin-based compound-derived group
  • the silica may be one component constituting the amino-silane-based compound-derived group.
  • the modified conjugated diene-based polymer has a tin compound-derived group bound to one end and an amino silane compound-derived group bound to one end thereof, thereby making it compatible with not only silica filler but also carbon black filler.
  • This can be excellent.
  • the blending properties with the filler may be excellent, and thus, the processability of the rubber composition including the modified conjugated diene-based polymer may be excellent, and as a result, the tensile strength characteristics of the molded article, for example, a tire manufactured using the rubber composition, Viscoelastic properties can be improved.
  • the modified conjugated diene polymer may be a conjugated diene monomer homopolymer or a copolymer of a conjugated diene monomer and an aromatic vinyl monomer.
  • the modified conjugated diene polymer is a copolymer of a conjugated diene monomer and an aromatic vinyl monomer
  • the copolymer may be a random copolymer
  • random copolymer may indicate that the structural units constituting the copolymer are randomly arranged.
  • the conjugated diene monomer is not particularly limited, but for example, 1,3-butadiene, 2,3-dimenyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene and 2- It may be one or more selected from the group consisting of phenyl-1,3-butadiene.
  • the modified conjugated diene-based polymer when the modified conjugated diene-based polymer is a copolymer of a conjugated diene-based monomer and an aromatic vinyl monomer, the modified conjugated diene-based polymer may be 60% by weight or more, specifically 60% by weight to 90% by weight of a unit derived from a conjugated diene monomer.
  • the content may include 60 wt% to 85 wt%.
  • the aromatic vinyl monomer is not particularly limited, but for example, styrene, ⁇ -methyl styrene, 3-methyl styrene, 4-methyl styrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexyl styrene, 4- (p It may be one or more selected from the group consisting of -methylphenyl) styrene and 1-vinyl-5-hexylnaphthalene.
  • the modified conjugated diene-based polymer when the modified conjugated diene-based polymer is a copolymer of a conjugated diene-based monomer and an aromatic vinyl monomer, the modified conjugated diene-based polymer may be 40% by weight or less, specifically 10 to 40% by weight of units derived from aromatic vinyl monomers. For example, the content may be 15 wt% to 40 wt%.
  • derived unit may refer to a component, a structure, or the substance itself resulting from a substance.
  • modified conjugated diene-based polymer may have a Mooney viscosity of 50 or more, specifically 50 to 150, more specifically 60 to 120.
  • the modified conjugated diene polymer may have a number average molecular weight of 50,000 g / mol to 700,000 g / mol, specifically 100,000 g / mol to 500,000 g / mol, and more specifically 150,000 g / mol to 400,000 g / mol. .
  • the modified conjugated diene-based polymer may have a weight average molecular weight of 250,000 g / mol to 1,600,000 g / mol.
  • the modified conjugated diene-based polymer may have a vinyl content of 5% or more, specifically 10% or more, more specifically 10% to 50%, and within this range, the glass transition temperature of the polymer may be adjusted to an appropriate range. Therefore, when applied to the tire can not only meet the properties required for the tire, such as running resistance and braking force, but also has the effect of reducing fuel consumption.
  • the vinyl content refers to the content of the 1,2-added conjugated diene monomer instead of 1,4-addition based on 100% by weight of the conjugated diene polymer composed of a monomer having a vinyl group and an aromatic vinyl monomer.
  • the modified conjugated diene-based polymer may have a PDI of 1.5 to 3.5, specifically 1.7 to 3.2, more specifically 2.0 to 3.0.
  • the modified conjugated diene-based polymer has a characteristic of viscoelasticity, when measured at 10 Hz through DMA after silica blending, a Tan ⁇ value (Tan ⁇ at 0 ° C.) at 0 ° C. is 0.60 to 1.20, or 0.70 to 1.00, Within this range, there is an effect that the road surface resistance or the wetting resistance is significantly improved as compared with the conventional invention.
  • Tan ⁇ value (Tan ⁇ at 60 ° C.) at 60 ° C. may be 0.08 to 0.14, or 0.09 to 0.13, and within this range, the rolling resistance or rotational resistance (RR) is greatly improved compared to the conventional invention. see.
  • the present invention also provides a method for producing the modified conjugated diene polymer.
  • the production method according to an embodiment of the present invention is an active polymer in which an alkali metal is bonded to both terminals by polymerizing a conjugated diene monomer or an aromatic vinyl monomer and a conjugated diene monomer in a polyfunctional anionic polymerization initiator in a hydrocarbon solvent.
  • Preparing step 1; Reacting the polymer with a tin-based compound represented by Formula 2 (step 2); And reacting with the silane compound represented by the following Chemical Formula 3 after the reaction (step 3).
  • R, R 4 and R 5 are each independently a hydrocarbon group having 1 to 20 carbon atoms
  • R 1 , R 2 and R 3 are each independently a hydrocarbon group having 1 to 20 carbon atoms; C1-C20 hydrocarbon group containing oxygen; Or a hydrocarbon group of 1 to 20 carbon atoms containing nitrogen,
  • R 2 and R 3 may be connected to each other to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms,
  • X is a halogen group
  • A is a tertiary amine
  • n is an integer of 1-4.
  • Step 1 is a step for preparing an active polymer in which alkali metals are bonded to both ends, and is performed by polymerizing a conjugated diene monomer or an aromatic vinyl monomer and a conjugated diene monomer in the presence of a polyfunctional anionic polymerization initiator in a hydrocarbon solvent.
  • a conjugated diene monomer or an aromatic vinyl monomer and a conjugated diene monomer in the presence of a polyfunctional anionic polymerization initiator in a hydrocarbon solvent.
  • active polymer in which alkali metals are bonded at both ends may refer to a polymer in which anions and alkali metal cations are bonded at both ends of the polymer.
  • the polymerization of step 1 may be one using a conjugated diene monomer alone or an aromatic vinyl monomer and a conjugated diene monomer together as described above. That is, the polymer prepared by the above production method according to an embodiment of the present invention may be a homopolymer derived from a conjugated diene monomer or a copolymer derived from an aromatic vinyl monomer and a conjugated diene monomer.
  • conjugated diene monomer and the aromatic vinyl monomer may be as described above.
  • amount of each monomer used is not particularly limited and may be used in an amount such that the conjugated diene monomer-derived unit and the aromatic vinyl monomer-derived unit in the modified conjugated diene-based polymer are prepared as described above.
  • the hydrocarbon solvent is not particularly limited, but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclolock hexane, toluene, benzene and xylene.
  • the multifunctional anionic polymerization initiator may be used in an amount of 0.10 parts by weight to 0.50 parts by weight based on 100 parts by weight of the total monomers.
  • the polyfunctional anionic polymerization initiator may be prepared by reacting an aromatic compound with an organolithium compound in a hydrocarbon solvent. In this case, the aromatic compound and the organolithium compound may be reacted at a molar ratio of 1: 1 to 2.
  • the aromatic compound used in the preparation of the polyfunctional anionic polymerization initiator is ⁇ -diisopropenyl benzene, m-diisopropenyl benzene, p-diisopropenyl benzene, ⁇ -divinylbenzene, m-divinylbenzene, p-divinylbenzene, 1,2,4-trivinylbenzene, 1,2-vinyl-3,4-dimethylbenzene, 1,3-divinylnaphthalene, 1,3,5-trivinylnaphthalene, 2,4 -Divinylbiphenyl, 3,5,4'-trivinylbiphenyl, 1,2-divinyl-3,4-dimethylbenzene and 1,5,6-trivinyl-3,7-diethyl naphthalene It may be one or more selected from the group, but is not limited thereto.
  • the organolithium compounds used in the preparation of the polyfunctional anionic polymerization initiator are ethyl lithium, propyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, hexyl lithium, phenyl lithium, lithium acetyl amide and lithium isopropylamide. It may be one or more selected from the group consisting of, but is not limited thereto.
  • the hydrocarbon solvent used in the preparation of the multifunctional anionic polymerization initiator may be as described above.
  • a Lewis base may be further used in the preparation of the multifunctional anionic polymerization initiator to promote or stabilize the production of the initiator.
  • the Lewis base is not particularly limited, but may be used in an amount of 30 ppm to 70,000 ppm relative to the hydrocarbon solvent.
  • the Lewis base can be used, for example, tertiary amines, tertiary diamines, chained or cyclic ethers and the like.
  • the tertiary amine is trimethylamine, triethylamine, methyl diethylamine, 1,1-dimethoxy trimethylamine, 1,1-diethoxy trimethylamine, 1,1-diethoxy triethylamine, N, N-dimethyl Formamide diisopropyl acetal, N, N-dimethylformamide dicyclohexyl acetal, and the like.
  • the tertiary diamine is N, N, N ', N'-tetramethyl diaminomethane, N, N, N', N'-tetramethylethylenediamine, N, N, N ', N'-tetramethypropane diamine , N, N, N ', N'-tetramethyl diaminobutane, N, N, N', N'-tetramethyl diaminopentane, N, N, N ', N'-tetramethyl hexanediamine, dipiperi Dinopentane, dipiperidino ethane, and the like.
  • the chain ether may be dimethyl ether, diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene dimethyl ether, or the like.
  • the cyclic ether may be tetrahydrofuran, bis (2-oxolanyl) ethane, 2,2-bis (2-oxolanyl) propane, 1,1-bis (2-oxolanyl) ethane, 2,2- Bis (2-oxolanyl) butane, 2,2-bis (5-methyl-2-oxolanyl) propane, 2,2-bis (3,4,5-trimethyl-2-oxolanyl) propane, etc. Can be.
  • the polyfunctional anionic polymerization initiator may be prepared by reacting under a temperature of 50 ° C. or lower, specifically, a temperature condition of ⁇ 20 ° C. to 30 ° C.
  • the polymerization of step 1 may be performed by further adding a polar additive, the polar additive may be added to 0.001 parts by weight to 5.0 parts by weight relative to 100 parts by weight of the total monomer. Specifically, the polar additive may be added at 0.005 parts by weight to 3.0 parts by weight based on 100 parts by weight of the total monomers.
  • the polar additives include tetrahydrofuran, ditetrahydrofurylpropane, diethyl ether, cycloamal ether, dipropyl ether, ethylene dimethyl ether, ethylene dimethyl ether, diethylene glycol, dimethyl ether, tertiary butoxyethoxyethane bis ( 3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine and tetramethylethylenediamine.
  • the reaction rate may be easily compensated for by forming a random copolymer. Can be induced.
  • step 1 may be carried out through adiabatic polymerization, or isothermal polymerization.
  • the adiabatic polymerization refers to a polymerization method including the step of polymerizing with a self-heating reaction without adding heat after the addition of the multifunctional anion polymerization initiator, and the isothermal polymerization is optionally after adding the polyfunctional anion polymerization initiator It refers to a polymerization method in which the temperature of the polymer is kept constant by applying heat or taking away heat.
  • the polymerization may be performed at a temperature range of -20 ° C to 200 ° C, specifically 0 ° C to 150 ° C, and more specifically 10 ° C to 120 ° C.
  • Step 2 is a step of reacting the polymer with the tin-based compound represented by Chemical Formula 2 in order to bond a tin-based compound-derived group to one end of the active polymer having alkali metals bonded to both ends.
  • the tin compound represented by the formula (2) is methyl trichloro tin, dimethyl dichloro tin, ethyl trichloro tin, diethyl dichloro tin, butyl trichloro tin, dibutyl dichloro tin, octyl trichloro tin, dioctyl From the group consisting of dichlorotin, methyl tribromotin, dimethyl dibromotin, octyl tribromotin, dioctyl dibromotin, tetrachlorotin, tetrabromotin, tetraiodide, cyclohexyl trichlorobutane and phenyltrichlorotin It may be one or more selected.
  • the tin-based compound may be used in a ratio in which tin in the tin-based compound is 0.05 mol to 0.25 mol per 1 mol of lithium in the polyfunctional anionic polymerization initiator.
  • Step 3 is a step of reacting the polymer with the amino silane compound represented by Formula 3 to bond the amino silane compound-derived group to the other end of the polymer having a tin compound-derived group bonded at one end thereof.
  • amino silane compound represented by Chemical Formula 3 may be 3- (diethoxy (methyl) silyl) -N, N-diethylpropan-1-amine or 2- (N, N-dimethylaminopropyl) 2, It may be 5,5-trimethyl-1,3,2-dioxysilene.
  • the silane-based compound may be used in a ratio of 0.1 mol to 1.0 mol of silica in the amino silane-based compound per mol of lithium in the polyfunctional anionic polymerization initiator.
  • Each reaction in steps 2 and 3 is a modification reaction for bonding functional groups to both ends of the polymer, each reaction may be performed for 10 minutes to 5 hours in a temperature range of 10 °C to 120 °C. .
  • the preparation method according to an embodiment of the present invention may further include one or more steps of recovering and drying the solvent and the unreacted monomer, if necessary after step 3 above.
  • the present invention provides a rubber composition comprising the modified conjugated diene-based polymer.
  • the rubber composition may include 20 wt% to 90 wt% of a modified conjugated diene-based polymer.
  • the rubber composition may include 0.1 to 200 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene-based polymer, and the filler may be a silica-based filler, a carbon black-based filler, or a combination thereof.
  • the rubber composition may further include other diene polymers as needed in addition to the modified conjugated diene polymer, and the diene polymer may be, for example, styrene-butadiene polymer, butadiene polymer, natural rubber, or a combination thereof. .
  • the present invention provides a tire manufactured using the rubber composition.
  • the tire may include a tire or a tire tread.
  • the second reactor was also 80 ° C. and the reaction time was 60 minutes. Butadiene and styrene were consumed more than 99% through the second reactor, but the third and fourth reactors were also used to prepare the polymer under the same conditions as the other comparative polymers.
  • Tin tetrachloride was added at a ratio of 0.25 times the number of moles of the anionic polymerization initiator used in the middle of the second reactor and the third reactor, and the tin coupling reaction occurred in the third reactor.
  • the temperature of the 3rd and 4th reactors was 75 degreeC, respectively, and the time which a polymer stays in a reactor was 30 minutes, respectively.
  • 2,6-di-t-butyl-p-cresol (BHT) was added to the reaction from the fourth reactor at 4.0 g / hr, the solvent was removed by steam stripping, dried over a roll mill, and modified conjugated diene.
  • a polymer obtained was obtained, wherein the modified conjugated diene-based polymer has one end bonded to a tin compound-derived group, and the other end terminated with an amino silane compound-derived group.
  • the presence or absence of the tin coupling reaction was confirmed by the difference in the Mooney viscosity of the second reactor polymer and the Mooney viscosity of the third reactor polymer. That is, when the Mooney viscosity rose, it was determined that a coupling reaction with tin occurred.
  • modification reaction was carried out by using a modifier may be performed by mixing the polymer with a silica or a silica and carbon black mixed reinforcing agent, and then immersing the compound before crosslinking in a solvent to measure the amount of rubber that is not dissolved, that is, bound rubber (Bound-Rubber). It was confirmed by comparison with the amount of bound rubber of the unmodified conjugated diene-based polymer. In other words, as the amount of bound rubber increased, degeneration was considered to be more advanced.
  • Bound rubber measurement was measured by weighing about 0.2 g of the compound that has been kneaded with the inorganic reinforcing agent in a shape of about 1 mm and weighing it in a 100 mesh wire mesh, immersing in toluene for 24 hours, and then drying. The weight was measured. The amount of polymer bound to the filler was calculated from the amount of components remaining undissolved to determine the proportion of polymer bound to the filler relative to the amount of polymer in the original blend. This value was used as the rate of denaturation.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 1, except that the amount of tin tetrachloride was reduced by 0.17 mole ratio with respect to the polymerization initiator.
  • Example 1 TMEDA was added at 0.64 g / hr, and an anionic polymerization initiator was added at 0.690 g / hr, tin tetrachloride and 3- (diethoxy (methyl) silyl) -N, N-diethylpropane-1- Unmodified conjugated diene polymer was prepared in the same manner as in Example 1 except that no amine was added. However, 0.5 g / hr of methanol was added to the polymer from the fourth reactor to remove polymer activity, and 2,6-di-t-butyl-p-cresol (BHT) was added at 4.0 g / hr.
  • BHT 2,6-di-t-butyl-p-cresol
  • Example 1 In Example 1, except that TMEDA was added at 0.76 g / hr to an anionic polymerization initiator of 0.86 g / hr, and tin tetrachloride was not added. A modified conjugated diene-based polymer having a group derived from this amino silane compound was prepared.
  • Comparative Example 2 in order to confirm the influence on the physical properties and processability by narrowing the molecular weight distribution of the polymer prepared than Comparative Example 2, the temperature of the first reactor was changed to 60 °C and the reaction time to 20 minutes, the second reactor The reaction time was extended to 80 minutes, and the amount of polymer was obtained in the same manner as in Comparative Example 2, except that TMEDA (tetramethyldetylenediamine) was added at 0.38 g / hr and an anionic polymerization initiator at 0.75 g / hr. A modified conjugated diene polymer having a terminal-derived aminosilane-based compound-derived group was prepared.
  • TMEDA tetramethyldetylenediamine
  • KOBELCO BB_L1600IM Intermeshing Banbury Mixer was used, and a rubber sheet was manufactured at 50 ° C and 6 inch rolls to make specimens for evaluation of physical properties.
  • Table 1 such as rubber, silica, and stearic acid
  • the inorganic filler was blended using two kinds of inorganic fillers: 50 parts by weight of silica and 20 parts by weight of carbon black, and 70 parts by weight of silica alone.
  • Specimen crosslinking for measurement of physical properties was prepared using a press at 160 ° C. for 1.3 times for each formulation crosslinking rate (t′90).
  • Rheology properties such as Tg, Wet Grip (0 ° C tan ⁇ ) and RR (60 ° C tan ⁇ ) of the crosslinked rubber were evaluated in Temperatue Sweep mode in the range of -40 ⁇ +70 using Eplexor 500 N equipment from Gabo, Germany. Evaluation conditions were measured at a temperature rising rate of 2 °C / min, Frequency 10 Hz, Static Strain 3.5%, Dynamic Strain 3.0%.
  • Compounding agent Compound name / product name Parts by weight (phr) Remarks Rubber LG SSBR 100 Primary formulation Silica (silica + carbon black) Degussa 7000GR (7000GR + HAF) 70 (50 + 20) Oil TDAE 37.5 X50S (Degussa) 50% carbon black and 50% bis (3-triethoxysilylpropyltetrasulfan) 11.2 Stearic acid - 2.0 ZnO - 3.0 RD Polymerized 2,2,4-trimethyl-1,2-dihydroquinoline, Flexsys 2.0 6PPD N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, Flexsys 2.0 WAX - 1.0 DPG Diphenylguanidine, Flexsys 1.75 Secondary formulation sulfur - 1.5 CZ N-t-butyl-2-benzothiazyl sulfonamide, Flexsys 2.0
  • Comparative Example 2 in which both ends were modified with only the tensile properties, wet grip properties, rolling resistance (RR) properties, and the like compared to Comparative Example 1, which is an unmodified polymer.
  • the processability was slightly inferior to the base rubber at the difference in Mooney viscosity, ie, ⁇ Mooney viscosity, before and after mixing with the inorganic filler.
  • Example 1 in which the molecular chain ends were modified with 3- (diethoxy (methyl) silyl) -N, N-diethylpropane-1-amine modifier after coupling with tin tetrachloride first, unmodified in Comparative Example 1
  • the main physical properties are all improved compared to the polymer, and even when compared to Comparative Example 2 in which both ends are modified with an amino silane-based modifier, the RR properties are slightly decreased but the difference is not large, whereas the ⁇ Mooney viscosity difference is large After the Mooney viscosity is significantly lowered it can be seen that the workability is very excellent.
  • Example 2 in which both tin coupling and amino silane-based modifications were performed, a good balance of main physical properties and processability was excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)

Abstract

본 발명은 충진제와의 친화성이 우수한 변성 공액디엔계 중합체, 이의 제조방법, 이를 포함하는 고무 조성물 및 상기 고무 조성물을 이용하여 제조된 타이어에 관한 것이다. 이에 따른 변성 공액디엔계 중합체는 일 말단에 주석계 화합물 유래기가 결합되어 있고, 나머지 일 말단에 아미노 실란계 화합물 유래기가 결합되어 있어 실리카계 충진제뿐 아니라 카본블랙계 충진제와의 친화성이 우수할 수 있다. 이에, 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물의 가공성이 우수할 수 있으며, 결과적으로 상기 고무 조성물을 이용하여 제조된 가공품(예컨대, 타이어)는 인장강도, 내마모성 및 점탄성 특성이 우수할 수 있다.

Description

변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
관련출원과의 상호인용
본 출원은 2015년 10월 08일자 한국 특허 출원 제10-2015-0141830호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 충진제와의 친화성이 우수한 변성 공액디엔계 중합체, 이의 제조방법, 이를 포함하는 고무 조성물 및 상기 고무 조성물을 이용하여 제조된 타이어에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 구름 저항이 적고, 내마모성, 인장 특성이 우수하며, 웨트 스키드 저항으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
타이어의 구름 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ 또는 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연고무, 폴리이소프렌고무 또는 폴리부타디엔 고무 등이 알려져있지만, 이들은 웨트 스키드 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라함) 또는 부타디엔 고무(이하, BR 이라함)와 같은 공액디엔계 (공)중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR 고무의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충진제와의 결합력을 증가시킬 수 있어 용액 중합에 의한 SBR 고무가 타이어용 고무 재료로 많이 사용된다.
이러한 용액중합 SBR이 타이어용 고무 재료로 사용되는 경우 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로서 연료소모를 줄일 수 있다.
상기 용액중합 SBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다.
예를 들어, 미국특허 제4,397,994호에는 일관능성 개시제인 알킬리튬을 이용하여 비극성 용매 하에서 스티렌-부타디엔을 중합하여 얻어진 중합체의 사슬 말단의 활성 음이온을 주석화합물과 같은 결합제를 사용하여 결합시킨 기술을 제시하였다.
한편, 타이어 트레드의 보강성 충진제로서 카본블랙 및 실리카 등이 사용되고 있는데, 보강성 충진제로서 실리카를 이용하는 경우 저히스테리시스 손실성 및 웨트 스키드 저항성이 향상된다는 장점이 있다. 그러나, 소수성 표면의 카본블랙 대비 친수성 표면의 실리카는 고무와의 친화성이 낮아 분산성이 나쁘다는 결점을 가지고 있어, 분산성을 개선시키거나 실리카-고무 간의 결합 부여를 행하기 위해 별도의 실란 커플링제를 사용할 필요가 있다.
이에, 고무 분자 말단부에 실리카와의 친화성이나 반응성을 갖는 관능기를 도입하는 방안이 이루어지고 있으나, 그 효과가 충분하지 않은 실정이다.
또한, 실리카에 대한 친화성만 향상시키는 경우 상대적으로 카본블랙과의 친화성은 저하되고, 이에 적용 범위에 한계가 있을 수 있다.
따라서, 실리카뿐 아니라 카본블랙과도 친화성이 높은 고무의 개발이 필요한 실정이다.
[선행기술문헌]
(특허문헌 1) US 4,397,994 A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 충진제와의 친화성이 우수한 변성 공액디엔계 중합체를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기의 변성 공액디엔계 중합체의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기의 변성 공액디엔계 중합체를 포함하는 고무 조성물을 제공하는 것이다.
더 나아가, 본 발명의 또 다른 목적은 상기의 고무 조성물을 이용하여 제조된 타이어를 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 변성 공액디엔계 중합체를 제공한다.
[화학식 1]
Figure PCTKR2016011276-appb-I000001
상기 화학식 1에서,
R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기이고,
R2 및 R3는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기 또는 산소 또는 질소를 함유한 탄소수 1 내지 20의 탄화수소기이고,
R2 및 R3는 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며,
P는 변성 공액디엔계 중합체 사슬이고,
X는 할로겐기이고,
A는 3급 아민이고,
a 및 b는 서로 독립적으로 1 내지 4의 정수이며,
a+b≤4이다.
또한, 본 발명은 탄화수소 용매 중에서, 다관능성 음이온 중합 개시제 존재 하 공액디엔계 단량체 또는 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 양 말단에 알칼리 금속이 결합된 활성 중합체를 제조하는 단계(단계 1); 상기 중합체를 하기 화학식 2로 표시되는 주석계 화합물과 반응시키는 단계(단계 2); 및 상기 반응 후 하기 화학식 3으로 표시되는 아미노 실란계 화합물과 반응시키는 단계(단계 3)를 포함하는 하기 화학식 1로 표시되는 상기의 변성 공액디엔계 중합체의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2016011276-appb-I000002
[화학식 2]
Figure PCTKR2016011276-appb-I000003
[화학식 3]
Figure PCTKR2016011276-appb-I000004
상기 화학식 1, 화학식 2 또는 화학식 3에서,
R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기이고,
R1, R2 및 R3은 서로 독립적으로 탄소수 1 내지 20의 탄화수소기; 또는 산소 또는 질소를 함유한 탄소수 1 내지 20의 탄화수소기이고,
R2 및 R3는 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며,
P는 변성 공액디엔계 중합체 사슬이고,
X는 할로겐기이고,
A는 3급 아민이며,
a, b 및 m은 서로 독립적으로 1 내지 4의 정수이며,
a+b≤4이다.
아울러, 본 발명은 상기의 변성 공액디엔계 중합체를 포함하는 고무 조성물 및 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
본 발명에 따른 변성 공액디엔계 중합체는 일 말단에 주석계 화합물 유래기가 결합되어 있고, 나머지 일 말단에 실란계 화합물 유래기가 결합되어 있어 실리카계 충진제뿐 아니라 카본블랙계 충진제와의 친화성이 우수할 수 있다. 이에, 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물의 가공성이 우수할 수 있으며, 결과적으로 상기 고무 조성물을 이용하여 제조된 가공품(예컨대, 타이어)는 인장강도, 내마모성 및 점탄성 특성이 우수할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 실리카계 충진제뿐 아니라 카본블랙계 충진제와도 친화성이 우수하여 가공성이 개선된 변성 공액디엔계 중합체를 제공한다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 하기 화학식 1로 표시되는 화합물인 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2016011276-appb-I000005
상기 화학식 1에서,
R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기이고,
R2 및 R3는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기 또는 산소 또는 질소를 함유한 탄소수 1 내지 20의 탄화수소기이고,
R2 및 R3는 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며,
P는 변성 공액디엔계 중합체 사슬이고,
X는 할로겐기이고,
A는 3급 아민이며,
a 및 b는 서로 독립적으로 1 내지 4의 정수이며,
a+b≤4이다.
구체적으로는 상기 화학식 1에서 R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 10의 알킬기이고, R2 및 R3은 서로 독립적으로 1 내지 10의 알킬기; 산소를 함유한 탄소수 1 내지 10의 알킬기; 또는 질소를 함유한 탄소수 1 내지 10의 알킬기인 것일 수 있다.
더 구체적으로는, 상기 화학식 1에서 R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 6의 알킬기이고, R2 및 R3은 서로 독립적으로 탄소수 1 내지 6의 알킬기 또는 산소를 함유한 탄소수 1 내지 6의 알킬기인 것일 수 있다.
또한, 상기 상기 화학식 1에서 X는 F, Cl, Br 및 I 중에서 선택된 것일 수 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 화학식 1의 구조에 나타난 바와 같이 상기 중합체의 일 말단에는 후술하는 화학식 2로 표시되는 주석계 화합물 유래기가 결합되어 있고, 나머지 일 말단에는 후술하는 화학식 3으로 표시되는 아미노 실란계 화합물 유래기가 결합되어 있는 것일 수 있다. 즉, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 양 말단에 서로 상이한 관능기가 결합되어 있는 것일 수 있다.
구체적으로, 상기 변성 공액디엔계 중합체는 50 ppm 내지 550 ppm의 주석(Sn)을 함유하고 있는 것일 수 있으며, 80 ppm 내지 700 ppm의 실리카(Si)를 함유하는 것일 수 있다. 여기에서, 상기 주석은 상기 주석계 화합물 유래기를 구성하는 일 성분이고, 상기 실리카는 상기 아미노 실란계 화합물 유래기를 구성하는 일 성분인 것일 수 있다.
상기 변성 공액디엔계 중합체는 전술한 바와 같이 일 말단에 주석계 화합물 유래기가 결합되어 있고, 나머지 일 말단에 아미노 실란계 화합물 유래기가 결합되어 있음으로써 실리카계 충진제뿐만 아니라 카본블랙계 충진제와의 친화성이 우수할 수 있다. 이에, 상기 충진제와의 배합 물성이 우수할 수 있어 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물의 가공성이 우수할 수 있으며 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 인장강도 특성 및 점탄성 특성이 개선될 수 있다.
한편, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 단독 중합체 또는 공액디엔계 단량체 및 방향족 비닐계 단량체의 공중합체인 것일 수 있다.
상기 변성 공액디엔계 중합체가 공액디엔계 단량체 및 방향족 비닐계 단량체의 공중합체일 경우에는 상기 공중합체는 랜덤 공중합체일 수 있다.
본 발명에서 용어 “랜덤 공중합체(random copolymer)”는 공중합체를 이루는 구성 단위가 무질서하게 배열된 것을 나타내는 것일 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 2,3-디메닐-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 변성 공액디엔계 중합체가 공액디엔계 단량체 및 방향족 비닐계 단량체의 공중합체인 경우, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 단위를 60 중량% 이상, 구체적으로는 60 중량% 내지 90 중량%, 더 구체적으로는 60 중량% 내지 85 중량%로 포함하는 것일 수 있다.
상기 방향족 비닐계 단량체는 특별히 제한되는 것은 아니나, 예컨대 스티렌, α-메틸 스티렌, 3-메틸 스티렌, 4-메틸 스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 변성 공액디엔계 중합체가 공액디엔계 단량체 및 방향족 비닐계 단량체의 공중합체인 경우, 상기 변성 공액디엔계 중합체는 방향족 비닐계 단량체 유래 단위를 40 중량% 이하, 구체적으로는 10 중량% 내지 40 중량%, 더욱 구체적으로는 15 중량% 내지 40 중량%로 포함하는 것일 수 있다.
본 발명에서 용어 “유래 단위”는 어떤 물질로부터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있다.
또한, 상기 변성 공액디엔계 중합체는 무니점도가 50 이상, 구체적으로는 50 내지 150, 보다 구체적으로는 60 내지 120일 수 있다.
상기 변성 공역디엔계 중합체는 수평균분자량이 50,000 g/mol 내지 700,000 g/mol, 구체적으로는 100,000 g/mol 내지 500,000 g/mol, 보다 구체적으로는 150,000 g/mol 내지 400,000 g/mol일 수 있다.
상기 변성 공역디엔계 중합체는 중량평균분자량이 250,000 g/mol 내지 1,600,000 g/mol인 것일 수 있다.
상기 변성 공액디엔계 중합체는 비닐 함량이 5% 이상, 구체적으로는 10% 이상, 보다 구체적으로는 10% 내지 50%일 수 있고, 이 범위 내에서 중합체의 유리전이온도가 적절한 범위로 조절될 수 있어 타이어에 적용시 주행저항 및 제동력과 같은 타이어에 요구되는 물성을 만족시킬 수 있을 뿐만 아니라, 연료소모를 줄이는 효과가 있다.
이때 비닐 함량은 비닐기를 갖는 단량체와 방향족 비닐계 단량체로 이루어진 공액디엔계 중합체 100 중량%에 대하여 1,4-첨가가 아닌 1,2-첨가된 공액디엔계 단량체의 함량을 의미한다.
상기 변성 공액디엔계 중합체는 PDI가 1.5 내지 3.5, 구체적으로는 1.7 내지 3.2, 보다 구체적으로는 2.0 내지 3.0일 수 있다.
상기 변성 공역디엔계 중합체는 점탄성의 특징에 있어서, 실리카 배합 후 DMA를 통하여 10 Hz로 측정하는 경우, O ℃에서의 Tan δ값(Tanδ at 0℃)은 0.60 내지 1.20, 또는 0.70 내지 1.00이고, 이 범위 내에서 종래 발명에 비해 노면 저항 또는 습윤 저항이 크게 향상되는 효과가 있다.
또한, 60℃에서의 Tan δ값(Tanδ at 60℃)은 0.08 내지 0.14, 또는 0.09 내지 0.13일 수 있고, 이 범위 내에서 종래 발명에 비하여 구름저항 또는 회전저항(RR)이 크게 향상되는 효과를 보인다.
또한, 본 발명은 상기의 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 제조방법은 탄화수소 용매 중에서, 다관능성 음이온 중합 개시제 존재 하 공액디엔계 단량체 또는 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 양 말단에 알칼리 금속이 결합된 활성 중합체를 제조하는 단계(단계 1); 상기 중합체를 하기 화학식 2로 표시되는 주석계 화합물과 반응시키는 단계(단계 2); 및 상기 반응 후 하기 화학식 3으로 표시되는 실란계 화합물과 반응시키는 단계(단계 3)를 포함하는 것을 특징으로 한다.
[화학식 2]
Figure PCTKR2016011276-appb-I000006
[화학식 3]
Figure PCTKR2016011276-appb-I000007
상기 화학식 2 또는 화학식 3에서,
R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기이고,
R1, R2 및 R3은 서로 독립적으로 탄소수 1 내지 20의 탄화수소기; 산소를 함유한 탄소수 1 내지 20의 탄화수소기; 또는 질소를 함유한 탄소수 1 내지 20의 탄화수소기이고,
R2 및 R3은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며,
X는 할로겐기이고,
A는 3급 아민이며,
m은 1 내지 4의 정수이다.
상기 단계 1은 양 말단에 알칼리 금속이 결합된 활성 중합체를 제조하기 위한 단계로, 탄화수소 용매 중에서 다관능성 음이온 중합 개시제 존재 하 공액디엔계 단량체 또는 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합함으로써 수행할 수 있다.
본 발명에서 용어 “양 말단에 알칼리 금속이 결합된 활성 중합체”는 중합체 양 말단의 음이온과 알칼리 금속 양이온이 결합된 중합체를 나타내는 것일 수 있다.
상기 단계 1의 중합은 단량체로서 전술한 바와 같이 공액디엔계 단량체 단독 또는 방향족 비닐계 단량체 및 공액디엔계 단량체를 함께 사용하는 것일 수 있다. 즉, 본 발명의 일 실시예에 따른 상기 제조방법을 통해 제조된 중합체는 공액디엔계 단량체 유래의 단독 중합체이거나, 방향족 비닐계 단량체 및 공액디엔계 단량체 유래의 공중합체일 수 있다.
상기 공액디엔계 단량체 및 방향족 비닐계 단량체의 구체적인 종류는 전술한 바와 같을 수 있다. 또한, 상기 각 단량체의 사용량은 특별히 제한되지 않고 제조된 변성 공액디엔계 중합체 내 공액디엔계 단량체 유래 단위 및 방향족 비닐계 단량체 유래 단위가 전술한 바와 같은 함량이 되는 양으로 사용하는 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클록 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 다관능성 음이온 중합 개시제는 단량체 총 100 중량부를 기준으로 0.10 중량부 내지 0.50 중량부로 사용하는 것일 수 있다. 상기 다관능성 음이온 중합 개시제는 탄화수소 용매 중에서 방향족 화합물과 유기리튬 화합물을 반응시켜 제조된 것일 수 있다. 이때, 상기 방향족 화합물과 유기리튬 화합물은 1:1 내지 2의 몰비로 반응시키는 것일 수 있다.
상기 다관능성 음이온 중합 개시제의 제조에 사용되는 방향족 화합물은 ο-디이소프로페닐 벤젠, m-디이소프로페닐 벤젠, p-디이소프로페닐 벤젠, ο-디비닐벤젠, m-디비닐벤젠, p-디비닐벤젠, 1,2,4-트리비닐벤젠, 1,2-비닐-3,4-디메틸벤젠, 1,3-디비닐나프탈렌, 1,3,5-트리비닐나프탈렌, 2,4-디비닐비페닐, 3,5,4'-트리비닐비페닐, 1,2-디비닐-3,4-디메틸벤젠 및 1,5,6-트리비닐-3,7-디에틸 나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 다관능성 음이온 중합 개시제의 제조에 사용되는 유기리튬 화합물은 에틸리튬, 프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, 페닐리튬, 리튬아세틸 아미드 및 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 다관능성 음이온 중합 개시제의 제조에 사용되는 탄화수소 용매는 전술한 바와 같을 수 있다.
또한, 상기 다관능성 음이온 중합 개시제 제조 시 상기 개시제의 생성 촉진이나 안정화를 위하여 루이스 염기를 더 사용할 수 있다. 이때, 상기 루이스 염기는 특별히 제한되는 것은 아니나, 상기 탄화수소 용매 대비 30 ppm 내지 70,000 ppm의 되는 양으로 사용하는 것일 수 있다.
상기 루이스 염기는 예컨대 3급 아민, 3급 디아민, 사슬형 또는 환상 에테르 등을 사용할 수 있다. 상기 3급 아민은 트리메틸아민, 트리에틸아민, 메틸 디에틸아민, 1,1-디메톡시 트리메틸아민, 1,1-디에톡시 트리메틸아민, 1,1-디에톡시 트리에틸아민, N,N-디메틸포름아미드 디이소프로필 아세탈, N,N-디메틸포름아미드 디사이클로헥실 아세탈 등일 수 있다.
상기 3급 디아민은 N,N,N',N'-테트라메틸 디아미노메탄, N,N,N',N'-테트라메틸에틸렌디아민, N,N,N',N'-테트라메티 프로판 디아민, N,N,N',N'-테트라메틸 디아미노부탄, N,N,N',N'-테트라메틸 디아미노펜탄, N,N,N',N'-테트라메틸 헥산디아민, 디피페리디노 펜탄, 디피페리디노 에탄 등일 수 있다.
상기 사슬형 에테르는 디메틸에테르, 디에틸에티르, 에틸렌글리콜 디메틸에테르, 디에틸렌글리콜디메틸에테르, 트리에틸렌글리콜디메틸에테르, 테트라에틸렌 디메틸에테르 등일 수 있다.
상기 환상 에테르는 테트라하이드로퓨란, 비스(2-옥솔라닐)에탄, 2,2-비스(2-옥솔라닐)프로판, 1,1-비스(2-옥솔라닐)에탄, 2,2-비스(2-옥솔라닐)부탄, 2,2-비스(5-메틸-2-옥솔라닐)프로판, 2,2-비스(3,4,5-트리메틸-2-옥솔라닐)프로판 등일 수 있다.
상기 다관능성 음이온 중합 개시제는 50℃ 이하의 온도, 구체적으로는 -20℃ 내지 30℃의 온도 조건 하에서 반응시켜 제조하는 것일 수 있다.
상기 단계 1의 중합은 극성 첨가제를 더 첨가하여 수행하는 것일 수 있으며, 상기 극성 첨가제는 단량체 총 100 중량부 대비 0.001 중량부 내지 5.0 중량부로 첨가하는 것일 수 있다. 구체적으로는, 상기 극성 첨가제는 단량체 총 100 중량부 대비 0.005 중량부 내지 3.0 중량부로 첨가하는 것일 수 있다.
상기 극성 첨가제는 테트라하이드로퓨란, 디테트라하이드로퓨릴프로판, 디에틸에테르, 시클로아말에테르, 디프로필에테르, 에틸렌디메틸에테르, 에틸렌디메틸에테르, 디에틸렌글리콜, 디메틸에테르, 3차 부톡시에톡시에탄 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 상기의 극성 첨가제를 사용함으로써 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응 속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도할 수 있다.
상기 단계 1의 중합은 단열중합을 통해 수행하거나, 등온중합을 통해 수행하는 것일 수 있다.
여기에서, 단열중합은 다관능성 음이온 중합 개시제를 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 나타내는 것이고, 상기 등온중합은 상기 다관능성 음이온 중합 개시제를 투입한 이후 임의로 열을 가하거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 나타내는 것이다.
상기 중합은 -20℃ 내지 200℃의 온도범위에서 수행하는 것일 수 있으며, 구체적으로는 0℃ 내지 150℃, 더욱 구체적으로는 10℃ 내지 120℃의 온도범위에서 수행하는 것일 수 있다.
상기 단계 2는 상기 양 말단에 알칼리 금속이 결합된 활성 중합체의 일 말단에 주석계 화합물 유래기를 결합시키기 위하여 상기 중합체를 상기 화학식 2로 표시되는 주석계 화합물과 반응시키는 단계이다.
구체적으로는, 상기 화학식 2로 표시되는 주석계 화합물은 메틸 트리클로로주석, 디메틸 디클로로주석, 에틸 트리클로로주석, 디에틸 디클로로주석, 부틸 트리클로로주석, 디부틸 디클로로주석, 옥틸 트리클로로주석, 디옥틸 디클로로주석, 메틸 트리브로모주석, 디메틸 디브로모주석, 옥틸 트리브로모주석, 디옥틸 디브로모주석, 테트라클로로주석, 테트라브로모주석, 테트라요오드화주석, 사이클로헥실 트리클로로부석 및 페닐트리 클로로주석으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 주석계 화합물은 다관능성 음이온 중합 개시제 내 리튬 1 mol 당 주석계 화합물 내 주석이 0.05 mol 내지 0.25 mol이 되는 비율로 사용하는 것일 수 있다.
상기 단계 3은 일 말단에 주석계 화합물 유래기가 결합된 중합체의 나머지 일 말단에 아미노 실란계 화합물 유래기를 결합시키기 위하여 상기 중합체와 상기 화학식 3을로 표시되는 아미노 실란계 화합물을 반응시키는 단계이다.
구체적으로, 상기 화학식 3으로 표시되는 아미노 실란계 화합물은 3-(디에톡시(메틸)실릴)-N,N-디에틸프로판-1-아민 또는 2-(N,N-디메틸아미노프로필)2,5,5-트리메틸-1,3,2-디옥시실리넨인 것일 수 있다.
상기 실란계 화합물은 다관능성 음이온 중합 개시제 내 리튬 1 mol 당 아미노 실란계 화합물 내 실리카가 0.1 mol 내지 1.0 mol이 되는 비율로 사용하는 것일 수 있다.
상기 단계 2 및 단계 3에서의 각 반응은 상기 중합체의 양 말단에 관능기를 결합시키기 위한 변성 반응으로, 상기 각 반응은 10℃ 내지 120℃의 온도범위에서 10분 내지 5시간 동안 수행하는 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 상기 단계 3 이후에 필요에 따라 용매 및 미반응 단량체 회수 및 건조 중 1 이상의 단계를 더 포함할 수 있다.
아울러, 본 발명은 상기의 변성 공액디엔계 중합체를 포함하는 고무 조성물을 제공한다.
상기 고무 조성물은 변성 공액디엔계 중합체를 20 중량% 내지 90 중량%로 포함하는 것일 수 있다.
상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계 충진제, 카본블랙계 충진제 또는 이들 조합인 것일 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 디엔계 중합체를 더 포함할 수 있으며, 상기 디엔계 중합체는 예컨대 스티렌-부타디엔 중합체, 부타디엔 중합체, 천연고무 또는 이들의 조합일 수 있다.
아울러, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
1) 다관능성 음이온 중합 개시제(t-buLi/1,3-diisopropenylbenzene adduct)의 제조
교반기 및 자켓을 구비하는 2.5 L의 반응기를 미리 질소로 건조한 후 -10 ℃로 맞추었다. 여기에 트리에틸아민 47.5 g(99.5 %, 0.467 mol), t-부틸리튬 332.5 g(18 %, 0.934 mol), 사이클로헥산 466.6 g을 순차적으로 투입하고 교반하여 혼합하였다. 이 후, 1,3-디이소프로페닐벤젠 76.2 g(97 %, 0.467 mol)을 첨가하여 반응시킨 후 온도를 상온으로 승온하여 2 시간 동안 교반하여 다관능성 음이온 중합 개시제 922.8 g(14.5 %)를 제조하였다.
2) 변성 공액디엔계 중합체 제조
교반기 및 자켓을 구비한 4 개의 10 L의 반응기를 직렬로 연결하여 미리 질소로 건조한 후 미리 불순물을 제거한 부타디엔 292 g/hr, 스티렌 108 g/hr, 헥산 2000 g/hr, 극성 첨가제로서 TMEDA(테트라메틸데틸렌디아민) 1.04 g/hr로 첫번째 반응기에 연속적으로 투입하였다. 여기에 상기 1)의 다관능성 음이온 중합 개시제를 1.07 g/hr가 되도록 반응기에 투입하였다. 이때, 반응기 내부 온도는 80 ℃로 유지하였으며 반응시간은 40 분으로 설정하였다. 두번째 반응기 역시 80 ℃ 이였으며 반응시간은 60 분 이었다. 두번째 반응기를 거치면서 부타디엔 및 스티렌이 99% 이상 소진되나 다른 비교 중합물들과 동일한 조건으로 중합물을 제조하기 위하여 세번째, 네번째 반응기도 사용하였다.
두번째 반응기와 세번째 반응기 중간에 사염화주석을 사용된 음이온 중합개시제 몰수 대비 0.25 배 몰비로 투입하였으며 세번째 반응기에서 주석 커플링 반응이 일어 나도록 하였다.
이어서 변성 반응을 위하여 세번째 반응기에서 네번째 반응기로 중합물을 이송하는 중간에 3-(디에톡시(메틸)실릴)-N,N-디에틸프로판-1-아민을 사용된 음이온 중합개시제 몰수 대비 1.0배 몰비로 투입하여 네번째 반응기에서 말단 변성 반응을 수행하였다.
세번째, 네번째 반응기의 온도는 각각 75 ℃, 중합물이 반응기에 머무르는 시간은 각각 30 분으로 하였다. 네번째 반응기에서 나오는 반응물에 2,6-디-t-부틸-p-크레졸(BHT)를 4.0 g/hr로 첨가한 후, 스팀 스티립핑을 통해 용매를 제거하고, Roll Mill로 건조하여 변성 공액디엔계 중합체를 수득하였으며, 상기 변성 공액디엔계 중합체는 일 말단이 주석계 화합물 유래기가 결합되어 있고, 다른 일 말단이 아미노 실란계 화합물 유래기가 결합된 것을 특징으로 한다.
상기 주석 커플링 반응의 유무는 두번째 반응기 중합물의 무니점도와 세번째 반응기 중합물의 무니점도 차이로 확인 하였다. 즉 무니점도가 상승하면 주석과의 커플링 반응이 일어난 것으로 판단하였다.
또한, 변성제를 사용하여 변성 반응이 진행되었는지 여부는 중합체를 실리카 또는 실리카와 카본블랙 혼합 보강제와 배합 후 가교전 배합물을 용매에 침적하여 녹지 않은 고무 즉, 바운드 러버 (Bound-Rubber)양을 측정하여 미변성 공액디엔계 중합체의 바운드 러버 양과 비교하여 확인하였다. 즉 바운드 러버의 양이 증가할수록 변성이 많이 진행된 것으로 간주하였다.
바운드 러버(Bound Rubber) 측정은 무기 보강제와의 혼련이 종료된 배합물 약 0.2 g을 약 1 mm 각 모양으로 잘라 100 메시 철망에 넣어 중량을 측정한 후, 톨루엔 안에 24 시간 담근 후, 건조 처리 후, 중량을 측정하였다. 용해되지 않고 남아 있는 성분의 양으로부터 충진제와 결합한 중합체의 양을 계산해, 최초의 배합물 중의 중합체 양에 대한 충진제와 결합한 중합체의 비율을 구하였다. 이 값을 변성율로 이용하였다.
실시예 2
상기 실시예 1에서 사염화주석 양을 중합개시제 대비 0.17 몰비로 감량하여 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다.
비교예 1
상기 실시예 1에서 TMEDA 를 0.64 g/hr로, 음이온 중합개시제를 0.690 g/hr가 되도록 투입하고, 사염화주석 및 3-(디에톡시(메틸)실릴)-N,N-디에틸프로판-1-아민을 투입하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 미변성 공액디엔계 중합체를 제조하였다. 단, 네번째 반응기에 나오는 중합체에 0.5g/hr로 메탄올을 투입하여 중합체 활성을 제거 한 후 2,6-디-t-부틸-p-크레졸(BHT)를 4.0 g/hr로 첨가하였다.
비교예 2
상기 실시예 1에서 TMEDA 를 0.76g/hr로 음이온 중합개시제를 0.86g/hr가 되도록 투입하고, 사염화주석을 투입하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 제조하여, 중합체의 양 말단이 아미노 실란계 화합물 유래기가 결합된 변성 공액디엔계 중합체를 제조하였다.
비교예 3
상기 비교예 2에서, 제조되는 중합체의 분자량 분포를 비교예 2 보다 좁게 하여 물성 및 가공성에 미치는 영향을 확인하기 위하여, 첫번째 반응기의 온도를 60 ℃ 및 반응시간을 20 분으로 변경하고, 두번째 반응기의 반응시간을 80분으로 연장하고, TMEDA(테트라메틸데틸렌디아민)를 0.38g/hr로, 음이온 중합 개시제를 0.75g/hr로 투입한 것을 제외하고는, 비교예 2와 동일한 방법으로 중합체의 양 말단이 아미노 실란계 화합물 유래기가 결합된 변성 공액디엔계 중합체를 제조하였다.
실험예 1
상기 실시예 1 및 2, 비교예 1 내지 3의 중합체의 물성 평가를 위하여 무기 충진제와 배합을 실시하였으며, 배합 처방은 하기 표 1과 같으며, 물성 평가 결과는 표 2에 나타내었다.
배합 장비로는 KOBELCO BB_L1600IM Intermeshing 타입 밴버리 믹서를 사용하였으며, 50 ℃, 6 인치 Roll 에서 고무 시트를 제조하여 물성 평가용 시편을 만드는데 사용하였다.
1 차 배합: 밴버리 믹서에 고무, 실리카, 스테아르산 등 표 1 의 1 차 배합용 약품을 넣고 Rotor 속도 80 rpm, 출발 온도 70 ℃에서 시작하여 자동으로 150 ℃에 도달하도록 Rotor 속도를 조절하였다. 150℃ 도달 후 200 초간 온도를 유지하며 믹싱을 계속한 후 1 차 배합을 종료 하였다. 이렇게 얻어진 1 차 배합물은 상온에서 2 시간 이상 충분히 냉각시킨 후 2 차 배합에 사용하였다.
상기 1차 배합에서, 무기충진제는 실리카 50 중량부 및 카본블랙 20 중량부를 혼합한 것과, 실리카 단독으로 70 중량부를 포함하는 것, 두 가지 종류의 무기충진제를 사용하여 배합하였다.
2 차 배합: 충분히 냉각된 1 차 배합물을 반바리 믹서에 다시 투입하고 가교제인황과 가교촉진제인 DPG, CZ 를 첨가한 후 40 rpm 에서 배합온도 40 ℃ 에서 1 분 30 초 동안 배합한다. 이후 50 ℃ 6 인치 Roll 을 이용하여 4mm 두께로 시트 성형 후 가교용 시편을 제조하는데 사용하였다.
물성 측정용 시편 가교는 160 ℃에서 각각의 배합물 가교속도 (t’90)에 1.3배 한 시간 동안 프레스를 이용하여 제조하였다.
가교된 고무의 Tg나 Wet Grip (0 ℃ tanδ), RR (60 ℃ tanδ)등의 Rheology 물성은 독일 Gabo사의 Eplexor 500 N 장비를 사용하여 -40 ~ +70 범위에서 Temperatue Sweep 모드로 평가 하였다. 평가 조건은 승온속도를 2 ℃/min으로, Frequency는 10 Hz, Static Strain은 3.5 %, Dynamic Strain은 3.0 % 조건에서 측정하였다.
배합제 화합물명/제품명 중량부(phr) 비고
고무 LG SSBR 100 1 차 배합
실리카(실리카+카본블랙) Degussa 7000GR(7000GR+HAF) 70(50+20)
Oil TDAE 37.5
X50S(Degussa) 50% 카본 블랙 및 50% 비스(3-트리에톡시실릴프로필테트라술판) 11.2
스테아르산 - 2.0
ZnO - 3.0
RD 폴리머라이즈드 2,2,4-트리메칠-1,2-디하이드로퀴놀린, Flexsys 2.0
6PPD N-1,3-디메틸부틸-N’-페닐-p-페닐렌디아민, Flexsys 2.0
WAX - 1.0
DPG 디페닐구아니딘, Flexsys 1.75 2 차 배합
- 1.5
CZ N-t-부틸-2-벤조티아질 술폰아미드, Flexsys 2.0
실시예 1 비교예 1 비교예 2 실시예 1 실시예 2 비교예 3
변성방법 주석계+아미노 실란계 미변성 아미노 실란계 주석계+아미노 실란계 주석계+아미노 실란계 아미노 실란계
무기 충진제 종류 혼합 (실리카 50 중량부 + 카본블랙 20 중량부) 실리카 70 중량부
BaseRubber No.2 반응기무니점도(ML1+4@100 ℃) 38.7 96.9 59.0 38.7 38.7 62.3
최종 무니점도 98.6 98.1 64.0 98.6 70.4 68.8
SM 함량, % 27.0 26.0 26.0 27.0 26.2 26.2
Vinyl함량, % 38.3 38.5 38.2 38.3 38.3 37.0
Mn * 105 2.80 2.60 1.69 2.80 2.34 2.23
Mw * 105 8.51 7.57 4.89 8.51 6.99 5.88
MWD 3.03 2.92 2.90 3.03 2.99 2.64
GreenCompound Compound무니점도 72 115 87 87 63 102
Δ무니점도(Comp.-Base) -26.6 +16.9 +23 -11.6 -7.4 +33.2
Bound RubberIndex, %100 131 100 123 129 128 137
Tc’90, min 18.45 17.81 17.17 17.10 17.32 16.30
CuredRubber 300% 모둘러스Index, % 105 100 113 95 93 105
인장강도 Index% 115 100 110 107 104 104
신율 Index, % 113 100 102 113 115 104
Tg, ℃ -11.7 -12.3 -11.8 -11.8 -11.2 -13.8
Wet GripIndex,%(0℃ tanδ기준) 102 100 106 104 108 103
RR Index, %(60℃ tanδ 기준) 111 100 114 110 107 116
표 2에서 보는 바와 같이, 비교예 1과 같이 주석 커플링 반응 또는 3-(디에톡시(메틸)실릴)-N,N-디에틸프로판-1-아민변성제 반응이 없는 경우 커플링 전 두번째 반응기의 무니점도와 최종 반응물의 무니점도 차이가 거의 없으나 실시예 1 및 2와 같이 사염화주석으로 커플링 반응을 시행한 경우에는 두번째와 최종 반응물 사이에 무니점도 차이가 매우 크게 발생하여 주석 커플링 반응이 잘 이루어졌음을 확인할 수 있다.
또한 아미노 실란계 변성제로 말단 변성을 실시한 경우에는 무기 충진제와의 배합 후 바운드러버 함량에서 차이가 발생하며 이는 분자쇄에 붙은 극성 관능기와 무기 충진제와의 상호작용이 발생하여 무기 충진제 표면에 물리 화학적으로 흡착된 고무량이 늘어나기 때문이다. 즉, 관능기에 의한 변성이 많이 될수록 실리카 등과의 화학적 흡착이 증가되어 바운드러버 양이 증가되는 것이다.
혼합 충진제로 실리카 50 중량부와 카본블랙 20 중량부를 사용한 실시예 1 및 비교예 1 및 2를 비교하면, 3-(디에톡시(메틸)실릴)-N,N-디에틸프로판-1-아민변성제 만으로 양 말단을 변성시킨 비교예 2의 경우 미변성 중합체인 비교예 1에 비하여, 인장물성, Wet Grip물성 및 RR(Rolling Resistance)물성 등이 향상됨을 알 수 있다. 그러나 가공성은 무기충진제와의 배합전후에 무니점도 차이, 즉 Δ무니점도에서 Base Rubber 보다 증가되어 다소 열세한 것을 알 수 있다.
반면, 사염화 주석으로 먼저 커플링 후 3-(디에톡시(메틸)실릴)-N,N-디에틸프로판-1-아민변성제로 분자쇄 말단을 변성시킨 실시예 1의 경우 비교예 1의 미변성 중합체 보다 주요 물성 모두 개선됨을 알 수 있으며, 양 말단이 아미노 실란계 변성제로 변성된 비교예 2와 비교하는 경우에도, RR 물성에서 약간 떨어지나 그 차이가 크지 않은 반면 Δ무니점도 차이가 커 즉, 배합후 무니점도가 크게 낮아져 가공성이 매우 우수함을 알 수 있다.
이를 통해 주석 커플링과 아미노 실란계 변성을 모두 실시한 실시예 2의 경우 주요 물성 및 가공성의 조화가 우수한 중합체임을 알 수 있었다.
충진제로 실리카 단독으로 70 중량부를 사용한 실시예 1 및 2, 비교예 3을 비교하여 보면, 주석 커플링 후 3-(디에톡시(메틸)실릴)-N,N-디에틸프로판-1-아민변성제로 말단 변성시킨 실시예 1 및 2는 아미노 실란계 변성제 만으로 양 말단을 변성시킨 비교예 3 보다 RR 성능에서는 약간 열세이나 그 정도가 크지 않은 반면, Δ무니점도 차이에서는 월등히 우수함을 알 수 있다.
한편, 실리카 배합의 경우 카본블랙 배합보다 가공하기 어려운 것으로 알려져 있는 바, 이 경우 다이리튬 촉매를 이용하여 주석 커플링 반응 및 아미노 실란계 변성 반응을 통해 주요 물성 및 가공성을 조화롭게 향상시킨 본 발명의 변성 공액디엔계 중합체의 사용이 특히 유용함을 확인 할 수 있었다.

Claims (27)

  1. 하기 화학식 1로 표시되는 변성 공액디엔계 중합체:
    [화학식 1]
    Figure PCTKR2016011276-appb-I000008
    상기 화학식 1에서,
    R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기이고,
    R2 및 R3는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기 또는 산소 또는 질소를 함유한 탄소수 1 내지 20의 탄화수소기이고,
    R2 및 R3는 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며,
    P는 변성 공액디엔계 중합체 사슬이고,
    X는 할로겐기이고,
    A는 3급 아민이며,
    a 및 b는 서로 독립적으로 1 내지 4의 정수이며,
    a+b≤4이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서,
    R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 10의 알킬기이고,
    R2 및 R3은 서로 독립적으로 1 내지 10의 알킬기; 산소를 함유한 탄소수 1 내지 10의 알킬기; 또는 질소를 함유한 탄소수 1내지 10의 알킬기인 것인 변성 공액디엔계 중합체.
  3. 청구항 1에 있어서,
    상기 화학식 1에서,
    R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 6의 알킬기이고,
    R2 및 R3은 서로 독립적으로 탄소수 1 내지 6의 알킬기 또는 산소를 함유한 탄소수 1 내지 6의 알킬기인 것인 변성 공액디엔계 중합체.
  4. 청구항 1에 있어서,
    상기 화학식 1에서,
    X는 F, Cl, Br 및 I 중에서 선택된 것인 변성 공액디엔계 중합체.
  5. 청구항 1에 있어서,
    상기 중합체는 80 ppm 내지 700 ppm의 실리카(Si)를 함유하는 것인 변성 공액디엔계 중합체.
  6. 청구항 1에 있어서,
    상기 중합체는 50 ppm 내지 550 ppm의 주석(Sn)을 함유하는 것인 변성 공액디엔계 중합체.
  7. 청구항 1에 있어서,
    상기 변성 공액디엔계 중합체는 공액디엔계 단량체 및 방향족 비닐계 단량체의 공중합체인 것인 변성 공액디엔계 중합체.
  8. 청구항 1에 있어서,
    상기 공중합체는 방향족 비닐계 단량체 유래 단위를 40 중량% 이하로 포함하는 것인 변성 공액디엔계 중합체.
  9. 청구항 1에 있어서,
    상기 중합체는 중량평균분자량이 250,000 g/mol 내지 1,600,000 g/mol인 것인 변성 공액디엔계 중합체.
  10. 청구항 1에 있어서,
    상기 중합체는 중량평균분자량(Mw) 및 수평균분자량(Mn)의 비(Mw/Mn)가 1.7 내지 3.5인 것인 변성 공액디엔계 중합체.
  11. 1) 탄화수소 용매 중에서, 다관능성 음이온 중합 개시제 존재 하 공액디엔계 단량체 또는 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 양 말단에 알칼리 금속이 결합된 활성 중합체를 제조하는 단계;
    2) 상기 중합체를 하기 화학식 2로 표시되는 주석계 화합물과 반응시키는 단계; 및
    3) 상기 반응 후 하기 화학식 3으로 표시되는 아미노 실란계 화합물과 반응시키는 단계를 포함하는 하기 화학식 1로 표시되는 청구항 1의 변성 공액디엔계 중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2016011276-appb-I000009
    [화학식 2]
    Figure PCTKR2016011276-appb-I000010
    [화학식 3]
    Figure PCTKR2016011276-appb-I000011
    상기 화학식 1, 화학식 2 또는 화학식 3에서,
    R, R4 및 R5는 서로 독립적으로 탄소수 1 내지 20의 탄화수소기이고,
    R1, R2 및 R3은 서로 독립적으로 탄소수 1 내지 20의 탄화수소기; 또는 산소 또는 질소를 함유한 탄소수 1 내지 20의 탄화수소기이고,
    R2 및 R3는 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며,
    P는 변성 공액디엔계 중합체 사슬이고,
    X는 할로겐기이고,
    A는 3급 아민이며,
    a, b 및 m은 서로 독립적으로 1 내지 4의 정수이며,
    는 1 내지 4의 정수이고, b는 1 내지 4의 정수이며,
    a+b≤4이다.
  12. 청구항 11에 있어서,
    상기 다관능성 음이온 중합 개시제는 탄화수소 용매 중에서 방향족 화합물과 유기리튬 화합물을 반응시켜 제조된 것인 변성 공액디엔계 중합체의 제조방법.
  13. 청구항 12에 있어서,
    상기 방향족 화합물과 유기리튬 화합물은 1: 1 내지 2 몰비로 반응시키는 것인 변성 공액디엔계 중합체의 제조방법.
  14. 청구항 12에 있어서,
    상기 방향족 화합물은 o-디이소프로페닐 벤젠, m-디이소프로페닐 벤젠, p-디이소프로페닐 벤젠, o-디비닐 벤젠, m-디비닐 벤젠, p-디비닐 벤젠, 1,2,4-트리비닐 벤젠, 1,2-비닐-3,4-디메틸벤젠, 1,3-디비닐 나프탈렌, 1,3,5-트리비닐나프탈렌, 2,4-디비닐비페닐, 3,5,4'-트리베닐 비페닐, 1,2-디비닐-3,4-디메틸벤젠 및 1,5,6-트리비닐-3,7-디에틸 나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
  15. 청구항 12에 있어서,
    상기 유기리튬 화합물은 에틸리튬, 프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, 페닐리튬, 리튬이데틸 아미드 및 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
  16. 청구항 11에 있어서,
    상기 다관능성 음이온 중합 개시제는 단량체 총 100 중량부를 기준으로 0.10 중량부 내지 0.5 중량부로 사용하는 것인 변성 공액디엔계 중합체의 제조방법.
  17. 청구항 11에 있어서,
    상기 화학식 2로 표시되는 주석계 화합물은 메틸 트리클로로주석, 디메틸 디클로로주석, 에틸 트리클로로주석, 디에틸 디클로로주석, 부틸 트리클로로주석, 디부틸 디클로로주석, 옥틸 트리클로로주석, 디옥틸 디클로로주석, 메틸 트리브로모주석, 디메틸 디브로모주석, 옥틸 트리브로모주석, 디옥틸 디브로모주석, 테트라클로로주석, 테트라브로모주석, 테트라요오드화주석, 사이클로헥실 트리클로로부석 및 페닐트리 클로로주석으로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
  18. 청구항 11에 있어서,
    화학식 3으로 표시되는 아미노 실란계 화합물은 3-(디에톡시(메틸)실릴)-N,N-디에틸프로판-1-아민 또는 2-(N,N-디메틸아미노프로필)-2,5,5-트리메틸-1,3,2-디옥시실리넨인 것인 변성 공액디엔계 중합체의 제조방법.
  19. 청구항 11에 있어서,
    상기 화학식 2로 표시되는 주석계 화합물은 다관능성 음이온 중합 개시제 내 리튬 1 mol 당 주석계 화합물 내 주석이 0.05 mol 내지 0.25 mol이 되는 비율로 사용하는 것인 변성 공액디엔계 중합체의 제조방법.
  20. 청구항 11에 있어서,
    상기 화학식 3으로 표시되는 실란계 화합물은 다관능성 음이온 중합 개시제 내 리튬 1 mol 당 아미노 실란계 화합물 내 실리카가 0.1 mol 내지 1.0 mol이 되는 비율로 사용하는 것인 변성 공액디엔계 중합체의 제조방법.
  21. 청구항 11에 있어서,
    상기 단계 1)의 중합은 극성 첨가제를 더 첨가하여 수행하는 것인 변성 공액디엔계 중합체의 제조방법.
  22. 청구항 21에 있어서,
    상기 극성 첨가제는 단량체 총 100 중량부 대비 0.001 중량부 내지 5.0 중량부로 첨가하는 것인 변성 공액디엔계 중합체의 제조방법.
  23. 청구항 1의 변성 공액디엔계 중합체를 포함하는 고무 조성물.
  24. 청구항 23에 있어서,
    상기 고무 조성물은 변성 공액디엔계 중합체를 20 중량% 내지 90 중량%로 포함하는 것인 고무 조성물.
  25. 청구항 23에 있어서,
    상기 고무 조성물은 중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부의 충진제를 포함하는 것인 고무 조성물.
  26. 청구항 25에 있어서,
    상기 충진제는 실리카계 충진제, 카본블랙계 충진제 또는 이들 조합인 것인 고무 조성물.
  27. 청구항 23의 고무 조성물로부터 제조된 타이어.
PCT/KR2016/011276 2015-10-08 2016-10-07 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물 WO2017061831A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680009779.0A CN107207655B (zh) 2015-10-08 2016-10-07 改性的基于共轭二烯的聚合物,其制备方法和包含其的橡胶组合物
US15/546,119 US10414841B2 (en) 2015-10-08 2016-10-07 Modified conjugated diene-based polymer, method for preparing the same and rubber composition including the same
EP16853947.6A EP3246344B1 (en) 2015-10-08 2016-10-07 Modified conjugated diene-based polymer, method for preparing same, and rubber composition containing same
JP2017538314A JP6503075B2 (ja) 2015-10-08 2016-10-07 変性共役ジエン系重合体、この製造方法及びこれを含むゴム組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0141830 2015-10-08
KR20150141830 2015-10-08

Publications (1)

Publication Number Publication Date
WO2017061831A1 true WO2017061831A1 (ko) 2017-04-13

Family

ID=58488016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011276 WO2017061831A1 (ko) 2015-10-08 2016-10-07 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물

Country Status (6)

Country Link
US (1) US10414841B2 (ko)
EP (1) EP3246344B1 (ko)
JP (1) JP6503075B2 (ko)
KR (1) KR101889156B1 (ko)
CN (1) CN107207655B (ko)
WO (1) WO2017061831A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11117997B2 (en) 2018-12-07 2021-09-14 The Goodyear Tire & Rubber Company Functionalized polymer, rubber composition and pneumatic tire
US11118050B2 (en) 2018-12-07 2021-09-14 The Goodyear Tire & Rubber Company Functionalized polymer, rubber composition and pneumatic tire
EP3667075A1 (en) 2018-12-13 2020-06-17 Siemens Gamesa Renewable Energy A/S Correcting measured wind characteristic of a wind turbine
KR102536519B1 (ko) * 2019-11-29 2023-05-26 주식회사 엘지화학 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284503A (ja) * 1988-05-10 1989-11-15 Sumitomo Chem Co Ltd 変性ジエン系重合体ゴムの製造方法
WO2008123164A1 (ja) * 2007-03-23 2008-10-16 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
KR20090091807A (ko) * 2006-12-27 2009-08-28 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 및 고무 조성물
KR20100051789A (ko) * 2007-06-18 2010-05-18 가부시키가이샤 브리지스톤 아미노기 함유 할로실란으로 관능화된 중합체
KR20110070871A (ko) * 2008-10-14 2011-06-24 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체, 그의 제조 방법, 변성 공액 디엔계 중합체 조성물, 및 타이어

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL86588C (ko) 1980-09-20
CA1338805C (en) 1988-05-02 1996-12-17 Akio Imai Modified diene polymer rubbers
JP2000169631A (ja) * 1998-12-03 2000-06-20 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物
DE10036055A1 (de) 2000-07-25 2002-02-07 Bayer Ag Verfahren zur Herstellung von di- oder trifunktionellen Initiatorsystemen auf Lithiumbasis sowie deren Verwendung
KR101503547B1 (ko) 2007-03-23 2015-03-17 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체 및 고무 조성물
BR112012031342B8 (pt) 2010-06-08 2023-04-18 Jsr Corp Método para produzir borracha de dieno conjugado modificado, borracha de dieno conjugado modificado, composição de borracha, e, pneu
JP6003651B2 (ja) * 2010-12-01 2016-10-05 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
KR101800496B1 (ko) * 2014-06-16 2017-11-22 주식회사 엘지화학 변성 공액 디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공액 디엔계 중합체의 제조방법
KR101724795B1 (ko) * 2014-07-30 2017-04-07 주식회사 엘지화학 변성 공액 디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공액 디엔계 중합체의 제조방법
JP2016037543A (ja) * 2014-08-07 2016-03-22 日本ゼオン株式会社 共役ジエン系ゴムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284503A (ja) * 1988-05-10 1989-11-15 Sumitomo Chem Co Ltd 変性ジエン系重合体ゴムの製造方法
KR20090091807A (ko) * 2006-12-27 2009-08-28 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 및 고무 조성물
WO2008123164A1 (ja) * 2007-03-23 2008-10-16 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
KR20100051789A (ko) * 2007-06-18 2010-05-18 가부시키가이샤 브리지스톤 아미노기 함유 할로실란으로 관능화된 중합체
KR20110070871A (ko) * 2008-10-14 2011-06-24 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체, 그의 제조 방법, 변성 공액 디엔계 중합체 조성물, 및 타이어

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3246344A4 *

Also Published As

Publication number Publication date
US20180016369A1 (en) 2018-01-18
EP3246344B1 (en) 2019-12-25
KR101889156B1 (ko) 2018-09-20
KR20170042257A (ko) 2017-04-18
EP3246344A4 (en) 2018-01-10
JP2018510922A (ja) 2018-04-19
JP6503075B2 (ja) 2019-04-17
US10414841B2 (en) 2019-09-17
CN107207655A (zh) 2017-09-26
EP3246344A1 (en) 2017-11-22
CN107207655B (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018030645A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2015056898A1 (ko) 변성 공액 디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128285A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2018128290A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019216645A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2017078408A1 (ko) 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체
WO2020013638A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019216636A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017061831A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2015056994A1 (ko) 말단 기능성 공액 디엔계 중합체 및 이의 제조방법
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017105012A1 (ko) 변성 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2020130740A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017111487A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2014175562A1 (ko) 변성 공액 디엔계 중합체의 연속 제조방법, 이로부터 수득된 중합체 및 이를 포함하는 고무 조성물
WO2016093496A1 (ko) 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
WO2017150852A1 (ko) 아자실란계 변성제 및 이를 이용한 변성 공액디엔계 중합체의 제조방법
WO2015057021A1 (ko) 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2018105845A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이들의 제조방법
WO2021107434A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128289A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538314

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016853947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15546119

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE