US10059149B2 - Organolithium compound, method for preparing modified conjugated diene-based polymer using the same, and modified conjugated diene-based polymer - Google Patents

Organolithium compound, method for preparing modified conjugated diene-based polymer using the same, and modified conjugated diene-based polymer Download PDF

Info

Publication number
US10059149B2
US10059149B2 US15/555,729 US201615555729A US10059149B2 US 10059149 B2 US10059149 B2 US 10059149B2 US 201615555729 A US201615555729 A US 201615555729A US 10059149 B2 US10059149 B2 US 10059149B2
Authority
US
United States
Prior art keywords
conjugated diene
based polymer
modified conjugated
organolithium compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/555,729
Other versions
US20180056716A1 (en
Inventor
Ho Young Lee
No Ma Kim
Min Sik MUN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Assigned to LG CHEM, LTD. reassignment LG CHEM, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, NO MA, LEE, HO YOUNG, MUN, MIN SIK
Publication of US20180056716A1 publication Critical patent/US20180056716A1/en
Application granted granted Critical
Publication of US10059149B2 publication Critical patent/US10059149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to an organolithium compound, a method for preparing a modified conjugated diene-based polymer using the same, and a modified conjugated diene-based polymer.
  • the present invention has been devised in consideration of the above-mentioned problems, and the object of the present invention is to provide an organolithium compound having a novel structure.
  • Another object of the present invention is to provide a modified conjugated diene-based polymer including a functional group derived from the organolithium compound.
  • Still another object of the present invention is to provide a method for preparing a modified conjugated diene-based polymer using the organolithium compound as a polymerization initiator.
  • Still another object of the present invention is to provide a modified conjugated diene-based polymer rubber composition including the modified conjugated diene-based polymer. Further another object of the present invention is to provide a tire including the rubber composition.
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1 to 5.
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1 to 5
  • P is a conjugated diene-based polymer chain.
  • the present invention provides a method for preparing a modified conjugated diene-based polymer, comprising polymerizing conjugated diene-based monomers, or conjugated diene-based monomers and aromatic vinyl-based monomers in the presence of an organolithium compound represented by Formula 1 in a hydrocarbon solvent.
  • the present invention provides a rubber composition including the modified conjugated diene-based polymer, and a tire including the rubber composition.
  • the organolithium compound represented by Formula 1 according to the present invention is used as a polymerization initiator of a conjugated diene-based polymer, and may provide the polymer chain of the conjugated diene-based polymer with a functional group.
  • the polymer chain in the modified conjugated diene-based polymer according to the present invention is combined with a functional group derived from the organolithium compound represented by Formula 1, affinity with a filler, specifically with a silica-based filler may be excellent.
  • a modified conjugated diene-based polymer may be easily prepared by using the organolithium compound represented by Formula 1.
  • the rubber composition according to the present invention includes a modified conjugated diene-based polymer having excellent affinity with a filler, the processability thereof may be good, and as a result, molded articles, for example, tires manufactured using the rubber composition may have excellent tensile strength, abrasion resistance, low fuel consumption ratio and wet traction, and low rolling resistance.
  • the present invention provides an organolithium compound having a novel structure, which may be used as a polymerization initiator during the preparing of a polymer including conjugated diene-based monomer-derived units.
  • the organolithium compound according to an embodiment of the present invention is characterized in being represented by the following Formula 1:
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1 to 5.
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, and particularly, R 1 , R 2 and R 5 may be each independently selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, and an arylalkyl group having 6 to 10 carbon atoms.
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms, and particularly, may be an alkylene group having 1 to 10 carbon atoms such as methylene, ethylene and propylene; or an arylene group having 6 to 10 carbon atoms such as phenylene.
  • the organolithium compound may be Formula 1 where R 1 , R 2 and R 5 are each independently an alkyl group having 1 to 6 carbon atoms, R 3 and R 4 are each independently an alkylene group having 1 to 6 carbon atoms, and n is an integer of 1 to 3. More particularly, Formula 1 may be represented by the following Formula 2:
  • the organolithium compound according to an embodiment of the present invention may be used as a polymerization initiator of a polymer.
  • the organolithium compound may be used as a polymerization initiator during the preparing of a polymer to introduce a functional group into a polymer chain, thereby playing the role of modifying the structure, characteristics and physical properties of the polymer.
  • the polymer may be a polymer including conjugated diene-based monomer-derived units. That is, the organolithium compound may be a polymerization initiator for a polymer including conjugated diene-based monomer-derived units.
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1 to 5
  • P is a conjugated diene-based polymer chain.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may be prepared by the following preparation method using the organolithium compound represented by the above Formula 1.
  • the functional group derived from the organolithium compound represented by the above Formula 1 the physical properties of the polymer may be improved.
  • the modified conjugated diene-based polymer represented by the above Formula 3 may include an amine group derived from the organolithium compound represented by the above Formula 1, and thus may have good affinity with a filler such as silica.
  • a filler such as silica.
  • modified conjugated diene-based polymer represented by the above Formula 3 may be represented by the following Formula 4:
  • P is a conjugated diene-based polymer chain.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may be a homopolymer or a copolymer and may be prepared by the following preparation method.
  • the polymer when the modified conjugated diene-based polymer is a homopolymer, the polymer may be a homopolymer of conjugated diene-based monomers, and P in Formula 3 may be a polymer chain derived from conjugated diene-based monomers.
  • the modified conjugated diene-based polymer when the modified conjugated diene-based polymer is a copolymer, the polymer may include conjugated diene-based monomer-derived units and aromatic vinyl-based monomer-derived units, and P in Formula 3 may be a copolymer chain derived from the conjugated diene-based monomers and the aromatic vinyl-based monomers.
  • the copolymer when the modified conjugated diene-based polymer is a copolymer, the copolymer may be a random copolymer.
  • the conjugated diene-based copolymer chain may be a polymer chain obtained by including from 0.0001 parts by weight to 50 parts by weight, particularly, from 10 parts by weight to 40 parts by weight, or from 15 parts by weight to parts by weight of the aromatic vinyl-based monomer-derived units on the basis of 100 parts by weight of the total amount of the conjugated diene-based monomer-derived units and the aromatic vinyl-based monomer-derived units.
  • the “random copolymer” may mean randomly arranged constituting units of a copolymer.
  • the modified conjugated diene-based polymer may have a molecular weight distribution (Mw/Mn) of 0.5 to 10, particularly, 0.5 to 5, more particularly 1 to 5.
  • Mw/Mn molecular weight distribution
  • the molecular weight distribution of the modified conjugated diene-based polymer satisfies the above range, mixing characteristics with inorganic particles may be excellent, and the physical properties of the polymer may be improved and the processability thereof may be largely improved.
  • the modified conjugated diene-based polymer may have the vinyl content of 5 wt % or more, particularly, from 8 wt % to 70 wt %.
  • the vinyl content means an amount of units having vinyl groups, or an amount of not 1,4-added but 1,2-added modified conjugated diene-based monomers on the basis of 100 wt % of conjugated diene-based monomers.
  • the glass transition temperature of a polymer increases, and when applying the polymer to a tire, physical properties required for the tire such as driving resistance and braking force may be satisfied, and fuel consumption decreasing effect may be attained.
  • a preparation method comprises a step of polymerizing conjugated diene-based monomers, or conjugated diene-based monomers and aromatic vinyl-based monomers in the presence of an organolithium compound represented by the following Formula 1 in a hydrocarbon solvent (step A):
  • R 1 , R 2 and R 5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 3 and R 4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1 to 5.
  • organolithium compound represented by Formula 1 may be the same as described above.
  • Step A is a step for preparing an active polymer in which a functional group derived from the organolithium compound represented by the above Formula 1 is combined with at least one terminal thereof, and is performed by polymerizing conjugated diene-based monomers, or conjugated diene-based monomers and aromatic vinyl-based monomers in the presence of the organolithium compound represented by the above Formula 1 in a hydrocarbon solvent.
  • a single type of conjugated diene-based monomers, or both types of conjugated diene-based monomers and aromatic vinyl-based monomers may be used as monomers. That is, the polymer prepared through the preparation method according to an embodiment of the present invention may be a conjugated diene-based monomer homopolymer, or a copolymer derived from conjugated diene-based monomers and aromatic vinyl-based monomers.
  • the conjugated diene-based monomer may be, without specific limitation, at least one selected from the group consisting of, for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene, and 2-phenyl-1,3-butadiene.
  • the conjugated diene-based monomers may be used in an amount such that an amount of the conjugated diene-based monomer-derived units in a finally prepared modified conjugated diene-based polymer is 60 wt % or more, particularly, from 60 wt % to 90 wt %, more particularly, from 60 wt % to 85 wt %.
  • the aromatic vinyl-based monomer may be, without specific limitation, at least one selected from the group consisting of, for example, styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4-(p-methylphenyl)styrene, and 1-vinyl-5-hexylnaphthalene.
  • the aromatic vinyl-based monomers may be used in an amount such that an amount of the aromatic vinyl-based monomer-derived units in a finally prepared modified conjugated diene-based polymer is 40 wt % or less, particularly, from 10 wt % to 40 wt %, more particularly, from 15 wt % to 40 wt %.
  • the hydrocarbon solvent is not specifically limited and may be at least one selected from the group consisting of, for example, n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the organolithium compound may be used from 0.01 mmol to 10 mmol, from 0.05 mmol to 5 mmol, from 0.1 mmol to 2 mmol, or from 0.1 mmol to 1 mmol on the basis of 100 g of total monomers. If the amount of the organolithium compound satisfies the above range, an optimized conjugated diene-based polymer for preparing a modified conjugated diene-based polymer may be obtained.
  • the polymerization of step A may be performed by further adding a polar additive as needed, and the polar additive may be added in an amount of 0.001 g to 50 g, 0.01 g to 10 g, 0.005 g to 1 g, or 0.005 g to 0.2 g on the basis of 100 g of total monomers.
  • the amount of the polar additive may be from 0.001 g to 10 g, from 0.005 g to 1 g, or from 0.005 g to 0.2 g on the basis of 1 mmol of the total organolithium compound added.
  • the polar additive may be at least one selected from the group consisting of tetrahydrofuran, ditetrahydrofurylpropane, diethyl ether, cycloamyl ether, dipropyl ether, ethylene dimethyl ether, diethylene glycol, dimethyl ether, tertiary butoxyethoxyethane bis(3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine, and tetramethylethylenediamine.
  • the polymerization in the step of polymerizing may be, for example, an anion polymerization, and particularly, may be a living anionic polymerization in which an active terminal may be obtained through a propagation reaction by anions.
  • the polymerization may be, for example, polymerization with heating or polymerization at a constant temperature.
  • the polymerization with heating means a polymerization method including a step of increasing a reaction temperature by optionally applying heat after adding an organolithium compound, and the polymerization at a constant temperature means a polymerization method optionally not applying heat after adding an organolithium compound.
  • the polymerization temperature during the polymerization may be, for example, from ⁇ 20° C. to 200° C., from 0° C. to 150° C., or from 10° C. to 120° C.
  • a rubber composition including the modified conjugated diene-based polymer.
  • the rubber composition according to an embodiment of the present invention is characterized in including 100 parts by weight of the modified conjugated diene-based polymer; and from 0.1 parts by weight to 150 parts by weight of a filler.
  • the rubber composition may include the filler in an amount of 10 parts by weight to 150 parts by weight, or 50 parts by weight to 100 parts by weight.
  • the rubber composition may further include another rubber component in addition to the modified conjugated diene-based polymer as needed, and in this case, the rubber component may be included in an amount of 90 wt % or less on the basis of the total amount of the rubber composition. More particularly, the rubber component may be included in an amount of 1 part by weight to 900 parts by weight on the basis of 100 parts by weight of the modified conjugated diene-based copolymer.
  • the rubber component may be a natural rubber or a synthetic rubber, and the rubber component may be, for example, a natural rubber (NR) including cis-1,4-polyisoprene; a modified natural rubber which is obtained by modifying or purifying a common natural rubber, such as an epoxidized natural rubber (ENR), a deproteinized natural rubber (DPNR), and a hydrogenated natural rubber; and a synthetic rubber such as a styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), a butyl rubber (IIR), an ethylene-propylene copolymer, polyisobutylene-co-isoprene, neoprene, poly(ethylene-co-propylene), poly(styrene-co-butadiene), poly(styrene-co-isoprene), poly(styrene-co-isoprene-co-butadiene
  • the filler may be at least one selected from the group consisting of a silica-based filler, carbon black, and a mixture thereof.
  • a silica-based filler dispersibility may be largely improved, and hysteresis loss may be largely decreased due to the combination of silica particles with the terminal of the modified conjugated diene-based polymer of the present invention.
  • a silane coupling agent may be used together for the improvement of reinforcing and low exothermic properties.
  • the silane coupling agent may particularly include bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)trisulfide, bis(3-triethoxysilylpropyl)disulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N,N-
  • the silane coupling agent may be the bis(3-triethoxysilylpropyl)polysulfide or the 3-trimethoxysilylpropylbenzothiazyltetrasulfide in consideration of the improving effect of reinforcing properties.
  • a modified conjugated diene-based polymer in which a functional group having high affinity with a silica-based filler is introduced to an active portion as a rubber component, is used, and the amount of mixing of the silane coupling agent may be smaller than a common case.
  • the silane coupling agent may be used in an amount of 1 part by weight to 20 parts by weight on the basis of 100 parts by weight of the silica-based filler.
  • the silane coupling agent may be used in an amount of 5 parts by weight to 15 parts by weight on the basis of 100 parts by weight of silica.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and so may further include a vulcanizing agent.
  • the vulcanizing agent may be particularly a sulfur powder and may be included in an amount of 0.1 parts by weight to 10 parts by weight on the basis of 100 parts by weight of a rubber component. With the amount of the vulcanizing agent in the above range, elasticity and strength required for a vulcanized rubber composition may be secured, and at the same time, a low combustion ratio may be attained.
  • the rubber composition according to an embodiment of the present invention may further include various additives used in a common rubber industry in addition to the above components, particularly, a vulcanization accelerator, a process oil, a plasticizer, an antiaging agent, a scorch preventing agent, a zinc white, stearic acid, a thermosetting resin, or a thermoplastic resin.
  • various additives used in a common rubber industry particularly, a vulcanization accelerator, a process oil, a plasticizer, an antiaging agent, a scorch preventing agent, a zinc white, stearic acid, a thermosetting resin, or a thermoplastic resin.
  • the vulcanization accelerator is not specifically limited and may particularly include a thiazole-based compound such as 2-mercaptobenzothiazole (M), dibenzothiazyldisulfide (DM), and N-cyclohexyl-2-benzothiazylsulfenamide (CZ), or a guanidine-based compound such as diphenylguanidine (DPG).
  • M 2-mercaptobenzothiazole
  • DM dibenzothiazyldisulfide
  • CZ N-cyclohexyl-2-benzothiazylsulfenamide
  • DPG diphenylguanidine
  • the vulcanization accelerator may be included in an amount of 0.1 parts by weight to 5 parts by weight on the basis of 100 parts by weight of the rubber component.
  • the process oil acts as a softener in a rubber composition and may particularly include paraffin-based, naphthene-based, or aromatic compounds. More particularly, an aromatic process oil may be used in consideration of tensile strength and abrasion resistance, and the naphthene-based or paraffin-based process oil may be used in consideration of hysteresis loss and low temperature properties.
  • the process oil may be included in an amount of 100 parts by weight or less on the basis of 100 parts by weight of the rubber component. When the process oil is included in the above-described amount, the deterioration of the tensile strength and the low exothermic properties (low fuel combustion ratio) of the vulcanized rubber may be prevented.
  • the antiaging agent may particularly include N-isopropyl-N′-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, or a condensate of diphenylamine and acetone at a high temperature.
  • the antiaging agent may be used in an amount of 0.1 parts by weight to 6 parts by weight on the basis of 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention may be obtained by mulling using a mulling apparatus such as a banbury mixer, a roll, and an internal mixer according to a mixing prescription.
  • a rubber composition having low exothermic properties and good abrasion resistance may be obtained due to a vulcanization process after a molding process.
  • the rubber composition may be usefully used for the manufacture of each member of a tire such as a tire tread, an under tread, a side wall, a carcass coating rubber, a belt coating rubber, a bead filler, a chafer, and a bead coating rubber, or for the manufacture of rubber products for various industries such as a dustproof rubber, a belt conveyor, and a hose.
  • the tire may include a tire or a tire tread.
  • the present invention relates to a tire or a tire tread including the modified conjugated diene-based polymer rubber composition.
  • the tire or the tire tread may be manufactured using the rubber composition, and has merits of excellent tensile strength, abrasion resistance, and wet traction, and low rolling resistance.
  • active Li concentration was measured via a titration method using diphenyl acetic acid, and the active Li concentration thus measured was 0.55 M (83% degree in comparison with a calculated active Li concentration (0.66 M)).
  • a styrene-butadiene copolymer was prepared by the same method described in Example except for using 0.4 mmol of n-butyllithium instead of the organolithium compound represented by Formula 2 as a polymerization initiator.
  • Two specimens having a weight of at least 15 g were pre-heated for 1 minute and then heated at 100° C. for 4 minutes, and measurement was conducted using MV-2000 manufactured by ALPHA Technologies Co., Ltd.
  • SM styrene derived unit
  • the maximum peak molecular weight (Mp), weight average molecular weight (Mw), and number average molecular weight (Mn) of each copolymer were measured by gel permeation chromatography (GPC) analysis under conditions of 40° C.
  • GPC gel permeation chromatography
  • two columns of PLgel Olexis and one column of PLgel mixed-C manufactured by Polymer Laboratories Co. Ltd. were used in combination as columns, and all newly replaced columns were mixed bed type columns.
  • PS polystyrene
  • Polydispersity index (PDI) was calculated as a ratio (Mw/Mn) of the weight average molecular weight and the number average molecular weight, which were measured by the above method.
  • Each rubber composition was prepared via a first stage mulling and a second stage mulling.
  • the amounts used of materials except for a modified styrene-butadiene copolymer were indicated on the basis of 100 parts by weight of the copolymer.
  • each copolymer 100 parts by weight of each copolymer, 70 parts by weight of silica, 11.1 parts by weight of bis(3-triethoxysilylpropyl)tetrasulfide as a silane coupling agent, 2 parts by weight of an antiaging agent (TMDQ), 2 parts by weight of an antioxidant, 3 parts by weight of zinc oxide (ZnO), 2 parts by weight of stearic acid, and 1 part by weight of wax were mixed and mulled at 80 rpm conditions by using a banbury mixer equipped with a temperature controlling apparatus. In this case, the temperature of the mulling apparatus was controlled, and a first mixture was obtained at a discharge temperature of 145° C. to 150° C.
  • TMDQ antiaging agent
  • ZnO zinc oxide
  • the first mixture was cooled to room temperature, and 1.75 parts by weight of a rubber accelerator (CZ), 1.5 parts by weight of a sulfur powder, and 2 parts by weight of a vulcanization accelerator were added to the mulling apparatus and mixed at a temperature of 100° C. or less to obtain a second mixture. Then, each vulcanized rubber was prepared by vulcanizing using a vulcanizing press at 180° C. for t90+10 minutes.
  • CZ rubber accelerator
  • Tensile properties were measured by manufacturing a specimen (thickness 25 mm, length 80 mm) and measuring tensile strength when breaking and tensile stress when elongated by 300% (300% modulus) of each specimen according to an ASTM 412 tension test method. Particularly, a Universal Test machine 4204 tension tester of Instron Co., Ltd. was used, and measurement was performed at room temperature at a rate of 50 cm/min, to obtain a tensile strength value and a tensile stress value when elongated by 300%.
  • Viscoelasticity properties were measured by using a dynamic mechanical analyzer of TA Co., Ltd.
  • a Tan ⁇ value was measured by changing deformation at each measurement temperature ( ⁇ 60° C. to 60° C.) with a twist mode and a frequency of 10 Hz. If the Tan ⁇ value at a low temperature of 0° C. increases, wet traction becomes good, and if the Tan ⁇ value at a high temperature of 60° C. decreases, hysteresis loss decreases, low rolling resistance of a tire, i.e., a low fuel consumption ratio becomes good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Abstract

The present invention relates to an organolithium compound, and a method for preparing a modified conjugated diene-based polymer using the same. A modified conjugated diene-based polymer having good compatibility with an inorganic filler and improved processability may be provided, and by using a rubber composition including such modified conjugated diene-based polymer, a tire having excellent exothermic properties, tensile strength, abrasion resistance, low fuel consumption and wet traction, and low rolling resistance may be provided.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/KR2016/012537, filed Nov. 2, 2016, which claims priority to Korean Patent Application No. 10-2015-0153294, filed Nov. 2, 2015, the disclosures of which are incorporated herein by reference.
TECHNICAL FIELD
The present invention relates to an organolithium compound, a method for preparing a modified conjugated diene-based polymer using the same, and a modified conjugated diene-based polymer.
BACKGROUND ART
With respect to the latest trends in the automobile industry, durability and lowering fuel consumption are constant requirements, and efforts to satisfy such requirements are continuously underway. In particular, many attempts have been made at reinforcing the physical properties of rubber which is a material for automobile tires, specifically, tire treads which make direct contact with the ground. While tire treads conventionally used an inorganic filler, etc. in combination with a conjugated diene-based rubber to reinforce the above-described physical properties, defects such as a large hysteresis loss or reduced dispersibility occurred.
Accordingly, as a tire tread material for improving the performance of automobile tires, the development of rubbers having good processability, excellent wet traction and mechanical strength, and low rolling resistance is required.
To this end, while research on a method of preparing a modified conjugated diene-based polymer has been done in, for example, WO2005-097845 A1, the effects thereof are insufficient.
DISCLOSURE OF THE INVENTION Technical Problem
The present invention has been devised in consideration of the above-mentioned problems, and the object of the present invention is to provide an organolithium compound having a novel structure.
Another object of the present invention is to provide a modified conjugated diene-based polymer including a functional group derived from the organolithium compound.
Still another object of the present invention is to provide a method for preparing a modified conjugated diene-based polymer using the organolithium compound as a polymerization initiator.
In addition, still another object of the present invention is to provide a modified conjugated diene-based polymer rubber composition including the modified conjugated diene-based polymer. Further another object of the present invention is to provide a tire including the rubber composition.
Technical Solution
To solve the above-described tasks, the present invention provides an organolithium compound represented by the following Formula 1:
Figure US10059149-20180828-C00001
In Formula 1,
R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms,
R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms, and
n is an integer of 1 to 5.
In addition, there is provided in the present invention a modified conjugated diene-based polymer represented by the following Formula 3:
Figure US10059149-20180828-C00002
In Formula 3,
R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms,
R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms,
n is an integer of 1 to 5, and
P is a conjugated diene-based polymer chain.
In addition, the present invention provides a method for preparing a modified conjugated diene-based polymer, comprising polymerizing conjugated diene-based monomers, or conjugated diene-based monomers and aromatic vinyl-based monomers in the presence of an organolithium compound represented by Formula 1 in a hydrocarbon solvent.
In addition, the present invention provides a rubber composition including the modified conjugated diene-based polymer, and a tire including the rubber composition.
Advantageous Effects
The organolithium compound represented by Formula 1 according to the present invention is used as a polymerization initiator of a conjugated diene-based polymer, and may provide the polymer chain of the conjugated diene-based polymer with a functional group.
Since the polymer chain in the modified conjugated diene-based polymer according to the present invention is combined with a functional group derived from the organolithium compound represented by Formula 1, affinity with a filler, specifically with a silica-based filler may be excellent.
In addition, according to the preparation method of the present invention, a modified conjugated diene-based polymer may be easily prepared by using the organolithium compound represented by Formula 1.
Also, since the rubber composition according to the present invention includes a modified conjugated diene-based polymer having excellent affinity with a filler, the processability thereof may be good, and as a result, molded articles, for example, tires manufactured using the rubber composition may have excellent tensile strength, abrasion resistance, low fuel consumption ratio and wet traction, and low rolling resistance.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will now be described in more detail in order to assist the understanding of the present invention.
It will be understood that words or terms used in the specification and claims shall not be interpreted as the meaning defined in commonly used dictionaries. It will be further understood that the words or terms should be interpreted as having a meaning that is consistent with their meaning of the technical idea of the invention, based on the principle that an inventor may properly define the meaning of the words or terms to best explain the invention.
The present invention provides an organolithium compound having a novel structure, which may be used as a polymerization initiator during the preparing of a polymer including conjugated diene-based monomer-derived units.
The organolithium compound according to an embodiment of the present invention is characterized in being represented by the following Formula 1:
Figure US10059149-20180828-C00003
In Formula 1,
R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms,
R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms, and
n is an integer of 1 to 5.
In Formula 1, R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, and particularly, R1, R2 and R5 may be each independently selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, and an arylalkyl group having 6 to 10 carbon atoms.
In addition, in Formula 1, R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms, and particularly, may be an alkylene group having 1 to 10 carbon atoms such as methylene, ethylene and propylene; or an arylene group having 6 to 10 carbon atoms such as phenylene.
In particular, the organolithium compound may be Formula 1 where R1, R2 and R5 are each independently an alkyl group having 1 to 6 carbon atoms, R3 and R4 are each independently an alkylene group having 1 to 6 carbon atoms, and n is an integer of 1 to 3. More particularly, Formula 1 may be represented by the following Formula 2:
Figure US10059149-20180828-C00004
The organolithium compound according to an embodiment of the present invention may be used as a polymerization initiator of a polymer. Particularly, the organolithium compound may be used as a polymerization initiator during the preparing of a polymer to introduce a functional group into a polymer chain, thereby playing the role of modifying the structure, characteristics and physical properties of the polymer. In this case, the polymer may be a polymer including conjugated diene-based monomer-derived units. That is, the organolithium compound may be a polymerization initiator for a polymer including conjugated diene-based monomer-derived units.
In addition, there is provided in the present invention a modified conjugated diene-based polymer represented by the following Formula 3:
Figure US10059149-20180828-C00005
In Formula 3,
R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms,
R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms,
n is an integer of 1 to 5, and
P is a conjugated diene-based polymer chain.
The modified conjugated diene-based polymer according to an embodiment of the present invention may be prepared by the following preparation method using the organolithium compound represented by the above Formula 1. By including the functional group derived from the organolithium compound represented by the above Formula 1, the physical properties of the polymer may be improved.
In particular, the modified conjugated diene-based polymer represented by the above Formula 3 may include an amine group derived from the organolithium compound represented by the above Formula 1, and thus may have good affinity with a filler such as silica. As a result, the abrasion resistance, low fuel consumption properties and processability of a rubber composition including the modified conjugated diene-based polymer and a molded article such as a tire manufactured from the rubber composition may be improved.
In particular, the modified conjugated diene-based polymer represented by the above Formula 3 may be represented by the following Formula 4:
Figure US10059149-20180828-C00006
In Formula 4, P is a conjugated diene-based polymer chain.
Meanwhile, the modified conjugated diene-based polymer according to an embodiment of the present invention may be a homopolymer or a copolymer and may be prepared by the following preparation method.
In particular, when the modified conjugated diene-based polymer is a homopolymer, the polymer may be a homopolymer of conjugated diene-based monomers, and P in Formula 3 may be a polymer chain derived from conjugated diene-based monomers. In addition, when the modified conjugated diene-based polymer is a copolymer, the polymer may include conjugated diene-based monomer-derived units and aromatic vinyl-based monomer-derived units, and P in Formula 3 may be a copolymer chain derived from the conjugated diene-based monomers and the aromatic vinyl-based monomers. In addition, when the modified conjugated diene-based polymer is a copolymer, the copolymer may be a random copolymer. In this case, the conjugated diene-based copolymer chain may be a polymer chain obtained by including from 0.0001 parts by weight to 50 parts by weight, particularly, from 10 parts by weight to 40 parts by weight, or from 15 parts by weight to parts by weight of the aromatic vinyl-based monomer-derived units on the basis of 100 parts by weight of the total amount of the conjugated diene-based monomer-derived units and the aromatic vinyl-based monomer-derived units.
Here, the “random copolymer” may mean randomly arranged constituting units of a copolymer.
In addition, the modified conjugated diene-based polymer may have a molecular weight distribution (Mw/Mn) of 0.5 to 10, particularly, 0.5 to 5, more particularly 1 to 5. When the molecular weight distribution of the modified conjugated diene-based polymer satisfies the above range, mixing characteristics with inorganic particles may be excellent, and the physical properties of the polymer may be improved and the processability thereof may be largely improved.
In addition, the modified conjugated diene-based polymer may have the vinyl content of 5 wt % or more, particularly, from 8 wt % to 70 wt %.
The vinyl content means an amount of units having vinyl groups, or an amount of not 1,4-added but 1,2-added modified conjugated diene-based monomers on the basis of 100 wt % of conjugated diene-based monomers.
When the vinyl content of the modified conjugated diene-based polymer satisfies the above range, the glass transition temperature of a polymer increases, and when applying the polymer to a tire, physical properties required for the tire such as driving resistance and braking force may be satisfied, and fuel consumption decreasing effect may be attained.
In addition, there is provided in the present invention a method for preparing a modified conjugated diene-based polymer using the organolithium compound represented by Formula 1 below.
A preparation method according to an embodiment of the present invention comprises a step of polymerizing conjugated diene-based monomers, or conjugated diene-based monomers and aromatic vinyl-based monomers in the presence of an organolithium compound represented by the following Formula 1 in a hydrocarbon solvent (step A):
Figure US10059149-20180828-C00007
In Formula 1,
R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms,
R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms, and
n is an integer of 1 to 5.
Particular examples of the organolithium compound represented by Formula 1 may be the same as described above.
Step A is a step for preparing an active polymer in which a functional group derived from the organolithium compound represented by the above Formula 1 is combined with at least one terminal thereof, and is performed by polymerizing conjugated diene-based monomers, or conjugated diene-based monomers and aromatic vinyl-based monomers in the presence of the organolithium compound represented by the above Formula 1 in a hydrocarbon solvent.
In the polymerization of step A, a single type of conjugated diene-based monomers, or both types of conjugated diene-based monomers and aromatic vinyl-based monomers may be used as monomers. That is, the polymer prepared through the preparation method according to an embodiment of the present invention may be a conjugated diene-based monomer homopolymer, or a copolymer derived from conjugated diene-based monomers and aromatic vinyl-based monomers.
The conjugated diene-based monomer may be, without specific limitation, at least one selected from the group consisting of, for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene, and 2-phenyl-1,3-butadiene.
In the case where both the conjugated diene-based monomers and the aromatic vinyl-based monomers are used as the monomers, the conjugated diene-based monomers may be used in an amount such that an amount of the conjugated diene-based monomer-derived units in a finally prepared modified conjugated diene-based polymer is 60 wt % or more, particularly, from 60 wt % to 90 wt %, more particularly, from 60 wt % to 85 wt %.
The aromatic vinyl-based monomer may be, without specific limitation, at least one selected from the group consisting of, for example, styrene, α-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4-(p-methylphenyl)styrene, and 1-vinyl-5-hexylnaphthalene.
In the case where both the conjugated diene-based monomers and the aromatic vinyl-based monomers are used together as the monomers, the aromatic vinyl-based monomers may be used in an amount such that an amount of the aromatic vinyl-based monomer-derived units in a finally prepared modified conjugated diene-based polymer is 40 wt % or less, particularly, from 10 wt % to 40 wt %, more particularly, from 15 wt % to 40 wt %.
The hydrocarbon solvent is not specifically limited and may be at least one selected from the group consisting of, for example, n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
The organolithium compound may be used from 0.01 mmol to 10 mmol, from 0.05 mmol to 5 mmol, from 0.1 mmol to 2 mmol, or from 0.1 mmol to 1 mmol on the basis of 100 g of total monomers. If the amount of the organolithium compound satisfies the above range, an optimized conjugated diene-based polymer for preparing a modified conjugated diene-based polymer may be obtained.
The polymerization of step A may be performed by further adding a polar additive as needed, and the polar additive may be added in an amount of 0.001 g to 50 g, 0.01 g to 10 g, 0.005 g to 1 g, or 0.005 g to 0.2 g on the basis of 100 g of total monomers.
In addition, the amount of the polar additive may be from 0.001 g to 10 g, from 0.005 g to 1 g, or from 0.005 g to 0.2 g on the basis of 1 mmol of the total organolithium compound added.
The polar additive may be at least one selected from the group consisting of tetrahydrofuran, ditetrahydrofurylpropane, diethyl ether, cycloamyl ether, dipropyl ether, ethylene dimethyl ether, diethylene glycol, dimethyl ether, tertiary butoxyethoxyethane bis(3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine, and tetramethylethylenediamine.
In the preparation method according to an embodiment of the present invention, when conjugated diene-based monomers and aromatic vinyl-based monomers are copolymerized with the addition of the polar additive, the difference of the reaction rates between them may be compensated and a random copolymer may be easily formed.
The polymerization in the step of polymerizing may be, for example, an anion polymerization, and particularly, may be a living anionic polymerization in which an active terminal may be obtained through a propagation reaction by anions.
In addition, the polymerization may be, for example, polymerization with heating or polymerization at a constant temperature.
The polymerization with heating means a polymerization method including a step of increasing a reaction temperature by optionally applying heat after adding an organolithium compound, and the polymerization at a constant temperature means a polymerization method optionally not applying heat after adding an organolithium compound.
The polymerization temperature during the polymerization may be, for example, from −20° C. to 200° C., from 0° C. to 150° C., or from 10° C. to 120° C.
Also, there is provided in the present invention, a rubber composition including the modified conjugated diene-based polymer.
The rubber composition according to an embodiment of the present invention is characterized in including 100 parts by weight of the modified conjugated diene-based polymer; and from 0.1 parts by weight to 150 parts by weight of a filler.
In particular, the rubber composition may include the filler in an amount of 10 parts by weight to 150 parts by weight, or 50 parts by weight to 100 parts by weight.
In addition, the rubber composition may further include another rubber component in addition to the modified conjugated diene-based polymer as needed, and in this case, the rubber component may be included in an amount of 90 wt % or less on the basis of the total amount of the rubber composition. More particularly, the rubber component may be included in an amount of 1 part by weight to 900 parts by weight on the basis of 100 parts by weight of the modified conjugated diene-based copolymer.
The rubber component may be a natural rubber or a synthetic rubber, and the rubber component may be, for example, a natural rubber (NR) including cis-1,4-polyisoprene; a modified natural rubber which is obtained by modifying or purifying a common natural rubber, such as an epoxidized natural rubber (ENR), a deproteinized natural rubber (DPNR), and a hydrogenated natural rubber; and a synthetic rubber such as a styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), a butyl rubber (IIR), an ethylene-propylene copolymer, polyisobutylene-co-isoprene, neoprene, poly(ethylene-co-propylene), poly(styrene-co-butadiene), poly(styrene-co-isoprene), poly(styrene-co-isoprene-co-butadiene), poly(isoprene-co-butadiene), poly(ethylene-co-propylene-co-diene), a polysulfide rubber, an acryl rubber, a urethane rubber, a silicone rubber, an ethylene chlorohydrin rubber, a butyl rubber, a halogenated butyl rubber, and one or a mixture of at least two thereof may be used.
The filler may be at least one selected from the group consisting of a silica-based filler, carbon black, and a mixture thereof. In the case where the filler is a silica-based filler, dispersibility may be largely improved, and hysteresis loss may be largely decreased due to the combination of silica particles with the terminal of the modified conjugated diene-based polymer of the present invention.
Meanwhile, in the case where the silica-based filler is used as the filler, a silane coupling agent may be used together for the improvement of reinforcing and low exothermic properties.
The silane coupling agent may particularly include bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)trisulfide, bis(3-triethoxysilylpropyl)disulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyltetrasulfide, 2-triethoxysilylethyl-N,N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilylpropylbenzothiazolyltetrasulfide, 3-triethoxysilylpropylbenzolyltetrasulfide, 3-triethoxysilylpropylmethacrylatemonosulfide, 3-trimethoxysilylpropylmethacrylatemonosulfide, bis(3-diethoxymethylsilylpropyl)tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N,N-dimethylthiocarbamoyltetrasulfide, or dimethoxymethylsilylpropylbenzothiazolyltetrasulfide, and one or a mixture of at least two thereof may be used. More particularly, the silane coupling agent may be the bis(3-triethoxysilylpropyl)polysulfide or the 3-trimethoxysilylpropylbenzothiazyltetrasulfide in consideration of the improving effect of reinforcing properties.
In addition, in the rubber composition according to an embodiment of the present invention, a modified conjugated diene-based polymer, in which a functional group having high affinity with a silica-based filler is introduced to an active portion as a rubber component, is used, and the amount of mixing of the silane coupling agent may be smaller than a common case. In particular, the silane coupling agent may be used in an amount of 1 part by weight to 20 parts by weight on the basis of 100 parts by weight of the silica-based filler. When used in the above range, effects as a coupling agent may be sufficiently exhibited, and the gelation of the rubber component may be prevented. More particularly, the silane coupling agent may be used in an amount of 5 parts by weight to 15 parts by weight on the basis of 100 parts by weight of silica.
In addition, the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and so may further include a vulcanizing agent.
The vulcanizing agent may be particularly a sulfur powder and may be included in an amount of 0.1 parts by weight to 10 parts by weight on the basis of 100 parts by weight of a rubber component. With the amount of the vulcanizing agent in the above range, elasticity and strength required for a vulcanized rubber composition may be secured, and at the same time, a low combustion ratio may be attained.
In addition, the rubber composition according to an embodiment of the present invention may further include various additives used in a common rubber industry in addition to the above components, particularly, a vulcanization accelerator, a process oil, a plasticizer, an antiaging agent, a scorch preventing agent, a zinc white, stearic acid, a thermosetting resin, or a thermoplastic resin.
The vulcanization accelerator is not specifically limited and may particularly include a thiazole-based compound such as 2-mercaptobenzothiazole (M), dibenzothiazyldisulfide (DM), and N-cyclohexyl-2-benzothiazylsulfenamide (CZ), or a guanidine-based compound such as diphenylguanidine (DPG). The vulcanization accelerator may be included in an amount of 0.1 parts by weight to 5 parts by weight on the basis of 100 parts by weight of the rubber component.
In addition, the process oil acts as a softener in a rubber composition and may particularly include paraffin-based, naphthene-based, or aromatic compounds. More particularly, an aromatic process oil may be used in consideration of tensile strength and abrasion resistance, and the naphthene-based or paraffin-based process oil may be used in consideration of hysteresis loss and low temperature properties. The process oil may be included in an amount of 100 parts by weight or less on the basis of 100 parts by weight of the rubber component. When the process oil is included in the above-described amount, the deterioration of the tensile strength and the low exothermic properties (low fuel combustion ratio) of the vulcanized rubber may be prevented.
In addition, the antiaging agent may particularly include N-isopropyl-N′-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, or a condensate of diphenylamine and acetone at a high temperature. The antiaging agent may be used in an amount of 0.1 parts by weight to 6 parts by weight on the basis of 100 parts by weight of the rubber component.
The rubber composition according to an embodiment of the present invention may be obtained by mulling using a mulling apparatus such as a banbury mixer, a roll, and an internal mixer according to a mixing prescription. In addition, a rubber composition having low exothermic properties and good abrasion resistance may be obtained due to a vulcanization process after a molding process.
Therefore, the rubber composition may be usefully used for the manufacture of each member of a tire such as a tire tread, an under tread, a side wall, a carcass coating rubber, a belt coating rubber, a bead filler, a chafer, and a bead coating rubber, or for the manufacture of rubber products for various industries such as a dustproof rubber, a belt conveyor, and a hose.
Also, there is provided in the present invention a tire manufactured using the rubber composition.
The tire may include a tire or a tire tread.
The present invention relates to a tire or a tire tread including the modified conjugated diene-based polymer rubber composition.
The tire or the tire tread may be manufactured using the rubber composition, and has merits of excellent tensile strength, abrasion resistance, and wet traction, and low rolling resistance.
Hereinafter, the present invention will be explained in particular referring to non-limiting embodiments. It will be understood that words or terms used in the specification and claims shall not be interpreted as the meaning defined in commonly used dictionaries. It will be further understood that the words or terms should be interpreted as having a meaning that is consistent with the technical idea of the invention, based on the principle that an inventor may properly define the meaning of the words or terms to best explain the invention.
Accordingly, the following embodiments are merely presented to exemplify the present invention, and various modifications and changes within the scope and technical spirit of the present invention would be obvious to a person skilled in the art, and such modifications and changes are definitely included in attached claims.
Preparation Example
In a flask, 60 g of cyclohexane was allowed to react with N,N′-dimethylpropane-1,3-diamine (2.04 g, 0.02 mol) and 1-bromo-3-chloropropane (6.93 g, 0.044 mol), and stirring at 60° C. for 4 hours was conducted. Li (1.39 g, 0.2 mol) was added to the solution thus obtained, followed by stirring at 40° C. for 12 hours, and then, an unreacted material was removed, isoprene (2.72 g, 0.04 mol) was added thereto, and stirring was conducted at 40° C. for 1 hour to prepare an organolithium compound represented by Formula 2 below. In the organolithium compound thus prepared and represented by Formula 2, active Li concentration was measured via a titration method using diphenyl acetic acid, and the active Li concentration thus measured was 0.55 M (83% degree in comparison with a calculated active Li concentration (0.66 M)).
Figure US10059149-20180828-C00008
Example
To a 20 L autoclave reactor, 270 g of styrene, 710 g of 1,3-butadiene, 5,000 g of normal hexane, and 1.3 g of 2,2-bis(2-oxoranyl)propane as a polar additive were added, and the internal temperature of the reactor was elevated to 40° C. When the temperature in the reactor reached 40° C., 0.4 mmol of the organolithium compound of Formula 2 prepared in the preparation example was injected into the reactor, and an adiabatic reaction with heating was performed. After about 20 minutes, 20 g of 1,3-butadiene was added, after 5 minutes, 0.7 g of bis(3-triethoxymethylsilylpropyl)-N-methylamine was injected, and the reaction was continued for 15 minutes. After that, a polymerization reaction was quenched using ethanol, and 5 ml of a solution of 0.3 wt % of butylated hydroxytoluene (BHT) as an antioxidant dissolved in hexane was added thereto. The polymer thus obtained was injected to hot water heated with steam, stirred to remove solvents, and roll dried to remove remaining solvents and water to prepare a modified styrene-butadiene copolymer.
Comparative Example
A styrene-butadiene copolymer was prepared by the same method described in Example except for using 0.4 mmol of n-butyllithium instead of the organolithium compound represented by Formula 2 as a polymerization initiator.
Experimental Example 1
With respect to each of the modified styrene-butadiene copolymer of Example and the styrene-butadiene copolymer of Comparative Example, molecular weight analysis, component analysis, and mooney viscosity (MU) measurement were conducted. The results are listed in Table 1 below.
1) Mooney Viscosity
Two specimens having a weight of at least 15 g were pre-heated for 1 minute and then heated at 100° C. for 4 minutes, and measurement was conducted using MV-2000 manufactured by ALPHA Technologies Co., Ltd.
2) Component Analysis
The styrene derived unit (SM) content and the vinyl content in each copolymer were measured by using NMR.
3) Molecular Weight Analysis
The maximum peak molecular weight (Mp), weight average molecular weight (Mw), and number average molecular weight (Mn) of each copolymer were measured by gel permeation chromatography (GPC) analysis under conditions of 40° C. In this case, two columns of PLgel Olexis and one column of PLgel mixed-C manufactured by Polymer Laboratories Co. Ltd. were used in combination as columns, and all newly replaced columns were mixed bed type columns. In addition, polystyrene (PS) was used as a GPC standard material for calculating the molecular weight. Polydispersity index (PDI) was calculated as a ratio (Mw/Mn) of the weight average molecular weight and the number average molecular weight, which were measured by the above method.
TABLE 1
Division Example Comparative Example
Mooney viscosity (MV) 88 77
NMR Styrene 27 27
Vinyl 42 43
GPC Mp 28.2 24.9
(×104) Mn 25.3 24.0
Mw 29.1 25.7
PDI 1.15 1.07
Experimental Example 2
In order to comparatively analyze the physical properties of a rubber composition including each copolymer of Example and Comparative Example and tires manufactured from the rubber compositions, tensile properties and viscoelasticity properties were measured. The results are listed in Table 2 below.
1) Preparation of Rubber Composition
Each rubber composition was prepared via a first stage mulling and a second stage mulling. In this case, the amounts used of materials except for a modified styrene-butadiene copolymer were indicated on the basis of 100 parts by weight of the copolymer. In the first stage mulling, 100 parts by weight of each copolymer, 70 parts by weight of silica, 11.1 parts by weight of bis(3-triethoxysilylpropyl)tetrasulfide as a silane coupling agent, 2 parts by weight of an antiaging agent (TMDQ), 2 parts by weight of an antioxidant, 3 parts by weight of zinc oxide (ZnO), 2 parts by weight of stearic acid, and 1 part by weight of wax were mixed and mulled at 80 rpm conditions by using a banbury mixer equipped with a temperature controlling apparatus. In this case, the temperature of the mulling apparatus was controlled, and a first mixture was obtained at a discharge temperature of 145° C. to 150° C. At the second stage mulling, the first mixture was cooled to room temperature, and 1.75 parts by weight of a rubber accelerator (CZ), 1.5 parts by weight of a sulfur powder, and 2 parts by weight of a vulcanization accelerator were added to the mulling apparatus and mixed at a temperature of 100° C. or less to obtain a second mixture. Then, each vulcanized rubber was prepared by vulcanizing using a vulcanizing press at 180° C. for t90+10 minutes.
2) Tensile Properties
Tensile properties were measured by manufacturing a specimen (thickness 25 mm, length 80 mm) and measuring tensile strength when breaking and tensile stress when elongated by 300% (300% modulus) of each specimen according to an ASTM 412 tension test method. Particularly, a Universal Test machine 4204 tension tester of Instron Co., Ltd. was used, and measurement was performed at room temperature at a rate of 50 cm/min, to obtain a tensile strength value and a tensile stress value when elongated by 300%.
3) Viscoelasticity Properties
Viscoelasticity properties were measured by using a dynamic mechanical analyzer of TA Co., Ltd. A Tan δ value was measured by changing deformation at each measurement temperature (−60° C. to 60° C.) with a twist mode and a frequency of 10 Hz. If the Tan δ value at a low temperature of 0° C. increases, wet traction becomes good, and if the Tan δ value at a high temperature of 60° C. decreases, hysteresis loss decreases, low rolling resistance of a tire, i.e., a low fuel consumption ratio becomes good.
TABLE 2
Specimen Example Comparative Example
300% modulus (Kgf/cm2) 132 130
Tensile strength (Kgf/cm2) 201 197
Tan at 0° C. 0.967 0.922
Tan at 60° C. 0.101 0.120
As shown in Table 2, the tensile and viscoelasticity properties of the rubber composition including the modified styrene-butadiene copolymer according to Example, which was prepared using the organolithium compound according to an embodiment of the present invention as a polymerization initiator, were secured to be better when compared to those of the rubber composition including the styrene-butadiene copolymer of Comparative Example.
In particular, when compared to the rubber composition including the styrene-butadiene copolymer of Comparative Example, it was secured that a Tan δ value at 0° C. was increased, and a Tan δ value at 60° C. was decreased for the rubber composition including the modified styrene-butadiene copolymer according to Example, which was prepared using the organolithium compound according to an embodiment of the present invention as a polymerization initiator. The results indicate that the modified styrene-butadiene copolymer prepared using the organolithium compound according to an embodiment of the present invention as a polymerization initiator attained good wet traction and rolling resistance, and a high fuel consumption ratio.

Claims (12)

The invention claimed is:
1. An organolithium compound represented by the following Formula 1:
Figure US10059149-20180828-C00009
in Formula 1, R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 1 to 5.
2. The organolithium compound of claim 1, wherein in Formula 1, R1, R2 and R5 are each independently an alkyl group having 1 to 6 carbon atoms, R3 and R4 are each independently an alkylene group having 1 to 6 carbon atoms, and n is an integer of 1 to 3.
3. The organolithium compound of claim 1, wherein the organolithium compound represented by Formula 1 is represented by the following Formula 2:
Figure US10059149-20180828-C00010
4. The organolithium compound of claim 1, wherein the organolithium compound is a polymerization initiator for a polymer containing conjugated diene-based monomer-derived units.
5. A method for preparing a modified conjugated diene-based polymer represented by the following Formula 3:
Figure US10059149-20180828-C00011
in Formula 3,
R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms,
R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms,
n is an integer of 1 to 5, and
P is a conjugated diene-based polymer chain, the method comprising:
polymerizing conjugated diene-based monomers, or conjugated diene-based monomers and aromatic vinyl-based monomers in the presence of an organolithium compound represented by the following Formula 1 in a hydrocarbon solvent:
Figure US10059149-20180828-C00012
in Formula 1,
R1, R2 and R5 are each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms,
R3 and R4 are each independently a divalent hydrocarbon group having 1 to 10 carbon atoms, and
n is an integer of 1 to 5
Figure US10059149-20180828-C00013
6. The method for preparing the modified conjugated diene-based polymer of claim 5, wherein the organolithium compound represented by Formula 1 is represented by the following Formula 2:
Figure US10059149-20180828-C00014
7. The method for preparing the modified conjugated diene-based polymer of claim 5, wherein the organolithium compound is used from 0.01 mmol to 10 mmol on the basis of 100 g of total monomers.
8. The method for preparing the modified conjugated diene-based polymer of claim 5, wherein the conjugated diene-based monomer is at least one selected from the group consisting of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene, and 2-phenyl-1,3-butadiene.
9. The method for preparing the modified conjugated diene-based polymer of claim 5, wherein the aromatic vinyl-based monomer is at least one selected from the group consisting of styrene, a-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4-(p-methylphenyl)styrene, and 1-vinyl-5-hexylnaphthalene.
10. The method for preparing the modified conjugated diene-based polymer of claim 5, wherein the polymerizing is performed using a polar additive.
11. The method for preparing the modified conjugated diene-based polymer of claim 10, wherein the polar additive is added from 0.001 g to 10 g on the basis of 1 mmol of the organolithium compound in total.
12. The method for preparing the modified conjugated diene-based polymer of claim 10, wherein the polar additive is at least one selected from the group consisting of tetrahydrofuran, ditetrahydrofurylpropane, diethyl ether, cycloamyl ether, dipropyl ether, ethylene dimethyl ether, diethylene glycol, dimethyl ether, tertiary butoxyethoxyethane bis(2-dimethylaminoethyl)ether, (dimethylaminoethyl)ethyl ether, trimethylamine, triethylamine, tripropylamine, and tetramethylethylenediamine.
US15/555,729 2015-11-02 2016-11-02 Organolithium compound, method for preparing modified conjugated diene-based polymer using the same, and modified conjugated diene-based polymer Active US10059149B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0153294 2015-11-02
KR20150153294 2015-11-02
PCT/KR2016/012537 WO2017078408A1 (en) 2015-11-02 2016-11-02 Organolithium compound, method for production of modified conjugated diene-based polymer using same, and modified conjugated diene-based polymer

Publications (2)

Publication Number Publication Date
US20180056716A1 US20180056716A1 (en) 2018-03-01
US10059149B2 true US10059149B2 (en) 2018-08-28

Family

ID=58662780

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/555,729 Active US10059149B2 (en) 2015-11-02 2016-11-02 Organolithium compound, method for preparing modified conjugated diene-based polymer using the same, and modified conjugated diene-based polymer

Country Status (6)

Country Link
US (1) US10059149B2 (en)
EP (1) EP3255052B1 (en)
JP (1) JP6564882B2 (en)
KR (1) KR101943408B1 (en)
CN (1) CN107614506B (en)
WO (1) WO2017078408A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039835A2 (en) * 2017-08-24 2019-02-28 주식회사 엘지화학 Modified conjugated diene-based polymer comprising modified polymerization initiator and functional group derived therefrom
KR102167120B1 (en) * 2017-08-24 2020-10-16 주식회사 엘지화학 Modified polymerization initiator and modified conjugated-diene polymer comprising functional group derived therefrom
KR102080257B1 (en) * 2017-10-23 2020-02-24 주식회사 엘지화학 Preparation method of modified polymerization initiator by continuous reactor
KR102617159B1 (en) * 2017-12-05 2023-12-26 주식회사 엘지화학 Modified conjugated diene polymer and rubber composition comprising the same
KR102617161B1 (en) * 2017-12-05 2023-12-26 주식회사 엘지화학 Modified conjugated diene polymer and rubber composition comprising the same
KR102622328B1 (en) * 2017-12-05 2024-01-09 주식회사 엘지화학 Modified conjugated diene polymer and rubber composition comprising the same
EP3636652B1 (en) * 2018-03-16 2021-02-17 Lg Chem, Ltd. Modified polymerization initiator and preparation method therefor
EP3680229B1 (en) * 2018-06-20 2023-08-02 Lg Chem, Ltd. Modification polymerization initiator and method for preparing the same
KR102501595B1 (en) * 2018-07-03 2023-02-20 주식회사 엘지화학 Method for preparing modified polymerization initiator by continuous reaction

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354822A (en) 1990-04-09 1994-10-11 Bridgestone/Firestone, Inc. Methods for preparing functionalized polymer and elastomeric compounds having reduced hysteresis
EP0709408A1 (en) 1994-10-25 1996-05-01 Bridgestone Corporation Amine containing polymers and products therefrom
US20020035294A1 (en) 2000-08-31 2002-03-21 Halasa Adel Farhan Synthesis of soluble functionalized lithium initiators
KR20040070047A (en) 2003-01-31 2004-08-06 스미또모 가가꾸 고오교오 가부시끼가이샤 Process for producing modified diene polymer rubber
WO2005097845A1 (en) 2004-04-05 2005-10-20 Bridgestone Corporation Modified conjugated diene polymer, polymerization initiator, processes for producing these, and rubber composition
EP2060604A1 (en) 2006-09-04 2009-05-20 Bridgestone Corporation Rubber composition and pneumatic tire using the same
US20120101212A1 (en) * 2008-09-23 2012-04-26 Lg Chem Ltd. Bifunctional organolithium initiator and conjugated diene copolymers prepared using the same
US20120259056A1 (en) 2009-09-10 2012-10-11 Eiju Suzuki Compositions and method for producing poly-aminofunctionalized polymerization initiators and corresponding polymers
WO2013090885A2 (en) 2011-12-15 2013-06-20 Bridgestone Corporation Stabilized multi-valent anionic polymerization initiators and methods for preparing the same
US20140152845A1 (en) 2011-05-19 2014-06-05 Ulrich Seger camera testing device and method for testing a camera
US20150099852A1 (en) 2010-12-30 2015-04-09 Bridgestone Corporation Aminosilane initiators, functionalized polymers prepared therefrom and related processes
KR20150056484A (en) 2013-11-15 2015-05-26 주식회사 엘지화학 Modified conjugated diene polymer, method for preparing the same, and rubber composition including the same
US9109073B1 (en) 2014-08-19 2015-08-18 The Goodyear Tire & Rubber Company Bifunctionalized polymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072837A (en) * 1998-08-31 2000-03-07 Asahi Chem Ind Co Ltd Production of block copolymer using dilithium initiator
CN1330678C (en) * 2003-02-27 2007-08-08 住友化学工业株式会社 Method for preparing modified dienopolymer rubber
WO2008013090A1 (en) 2006-07-24 2008-01-31 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and method for producing the same
JP5871011B2 (en) * 2011-12-23 2016-03-01 Jsr株式会社 Modified conjugated diene polymer and process for producing the same
JP6202779B2 (en) 2011-12-28 2017-09-27 住友ゴム工業株式会社 Copolymer, rubber composition and pneumatic tire

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354822A (en) 1990-04-09 1994-10-11 Bridgestone/Firestone, Inc. Methods for preparing functionalized polymer and elastomeric compounds having reduced hysteresis
EP0709408A1 (en) 1994-10-25 1996-05-01 Bridgestone Corporation Amine containing polymers and products therefrom
US20020035294A1 (en) 2000-08-31 2002-03-21 Halasa Adel Farhan Synthesis of soluble functionalized lithium initiators
KR20040070047A (en) 2003-01-31 2004-08-06 스미또모 가가꾸 고오교오 가부시끼가이샤 Process for producing modified diene polymer rubber
WO2005097845A1 (en) 2004-04-05 2005-10-20 Bridgestone Corporation Modified conjugated diene polymer, polymerization initiator, processes for producing these, and rubber composition
US20080033110A1 (en) 2004-04-05 2008-02-07 Eiju Suzuki Modified Conjugated Diene Polymer, Polymerization Intitiator, Method of Producing the Same, and Rubber Composition
EP2060604A1 (en) 2006-09-04 2009-05-20 Bridgestone Corporation Rubber composition and pneumatic tire using the same
US20120101212A1 (en) * 2008-09-23 2012-04-26 Lg Chem Ltd. Bifunctional organolithium initiator and conjugated diene copolymers prepared using the same
US20120259056A1 (en) 2009-09-10 2012-10-11 Eiju Suzuki Compositions and method for producing poly-aminofunctionalized polymerization initiators and corresponding polymers
US20150099852A1 (en) 2010-12-30 2015-04-09 Bridgestone Corporation Aminosilane initiators, functionalized polymers prepared therefrom and related processes
US20140152845A1 (en) 2011-05-19 2014-06-05 Ulrich Seger camera testing device and method for testing a camera
WO2013090885A2 (en) 2011-12-15 2013-06-20 Bridgestone Corporation Stabilized multi-valent anionic polymerization initiators and methods for preparing the same
US20140309390A1 (en) 2011-12-15 2014-10-16 Stabilized Mult-Valent Anionic Polymerization Initiators /and Methods For Preparing Tne Same Bri Stabilized Multi-Valent Anionic Polymerization Initiators And Methods For Preparing The Same
KR20150056484A (en) 2013-11-15 2015-05-26 주식회사 엘지화학 Modified conjugated diene polymer, method for preparing the same, and rubber composition including the same
US20160159957A1 (en) 2013-11-15 2016-06-09 Lg Chem, Ltd. Modified conjugated diene polymer, method for preparing same, and rubber composition containing same
US9109073B1 (en) 2014-08-19 2015-08-18 The Goodyear Tire & Rubber Company Bifunctionalized polymer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report for Application No. EP16862424 dated Jan. 30, 2018.
Peterson, Donald J., et al., "Functionally-Substituted N,N-Dialkylaminomethyllithium Compounds." Journal of Organometallic Chemistry, vol. 66, 1974, pp. 209-217.
Search report from International Application No. PCT/KR2016/012537, dated Jan. 31, 2017.

Also Published As

Publication number Publication date
CN107614506B (en) 2019-09-06
EP3255052A1 (en) 2017-12-13
KR20170051368A (en) 2017-05-11
EP3255052A4 (en) 2018-02-28
WO2017078408A1 (en) 2017-05-11
US20180056716A1 (en) 2018-03-01
KR101943408B1 (en) 2019-01-30
JP2018517022A (en) 2018-06-28
EP3255052B1 (en) 2019-02-20
CN107614506A (en) 2018-01-19
JP6564882B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
US10533062B2 (en) Modified conjugated diene-based polymer and method for preparing the same
US10059149B2 (en) Organolithium compound, method for preparing modified conjugated diene-based polymer using the same, and modified conjugated diene-based polymer
US10508157B2 (en) Modified and conjugated diene-based polymer, method for preparing the same, and modifier
US10676543B2 (en) Modified conjugated diene-based polymer, method for preparing the same and rubber composition comprising the same
US10392449B2 (en) Polymerization initiator, modified conjugated diene-based polymer, and methods for preparing them
EP3281958B1 (en) Modifying agent, and modified conjugated diene-based polymer produced using same
EP3372622B1 (en) Modified conjugated diene-based polymer and method of preparing the same
US10538601B2 (en) Azasilane-based modifier, and method for preparing modified and conjugated diene-based polymer using the same
US11773191B2 (en) Modification initiator and modified conjugated diene-based polymer including the same
US10808055B2 (en) Modified conjugated diene-based polymer and method for preparing the same
EP3971238B1 (en) Modifying agent and modified conjugated diene polymer prepared by using the same
US10538128B2 (en) Silyl group-containing novel compound, modified and conjugated diene-based polymer, and method for preparing same
KR20170077614A (en) Modifying agent, preparation method of modified conjugated diene polymer using the modifying agent and modified conjugated diene polymer
KR102059670B1 (en) Modifying agent, preparation method of modified conjugated diene polymer using the modifying agent and modified conjugated diene polymer
EP3345941B1 (en) Modifier, modified conjugated diene-based polymer and method for preparing the same
US20190071390A1 (en) Modification monomer, modified conjugated diene-based polymer including the same and method for preparing the polymer
EP3345945B1 (en) Modified monomer, modified conjugated diene-based polymer comprising same, and method for preparing same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, HO YOUNG;KIM, NO MA;MUN, MIN SIK;REEL/FRAME:043523/0100

Effective date: 20170724

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4