WO2018079611A1 - 液晶ポリエステル樹脂組成物 - Google Patents

液晶ポリエステル樹脂組成物 Download PDF

Info

Publication number
WO2018079611A1
WO2018079611A1 PCT/JP2017/038529 JP2017038529W WO2018079611A1 WO 2018079611 A1 WO2018079611 A1 WO 2018079611A1 JP 2017038529 W JP2017038529 W JP 2017038529W WO 2018079611 A1 WO2018079611 A1 WO 2018079611A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
hydrocarbon group
crystal polyester
structural unit
amide compound
Prior art date
Application number
PCT/JP2017/038529
Other languages
English (en)
French (fr)
Inventor
新利 胡
節幸 原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201780066014.5A priority Critical patent/CN109863202B/zh
Priority to KR1020197011771A priority patent/KR102376572B1/ko
Priority to US16/344,682 priority patent/US20200048553A1/en
Publication of WO2018079611A1 publication Critical patent/WO2018079611A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • B29B7/286Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control measuring properties of the mixture, e.g. temperature, density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6856Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3838Polyesters; Polyester derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Definitions

  • the present invention relates to a liquid crystal polyester resin composition.
  • This application claims priority based on Japanese Patent Application No. 2016-210790 filed in Japan on October 27, 2016, the contents of which are incorporated herein by reference.
  • the liquid crystalline polyester is generally called a molten liquid crystal type (thermotropic liquid crystal) polymer, and is extremely excellent in melt fluidity due to its specific behavior, and has a heat distortion resistance of 300 ° C. or higher depending on the structure. Taking advantage of such characteristics, liquid crystal polyester is used for molded products in applications such as electronic parts, OA, AV parts, and heat-resistant tableware.
  • molten liquid crystal type thermotropic liquid crystal
  • An injection molding method is generally used as a molding method for obtaining the molded body.
  • a liquid crystal polyester resin composition obtained by blending other components with liquid crystal polyester as required is usually used.
  • the time required for measuring the melt of the resin composition that is, the plasticization time of the resin composition
  • the injection molding method requires that the plasticizing time is shorter than the time required for cooling the molded body obtained in the mold unit of the machine (cooling time of the molded body).
  • the plasticizing time is not stable and easily fluctuates, and may be longer than the cooling time. In this case, it is difficult to perform molding at a constant cycle, and the productivity of the molded body may be reduced.
  • Patent Document 1 a liquid crystal polyester resin mixture in which a polyamide compound is mixed
  • Patent Document 2 a phosphorus compound having a trivalent phosphorus atom and an amide compound Is used
  • Tablets Tablets (Patent Document 3) each containing 0.1 to 10 parts by weight of the resulting carboxylic acid amide-based substance are disclosed.
  • the present invention has been made in view of the above circumstances, and is obtained from the liquid crystal polyester resin composition, which has a stable plasticizing time at the time of molding and can perform the molding process stably, and the liquid crystal polyester resin composition. It is an object of the present invention to provide a molded article.
  • Liquid crystal polyester An amide compound having the following structural units (I) to (III), a melting point of 100 ° C. or higher, and a volume average particle size of 5 ⁇ m or more and 50 ⁇ m or less; The content of the amide compound is 0.005 parts by mass or more and less than 0.1 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • Liquid crystal polyester resin composition An amide compound having the following structural units (I) to (III), a melting point of 100 ° C. or higher, and a volume average particle size of 5 ⁇ m or more and 50 ⁇ m or less; The content of the amide compound is 0.005 parts by mass or more and less than 0.1 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the liquid crystal polyester resin composition according to any one of [1] to [3], wherein the structural unit (III) in the amide compound is a structural unit represented by the following formula (III) ′.
  • the content of the amide compound is 0.02 parts by mass or more and 0.05 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester, according to any one of [1] to [4].
  • Liquid crystal polyester resin composition [6].
  • the amide compound has 1 to 30 mol% of the structural unit (III) with respect to the total amount of the structural unit (I), the structural unit (II), and the structural unit (III).
  • the liquid crystal polyester is composed of a repeating unit derived from an aromatic hydroxycarboxylic acid, a repeating unit derived from an aromatic dicarboxylic acid, and a repeating unit derived from an aromatic diol, an aromatic hydroxyamine or an aromatic diamine. 1] to [6] The liquid crystal polyester resin composition according to any one of [6].
  • the amide compound has the following structural units (I) to (III), has a melting point of 100 ° C. or higher, and a volume average particle size of 5 ⁇ m or more and 50 ⁇ m or less, The content of the amide compound is 0.005 parts by mass or more and less than 0.1 parts by mass with respect to 100 parts by mass of the liquid crystal polyester. Liquid crystal polyester pellets.
  • molding is stable,
  • the molded object obtained from the said liquid crystal polyester resin composition is provided. .
  • the liquid crystal polyester resin composition of the present invention comprises a liquid crystal polyester and a compound having the following structural units (I) to (III) as structural units and an amide compound having a melting point of 100 ° C. or higher.
  • the volume average particle diameter of the amide compound is 5 ⁇ m or more and 50 ⁇ m or less, and the content of the amide compound with respect to 100 parts by mass of the liquid crystal polyester is 0.005 parts by mass or more and 0.1 Less than part by mass.
  • the liquid crystal polyester resin composition uses a liquid crystal polyester in combination with a specific amide compound, and further uses the amount of the amide compound within a specific range.
  • the stabilization time can be stabilized and the molding process can be performed stably.
  • the components contained in the liquid crystal polyester resin composition will be described.
  • the liquid crystalline polyester is a polyester that exhibits liquid crystallinity in a molten state and is preferably melted at a temperature of 450 ° C. or lower (for example, 250 ° C. or higher and 450 ° C. or lower).
  • the liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide.
  • the liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.
  • an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine are subjected to polycondensation (polymerization).
  • Liquid crystal polyester condensed liquid crystal polyester in which plural kinds of aromatic hydroxycarboxylic acids are polymerized; at least one selected from the group consisting of aromatic dicarboxylic acids and aromatic diols, aromatic hydroxyamines and aromatic diamines Examples thereof include liquid crystal polyesters in which a kind of compound is polymerized; and liquid crystal polyesters in which a polyester such as polyethylene terephthalate and an aromatic hydroxycarboxylic acid are polymerized.
  • the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine may be a polymerizable derivative thereof independently of each other, instead of part or all of them. Good.
  • polymerizable derivatives of compounds having a carboxy group such as aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids
  • derivatives also referred to as esters
  • a derivative formed by converting a carboxy group into a haloformyl group also referred to as an acid halide
  • a derivative formed by converting a carboxy group into an acyloxycarbonyl group also referred to as an acid anhydride
  • Examples of polymerizable derivatives of compounds having a hydroxy group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines, are derivatives obtained by acylating a hydroxy group and converting it to an acyloxy group (acylated product) Also called).
  • Examples of polymerizable derivatives of compounds having an amino group, such as aromatic hydroxyamines and aromatic diamines include derivatives (also referred to as acylated products) obtained by acylating an amino group and converting it to an acylamino group. .
  • the liquid crystalline polyester preferably has a repeating unit represented by the formula (1) (hereinafter sometimes referred to as “repeating unit (1)”), and is represented by the repeating unit (1) and the formula (2).
  • repeating units hereinafter sometimes referred to as “repeating units (2)”
  • repeating units represented by the formula (3) hereinafter also referred to as “repeating units (3)”. More preferably.
  • Ar 1 represents a phenylene group, a naphthylene group, or a biphenylylene group
  • Ar 2 and Ar 3 are independently of each other a phenylene group, a naphthylene group, a biphenylylene group, or a formula (4 X and Y each independently represent an oxygen atom or an imino group (—NH—); and at least one of the groups represented by Ar 1 , Ar 2, or Ar 3
  • These hydrogen atoms may be independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group; Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group having 1 to 10 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms that can be substituted with a hydrogen atom include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • Examples of the aryl group having 6 to 20 carbon atoms that can be substituted with a hydrogen atom include monocyclic aromatic groups such as phenyl, o-tolyl, m-tolyl, and p-tolyl groups, -Condensed aromatic groups such as -naphthyl group and 2-naphthyl group.
  • the number of substitutions is represented by Ar 1 , Ar 2 or Ar 3.
  • the number is preferably 1 or 2 and more preferably 1 independently of each other.
  • alkylidene group having 1 to 10 carbon atoms examples include methylene group, ethylidene group, isopropylidene group, n-butylidene group and 2-ethylhexylidene group.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • a repeating unit in which Ar 1 is a 1,4-phenylene group for example, a repeating unit derived from p-hydroxybenzoic acid
  • a repeating unit in which Ar 1 is a 2,6-naphthylene group for example, repeating units derived from 6-hydroxy-2-naphthoic acid
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • the repeating unit (2) includes a repeating unit in which Ar 2 is a 1,4-phenylene group (for example, a repeating unit derived from terephthalic acid), and a repeating unit in which Ar 2 is a 1,3-phenylene group (for example, isophthalic acid).
  • Ar 2 is a 2,6-naphthylene group (eg, repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is diphenyl ether-4,4′-diyl
  • a repeating unit which is a group (for example, a repeating unit derived from diphenyl ether-4,4′-dicarboxylic acid) is preferable.
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxyamine or aromatic diamine.
  • a repeating unit in which Ar 3 is a 1,4-phenylene group for example, a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine
  • Ar 3 is 4,4 ′.
  • a repeating unit which is a biphenylylene group for example, a repeating unit derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl
  • “derived” means that the chemical structure changes due to polymerization of the raw material monomer, and other structural changes do not occur.
  • the content of the repeating unit (1) of the liquid crystal polyester is the total amount (mole number) of all the repeating units constituting the liquid crystal polyester (that is, the mass of each repeating unit constituting the liquid crystal polyester is expressed by the formula weight of each repeating unit). By dividing, the equivalent amount (mole) of each repeating unit is obtained, and the total of these is preferably 30 mol% or more, more preferably 30 to 80 mol%, still more preferably 40 to 70. The mol%, particularly preferably 45 to 65 mol%. The higher the content of the repeating unit (1), the easier it is for the liquid crystalline polyester to improve the melt flowability, heat resistance, strength and rigidity of the liquid crystalline polyester.
  • the melting temperature and melt viscosity of the resin tends to increase, and the temperature required for molding tends to increase. That is, if the content of the repeating unit (1) is within the above range, the melt flowability, heat resistance, strength and rigidity are easily improved, and the melting temperature and melt viscosity of the liquid crystal polyester are not excessively increased. , The balance of strength / rigidity and moldability will be good.
  • the content of the repeating unit (2) in the liquid crystal polyester is preferably 35 mol% or less, more preferably 10 to 35 mol%, and still more preferably 15 to 30 with respect to the total amount of all repeating units constituting the liquid crystal polyester.
  • the mol% particularly preferably 17.5 to 27.5 mol%.
  • the content of the repeating unit (3) of the liquid crystal polyester is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 based on the total amount of all repeating units constituting the liquid crystal polyester.
  • the mol% particularly preferably 17.5 to 27.5 mol%.
  • [content of repeating unit (2)] / [content of repeating unit (3)] (mol), which is the ratio of the content of repeating unit (2) and the content of repeating unit (3) / Mol) is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98. .
  • the liquid crystalline polyester may have one or more repeating units (1) to (3) independently of each other.
  • the liquid crystalline polyester may have one or more repeating units other than the repeating units (1) to (3), but the content thereof is the total amount of all repeating units constituting the liquid crystalline polyester. On the other hand, it is preferably 0 to 10 mol%, more preferably 0 to 5 mol%.
  • the liquid crystalline polyester has a repeating unit (3) having a repeating unit in which X and Y are each an oxygen atom, that is, having a repeating unit derived from a predetermined aromatic diol, the melt viscosity of the liquid crystalline polyester is low. It is preferable because it tends to be (melt viscosity does not become too high), and it is more preferable that the repeating unit (3) has only those in which X and Y are each an oxygen atom. However, the total amount of the repeating unit (1), the repeating unit (2) and the repeating unit (3) does not exceed 100 mol%.
  • the liquid crystalline polyester is preferably composed of only the repeating unit (1), the repeating unit (2) and the repeating unit (3).
  • Such a liquid crystalline polyester has 30 to 80 mol% of the repeating unit (1) and 10 to 35 mol% of the repeating unit (2) with respect to the total amount of all repeating units constituting the liquid crystalline polyester. More preferably, the repeating unit (3) is 10 to 35 mol%, and the sum thereof is 100 mol%.
  • the liquid crystalline polyester can be produced by melt polymerizing raw material monomers corresponding to the repeating units constituting the liquid crystalline polyester and solid-phase polymerizing the obtained polymer (hereinafter sometimes referred to as “prepolymer”).
  • prepolymer solid-phase polymerizing the obtained polymer
  • the melt polymerization may be performed in the presence of a catalyst.
  • the catalyst include magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide and the like, 4- (dimethylamino) pyridine, 1-methylimidazole, etc. And a nitrogen-containing heterocyclic compound is preferable.
  • the flow start temperature of the liquid crystalline polyester is preferably 270 ° C. or higher, more preferably 270 ° C. or higher and 400 ° C. or lower, and further preferably 280 ° C. or higher and 380 ° C. or lower.
  • the higher the flow initiation temperature the easier the liquid crystalline polyester will improve heat resistance, strength and rigidity.However, if it is too high, it will require high temperature to melt, and will tend to be thermally deteriorated during molding, and the viscosity at the time of melting will be high. It becomes high and fluidity falls. That is, when the flow start temperature is within the above range, the liquid crystalline polyester easily improves heat resistance, strength and rigidity, and the melting temperature does not become too high. Can be prevented.
  • the “flow start temperature” is also called a flow temperature or a flow temperature.
  • the capillary polyester rheometer is used to melt the liquid crystal polyester while increasing the temperature at a rate of 4 ° C./min under a load of 9.8 MPa. This is the temperature at which a viscosity of 4800 Pa ⁇ s (48000 poise) is exhibited when extruding from a nozzle having an inner diameter of 1 mm and a length of 10 mm, and is a measure of the molecular weight of the liquid crystal polyester (Naoyuki Koide, “Liquid Crystal”). Polymer—Synthesis / Molding / Application— ”, CMC Co., Ltd., June 5, 1987, p. 95).
  • Liquid crystal polyester may be used alone or in combination of two or more.
  • the content of the liquid crystal polyester is preferably 80 to 45% by mass, more preferably 70 to 50% by mass, and 55 to 65% by mass with respect to the total mass of the liquid crystal polyester resin composition. Is particularly preferred.
  • the amide compound is a carboxylic acid amide compound having a structural unit (I), a structural unit (II), and a structural unit (III), and has a melting point of 100 ° C. or higher.
  • the amide compound is a compound having the structural unit (I), the structural unit (II), and the structural unit (III), which are bonded so as to form an amide bond.
  • the amide compound is a compound having the structural unit (I), the structural unit (II), and the structural unit (III), and the structural unit (I) is bonded to the terminal.
  • the number of hydroxy groups in X is preferably one.
  • aliphatic monocarboxylic acids and hydroxycarboxylic acids having 12 or more carbon atoms are preferable. Specific examples thereof include lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid. Linoleic acid, behenic acid, montanic acid, 12-hydroxystearic acid and the like.
  • the upper limit of the carbon number of the structural unit (I) is not particularly limited, but the carbon number is preferably 28 or less. That is, the structural unit (I) preferably has 12 to 28 carbon atoms.
  • the carbon number of X in the structural unit (I) is preferably 10 to 26.
  • the structural unit (I) is preferably an aliphatic monocarboxylic acid having 12 or more carbon atoms, more preferably a structural unit represented by the following formula (I) ′.
  • l is preferably 10 to 26.
  • lauric acid As the compound that leads to the structural unit (I) ′, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, and montanic acid are preferable.
  • Y may be any of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the structural unit (II) has 2 or more carbon atoms, and specific examples of the compound for deriving the structural unit (II) include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, pentamethylenediamine, hexa Examples include methylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, metaxylylenediamine, paraxylylenediamine, tolylenediamine, phenylenediamine, and isophoronediamine.
  • the carbon number of the structural unit (II) is not particularly limited, the carbon number is preferably 2 or more and 12 or less. That is, the number of carbon atoms in Y is preferably 2 or more and 12 or less.
  • the structural unit (II) is preferably a structural unit represented by the following formula (II) ′.
  • ethylenediamine, 1,3-diaminopropane, hexamethylenediamine, undecamethylenediamine, and dodecamethylenediamine are preferable.
  • the structural unit (III) has 6 or more carbon atoms, and specific examples of the compound that leads to the structural unit (III) include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, pimelic acid, and azelaic acid; phthalic acid, Aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid; alicyclic dicarboxylic acids such as cyclohexane dicarboxylic acid and cyclohexyl succinic acid, and the like.
  • aliphatic dicarboxylic acids such as adipic acid, sebacic acid, pimelic acid, and azelaic acid
  • phthalic acid Aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid
  • alicyclic dicarboxylic acids such as cyclohexane dicarboxylic acid and cyclohexyl succinic acid, and the like.
  • the upper limit of the carbon number of the structural unit (III) is not particularly limited, but the carbon number is preferably 14 or less. That is, the structural unit (III) preferably has 6 to 14 carbon atoms. The number of carbon atoms of Z in the structural unit (III) is preferably 4-12.
  • the structural unit (III) is preferably a structural unit represented by the following formula (III) ′.
  • adipic acid As the compound that leads to the structural unit (III) ′, adipic acid, sebacic acid, pimelic acid, and azelaic acid are preferable.
  • the amide compound preferably has 1 to 30 mol% of the structural unit (III) with respect to the total amount of the structural unit (I), the structural unit (II), and the structural unit (III). It is more preferably 25 mol%, and further preferably 3 to 20 mol%. As another aspect, the amide compound has 30 to 60 mol% of the structural unit (I) with respect to the total amount of the structural unit (I), the structural unit (II), and the structural unit (III). Is preferred. In still another aspect, the amide compound has 30 to 50 mol% of the structural unit (II) with respect to the total amount of the structural unit (I), the structural unit (II), and the structural unit (III). It is preferable.
  • the amide compound is preferably powdery or granular.
  • the volume average particle size of the amide compound is 5 ⁇ m or more and 50 ⁇ m or less, preferably 5 ⁇ m or more and 35 ⁇ m or less.
  • the volume average particle size of the amide compound may be 9 ⁇ m or more and 46 ⁇ m or less, or 9 ⁇ m or more and 28 ⁇ m or less.
  • the “volume average particle size of the amide compound” can be measured by a laser diffraction scattering method, for example, using a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA.
  • the melting point of the amide compound is 100 ° C. or higher, preferably 100 ° C. or higher and 300 ° C. or lower, and more preferably 200 ° C. or higher and 300 ° C. or lower.
  • the “melting point of the amide compound” is determined from the endothermic peak temperature observed when the amide compound is heated from room temperature to 400 ° C. under a temperature rising condition of 20 ° C./minute by differential calorimetry.
  • the amide compound that is, the amide compound having the structural units (I) to (III), having a melting point of 100 ° C. or higher and a volume average particle diameter of 5 ⁇ m to 50 ⁇ m is a novel substance.
  • the amide compound may further include other structural units that do not fall under any of these.
  • the other structural units are not particularly limited as long as the effects of the present invention are not impaired.
  • a monofunctional compound having reactivity with the terminal amino group or terminal carboxyl group of polyamide may be added in a small amount as a molecular weight regulator.
  • molecular weight regulators examples include monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, pivalic acid, cyclohexanecarboxylic acid, Benzoic acid, toluic acid, naphthalenecarboxylic acid and the like may be added. Further, acid anhydrides such as monoamine and phthalic anhydride, monoisocyanates, monoacid halogen compounds, monoester compounds, and monoalcohol compounds may be used.
  • monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, pivalic acid, cyclohexanecarboxylic acid,
  • the amide compound is preferably 80 mol% or more in total of the structural unit (I), the structural unit (II) and the structural unit (III) with respect to the total amount (100 mol%) of all the structural units constituting the amide compound. More preferably, it is 90 mol% or more, more preferably 95 mol% or more, and you may have 100 mol%. That is, the amide compound may have only the structural unit (I), the structural unit (II), and the structural unit (III) as the structural unit constituting the amide compound.
  • the amide compound according to the present invention may be one kind or two or more kinds.
  • the weight average molecular weight of the amide compound is preferably 700 or more and 5000 or less, more preferably 1000 or more and 4000 or less, and still more preferably 1000 or more and 3000 or less.
  • the “weight average molecular weight” can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the GPC measurement can be performed by, for example, Shodex GPC SYSTEM-11 manufactured by Showa Denko KK, using hexafluoroisopropanol (HFIP) as a solvent and dissolving 10 mg of a polyamide resin sample in 10 g of HFIP.
  • PMMA is used as the standard sample, and the weight average molecular weight can be determined using data processing software.
  • Examples of the amide compound include a compound that leads to the structural unit (I) or a derivative thereof that can form an amide bond, a compound that leads to the structural unit (II) or a derivative that can form an amide bond, and a structural unit (III). Or a derivative thereof capable of forming an amide bond.
  • a carboxylic acid having a hydroxy group bonded to the carbon atom of the carbonyl group (—CO—) in the structural unit (I) that is, the formula “CH 3 —X—CO—” OH "(X is the same as above)
  • Examples of the derivative of the compound (the carboxylic acid) that can form the amide bond and that leads to the structural unit (I) include a carboxy group (—CO—OH) in the carboxylic acid as an alkoxycarbonyl group or an aryloxycarbonyl group.
  • a product obtained by conversion ie, ester
  • a product obtained by converting a carboxy group to a haloformyl group ie, acid halide
  • a product obtained by converting a carboxy group to an acyloxycarbonyl group ie, acid anhydride
  • a diamine in which a hydrogen atom is bonded to each of two nitrogen atoms in the structural unit (II) that is, the formula “H 2 N—Y—NH 2 (Y represents the above)
  • the derivative of the compound (the diamine) that can form an amide bond and leads to the structural unit (II) is, for example, one obtained by acylating an amino group (—NH 2 ) in the diamine and converting it to an acylamino group ( That is, acylated products) can be mentioned.
  • a dicarboxylic acid formed by bonding a hydroxy group to carbon atoms of two carbonyl groups (—CO—) in the structural unit (III) that is, the formula “HO—OC”).
  • -Z-CO-OH “(wherein Z is the same as above)).
  • Examples of the derivative of the compound capable of forming an amide bond and deriving the structural unit (III) (the dicarboxylic acid) include, for example, converting a carboxy group (—CO—OH) in the carboxylic acid to an alkoxycarbonyl group or an aryloxycarbonyl group.
  • a product obtained by conversion ie, ester
  • a product obtained by converting a carboxy group to a haloformyl group ie, acid halide
  • a product obtained by converting a carboxy group to an acyloxycarbonyl group ie, acid anhydride
  • the method for producing the amide compound used in the present invention is not particularly limited, and can be produced by a conventionally known method.
  • An example is as follows. That is, for example, when an amide compound is obtained by a reaction such as a dehydration reaction of a higher aliphatic monocarboxylic acid, a polybasic acid and a diamine, after heating and melting the higher aliphatic monocarboxylic acid and the polybasic acid, A diamine may be added to the mixture and subjected to a dehydration reaction at 100 ° C. or higher and 350 ° C. or lower in an inert gas stream.
  • the product obtained by such dehydration reaction is usually a product having a structural unit derived from a higher aliphatic monocarboxylic acid, a polybasic acid and a diamine, and a structural unit derived from a higher aliphatic monocarboxylic acid and a diamine. And a product having no structural unit derived from a polybasic acid.
  • the production ratio of these products varies depending on the reaction conditions such as the charged molar ratio of each component during the reaction.
  • the proportion of products having a structural unit derived from a higher aliphatic monocarboxylic acid and a diamine and not having a structural unit derived from a polybasic acid is the total of all carboxylic acid amide substances.
  • the amount of the mixture is preferably 50% by mass or less, more preferably 10% by mass or more and 50% by mass or less, based on the mass.
  • the said mixture of such a composition can be obtained by adjusting the ratio of higher aliphatic monocarboxylic acid, polybasic acid, and diamine.
  • Examples of the amide compound having the structural unit (I), the structural unit (II), and the structural unit (III) include light amide WH-255 and light amide WH-215 (both manufactured by Kyoeisha Chemical Co., Ltd.) Commercial products.
  • the content of the amide compound with respect to 100 parts by mass of the liquid crystal polyester is 0.005 parts by mass or more and less than 0.1 parts by mass, preferably 0.01 parts by mass or more. It is 0.08 parts by mass or less, and more preferably 0.02 parts by mass or more and 0.05 parts by mass or less.
  • the content of the amide compound may be 0.007 parts by mass or more and 0.08 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester. It may be 0.03 parts by mass or more and 0.04 parts by mass or less.
  • the effect of stabilizing the plasticizing time becomes insufficient.
  • the content of the amide compound is 0.1 parts by mass or more, the amide compound is easily removed from the surface of the intermediate composition such as the intermediate composition pellet described later, and the hopper of the molding machine is easily soiled. Mechanical properties, etc. may decrease. That is, when the content of the amide compound is in the above range, the effect of stabilizing the plasticization time is sufficient, and the amide compound is detached from the surface of an intermediate composition such as an intermediate composition pellet described later. The hopper of the molding machine is difficult to get dirty, and the mechanical properties and the like are not easily lowered.
  • the liquid crystal polyester resin composition of the present invention preferably further contains a filler in addition to the liquid crystal polyester and the amide compound.
  • the filler is not particularly limited, and may be a fibrous filler, a plate-like filler, or a granular filler.
  • the filler may be an inorganic filler or an organic filler.
  • fibrous inorganic fillers examples include glass fibers; carbon fibers such as pan-based carbon fibers and pitch-based carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica-alumina fibers; and metal fibers such as stainless steel fibers.
  • the fibrous inorganic filler include whiskers such as potassium titanate whisker, barium titanate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker, and silicon carbide whisker.
  • whiskers such as potassium titanate whisker, barium titanate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker, and silicon carbide whisker.
  • the said glass fiber what was manufactured by various methods, such as a chopped strand glass fiber and a milled strand glass fiber, is mentioned.
  • fibrous organic fillers examples include polyester fibers and aramid fibers. Among the above, chopped strand glass fibers and milled strand glass fibers are preferable as the fibrous filler.
  • the plate-like inorganic filler examples include talc, mica, graphite, wollastonite, glass flake, barium sulfate, calcium carbonate and the like.
  • Mica may be muscovite, phlogopite, fluorine phlogopite, or tetrasilicon mica.
  • talc is preferable as the plate-like filler.
  • particulate inorganic filler examples include silica, alumina, titanium oxide, boron nitride, silicon carbide, calcium carbonate and the like.
  • the said filler may be used individually by 1 type, and may use 2 or more types together.
  • the filler is preferably one or more selected from the group consisting of the fibrous filler, plate-like filler and granular filler, and from the group consisting of the fibrous filler and plate-like filler. More preferably, it is 1 type or 2 types or more selected, and it is still more preferable that they are 1 type or 2 types or more of the said fibrous filler, and 1 type or 2 or more types of plate-shaped filler.
  • the filler is preferably at least one selected from the group consisting of milled glass fiber, chopped strand glass fiber, and talc.
  • the content of the filler with respect to 100 parts by mass of the liquid crystal polyester is preferably 10 parts by mass or more and 150 parts by mass or less, and preferably 10 parts by mass or more and 130 parts by mass or less. Is more preferably 25 parts by mass or more and 110 parts by mass or less, particularly preferably 40 parts by mass or more and 90 parts by mass or less, particularly preferably 55 parts by mass or more and 80 parts by mass or less, 60 parts by mass or more and 70 parts by mass or less is extremely preferable.
  • the content of the filler is in the above range, the heat resistance and strength of the molded body tend to be improved, which is preferable.
  • the liquid crystal polyester resin composition of the present invention may further contain other components other than the liquid crystal polyester, the amide compound and the filler.
  • the other components are not particularly limited and may be appropriately selected depending on the purpose. Examples of the other components include additives known in this field, resins other than the liquid crystal polyester (hereinafter, also referred to as “other resins”), and the like. That is, as one aspect, the liquid crystal polyester resin composition of the present invention comprises one or more selected from the group consisting of the liquid crystal polyester, the amide compound, and optionally the filler and the other components. Including.
  • the additive examples include an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a surfactant, a flame retardant, and a colorant.
  • the other resins include polysulfone, polyethersulfone, polypropylene, polyamide, polyesters other than liquid crystal polyester, thermoplastic resins such as polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether, polyether imide; phenol resin, epoxy
  • thermosetting resins such as resins, polyimide resins, and cyanate resins.
  • the other components may be used alone or in combination of two or more.
  • the content of the other components in the liquid crystal polyester resin composition is not particularly limited as long as the effects of the present invention are not impaired, but with respect to the total mass of the liquid crystal polyester resin composition , Preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably 1% by mass or less.
  • molding of the said liquid crystalline polyester resin composition becomes more stable because content of another component is below the said upper limit.
  • the liquid crystal polyester resin composition includes, for example, the liquid crystal polyester, the amide compound, and, if necessary, one or more selected from the group consisting of the filler and the other components in a lump or It is obtained by mixing in an appropriate order.
  • the liquid crystal polyester resin composition includes, for example, the liquid crystal polyester and, if necessary, one or more components other than the liquid crystal polyester and the amide compound (for example, the filler, the other, etc.
  • the intermediate composition is prepared by melt-kneading the mixture to obtain an intermediate composition as a kneaded product, and then mixing the solid amide compound with the intermediate composition.
  • the intermediate composition is obtained, for example, by mixing the liquid crystal polyester and, if necessary, components other than the liquid crystal polyester and the amide compound in a batch or in an appropriate order, and using an extruder or the like. It is obtained by melt-kneading the obtained mixture.
  • the obtained intermediate composition (kneaded material) may be pulverized as necessary to form a powder.
  • the extruder is preferably an extruder having a cylinder, at least one screw disposed in the cylinder, and at least one supply port provided in the cylinder, and further provided in the cylinder. What has at least one vent part is more preferable.
  • the temperature at the time of melt kneading is not particularly limited, it is preferably 200 ° C. or higher and 400 ° C. or lower, more preferably 300 ° C. or higher and 380 ° C. or lower.
  • the intermediate composition may be a pellet (also referred to as an intermediate composition pellet). That is, as one aspect, in the liquid crystal polyester resin composition of the present invention, at least a part of the surface of a pellet containing liquid crystal polyester (that is, an intermediate composition pellet) is coated with an amide compound, And having the structural units (I) to (III), having a melting point of 100 ° C. or higher and a volume average particle size of 5 ⁇ m to 50 ⁇ m, and the content of the amide compound is the content of the liquid crystal polyester It is a liquid-crystal polyester resin composition which is 0.005 mass part or more and less than 0.1 mass part with respect to 100 mass parts.
  • the liquid crystal polyester resin composition may be a pellet (also referred to as a liquid crystal polyester pellet).
  • “at least a part of the surface of the pellet containing the liquid crystal polyester is coated with the amide compound” means that the amide compound is present on at least a part of the surface of the pellet.
  • the amide compound present on the surface of the pellet may be physically attached to the surface or may be chemically attached by a chemical bond. Among them, the amide compound is preferably physically attached to the surface of the pellet.
  • One aspect of the method for producing the liquid crystalline polyester resin composition includes a pellet containing liquid crystalline polyester (intermediate composition pellet) and the structural units (I) to (III), and has a melting point of 100 ° C. or higher.
  • the mixing amount of the liquid crystal polyester is 100 parts by mass with the amide compound having a volume average particle size of 5 ⁇ m or more and 50 ⁇ m or less, the mixing amount of the amide compound is 0.005 parts by mass or more and 0.1 It is a manufacturing method including mixing as less than a mass part.
  • the pellet (intermediate composition pellet) is formed into a strand shape by extruding the kneaded product (intermediate composition) from an extruder or the like, for example, in the above-described intermediate composition manufacturing method, and pelletized with a cutter having a rotary blade. Can be obtained.
  • the pellet length is preferably 1 to 5 mm and can be adjusted by the speed of the rotary blade. If it is this range, processability, such as pellet feed, is also favorable.
  • the shape of the pellet is not particularly limited and can be arbitrarily selected according to the purpose.
  • examples of a preferable shape of the pellet include a spherical shape, a strip shape, an elliptical shape, a shape slightly deformed from an accurate ellipse, a cylindrical shape, and the like, and an elliptical shape or a cylindrical shape is preferable.
  • a length indicated by a straight line connecting the two most distant points on the cut surface of the pellet when cut on an arbitrary surface perpendicular to the length direction of the pellet (The major axis is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 1 mm or more and 7 mm or less, and more preferably 2 mm or more and 5 mm or less. Further, the length (minor axis) indicated by a straight line connecting the two closest points on the cut surface of the pellet is not particularly limited as long as the effect of the present invention is not impaired.
  • the short diameter is preferably, for example, from 1 mm to 5 mm.
  • the ratio of the major axis to the minor axis is preferably 1 or more and 4 or less.
  • the maximum width and the minimum width of the central portion of the cross section correspond to the major axis and the minor axis, respectively.
  • the major axis and minor axis of the pellet can be adjusted by adjusting the diameter of the strand by adjusting the diameter of a nozzle of an extruder or the like.
  • the major axis and the minor axis in the pellet can be obtained by measuring with a caliper or the like, for example.
  • the temperature of the intermediate composition when mixing the solid amide compound is preferably 20 ° C. or higher and 200 ° C. or lower, and more preferably room temperature or higher and 180 ° C. or lower. Such a temperature range is preferable because dissolution of the mixed amide compound can be prevented, and dropping of the amide compound from the pellet can be suppressed.
  • the amide compound may exist, for example, both inside and on the surface of the intermediate composition such as the pellet, or may exist only on the surface of the intermediate composition. It may be present only inside the intermediate composition. However, the amide compound is preferably present on at least a part of the surface of the intermediate composition because the plasticization time during molding of the liquid crystal polyester resin composition is more stable. The amide compound is preferably present on at least a part of the surface of the intermediate composition, more preferably more than 0% and not more than 10%, more than 0% with respect to the entire surface of the intermediate composition. More preferably, it is 5% or less, more preferably more than 0% and 1% or less. The amide compound is preferably dispersed in the intermediate composition.
  • Examples of the preferable liquid crystal polyester resin composition as described above include a liquid crystal polyester resin composition in which at least a part of the surface of the intermediate composition such as the pellet is coated with the amide compound.
  • Such a liquid crystal polyester resin composition is excellent in that the amide compound is more likely to act and the effects of the present invention can be obtained more remarkably.
  • the liquid crystal polyester resin composition in which at least a part of the surface of the pellet (intermediate composition pellet) is coated with the amide compound is, for example, the intermediate composition pelletized by the above-described method, the amide compound, It can manufacture by mixing.
  • the method for mixing the pellet and the amide compound is not particularly limited as long as the surface of the pellet can be coated with the amide compound. Examples of a method for coating at least a part of the surface of the pellet with the amide compound with high uniformity include a method using a known stirring device such as a tumbler mixer or a Henschel mixer.
  • the molded body which is one embodiment of the present invention is formed from the above-described liquid crystal polyester resin composition or liquid crystal polyester pellets of the present invention. More specifically, the molded body is, for example, an injection molding method; an extrusion molding method such as a T-die method or an inflation method; a compression molding method; a blow molding method; a vacuum molding method; a melt molding method such as a press molding method. It can be manufactured by molding. Especially, it is preferable that the molded object of this invention is an injection molded object.
  • liquid crystal polyester resin composition in addition to the liquid crystal polyester resin composition, other components may be further blended.
  • the other components at the time of molding are not particularly limited as long as the effects of the present invention are not impaired.
  • the other component at the time of molding may be only one kind or two or more kinds.
  • the blending amount of the other components at the time of molding is not particularly limited as long as the effects of the present invention are not impaired, but the total amount of the blending components (that is, the total blending amount of the liquid crystal polyester resin composition and other components).
  • the proportion of the other components is less than or equal to the upper limit value, the plasticization time during molding of the liquid crystal polyester resin composition is more stable.
  • the molding conditions for the liquid crystal polyester resin composition are not particularly limited, and may be appropriately selected depending on the molding method.
  • the cylinder temperature of the injection molding machine is preferably 300 ° C. or higher and 400 ° C. or lower, and the mold temperature is preferably 40 ° C. or higher and 160 ° C. or lower.
  • the liquid crystal polyester resin composition is melted and plasticized by measuring the melt, and the injection molding machine In the mold unit, the melt is formed.
  • the measurement time of the melt of the liquid crystal polyester resin composition (that is, plasticization time) is stable because fluctuations are suppressed and stabilized.
  • the plasticizing time is surely shorter than the cooling time of the molded body in the mold unit. Therefore, it can be easily molded in a constant cycle, and a high-quality molded product can be produced with high productivity.
  • the plasticization time can be obtained from the time for measuring the molten resin to be injected next in the injection molding machine.
  • the standard deviation calculated from the measured value of the plasticization time when the plasticization of the liquid crystal polyester resin composition is repeated 30 times is preferably 0.01 or more and 1 or less, more preferably 0. 0.01 or more and 0.9 or less, for example, 0.01 or more and 0.8 or less, 0.01 or more and 0.6 or less, and the like.
  • the molded body according to an embodiment of the present invention is suitable for use in molded bodies that are required to have heat-resistant deformation properties such as electronic parts, OA, AV parts, and heat-resistant tableware.
  • Examples of products and parts formed of the molded body of the present invention include: bobbins such as optical pickup bobbins and transformer bobbins; relay parts such as relay cases, relay bases, relay sprues and relay armatures; RIMM, DDR, CPU sockets , S / O, DIMM, Board to Board connector, FPC connector, card connector, etc .; Lamp reflector, LED reflector, etc .; Lamp holder, heater holder, etc .; Speaker diaphragm, etc.
  • Separation claws, separation claws for printers, etc . Camera module parts; Switch parts; Motor parts; Sensor parts; Hard disk drive parts; Tableware such as ovenware; Vehicle parts; Battery parts; , A sealing member such as yl for the sealing member and the like.
  • a liquid crystal polyester resin composition comprising a liquid crystal polyester, an amide compound, and optionally one or more substances selected from the group consisting of a filler and other components
  • the liquid crystalline polyester has a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3), preferably 4-hydroxy Having a repeating unit derived from benzoic acid, a repeating unit derived from terephthalic acid, a repeating unit derived from isophthalic acid, and a repeating unit derived from 4,4′-dihydroxybiphenyl
  • the amide compound is a structural unit derived from at least one compound selected from the group consisting of uric acid, myristic acid, palmitic acid, stearic acid, behenic acid, and montanic acid;
  • the volume average particle size of the amide compound is 5 ⁇ m or more and 50 ⁇ m or less, preferably 5 ⁇ m or more and 35 ⁇ m, or 9 ⁇ m or more and 46 ⁇ m or less, or 9 ⁇ m or more and 28 ⁇ m or less;
  • the filler is at least one selected from the group consisting of milled glass fiber, chopped strand glass fiber, and talc;
  • the other component is at least one selected from the group consisting of an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a surfactant, a flame retardant, a colorant, and a resin other than the liquid crystal polyester.
  • the content of the liquid crystal polyester is 55 to 65% by mass with respect to the total mass of the liquid crystal polyester resin composition;
  • the content of the amide compound is 0.005 parts by mass or more and less than 0.1 parts by mass, preferably 0.01 parts by mass or more and 0.08 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester. , More preferably 0.02 parts by mass or more and 0.05 parts by mass or less, or 0.007 parts by mass or more and 0.08 parts by mass or less, or 0.03 parts by mass or more and 0.04 parts by mass or less. May be, It is a liquid crystal polyester resin composition.
  • a liquid crystal polyester pellet comprising a liquid crystal polyester, an amide compound, and optionally one or more substances selected from the group consisting of a filler and other components, Liquid crystal polyester pellets, at least a part of the pellets containing the liquid crystal polyester is coated with an amide compound;
  • the liquid crystalline polyester has a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3), preferably 4-hydroxy Having a repeating unit derived from benzoic acid, a repeating unit derived from terephthalic acid, a repeating unit derived from isophthalic acid, and a repeating unit derived from 4,4′-dihydroxybiphenyl;
  • the amide compound is A structural unit derived from at least one compound selected from the group consisting of uric acid, myristic acid, palmitic acid, stearic acid, behenic acid, and montanic acid; A structural unit derived from at least one compound selected from the group consist
  • the volume average particle size of the amide compound is 5 ⁇ m or more and 50 ⁇ m or less, preferably 5 ⁇ m or more and 35 ⁇ m, or 9 ⁇ m or more and 46 ⁇ m or less, or 9 ⁇ m or more and 28 ⁇ m or less;
  • the filler is at least one selected from the group consisting of milled glass fiber, chopped strand glass fiber, and talc;
  • the other component is at least one selected from the group consisting of an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a surfactant, a flame retardant, a colorant, and a resin other than the liquid crystal polyester.
  • the content of the liquid crystal polyester is 55 to 65% by mass with respect to the total mass of the liquid crystal polyester pellets;
  • the content of the amide compound is 0.005 parts by mass or more and less than 0.1 parts by mass, preferably 0.01 parts by mass or more and 0.08 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester. , More preferably 0.02 parts by mass or more and 0.05 parts by mass or less, or 0.007 parts by mass or more and 0.08 parts by mass or less, or 0.03 parts by mass or more and 0.04 parts by mass or less. May be, It is a liquid crystal polyester pellet.
  • the volume average particle size, melting point, and pellet shape were measured by the following methods.
  • Measuring conditions Measuring device: Laser diffraction / scattering particle size distribution measuring device (HORIBA Co., Ltd .; LA-950V2) Particle refractive index: 1.53-0.1i Dispersion medium: water Dispersion medium refractive index: 1.33 ⁇ Measuring method of melting point> The melting point was measured using a differential thermal analyzer (manufactured by Shimadzu Corporation; DTA-50).
  • Amide compound or ester compound C] C1 Amide compound C1-23 produced by the following method. Add 568 g of stearic acid and 66.8 g of sebacic acid to the reactor, heat and dissolve, add 83.5 g of ethylenediamine gradually, start dehydration reaction at 160 ° C. in a nitrogen stream, and have an amine value of 5 mg KOH at 250 ° C. After reacting for 5 hours until it became less than / g, it was poured into a vat, solidified, and pulverized with a pulverizer to obtain a powdered amide compound C1.
  • the melting point of amide compound C1 was 210 ° C., and the volume average particle size was 23 ⁇ m (that is, amide compound C1-23 was obtained).
  • the amine value can be measured by nonaqueous titration with perchloric acid according to the method of Tf 2a-64 of American Oil Chemistry Society, and is calculated as mg KOH per 1 g of sample.
  • C2 Amide compounds C2-9, C2-19, C2-28, C2-46, and C2-55 produced by the following method. Add 568 g of stearic acid and 202 g of sebacic acid to the reactor, heat-dissolve, add 120 g of ethylenediamine gradually, start the dehydration reaction at 160 ° C. in a nitrogen stream, and reduce the amine value to 5 mgKOH / g or less at 250 ° C. After reacting for 5 hours, the mixture was poured into a vat and solidified, and pulverized with a pulverizer to obtain a powdered amide compound C2. The melting point of amide compound C2 was 242 ° C.
  • the amide compound C2 obtained above was classified using a sieve having openings of 25 ⁇ m, 63 ⁇ m, and 75 ⁇ m, and an amide compound having a volume average particle size of 9 ⁇ m (amide compound C2-9) and an amide compound having 19 ⁇ m (amide compound) C2-19), 28 ⁇ m amide compound (amide compound C2-28), 46 ⁇ m amide compound (amide compound C2-46), and 55 ⁇ m amide compound (amide compound C2-55) were obtained.
  • the relationship between the used sieve and the amide compounds (powder) having the respective volume average particle diameters is as follows.
  • C2-55 Powder remaining on a sieve having an opening of 75 ⁇ m.
  • C2-46 Powder that passed through a sieve having an opening of 75 ⁇ m and remained on the sieve having an opening of 63 ⁇ m.
  • C2-28 Powder that passed through a sieve having an aperture of 63 ⁇ m and remained on the sieve having an aperture of 25 ⁇ m.
  • C2-19 C2-28 was classified again, passed through a sieve having an opening of 63 ⁇ m, and remained on the sieve having an opening of 25 ⁇ m.
  • C2-9 Powder that passed through a sieve having an opening of 25 ⁇ m.
  • C3 Fatty acid polyol ester, “LOXIOL VPG 861 (trade name)” manufactured by Emery Oleochemicals Japan Co., Ltd. (melting point: 64 ° C., volume average particle size: 287 ⁇ m).
  • C4 Polyamide compound, “VESTOSINT 2070 (trade name)” manufactured by Daicel Degussa Co., Ltd. (melting point 182 ° C., volume average particle size 9 ⁇ m).
  • the polyamide compound refers to a polyamide resin obtained by ring-opening polymerization of laurolactam.
  • Amide compounds C5-15 and C5-135 produced by the following method. Add 568 g of stearic acid to the reactor, heat-dissolve, gradually add 60 g of ethylenediamine, start the dehydration reaction at 160 ° C. in a nitrogen stream, and continue for 5 hours at 250 ° C. until the amine value becomes 5 mgKOH / g or less. After the reaction, the mixture was poured into a vat, solidified, and pulverized with a pulverizer to obtain a powdered amide compound C5. The melting point was 146 ° C.
  • amide compound C5 obtained as described above was classified using a sieve having an aperture of 63 ⁇ m, and an amide compound having a volume average particle size of 15 ⁇ m (amide compound C5-15), an amide compound having 135 ⁇ m (amide compound C5- 135) were obtained respectively.
  • liquid crystal polyester A1 had a flow start temperature of 312 ° C.
  • liquid crystal polyester A2 had a flow start temperature of 327 ° C.
  • the discharged kneaded material was passed through a water bath at a water temperature of 30 ° C. for 1.5 seconds, and then passed through a take-up roller under a take-up speed of 40 m / min, and a strand cutter whose rotating blade was adjusted to 60 m / min.
  • Pelletization was performed using Tanabe Plastic Machine Co., Ltd. to obtain pellets (intermediate composition pellets) containing liquid crystal polyester.
  • the length of the pellet was 2.6 mm
  • the major axis was 2.1 mm
  • the minor axis was 1.8 mm.
  • the types and amounts of the amide compounds or ester compounds C shown in Table 1 were mixed in a solid state.
  • the temperature of the pellet measured with the radiation thermometer was 180 degreeC.
  • the mixture was further mixed using a tumbler mixer to obtain a liquid crystal polyester resin composition (liquid crystal polyester pellet) in which the surface of the pellet was coated with the amide compound.
  • the liquid crystal polyester resin compositions obtained in Examples 1 to 10 contain an amide compound having the same volume average particle size as the mixed powdered amide compound.
  • “-” in the column of the blending component means that the component is not blended.
  • c The standard deviation is greater than 1, or the measurement time is 20 seconds or more, and the measurement stability is poor.
  • the liquid crystal polyester resin compositions of Examples 1 to 10 are superior to the liquid crystal polyester resin compositions of Comparative Examples 1 to 9 in terms of measurement stability, have a stable molding process, and are amide compounds. It can be seen that the drop-off property is improved.
  • the liquid crystal polyester resin composition of the present invention is extremely useful industrially because it can be used for molded articles that are required to have heat-resistant deformation, such as electronic parts, OA, AV parts, and heat-resistant tableware.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyamides (AREA)

Abstract

液晶ポリエステルと、下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であるアミド化合物とを含み;このアミド化合物の含有量が、この液晶ポリエステルの含有量100質量部に対して、0.005質量部以上0.1質量部未満である液晶ポリエステル樹脂組成物。 構成単位(I):CH-X-CO- (Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。) 構成単位(II):-HN-Y-NH- (Yは炭素数が2以上の炭化水素基を表す。) 構成単位(III):-OC-Z-CO- (Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)

Description

液晶ポリエステル樹脂組成物
 本発明は、液晶ポリエステル樹脂組成物に関する。
 本願は、2016年10月27日に、日本に出願された特願2016-210790号に基づき優先権を主張し、その内容をここに援用する。
 液晶ポリエステルは、一般に溶融液晶型(サーモトロピック液晶)ポリマーと呼ばれており、その特異的な挙動のため溶融流動性に極めて優れ、構造によっては300℃以上の耐熱変形性を有する。液晶ポリエステルは、このような特性を生かして、電子部品をはじめ、OA、AV部品、耐熱食器等の用途で成形体に用いられている。
 前記成形体を得るための成形方法としては、射出成形法が一般的である。射出成形法においては、通常、液晶ポリエステルに必要に応じて他の成分を配合して得られた液晶ポリエステル樹脂組成物を用いる。そして、射出成形機のうち射出ユニットにおいて、前記樹脂組成物の溶融体の計量に要する時間(すなわち、前記樹脂組成物の可塑化時間)が安定し、変動が抑制されていることや、射出成形機のうち金型ユニットにおいて得られた成形体の冷却に要する時間(成形体の冷却時間)よりも、前記可塑化時間が短いことが、射出成形法では必要とされる。
 しかし、液晶ポリエステル樹脂組成物では、前記可塑化時間が安定せずに変動し易く、前記冷却時間よりも長くなってしまうことがある。この場合、一定サイクルで成形を行うことは困難であり、成形体の生産性が低下してしまうことがある。
 このような液晶ポリエステル樹脂組成物の可塑化時間の変動を抑制するため、ポリアミド化合物が混合された液晶ポリエステル樹脂混合物を用いること(特許文献1)や、3価リン原子を有するリン化合物とアミド化合物とが混合された液晶ポリエステル樹脂混合物を用いること(特許文献2)や、熱可塑性樹脂とフィラーの合計量100重量部に対し、高級脂肪族モノカルボン酸と多塩基酸とジアミンとを反応させて得られるカルボン酸アマイド系物質を0.1~10重量部含有してなる錠剤(特許文献3)が、それぞれ開示されている。
特開2004-182748号公報 特開2007-308619号公報 特開2004-1487号公報
 しかし、特許文献1~3で開示されている樹脂混合物を用いても、成形時の可塑化時間の安定性は、未だに不十分であり、改善しようとして、多量にポリアミド化合物や、3価リン原子を有するリン化合物とアミド化合物とを混合すると、アミド化合物がペレットから脱落して異物と間違えられるという課題がある。さらに特許文献3の方法では、錠剤を作製する必要があり、生産性が低下するという課題がある。
 本発明は上記事情に鑑みてなされたものであり、成形時の可塑化時間が安定しており、成形工程を安定して行うことができる液晶ポリエステル樹脂組成物、前記液晶ポリエステル樹脂組成物から得られた成形体を提供することを課題とする。
上記課題を解決するため、本発明は、以下の態様を含む。
 [1].液晶ポリエステルと、
下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であるアミド化合物と、を含み;
前記アミド化合物の含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.005質量部以上0.1質量部未満である、
液晶ポリエステル樹脂組成物。
 構成単位(I):CH-X-CO-
(Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
 構成単位(II):-HN-Y-NH-
(Yは炭素数が2以上の炭化水素基を表す。)
 構成単位(III):-OC-Z-CO-
(Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
 [2].前記アミド化合物における構成単位(I)が、下記式(I)’で表される構成単位である、[1]に記載の液晶ポリエステル樹脂組成物。
(I)’:CH-(CH-CO-
(lは10以上の整数を表す。)
 [3].前記アミド化合物における構成単位(II)が、下記式(II)’で表される構成単位である、[1]又は[2]に記載の液晶ポリエステル樹脂組成物。
 (II)’:-HN-(CH-NH-
(mは2~12の整数を表す。)
 [4].前記アミド化合物における構成単位(III)が、下記式(III)’で表される構成単位である、[1]~[3]のいずれか一つに記載の液晶ポリエステル樹脂組成物。
 (III)’:-OC-(CH-CO-
(nは4~12の整数を表す。)
 [5].前記アミド化合物の含有量が、液晶ポリエステルの含有量100質量部に対して、0.02質量部以上0.05質量部以下である、[1]~[4]のいずれか一項に記載の液晶ポリエステル樹脂組成物。
 [6].前記アミド化合物は、構成単位(I)と、構成単位(II)と、構成単位(III)との合計量に対して、構成単位(III)を1~30モル%有する、[1]~[5]のいずれか一つに記載の液晶ポリエステル樹脂組成物。
 [7].前記液晶ポリエステルが、芳香族ヒドロキシカルボン酸に由来する繰返し単位と、芳香族ジカルボン酸に由来する繰返し単位と、芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンに由来する繰返し単位とからなる、[1]~[6]のいずれか一つに記載の液晶ポリエステル樹脂組成物。
 [8].液晶ポリエステルを含むペレットの表面の少なくとも一部が、アミド化合物により被覆されており、
前記アミド化合物は、下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であり、 
前記アミド化合物の含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.005質量部以上0.1質量部未満である、
液晶ポリエステルペレット。
 構成単位(I):CH-X-CO-
(Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
 構成単位(II):-HN-Y-NH-
(Yは炭素数が2以上の炭化水素基を表す。)
 構成単位(III):-OC-Z-CO-
(Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
 [9].[1]~[7]のいずれか一つに記載の液晶ポリエステル樹脂組成物、又は[8]に記載の液晶ポリエステルペレットから形成された射出成形体。
 [10].液晶ポリエステルを含むペレットと、下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であるアミド化合物とを、前記液晶ポリエステルの混合量を100質量部としたとき、前記アミド化合物の混合量を0.005質量部以上0.1質量部未満として混合することを含む、液晶ポリエステル樹脂組成物の製造方法。
 構成単位(I):CH-X-CO-
(Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
 構成単位(II):-HN-Y-NH-
(Yは炭素数が2以上の炭化水素基を表す。)
 構成単位(III):-OC-Z-CO-
(Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
 [11].下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であるアミド化合物。
 構成単位(I):CH-X-CO-
(Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
 構成単位(II):-HN-Y-NH-
(Yは炭素数が2以上の炭化水素基を表す。)
 構成単位(III):-OC-Z-CO-
(Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
 本発明によれば、成形時の可塑化時間が安定しており、成形工程を安定して行うことができる液晶ポリエステル樹脂組成物、前記液晶ポリエステル樹脂組成物から得られた成形体が提供される。
<液晶ポリエステル樹脂組成物>
 本発明の液晶ポリエステル樹脂組成物は、液晶ポリエステルと、下記構成単位(I)~(III)を構成単位として有する化合物であり、融点が100℃以上であるアミド化合物と、を含む液晶ポリエステル樹脂組成物であって、前記アミド化合物の体積平均粒径は、5μm以上50μm以下であり、前記液晶ポリエステルの含有量100質量部に対する、前記アミド化合物の含有量が、0.005質量部以上0.1質量部未満である。
 構成単位(I):CH-X-CO-
(Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
 構成単位(II):-HN-Y-NH-
(Yは炭素数が2以上の炭化水素基を表す。)
 構成単位(III):-OC-Z-CO-
(Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
 すなわち、本発明の液晶ポリエステル樹脂組成物の1つの側面は、
液晶ポリエステルと、上記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であるアミド化合物と、を含み;
前記アミド化合物の含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.005質量部以上0.1質量部未満である、液晶ポリエステル樹脂組成物である。
 前記液晶ポリエステル樹脂組成物は、液晶ポリエステルと、特定のアミド化合物とを併用し、さらに前記アミド化合物の使用量を特定の範囲としていることで、後述するように、射出成形等の成形時の可塑化時間が安定し、成形工程を安定して行うことができる。
 以下、前記液晶ポリエステル樹脂組成物の含有成分について、説明する。
(液晶ポリエステル)
 前記液晶ポリエステルは、溶融状態で液晶性を示すポリエステルであり、450℃以下(例えば、250℃以上450℃以下)の温度で溶融するものであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、芳香族化合物のみを原料モノマーとする全芳香族液晶ポリエステルであることが好ましい。
 液晶ポリエステルの典型例としては、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを縮重合(重縮合)している液晶ポリエステル;複数種の芳香族ヒドロキシカルボン酸が重合している液晶ポリエステル;芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とが重合している液晶ポリエステル;並びにポリエチレンテレフタレート等のポリエステルと芳香族ヒドロキシカルボン酸とが重合している液晶ポリエステルが挙げられる。ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、互いに独立に、その一部又は全部に代えて、その重合可能な誘導体であってもよい。
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のような、カルボキシ基を有する化合物の重合可能な誘導体の例としては、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなる誘導体(エステルともいう)、カルボキシ基をハロホルミル基に変換してなる誘導体(酸ハロゲン化物ともいう)、及びカルボキシ基をアシルオキシカルボニル基に変換してなる誘導体(酸無水物ともいう)が挙げられる。芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのような、ヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシ基に変換してなる誘導体(アシル化物ともいう)が挙げられる。芳香族ヒドロキシアミン及び芳香族ジアミンのような、アミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなる誘導体(アシル化物ともいう)が挙げられる。
 液晶ポリエステルは、式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)と、を有することがより好ましい。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
[式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し;Ar及びArは、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は式(4)で表される基を表し;X及びYは、互いに独立に、酸素原子又はイミノ基(-NH-)を表し;Ar、Ar又はArで表される前記基中の少なくとも1個の水素原子は、互いに独立に、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。]
(4)-Ar-Z-Ar
[式(4)中、Ar及びArは、互いに独立に、フェニレン基又はナフチレン基を表し;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又は炭素数1~10のアルキリデン基を表す。]
 水素原子と置換可能な前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 水素原子と置換可能な前記炭素数1~10のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基等が挙げられる。
 水素原子と置換可能な前記炭素数6~20のアリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基等のような単環式芳香族基や、1-ナフチル基、2-ナフチル基等のような縮環式芳香族基が挙げられる。
 Ar、Ar又はArで表される前記基中の少なくとも1個の水素原子がこれらの基で置換されている場合、その置換数は、Ar、Ar又はArで表される前記基ごとに、互いに独立に、好ましくは1個又は2個であり、より好ましくは1個である。
 前記炭素数1~10のアルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基及び2-エチルヘキシリデン基等が挙げられる。
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。
 繰返し単位(1)としては、Arが1,4-フェニレン基である繰返し単位(例えば、p-ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6-ナフチレン基である繰返し単位(例えば、6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましい。
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。
 繰返し単位(2)としては、Arが1,4-フェニレン基である繰返し単位(例えば、テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基である繰返し単位(例えば、イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基である繰返し単位(例えば、2,6-ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエーテル-4,4’-ジイル基である繰返し単位(例えば、ジフェニルエーテル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましい。
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンに由来する繰返し単位である。
 繰返し単位(3)としては、Arが1,4-フェニレン基である繰返し単位(例えば、ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する繰返し単位)、及びArが4,4’-ビフェニリレン基である繰返し単位(例えば、4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。
なお、本明細書において「由来」とは、原料モノマーが重合するために化学構造が変化し、その他の構造変化を生じないことを意味する。
 液晶ポリエステルの繰返し単位(1)の含有率は、液晶ポリエステルを構成する全繰返し単位の合計量(モル数)(すなわち、液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30~80モル%、さらに好ましくは40~70モル%、とりわけ好ましくは45~65モル%である。
 液晶ポリエステルは、繰返し単位(1)の含有率が多いほど、液晶ポリエステルの溶融流動性、耐熱性、強度・剛性が向上し易いが、例えば、80モル%を超える量であまり多いと、液晶ポリエステルの溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。
 すなわち、繰返し単位(1)の含有量が上記範囲内であれば、溶融流動性や耐熱性や強度・剛性が向上し易く、かつ液晶ポリエステルの溶融温度や溶融粘度が高くなりすぎず、耐熱性、強度・剛性と成形加工性のバランスが良好となる。
 液晶ポリエステルの繰返し単位(2)の含有率は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~30モル%、とりわけ好ましくは17.5~27.5モル%である。
 液晶ポリエステルの繰返し単位(3)の含有率は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~30モル%、とりわけ好ましくは17.5~27.5モル%である。
 液晶ポリエステルにおいては、繰返し単位(2)の含有率と繰返し単位(3)の含有率との割合である[繰返し単位(2)の含有率]/[繰返し単位(3)の含有率](モル/モル)は、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、さらに好ましくは0.98/1~1/0.98である。
 なお、前記液晶ポリエステルは、繰返し単位(1)~(3)を、互いに独立に、1種のみ有してもよいし、2種以上有してもよい。また、液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を1種又は2種以上有してもよいが、その含有率は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは0~10モル%、より好ましくは0~5モル%である。
 液晶ポリエステルは、繰返し単位(3)として、X及びYがそれぞれ酸素原子である繰り返し単位を有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが、液晶ポリエステルの溶融粘度が低くなり易い(溶融粘度が高くなりすぎない)ので好ましく、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるもののみを有することが、より好ましい。
 但し、繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)の合計量は、100モル%を超えない。
 液晶ポリエステルは、上記の中でも、繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)のみからなるものが好ましい。そして、このような液晶ポリエステルは、これを構成する全繰返し単位の合計量に対して、前記繰返し単位(1)を30~80モル%有し、前記繰返し単位(2)を10~35モル%有し、前記繰返し単位(3)を10~35モル%有し、これらの和が100モル%であるものが、より好ましい。
 液晶ポリエステルは、これを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(以下、「プレポリマー」ということがある。)を固相重合させることにより、製造することが好ましい。これにより、耐熱性、強度、剛性が高い高分子量の液晶ポリエステルを操作性良く製造できる。溶融重合は、触媒の存在下で行ってもよい。前記触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物や、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾール等の含窒素複素環式化合物が挙げられ、好ましくは含窒素複素環式化合物が挙げられる。
 液晶ポリエステルの流動開始温度は、好ましくは270℃以上、より好ましくは270℃以上400℃以下、さらに好ましくは280℃以上380℃以下である。液晶ポリエステルは、流動開始温度が高いほど、耐熱性や強度・剛性が向上し易いが、あまり高いと、溶融させるために高温を要し、成形時に熱劣化し易くなったり、溶融時の粘度が高くなり、流動性が低下したりする。
すなわち、前記液晶ポリエステルは、流動開始温度が上記範囲内であると、耐熱性や強度・剛性が向上し易く、かつ、溶融温度が高くなりすぎないため、成形時の熱劣化や流動性の低下を防ぐことができる。
 なお、「流動開始温度」とは、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPaの荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示すときの温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 液晶ポリエステルは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 液晶ポリエステルの含有量は、液晶ポリエステル樹脂組成物の総質量に対して、80~45質量%であることが好ましく、70~50質量%であることがより好ましく、55~65質量%であることがとりわけ好ましい。
(アミド化合物)
 前記アミド化合物は、構成単位(I)と、構成単位(II)と、構成単位(III)と、を有するカルボン酸アミド化合物であり、かつその融点は100℃以上である。
 1つの側面として、前記アミド化合物は、構成単位(I)と、構成単位(II)と、構成単位(III)とを有し、アミド結合を形成するように結合している化合物である。
 別の側面として、前記アミド化合物は、構成単位(I)と、構成単位(II)と、構成単位(III)とを有し、構成単位(I)が末端に結合している化合物である。
 構成単位(I):CH-X-CO-
(Xは炭素数が10以上の、脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
 構成単位(II):-HN-Y-NH-
(Yは炭素数が2以上の炭化水素基を表す。)
 構成単位(III):-OC-Z-CO-
(Zは炭素数が4以上の、脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
前記構成単位(I)において、Xが前記ヒドロキシ炭化水素基である場合、X中のヒドロキシ基の数は、1つであることが好ましい。
 前記構成単位(I)を導く化合物としては、炭素数が12以上の脂肪族モノカルボン酸及びヒドロキシカルボン酸が好ましく、その具体例としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、ベヘン酸、モンタン酸、12-ヒドロキシステアリン酸等が挙げられる。
 前記構成単位(I)の炭素数の上限値は特に限定されないが、前記炭素数は28以下であることが好ましい。すなわち、前記構成単位(I)の炭素数は12以上28以下であることが好ましい。 前記構成単位(I)におけるXの炭素数としては、10~26であることが好ましい。
 前記構成単位(I)は、炭素数が12以上の脂肪族モノカルボン酸であることが好ましく、下記式(I)’で表される構成単位であることがより好ましい。
(I)’:CH-(CH-CO-
(lは10以上の整数を表す。)
 前記式(I)’において、lは10~26であることが好ましい。
 前記構成単位(I)’ を導く化合物としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、モンタン酸が好ましい。
 前記構成単位(II)において、Yは脂肪族炭化水素基、脂環式炭化水素基及び芳香族炭化水素基のいずれあってもよい。
 前記構成単位(II)の炭素数は2以上であり、構成単位(II)を導く化合物の具体例としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ペンタメチレンジアミン、ヘキサメチレンンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、トリレンジアミン、フェニレンジアミン、イソホロンジアミン等が挙げられる。
 前記構成単位(II)の炭素数の上限値は特に限定されないが、前記炭素数は2以上12以下であることが好ましい。
 すなわち、Yの炭素数としては、2以上12以下であることが好ましい。
 前記構成単位(II)としては、下記式(II)’で表される構成単位であることが好ましい。
 (II)’:-HN-(CH-NH-
(mは2~12の整数を表す。)
 前記構成単位(II)’ を導く化合物としては、エチレンジアミン、1,3-ジアミノプロパン、ヘキサメチレンンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンが好ましい。
 前記構成単位(III)の炭素数は6以上であり、構成単位(III)を導く化合物の具体例としては、アジピン酸、セバシン酸、ピメリン酸、アゼライン酸等の脂肪族ジカルボン酸;フタル酸、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸;シクロへキサンジカルボン酸、シクロヘキシルコハク酸等の脂環式ジカルボン酸等が挙げられる。
 前記構成単位(III)の炭素数の上限値は特に限定されないが、前記炭素数は14以下であることが好ましい。すなわち、前記構成単位(III)の炭素数は6以上14以下であることが好ましい。
 前記構成単位(III)におけるZの炭素数は、4~12であることが好ましい。
 前記構成単位(III)としては、下記式(III)’で表され構成単位であることが好ましい。
 (III)’:-OC-(CH-CO-
(nは4~12の整数を表す。)
 前記構成単位(III)’ を導く化合物としては、アジピン酸、セバシン酸、ピメリン酸、アゼライン酸が好ましい。
 前記アミド化合物は、構成単位(I)と、構成単位(II)と、構成単位(III)との合計量に対して、構成単位(III)を1~30モル%有することが好ましく、3~25モル%有することがより好ましく、3~20モル%有することがさらに好ましい。
 別の側面として、前記アミド化合物は、構成単位(I)と、構成単位(II)と、構成単位(III)との合計量に対して、構成単位(I)を30~60モル%有することが好ましい。
 さらに別の側面として、前記アミド化合物は、構成単位(I)と、構成単位(II)と、構成単位(III)との合計量に対して、構成単位(II)を30~50モル%有することが好ましい。
 前記アミド化合物は、粉体状又は粒状であることが好ましい。
 前記アミド化合物の体積平均粒径は、5μm以上50μm以下であり、好ましくは5μm以上35μm以下である。別の側面として、前記アミド化合物の体積平均粒径は、9μm以上46μm以下であってもよく、9μm以上28μm以下であってもよい。
アミド化合物の体積平均粒径が前記範囲にあると、アミド化合物は、2次凝集しにくいため、配合しやすくなり、さらに、樹脂組成物の表面に付着して、前記表面を被覆しやすくなり、樹脂組成物から脱離しにくくなり、好ましい。
 ここで、「アミド化合物の体積平均粒径」は、レーザー回折散乱法により、例えば、HORIBA(株)製のレーザー回折/散乱式粒径分布測定装置を用いて、測定できる。
 前記アミド化合物の融点は、100℃以上であり、100℃以上300℃以下であることが好ましく、200℃以上300℃以下であることがより好ましい。
 なお、「アミド化合物の融点」は、示差熱量測定により、20℃/分の昇温条件で、アミド化合物を室温から400℃まで昇温した際に観測される吸熱ピーク温度により、求められる。
 前記アミド化合物、すなわち、前記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であるアミド化合物は、新規物質である。
 前記アミド化合物は、構成単位(I)、構成単位(II)及び構成単位(III)以外に、これらのいずれにも該当しない、その他の構成単位をさらに有していてもよい。
 前記その他の構成単位は、本発明の効果を損なわない限り特に限定されない。
 前記その他の構成単位としては、例えば、ポリアミドの末端アミノ基または末端カルボキシル基と反応性を有する単官能性の化合物を分子量調節剤として、少量添加してもよい。
分子量調節剤としては、例えばモノカルボン酸として、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、シクロヘキサンカルボン酸、安息香酸、トルイル酸、ナフタレンカルボン酸等を加えてもよい。またモノアミンや無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化合物、モノエステル化合物、モノアルコール化合物を用いてもよい。
 前記アミド化合物は、これを構成する全構成単位の合計量(100モル%)に対して、構成単位(I)、構成単位(II)及び構成単位(III)を合計で好ましくは80モル%以上、より好ましく90モル%以上、さらに好ましくは95モル%以上有し、100モル%有していてもよい。すなわち、前記アミド化合物は、これを構成する構成単位として、構成単位(I)、構成単位(II)及び構成単位(III)のみを有していてもよい。
 本発明に係る前記アミド化合物は、1種のみでもよいし、2種以上でもよい。
 前記アミド化合物の重量平均分子量は、好ましくは700以上5000以下、より好ましくは1000以上4000以下、さらに好ましくは1000以上3000以下である。
前記アミド化合物の重量平均分子量が前記範囲にあると、融点を100℃以上300℃以下に調整しやすい。
「重量平均分子量」は、ゲル浸透クロマトグラフィー(GPC)により測定することができる。
GPC測定は、例えば、昭和電工社製Shodex GPC SYSTEM-11により、溶媒にはヘキサフルオロイソプロパノール(HFIP)を用い、ポリアミド樹脂サンプル10mgを10gのHFIPに溶解させて測定できる。標準試料にはpMMAを使用し、データ処理ソフトを使用して重量平均分子量を求めることができる。
 前記アミド化合物は、例えば、構成単位(I)を導く化合物又はアミド結合を形成可能なその誘導体と、構成単位(II)を導く化合物又はアミド結合を形成可能なその誘導体と、構成単位(III)を導く化合物又はアミド結合を形成可能なその誘導体と、を反応させることで得られる。
 構成単位(I)を導く化合物としては、構成単位(I)中のカルボニル基(-CO-)の炭素原子にヒドロキシ基が結合してなるカルボン酸(すなわち、式「CH-X-CO-OH」(Xは上記と同じである。)で表される化合物)が挙げられる。
 アミド結合を形成可能な、構成単位(I)を導く化合物(前記カルボン酸)の誘導体としては、例えば、前記カルボン酸中のカルボキシ基(-CO-OH)をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(すなわち、エステル)、カルボキシ基をハロホルミル基に変換してなるもの(すなわち、酸ハロゲン化物)、及びカルボキシ基をアシルオキシカルボニル基に変換してなるもの(すなわち、酸無水物)が挙げられる。
 構成単位(II)を導く化合物としては、構成単位(II)中の2つの窒素原子に、それぞれ水素原子が結合してなるジアミン(すなわち、式「HN-Y-NH(Yは上記と同じである。)」で表される化合物)が挙げられる。
 アミド結合を形成可能な、構成単位(II)を導く化合物(前記ジアミン)の誘導体としては、例えば、前記ジアミン中のアミノ基(-NH)をアシル化してアシルアミノ基に変換してなるもの(すなわち、アシル化物)が挙げられる。
 構成単位(III)を導く化合物としては、構成単位(III)中の2つのカルボニル基(-CO-)の炭素原子に、それぞれヒドロキシ基が結合してなるジカルボン酸(すなわち、式「HO-OC-Z-CO-OH」(Zは上記と同じである。)で表される化合物)が挙げられる。
 アミド結合を形成可能な、構成単位(III)を導く化合物(前記ジカルボン酸)の誘導体としては、例えば、前記カルボン酸中のカルボキシ基(-CO-OH)をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(すなわち、エステル)、カルボキシ基をハロホルミル基に変換してなるもの(すなわち、酸ハロゲン化物)、及びカルボキシ基をアシルオキシカルボニル基に変換してなるもの(すなわち、酸無水物)が挙げられる。
 本発明で用いるアミド化合物の製造方法は特に限定されず、従来公知の方法により製造することが可能である。一例を挙げれば、以下のとおりである。すなわち、例えば、高級脂肪族モノカルボン酸、多塩基酸及びジアミンの脱水反応等の反応によって、アミド化合物を得る場合であれば、高級脂肪族モノカルボン酸と多塩基酸とを加熱溶融後、ここにジアミンを添加し、不活性ガス気流下で、100℃以上350℃以下で脱水反応させればよい。かかる脱水反応により得られる生成物は、通常、高級脂肪族モノカルボン酸と多塩基酸とジアミンとに由来する構成単位を有する生成物と、高級脂肪族モノカルボン酸とジアミンとに由来する構成単位を有し、かつ多塩基酸に由来する構成単位を有しない生成物と、の混合物となる。これら生成物の生成比は、反応時の各成分の仕込みモル比等の反応条件で変化する。本発明においては、高級脂肪族モノカルボン酸とジアミンとに由来する構成単位を有し、かつ多塩基酸に由来する構成単位を有しない生成物の割合が、全てのカルボン酸アミド系物質の総質量に対して、好ましくは50質量%以下であり、より好ましくは10質量%以上50質量%以下である前記混合物を用いることが好ましい。このような組成の前記混合物は、高級脂肪族モノカルボン酸と多塩基酸とジアミンとの比率を調節することにより、得ることができる。
 構成単位(I)と、構成単位(II)と、構成単位(III)とを有するアミド化合物としては、ライトアマイドWH-255、ライトアマイドWH-215(いずれも、共栄社化学(株)製)等の市販品が挙げられる。
 前記液晶ポリエステル樹脂組成物において、前記液晶ポリエステルの含有量100質量部に対する、前記アミド化合物の含有量は、0.005質量部以上0.1質量部未満であり、好ましくは0.01質量部以上0.08質量部以下であり、より好ましくは0.02質量部以上0.05質量部以下である。別の側面として、前記液晶ポリエステル樹脂組成物において、前記液晶ポリエステルの含有量100質量部に対する、前記アミド化合物の含有量は、0.007質量部以上0.08質量部以下であってもよく、0.03質量部以上0.04質量部以下であってもよい。
前記アミド化合物の含有量が前記範囲にあると、液晶ポリエステル樹脂組成物の成形時における可塑化時間がより安定する。アミド化合物の含有量が0.005質量部未満の場合、前記可塑化時間の安定化効果が不十分になる。一方、アミド化合物の含有量が0.1質量部以上の場合、アミド化合物が、後述する中間組成物ペレット等の中間組成物の表面から脱落し易くなり、成形機のホッパーが汚れ易くなったり、機械物性等が低下したりする。すなわち、前記アミド化合物の含有量が前記範囲にあると、前記可塑化時間の安定化効果が十分であり、かつ、アミド化合物が、後述する中間組成物ペレット等の中間組成物の表面から脱落しにくく、成形機のホッパーが汚れにくく、機械物性等が低下しにくい。
(充填材)
 本発明の液晶ポリエステル樹脂組成物は、前記液晶ポリエステル及び前記アミド化合物以外に、さらに充填材を含むものが好ましい。
 前記充填材は、特に限定されず、繊維状充填材であってもよいし、板状充填材であってもよいし、粒状充填材であってもよい。また、前記充填材は、無機充填材であってもよいし、有機充填材であってもよい。
 繊維状無機充填材の例としては、ガラス繊維;パン系炭素繊維、ピッチ系炭素繊維等の炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維;ステンレス繊維等の金属繊維が挙げられる。また、繊維状無機充填材の例としては、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、炭化ケイ素ウイスカー等のウイスカーも挙げられる。
 前記ガラス繊維の例としては、チョップドストランドガラス繊維、ミルドストランドガラス繊維等、種々の方法で製造されたものが挙げられる。
 繊維状有機充填材の例としては、ポリエステル繊維、アラミド繊維等が挙げられる。
 上記のなかでも、繊維状充填材としては、チョップドストランドガラス繊維、ミルドストランドガラス繊維が好ましい。
 板状無機充填材の例としては、タルク、マイカ、グラファイト、ウォラストナイト、ガラスフレーク、硫酸バリウム、炭酸カルシウム等が挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。
上記の中でも、板状充填材としては、タルクが好ましい。
 粒状無機充填材の例としては、シリカ、アルミナ、酸化チタン、窒化ホウ素、炭化ケイ素、炭酸カルシウム等が挙げられる。
 前記充填材は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 前記充填材は、前記繊維状充填材、板状充填材及び粒状充填材からなる群から選ばれる1種又は2種以上であることが好ましく、繊維状充填材及び板状充填材からなる群から選ばれる1種又は2種以上であることがより好ましく、1種又は2種以上の前記繊維状充填材及び1種又は2種以上の板状充填材であることがさらに好ましい。
 別の側面として、前記充填材は、ミルドガラス繊維、チョップドストランドガラス繊維、タルクからなる群から選択される少なくとも1つであることが好ましい。
 前記液晶ポリエステル樹脂組成物において、液晶ポリエステルの含有量100質量部に対する、前記充填材の含有量は、10質量部以上150質量部以下であることが好ましく、10質量部以上130質量部以下であることがより好ましく、25質量部以上110質量部以下であることがさらに好ましく、40質量部以上90質量部以下であることがとりわけ好ましく、55質量部以上80質量部以下であることが特に好ましく、60質量部以上70質量部以下が極めて好ましい。前記充填材の含有量が前記範囲にあると、成形体の耐熱性及び強度が向上する傾向があり、好ましい。
(他の成分)
 本発明の液晶ポリエステル樹脂組成物は、前記液晶ポリエステル、前記アミド化合物及び前記充填材以外の、他の成分をさらに含んでいてもよい。
 前記他の成分は、特に限定されず、目的に応じて適宜選択すればよい。
 前記他の成分としては、この分野で公知の添加剤、前記液晶ポリエステル以外の樹脂(以下、「他の樹脂」ということがある。)等が挙げられる。
 すなわち、1つの側面として、本発明の液晶ポリエステル樹脂組成物は、前記液晶ポリエステル、前記アミド化合物、及び所望により前記充填材及び前記他の成分からなる群から選択される1種又は2種以上を含む。
 前記添加剤の例としては、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤及び着色剤等が挙げられる。
 前記他の樹脂の例としては、ポリスルホン、ポリエーテルスルホン、ポリプロピレン、ポリアミド、液晶ポリエステル以外のポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性樹脂;フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。
 前記他の成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 前記他の成分が含まれる場合、前記液晶ポリエステル樹脂組成物における前記他の成分の含有量は、本発明の効果を損なわない限り特に限定されないが、前記液晶ポリエステル樹脂組成物の総質量に対して、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、とりわけ好ましくは1質量%以下である。他の成分の含有が前記上限値以下であることで、前記液晶ポリエステル樹脂組成物の成形時の可塑化時間がより安定する。
<液晶ポリエステル樹脂組成物の製造方法>
 前記液晶ポリエステル樹脂組成物は、例えば、前記液晶ポリエステルと、前記アミド化合物と、必要に応じて前記充填材及び前記他の成分からなる群から選ばれる1種又は2種以上とを、一括で又は適当な順序で混合することにより得られる。
 なかでも、前記液晶ポリエステル樹脂組成物は、例えば、前記液晶ポリエステルと、必要に応じて、前記液晶ポリエステル及び前記アミド化合物以外の、1種又は2種以上の成分(例えば、前記充填材、前記他の成分等)と、を溶融混練して、混練物として中間組成物を得た後、前記中間組成物に、固体の前記アミド化合物を混合することで、製造することが好ましい。
 前記中間組成物は、例えば、前記液晶ポリエステルと、必要に応じて、前記液晶ポリエステル及び前記アミド化合物以外の成分とを、一括で又は適当な順序で混合し、押出機等を用いて、得られた混合物を溶融混練することにより得られる。得られた中間組成物(混練物)は、必要に応じて粉砕することにより、粉体としてもよい。
 前記押出機としては、シリンダと、前記シリンダ内に配置された少なくとも1本のスクリュウと、前記シリンダに設けられた少なくとも1箇所の供給口とを有する押出機が好ましく、さらに前記シリンダに設けられた少なくとも1箇所のベント部を有するものがより好ましい。
 溶融混練時の温度は、特に限定されないが、好ましくは200℃以上400℃以下であり、より好ましくは300℃以上380℃以下である。
 前記中間組成物は、ペレット(中間組成物ペレットともいう)であってもよい。すなわち、1つの側面として、本発明の液晶ポリエステル樹脂組成物は、液晶ポリエステルを含むペレット(すなわち、中間組成物ペレット)の表面の少なくとも一部が、アミド化合物により被覆されており、前記アミド化合物は、前記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であり、前記アミド化合物の含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.005質量部以上0.1質量部未満である、液晶ポリエステル樹脂組成物である。
 前記液晶ポリエステル樹脂組成物はペレット(液晶ポリエステルペレットともいう)であってもよい。
 本明細書において、「液晶ポリエステルを含むペレットの表面の少なくとも一部が、アミド化合物により被覆されている」とは、ペレットの表面の少なくとも一部に、アミド化合物が存在していることを意味する。ペレット表面に存在しているアミド化合物は、当該表面に物理的に付着していてもよいし、化学結合により化学的に付着していてもよい。中でも、アミド化合物は、ペレットの表面に物理的に付着していることが好ましい。
 また、前記液晶ポリエステル樹脂組成物の製造方法の1つの側面は、液晶ポリエステルを含むペレット(中間組成物ペレット)と、前記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下である前記アミド化合物とを、前記液晶ポリエステルの混合量を100質量部としたとき、前記アミド化合物の混合量を0.005質量部以上0.1質量部未満として混合することを含む、製造方法である。
 前記ペレット(中間組成物ペレット)は、例えば、上述の中間組成物の製造方法において、押出機等から前記混練物(中間組成物)をストランド状に押し出して、回転刃を有するカッターでペレット化することにより得られる。ペレット長は、好ましくは1~5mmであり、回転刃の速度で調節できる。この範囲であれば、ペレットフィード等の工程性も良好である。
 前記ペレット(中間組成物ペレット)の形状は、特に限定されず、目的に応じて任意に選択できる。ペレットの好ましい形状の例としては、球状、短冊状、楕円状、正確な楕円から多少変形したもの、円柱状等が挙げられ、楕円状又は円柱状が好ましい。
 前記ペレット(中間組成物ペレット)において、前記ペレットの長さ方向に対して垂直な任意の面で切断したときの、前記ペレットの切断面における最も離れた2点を結ぶ直線で示される長さ(長径)は、本発明の効果を損なわない限り特に限定されないが、例えば、1mm以上7mm以下であることが好ましく、2mm以上5mm以下であることがより好ましい。また、前記ペレットの切断面における最も近い2点を結ぶ直線で示される長さ(短径)は、本発明の効果を損なわない限り特に限定されない。短径としては、例えば、1mm以上5mm以下が好ましい。ただし、前記ペレットにおいて、長径と短径の比(長径/短径)は、1以上4以下であることが好ましい。切断面が円形でないペレットでは、断面中央部分の最大幅と最小幅がそれぞれ長径及び短径に相当する。前記ペレットの長径及び短径は、押出機等のノズルの径を調整して、ストランドの径を調整することで調整できる。
なお、前記ペレットにおける長径と短径は、例えば、ノギス等で測定することにより求めることができる。
 固体の前記アミド化合物を混合する際の、前記中間組成物の温度は、20℃以上200℃以下であることが好ましく、室温以上180℃以下であることがより好ましい。このような温度範囲であると、混合したアミド化合物の溶解を防ぐことができ、前記ペレットからのアミド化合物の脱落を抑制できて、好ましい。
 前記液晶ポリエステル樹脂組成物において、前記アミド化合物は、例えば、前記ペレット等の中間組成物の内部及び表面の両方に存在していてもよいし、前記中間組成物の表面のみに存在していてもよく、前記中間組成物の内部のみに存在していてもよい。ただし、液晶ポリエステル樹脂組成物の成形時における可塑化時間がより安定することから、前記アミド化合物は、前記中間組成物の表面の少なくとも一部に存在していることが好ましい。
 なお、アミド化合物は、中間組成物の表面の少なくとも一部に存在していることが好ましく、中間組成物の全表面に対して、0%超10%以下存在することがより好ましく、0%超5%以下存在することがさらに好ましく、0%超1%以下存在することが特に好ましい
 また、前記アミド化合物は、前記中間組成物中で分散していることが好ましい。
 上述のような好ましい液晶ポリエステル樹脂組成物としては、例えば、前記ペレット等の中間組成物の表面の少なくとも一部が、前記アミド化合物で被覆されてなる液晶ポリエステル樹脂組成物が挙げられる。このような液晶ポリエステル樹脂組成物は、前記アミド化合物がより作用し易く、本発明の効果がより顕著に得られるという点において、優れている。
 前記ペレット(中間組成物ペレット)の表面の少なくとも一部が前記アミド化合物で被覆されてなる液晶ポリエステル樹脂組成物は、例えば、上述の方法でペレット化した前記中間組成物と、前記アミド化合物と、を混合することにより製造できる。前記ペレットと前記アミド化合物との混合方法は、前記ペレットの表面を前記アミド化合物によって被覆できる方法であれば、特に限定されない。前記ペレットの表面の少なくとも一部を前記アミド化合物によって高い均一性で被覆できる方法としては、例えば、タンブラーミキサー、ヘンシェルミキサー等の公知の攪拌装置を用いる方法が挙げられる。
<成形体>
 本発明の一実施態様である成形体は、上述の本発明の液晶ポリエステル樹脂組成物又は液晶ポリエステルペレットから形成されたものである。 前記成形体は、より具体的には、例えば、射出成形法;Tダイ法やインフレーション法等の押出成形法;圧縮成形法;ブロー成形法;真空成形法;プレス成形法等の溶融成形法で成形することで、製造できる。なかでも、本発明の成形体は、射出成形体であることが好ましい。
 成形時には、前記液晶ポリエステル樹脂組成物以外に、さらに他の成分を配合してもよい。
成形時における前記他の成分は、本発明の効果を損なわない限り、特に限定されない。成形時における前記他の成分は、1種のみでもよいし、2種以上でもよい。
 成形時における前記他の成分の配合量は、本発明の効果を損なわない限り特に限定されないが、配合成分の総量(すなわち、前記液晶ポリエステル樹脂組成物及び他の成分の配合量の合計)に対する前記他の成分の配合量の割合である、[他の成分の配合量(質量部)]/[前記液晶ポリエステル樹脂組成物及び他の成分の総配合量(質量部)]×100が、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下であり、0質量%であってもよい。他の成分の前記配合量の割合が前記上限値以下であることで、液晶ポリエステル樹脂組成物の成形時における可塑化時間がより安定する。
 前記液晶ポリエステル樹脂組成物の成形条件は特に限定されず、成形法に応じて適宜選択すればよい。例えば、射出成形法で成形する場合には、射出成形機のシリンダ温度は300℃以上400℃以下が好ましく、金型温度は40℃以上160℃以下が好ましい。
 射出成形法を適用する場合には、例えば、射出成形機のうち射出ユニットにおいては、前記液晶ポリエステル樹脂組成物を溶融させ、その溶融体を計量することにより可塑化を行い、射出成形機のうち金型ユニットにおいては、前記溶融体を成形する。このとき、前記液晶ポリエステル樹脂組成物を用いることにより、前記射出ユニットにおける、前記液晶ポリエステル樹脂組成物の溶融体の計量時間(すなわち、可塑化時間)は、変動が抑制されて安定するため、前記可塑化時間は、前記金型ユニットにおける成形体の冷却時間よりも確実に短くなる。したがって、一定サイクルで容易に成形でき、高品質の成形体を高い生産性で製造できる。本明細書において、可塑化時間は、射出成形機において、次に射出する溶融樹脂を計量するための時間より求めることができる。
 射出成形時においては、前記液晶ポリエステル樹脂組成物の可塑化を30回繰返し行った場合の可塑化時間の測定値から算出された標準偏差を、好ましくは0.01以上1以下、より好ましくは0.01以上0.9以下とすることができ、例えば0.01以上0.8以下、0.01以上0.6以下等のいずれかとすることもできる。
 本発明の一実施形態である成形体は、電子部品をはじめ、OA、AV部品、耐熱食器等の、耐熱変形性を有することが求められる成形体への利用に好適なものである。
 本発明の成形体で構成される製品及び部品の例としては、光ピックアップボビン、トランスボビン等のボビン;リレーケース、リレーベース、リレースプルー、リレーアーマチャー等のリレー部品;RIMM、DDR、CPUソケット、S/O、DIMM、Board to Boardコネクター、FPCコネクター、カードコネクター等のコネクター;ランプリフレクター、LEDリフレクター等のリフレクター;ランプホルダー、ヒーターホルダー等のホルダー;スピーカー振動板等の振動板;コピー機用分離爪、プリンター用分離爪等の分離爪;カメラモジュール部品;スイッチ部品;モーター部品;センサー部品;ハードディスクドライブ部品;オーブンウェア等の食器;車両部品;電池部品;航空機部品;半導体素子用封止部材、コイル用封止部材等の封止部材等が挙げられる。
 本発明の別の側面は、
 液晶ポリエステルと、アミド化合物と、所望により充填材及び他の成分からなる群から選択される1種又は2種以上の物質と、含む液晶ポリエステル樹脂組成物であって、
 前記液晶ポリエステルは、式(1)で表される繰返し単位と、式(2)で表される繰返し単位と、式(3)で表される繰返し単位とを有し、好ましくは、4-ヒドロキシ安息香酸に由来する繰返し単位と、テレフタル酸に由来する繰返し単位と、イソフタル酸に由来する繰返し単位と、4,4’-ジヒドロキシビフェニルに由来する繰り返し単位とを有し;
 前記アミド化合物は、ウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、及びモンタン酸からなる群から選択される少なくとも1つの化合物から導かれる構成単位と、
エチレンジアミン、1,3-ジアミノプロパン、ヘキサメチレンンジアミン、ウンデカメチレンジアミン、及びドデカメチレンジアミンからなる群から選択される少なくとも1つの化合物から導かれる構成単位と、
アジピン酸、セバシン酸、ピメリン酸、及びアゼライン酸からなる群から選択される少なくとも1つの化合物から導かれる構成単位と、を有し、
好ましくは、ステアリン酸から導かれる構成単位と、エチレンジアミンから導かれる構成単位と、セバシン酸から導かれる構成単位とを有し;
前記アミド化合物の融点は、100℃以上であり、好ましくは100℃以上300℃以下、より好ましくは200℃以上300℃以下であり;
前記アミド化合物の体積平均粒径は、5μm以上50μm以下、好ましくは5μm以上35μmであり、又は、9μm以上46μm以下であってもよく、9μm以上28μm以下であってもよく;
 前記充填材は、ミルドガラス繊維、チョップドストランドガラス繊維、タルクからなる群から選択される少なくとも1つであり;
 前記他の成分は、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤、着色剤、及び前記液晶ポリエステル以外の樹脂からなる群から選択される少なくとも1つであり;
前記液晶ポリエステルの含有量が、前記液晶ポリエステル樹脂組成物の総質量に対して、55~65質量%であり;
 前記アミド化合物の含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.005質量部以上0.1質量部未満であり、好ましくは0.01質量部以上0.08質量部以下、より好ましくは0.02質量部以上0.05質量部以下であり、又は0.007質量部以上0.08質量部以下であってもよく、0.03質量部以上0.04質量部以下であってもよい、
液晶ポリエステル樹脂組成物である。
 本発明のさらに別の側面は、
 液晶ポリエステルと、アミド化合物と、所望により充填材及び他の成分からなる群から選択される1種又は2種以上の物質と、を含む液晶ポリエステルペレットであって、
 液晶ポリエステルペレットは、前記液晶ポリエスエルを含むペレットの少なくとも一部が、アミド化合物で被覆されており;
 前記液晶ポリエステルは、式(1)で表される繰返し単位と、式(2)で表される繰返し単位と、式(3)で表される繰返し単位とを有し、好ましくは、4-ヒドロキシ安息香酸に由来する繰返し単位と、テレフタル酸に由来する繰返し単位と、イソフタル酸に由来する繰返し単位と、4,4’-ジヒドロキシビフェニルに由来する繰り返し単位とを有し;
 前記アミド化合物は、
 ウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、及びモンタン酸からなる群から選択される少なくとも1つの化合物から導かれる構成単位と、
 エチレンジアミン、1,3-ジアミノプロパン、ヘキサメチレンンジアミン、ウンデカメチレンジアミン、及びドデカメチレンジアミンからなる群から選択される少なくとも1つの化合物から導かれる構成単位と、
アジピン酸、セバシン酸、ピメリン酸、及びアゼライン酸からなる群から選択される少なくとも1つの化合物から導かれる構成単位と、を有し、
好ましくは、ステアリン酸から導かれる構成単位と、エチレンジアミンから導かれる構成単位と、セバシン酸から導かれる構成単位とを有し;
前記アミド化合物の融点は、100℃以上であり、好ましくは100℃以上300℃以下、より好ましくは200℃以上300℃以下であり;
前記アミド化合物の体積平均粒径は、5μm以上50μm以下、好ましくは5μm以上35μmであり、又は、9μm以上46μm以下であってもよく、9μm以上28μm以下であってもよく;
 前記充填材は、ミルドガラス繊維、チョップドストランドガラス繊維、タルクからなる群から選択される少なくとも1つであり;
 前記他の成分は、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤、着色剤、及び前記液晶ポリエステル以外の樹脂からなる群から選択される少なくとも1つであり;
前記液晶ポリエステルの含有量が、前記液晶ポリエステルペレットの総質量に対して、55~65質量%であり;
 前記アミド化合物の含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.005質量部以上0.1質量部未満であり、好ましくは0.01質量部以上0.08質量部以下、より好ましくは0.02質量部以上0.05質量部以下であり、又は0.007質量部以上0.08質量部以下であってもよく、0.03質量部以上0.04質量部以下であってもよい、
液晶ポリエステルペレットである。
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。
 なお、本実施例及び比較例において、体積平均粒径、融点及びペレット形状は、それぞれ下記方法により測定した。
<体積平均粒径の測定方法>
 体積平均粒径を、下記条件でレーザー回折法により測定した。
 測定条件
 測定装置:レーザー回折/散乱式粒径分布測定装置(HORIBA(株)製;LA-950V2)
 粒子屈折率:1.53-0.1i
 分散媒:水
 分散媒屈折率:1.33<融点の測定方法>
 示差熱分析装置((株)島津製作所製;DTA-50)を用いて、融点を測定した。5mgのサンプルを使用して室温から400℃まで20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度を融点とした。
<ペレット形状の測定方法>
 キーエンス(株)製VHX1000を用いて、ペレットの長さ、長径、短径を測定した。
ペレットの母数は20とし、その平均値を求めた。
 また、本実施例及び比較例で用いた主な原材料を以下に示す。
[繊維状充填材B1]
 B1-1:ミルドガラス繊維、日東紡績(株)製「PF70E-001」
 B1-2:チョップドガラス繊維、オーウェンスコーニング(株)製「CS03JAPX-1」
[板状充填材B2]
 B2:タルク、日本タルク(株)製、「X-50」
[アミド化合物又はエステル化合物C]
 C1:下記方法で製造されたアミド化合物C1-23。
 反応器にステアリン酸568gとセバシン酸66.8gを入れて、加熱溶解後、エチレンジアミン83.5gを徐々に加え、窒素気流中で160℃から脱水反応を開始し、250℃にてアミン価が5mgKOH/g以下になるまで5時間反応した後、バットに流し固めて、粉砕機により粉砕することにより粉末状のアミド化合物C1を得た。アミド化合物C1の融点は210℃であり、体積平均粒径は23μmであった(すなわち、アミド化合物C1-23が得られた)。
アミン価は、American Oil Chemists SocietyのTf 2a-64の方法に準拠して過塩素酸による非水滴定により測定することができ、試料1gあたりのmgKOHとして算出されるものである。
 C2:下記方法で製造されたアミド化合物C2-9、C2-19、C2-28、C2-46、及びC2-55。
 反応器にステアリン酸568gとセバシン酸202gを入れて、加熱溶解後、エチレンジアミン120gを徐々に加え、窒素気流中で160℃から脱水反応を開始し、250℃にてアミン価が5mgKOH/g以下になるまで5時間反応した後、バットに流し固めて、粉砕機により粉砕することにより、粉末状のアミド化合物C2を得た。アミド化合物C2の融点は242℃であった。
 上記によって得られたアミド化合物C2を、目開き25μm、63μm、75μmの篩を使用して分級し、体積平均粒径が9μmのアミド化合物(アミド化合物C2-9)、19μmのアミド化合物(アミド化合物C2-19)、28μmのアミド化合物(アミド化合物C2-28)、46μmのアミド化合物(アミド化合物C2-46)、55μmのアミド化合物(アミド化合物C2-55)をそれぞれ得た。使用した篩と、それぞれの体積平均粒径を有するアミド化合物(粉体)と、の関係は以下のとおりである。
 C2-55:目開き75μmの篩上に残った粉体。
 C2-46:目開き75μmの篩を通過し、目開き63μmの篩上に残った粉体。
 C2-28:目開き63μmの篩を通過し、目開き25μmの篩上に残った粉体。
 C2-19:C2-28を再度分級し、目開き63μmの篩を通過し、目開き25μmの篩上に残った粉体。
 C2-9:目開き25μmの篩を通過した粉体。
 C3:脂肪酸ポリオールエステル、エメリー・オレオケミカルズ・ジャパン(株)製「LOXIOL VPG 861(商品名)」(融点64℃、体積平均粒径287μm)。
 C4:ポリアミド化合物、ダイセル・デグサ(株)製「VESTOSINT 2070(商品名)」(融点182℃、体積平均粒径9μm)。なお、本明細書においてポリアミド化合物とは、ラウロラクタムを開環重合したポリアミド樹脂を指す。
 C5:下記方法で製造されたアミド化合物C5-15、及びC5-135。
 反応器にステアリン酸568gを入れて、加熱溶解後、エチレンジアミン60gを徐々に加え、窒素気流中で160℃から脱水反応を開始し、250℃にてアミン価が5mgKOH/g以下になるまで5時間反応した後、バットに流し固めて、粉砕機により粉砕することにより、粉末状のアミド化合物C5を得た。融点は、146℃であった。
 更に、上記によって得られたアミド化合物C5を、目開き63μmの篩を使用して分級し、体積平均粒径が15μmのアミド化合物(アミド化合物C5-15)、135μmのアミド化合物(アミド化合物C5-135)をそれぞれ得た。
<液晶ポリエステルの製造>
 [製造例1]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸(994.5g、7.20モル)、テレフタル酸(272.1g、1.64モル)、イソフタル酸(126.6g、0.76モル)、4,4’-ジヒドロキシビフェニル(446.9g、2.40モル)、無水酢酸1347.6g(13.20モル)を仕込んだ。反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾールを0.18g添加し、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、150℃で30分間還流させた。
 次いで、1-メチルイミダゾールを2.4g添加した後、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で反応終了とし、反応器から内容物を取り出して、室温まで冷却し、プレポリマー(固形物)を得た。
 次いで、粉砕機を用いてこのプレポリマーを粉砕し、得られた粉砕物を窒素ガス雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から280℃まで5時間かけて昇温し、280℃で3時間保持することにより、固相重合を行った。得られた固相重合物を室温まで冷却して、液晶ポリエステルA1を得た。得られた液晶ポリエステルA1の流動開始温度は、312℃であった。
[製造例2]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸(994.5g、7.20モル)、テレフタル酸(299.0g、1.80モル)、イソフタル酸(99.7g、0.60モル)、4,4’-ジヒドロキシビフェニル(446.9g、2.40モル)及び無水酢酸(1347.6g、13.20モル)を入れ、反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾールを0.18g添加し、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、150℃で1時間還流させた。
 次いで、1-メチルイミダゾールを2.4g添加した後、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で反応終了とし、反応器から内容物を取り出して、室温まで冷却し、プレポリマー(固形物)を得た。
 次いで、粉砕機を用いてこのプレポリマーを粉砕し、得られた粉砕物を窒素ガス雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温し、285℃で3時間保持することにより、固相重合を行った。得られた固相重合物を室温まで冷却して、液晶ポリエステルA2を得た。得られた液晶ポリエステルA2の流動開始温度は、327℃であった。
[実施例1~10、比較例1~9]
<液晶ポリエステル樹脂組成物の製造>
 シリンダ温度を340℃とした二軸押出機(池貝鉄工(株)製「PCM-30型」)に、その原料供給口から、表1に示す量の液晶ポリエステルA1又はA2と、表1に示す量の繊維状充填材B1及び板状充填材B2と、を共に供給し、スクリュウ回転数150rpmの条件で溶融混練して、直径3mmの円形ノズル(吐出口)を経由してストランド状に混練物を吐出した。次いでこの吐出した混練物を、水温30℃の水浴に1.5秒くぐらせた後、引き取り速度40m/minの条件で引き取りローラーを経由させて、回転刃を60m/minに調整されたストランドカッター(田辺プラスチック機械(株)製)を用いてペレタイズし、液晶ポリエステルを含むペレット(中間組成物ペレット)を得た。ペレット形状を測定の結果、ペレットの長さ2.6mm、長径2.1mm、短径1.8mmであった。
 次いで、得られたペレット100質量部に対して、表1に示す種類と量のアミド化合物又はエステル化合物Cを、固体状態で混合した。その際、放射温度計で測定したペレットの温度は180℃であった。アミド化合物又はエステル化合物Cを混合した後に、タンブラーミキサーを用いて更に混合し、前記ペレットの表面がアミド化合物で被覆されてなる液晶ポリエステル樹脂組成物(液晶ポリエステルペレット)を得た。実施例1~10で得られた液晶ポリエステル樹脂組成物には、混合した粉末状のアミド化合物と同じ体積平均粒径を有するアミド化合物が含まれている。
 なお、表1中、配合成分の欄の「-」との記載は、その成分が未配合であることを意味する。
<成形体の製造>
 得られた液晶ポリエステル樹脂組成物について、射出成形機(日精樹脂工業(株)製「ES400-5E」)を用いて、下記条件での30ショット連続成形時の計量時間(可塑化時間)を測定し、これらの平均値と標準偏差を求めた。
(成形条件)
 シリンダ温度(℃):350-350-330-310
 金型温度(℃):130
 計量(mm):54
 サックバック(mm):2
 スクリュー回転数(rpm):175
 背圧(MPa):4
 成形品形状:鏡面試験片(長さ64mm、幅64mm、厚さ3mm)
<計量安定性の評価>
 上記の射出成形時に求めた、液晶ポリエステル樹脂組成物の計量時間の標準偏差又は平均値から、下記基準に従って計量安定性を評価した。それぞれの計量時間、その標準偏差及び平均値、並びに評価結果を表2に示す。
 なお、表2中、評価結果の欄の「-」との記載は、その項目が未評価であることを意味する。
 a:標準偏差が0.3以下であり、計量安定性が特に高い。
 b:標準偏差が0.3より大きく1以下であり、計量安定性が高い。
 c:標準偏差が1より大きいか、又は計量時間が20秒以上であり、計量安定性が不良である。
<アミド化合物又はエステル化合物Cの脱落性の評価>
 アミド化合物又はエステル化合物Cの脱落性を、以下に示す方法で評価した。
 すなわち、得られた液晶ポリエステル樹脂組成物(液晶ポリエステルペレット)500gを、目開き1mmの篩を使用して1分間篩がけを行い、脱落したアミド化合物又はエステル化合物Cを集めて、その重さ(液晶ポリエステル自体の粉を含む)を測り、前記ペレットの表面を被覆しているアミド化合物又はエステル化合物Cの脱落性を、下記基準に従って評価した。評価結果を表2に示す。
 a:脱落したアミド化合物又はエステル化合物Cの重さが0.1g未満である。
 b:脱落したアミド化合物又はエステル化合物Cの重さが0.1g以上である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例1~10の液晶ポリエステル樹脂組成物は、比較例1~9の液晶ポリエステル樹脂組成物と比較して、計量安定性に優れ、成形工程が安定しており、かつアミド化合物の脱落性も改善されていることが分かる。
 本発明の液晶ポリエステル樹脂組成物は、電子部品をはじめ、OA、AV部品、耐熱食器等の、耐熱変形性を有することが求められる成形体に利用可能であるから、産業上極めて有用である。

Claims (11)

  1.  液晶ポリエステルと、
    下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が、5μm以上50μm以下であるアミド化合物と、を含み、
     前記アミド化合物の含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.005質量部以上0.1質量部未満である液晶ポリエステル樹脂組成物。
     構成単位(I):CH-X-CO-
    (Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
     構成単位(II):-HN-Y-NH-
    (Yは炭素数が2以上の炭化水素基を表す。)
     構成単位(III):-OC-Z-CO-
    (Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
  2.  前記アミド化合物における構成単位(I)が、下記式(I)’で表される構成単位である、請求項1に記載の液晶ポリエステル樹脂組成物。
    (I)’:CH-(CH-CO-
    (lは10以上の整数を表す。)
  3.  前記アミド化合物における構成単位(II)が、下記式(II)’で表される構成単位である、請求項1又は2に記載の液晶ポリエステル樹脂組成物。
     (II)’:-HN-(CH-NH-
    (mは2~12の整数を表す。)
  4.  前記アミド化合物における構成単位(III)が、下記式(III)’で表される構成単位である、請求項1~3のいずれか一項に記載の液晶ポリエステル樹脂組成物。
     (III)’:-OC-(CH-CO-
    (nは4~12の整数を表す。)
  5.  前記アミド化合物の含有量が、液晶ポリエステルの含有量100質量部に対して、0.02質量部以上0.05質量部以下である、請求項1~4のいずれか一項に記載の液晶ポリエステル樹脂組成物。
  6.  前記アミド化合物が、構成単位(I)と、構成単位(II)と、構成単位(III)との合計量に対して、構成単位(III)を1~30モル%有する、請求項1~5のいずれか一項に記載の液晶ポリエステル樹脂組成物。
  7.  前記液晶ポリエステルが、芳香族ヒドロキシカルボン酸に由来する繰返し単位と、芳香族ジカルボン酸に由来する繰返し単位と、芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンに由来する繰返し単位とからなる、請求項1~6のいずれか一項に記載の液晶ポリエステル樹脂組成物。
  8. 液晶ポリエステルを含むペレットの表面の少なくとも一部が、アミド化合物で被覆されており、
     前記アミド化合物は、下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であり、
     前記液晶ポリエステルの含有量100質量部に対する、前記アミド化合物の含有量が、0.005質量部以上0.1質量部未満である、
    液晶ポリエステルペレット。
     構成単位(I):CH-X-CO-
    (Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
     構成単位(II):-HN-Y-NH-
    (Yは炭素数が2以上の炭化水素基を表す。)
     構成単位(III):-OC-Z-CO-
    (Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
  9.  請求項1~7のいずれか一項に記載の液晶ポリエステル樹脂組成物、又は請求項8に記載の液晶ポリエステルペレットから形成された射出成形体。
  10.  液晶ポリエステルを含むペレットと、下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であるアミド化合物とを、
     前記液晶ポリエステルの混合量を100質量部としたとき、前記アミド化合物の混合量を0.005質量部以上0.1質量部未満として混合することを含む、
    液晶ポリエステル樹脂組成物の製造方法。
     構成単位(I):CH-X-CO-
    (Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
     構成単位(II):-HN-Y-NH-
    (Yは炭素数が2以上の炭化水素基を表す。)
     構成単位(III):-OC-Z-CO-
    (Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
  11.  下記構成単位(I)~(III)を有し、融点が100℃以上であり、かつ体積平均粒径が5μm以上50μm以下であるアミド化合物。
     構成単位(I):CH-X-CO-
    (Xは炭素数が10以上の脂肪族炭化水素基、又は脂肪族炭化水素基の1つ若しくは2つ以上の水素原子がヒドロキシ基で置換されたヒドロキシ炭化水素基を表す。)
     構成単位(II):-HN-Y-NH-
    (Yは炭素数が2以上の炭化水素基を表す。)
     構成単位(III):-OC-Z-CO-
    (Zは炭素数が4以上の脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基を表す。)
PCT/JP2017/038529 2016-10-27 2017-10-25 液晶ポリエステル樹脂組成物 WO2018079611A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780066014.5A CN109863202B (zh) 2016-10-27 2017-10-25 液晶聚酯树脂组合物
KR1020197011771A KR102376572B1 (ko) 2016-10-27 2017-10-25 액정 폴리에스테르 수지 조성물
US16/344,682 US20200048553A1 (en) 2016-10-27 2017-10-25 Liquid-crystal polyester resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-210790 2016-10-27
JP2016210790A JP6861497B2 (ja) 2016-10-27 2016-10-27 液晶ポリエステル樹脂組成物

Publications (1)

Publication Number Publication Date
WO2018079611A1 true WO2018079611A1 (ja) 2018-05-03

Family

ID=62024958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038529 WO2018079611A1 (ja) 2016-10-27 2017-10-25 液晶ポリエステル樹脂組成物

Country Status (6)

Country Link
US (1) US20200048553A1 (ja)
JP (1) JP6861497B2 (ja)
KR (1) KR102376572B1 (ja)
CN (1) CN109863202B (ja)
TW (1) TWI732060B (ja)
WO (1) WO2018079611A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6643516B1 (ja) 2019-05-17 2020-02-12 住友化学株式会社 ペレット混合物および射出成形体
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
JP2022108934A (ja) * 2021-01-14 2022-07-27 住友化学株式会社 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び射出成形体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271709A (ja) * 1992-02-14 1993-10-19 Hoeganaes Corp 焼結金属部材の製造方法及びそのための金属粉末組成物
JPH09137056A (ja) * 1995-06-07 1997-05-27 General Electric Co <Ge> ポリ(フェニレンエーテル)樹脂と半結晶質樹脂の相溶性組成物
JP2004001487A (ja) * 2002-04-26 2004-01-08 Toray Ind Inc 錠剤、その製造方法およびそれから得られる成形品
JP2004182748A (ja) * 2002-11-29 2004-07-02 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂混合物およびそれを用いた成形方法
JP2004190018A (ja) * 2002-11-28 2004-07-08 Du Pont Toray Co Ltd 熱可塑性エラストマ樹脂組成物および成形体
JP2007308619A (ja) * 2006-05-19 2007-11-29 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂混合物およびそれを用いた成形体。
JP2014201645A (ja) * 2013-04-04 2014-10-27 三菱エンジニアリングプラスチックス株式会社 ポリエステル系樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890701808A (ko) * 1987-10-01 1989-12-21 마에다 가쯔노스께 고강도 액정수지성형물 및 액정수지복합체 및 그의 제법
JPH06145686A (ja) * 1992-11-04 1994-05-27 Kyoeisha Chem Co Ltd 熱可塑性樹脂成形加工用滑剤
JP2002294038A (ja) * 2001-03-28 2002-10-09 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
EP1621580B1 (en) * 2003-05-02 2008-12-10 Toray Industries, Inc. Polyester resin composition
JP2010084129A (ja) * 2008-09-04 2010-04-15 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂混合物及びそれを用いてなる反射板並びに発光装置
JP2011021131A (ja) * 2009-07-17 2011-02-03 Sumitomo Chemical Co Ltd 液晶ポリエステルプリプレグの製造方法および液晶ポリエステルプリプレグ
JP5503915B2 (ja) * 2009-07-30 2014-05-28 住友化学株式会社 液晶ポリエステル組成物およびこれを用いた電子回路基板
TWI586750B (zh) * 2011-02-28 2017-06-11 住友化學股份有限公司 液晶聚酯組成物及其製造方法
KR101930048B1 (ko) * 2011-03-04 2018-12-17 토요잉크Sc홀딩스주식회사 β-하이드록시알킬아미드 및 수지 조성물
JP5872180B2 (ja) * 2011-03-22 2016-03-01 住友化学株式会社 液晶ポリエステル成形体の製造方法
US10030138B2 (en) * 2013-07-01 2018-07-24 Kaneka Corporation High thermal conductivity thermoplastic resin composition with excellent injection moldability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271709A (ja) * 1992-02-14 1993-10-19 Hoeganaes Corp 焼結金属部材の製造方法及びそのための金属粉末組成物
JPH09137056A (ja) * 1995-06-07 1997-05-27 General Electric Co <Ge> ポリ(フェニレンエーテル)樹脂と半結晶質樹脂の相溶性組成物
JP2004001487A (ja) * 2002-04-26 2004-01-08 Toray Ind Inc 錠剤、その製造方法およびそれから得られる成形品
JP2004190018A (ja) * 2002-11-28 2004-07-08 Du Pont Toray Co Ltd 熱可塑性エラストマ樹脂組成物および成形体
JP2004182748A (ja) * 2002-11-29 2004-07-02 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂混合物およびそれを用いた成形方法
JP2007308619A (ja) * 2006-05-19 2007-11-29 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂混合物およびそれを用いた成形体。
JP2014201645A (ja) * 2013-04-04 2014-10-27 三菱エンジニアリングプラスチックス株式会社 ポリエステル系樹脂組成物

Also Published As

Publication number Publication date
US20200048553A1 (en) 2020-02-13
JP6861497B2 (ja) 2021-04-21
CN109863202B (zh) 2021-07-27
KR20190076968A (ko) 2019-07-02
TWI732060B (zh) 2021-07-01
TW201829582A (zh) 2018-08-16
KR102376572B1 (ko) 2022-03-18
JP2018070728A (ja) 2018-05-10
CN109863202A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
JP6500140B2 (ja) 液晶ポリエステル組成物
JP5633338B2 (ja) 液晶ポリエステル組成物
TWI444427B (zh) Camera module with liquid crystal polyester resin composition
JP6671869B2 (ja) 液晶ポリエステル樹脂組成物、コネクターおよび液晶ポリエステル樹脂組成物の製造方法
TWI448505B (zh) Camera module with liquid crystal polyester resin composition
US20120232188A1 (en) Method for molding liquid crystal polyester resin composition and molded body of liquid crystal polyester resin composition
JP5935288B2 (ja) 液晶ポリエステル組成物
JP6025241B2 (ja) 発泡成形体の製造方法及び樹脂組成物
JP2018168320A (ja) 液晶ポリエステル組成物および成形体
JP2009242454A (ja) カメラモジュール用液晶ポリエステル樹脂組成物
WO2019151184A1 (ja) 樹脂組成物
WO2018079611A1 (ja) 液晶ポリエステル樹脂組成物
JP2012206296A (ja) 液晶ポリエステル組成物の製造方法
WO2018012371A1 (ja) 液晶性樹脂組成物
WO2018199159A1 (ja) 液晶ポリエステル組成物の製造方法および液晶ポリエステル組成物
WO2018199155A1 (ja) 液晶ポリエステル組成物
JP2012136625A (ja) 液晶ポリエステル成形材料及びその成形体
JP5897368B2 (ja) 射出成形用液晶ポリエステル組成物の製造方法
KR20220059476A (ko) 액정 폴리에스테르 조성물 및 성형체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011771

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864153

Country of ref document: EP

Kind code of ref document: A1