WO2018079341A1 - 光ファイバ母材の製造方法 - Google Patents
光ファイバ母材の製造方法 Download PDFInfo
- Publication number
- WO2018079341A1 WO2018079341A1 PCT/JP2017/037538 JP2017037538W WO2018079341A1 WO 2018079341 A1 WO2018079341 A1 WO 2018079341A1 JP 2017037538 W JP2017037538 W JP 2017037538W WO 2018079341 A1 WO2018079341 A1 WO 2018079341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- optical fiber
- base material
- preform
- deposition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/01228—Removal of preform material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/0148—Means for heating preforms during or immediately prior to deposition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01853—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/66—Chemical treatment, e.g. leaching, acid or alkali treatment
- C03C25/68—Chemical treatment, e.g. leaching, acid or alkali treatment by etching
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
- C03B2203/23—Double or multiple optical cladding profiles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- the present invention relates to a method for manufacturing an optical fiber preform.
- silica core optical fiber which uses almost pure silica glass for the core and silica glass doped with fluorine for the cladding, is a general germanium doped core optical fiber (silica glass doped with germanium for the core and pure for the cladding. Low transmission loss can be achieved as compared to the case of using silica glass. This is because the core is formed from pure silica glass, so that there is substantially no concentration fluctuation and Rayleigh scattering is reduced.
- An optical fiber preform for manufacturing such an optical fiber is, for example, as described in Patent Document 1, after the core preform is manufactured by the VAD method, this core preform becomes an inner cladding layer. It can be manufactured by a method of putting in a pipe, integrating with the pipe by collapse, and forming a layer to be an outer cladding layer by an external method.
- Patent Document 1 when the optical fiber preform is manufactured by the method described in Patent Document 1, there are variations in the dimensions and refractive index of the core preform and the pipe. It is necessary to prepare a core base material and a large number of pipes. In addition, since the core base material and the pipe are not constant in outer diameter and inner diameter in the longitudinal direction, the characteristics may vary in the longitudinal direction.
- the manufacturing method of Patent Document 1 is expensive because it requires a pipe manufacturing process (drilling, cleaning, etc.) and a collapse process, which are not normally required when manufacturing a general Ge core optical fiber. Further, impurities are likely to enter during drilling and cleaning, and transmission loss tends to increase. Furthermore, since it is not easy to collapse when the pipe is thick, it is not suitable for increasing the size of the base material.
- the present invention has been made in view of the above circumstances, and can improve the fluorine diffusion in the soot deposition layer, prevent the soot deposition layer from being displaced and peeled, and manufacture an optical fiber preform that is less likely to reduce productivity. It is an object to provide a method.
- An optical fiber preform manufacturing method is an optical fiber preform manufacturing method for manufacturing an optical fiber having a core formed of silica glass and a cladding formed on an outer periphery of the core.
- An etching process of etching the surface of the core base material to be the core with a plasma flame in the chamber, and an etching process of the core base material while the core base material is put in the chamber A deposition step of depositing glass fine particles on the surface to form an external layer to be the cladding and obtaining a porous base material; and a sintering step of heating and sintering the porous base material,
- the external layer is formed by repeating the deposition of the glass particles by supplying the source gas a plurality of times, and at least of the plurality of times of the deposition of the glass particles.
- the flow rate of the material gas is 50% or less with respect to the steady value, at the time of starting the deposition process, the temperature of the etching surface of the core preform is 50 ° C. or higher.
- the flow rate of the source gas in the deposition step, may be continuously increased until the flow rate of the source gas reaches a steady value from the flow rate during the first deposition.
- the average bulk density of the external layer may be 0.17 g / cm 3 to 0.33 g / cm 3 .
- the porous base material may be heated in an atmosphere of a gas containing chlorine atoms after the deposition step and before the sintering step.
- the outer diameter of the external layer after the sintering step may be not more than five times the outer diameter of the core base material.
- the outer diameter of the core base material may be reduced by 0.5 mm or more in the etching step.
- the core base material may be heated by a plasma flame after the etching step and before the deposition step.
- the flow rate of the raw material gas is a value lower than the steady value in at least one deposition until reaching the steady value. Therefore, a thin and hard deposition layer can be formed at the initial stage of forming the external layer. Due to the fact that the deposited layer is hard, displacement and peeling of the external layer with respect to the core base material are less likely to occur. Further, since the deposited layer is thin, fluorine atoms are easily diffused. Therefore, according to the one aspect of the present invention, both appropriate fluorine diffusion in the external layer and prevention of displacement and peeling of the external layer can be achieved. Further, since the flow rate of the quartz glass raw material gas reaches a steady value by 20% from the start of the total number of depositions, a decrease in productivity can be suppressed.
- a method using a soot method such as a VAD method is preferable.
- silica glass fine particles are dehydrated (dehydrated) by heating at a temperature (for example, about 1100 to 1300 ° C.) that can maintain the form of the quartz glass fine particles in a dehydrating agent (eg, halogen-based gas, particularly chlorine-based gas) atmosphere.
- a dehydrating agent eg, halogen-based gas, particularly chlorine-based gas
- a method is preferred in which the quartz glass fine particles that have been treated and then dehydrated are heated (eg, 1400 to 1600 ° C.) in an inert gas (eg, helium gas) atmosphere and sintered to form a transparent glass.
- the core base material is formed from silica glass substantially free of germanium.
- the core base material may be stretched in the longitudinal direction.
- FIG. 1 is a schematic diagram for explaining an etching step in the method for producing a glass preform for an optical fiber according to the present embodiment.
- dummy base materials 9 are coaxially connected to both ends of a rod-shaped (round bar-shaped) core base material 10.
- the dummy base material 9 is held by a pair of rotary chucks 8 and 8.
- the core base material 10 is rotatable around an axis as indicated by an arrow A, and is installed in the reaction vessel 7 (chamber).
- the surface of the core base material 10 is etched with a plasma flame.
- the etching process can be performed, for example, with a plasma flame generated using a plasma torch 6 (plasma flame generating means).
- the method of generating the plasma flame may be selected as appropriate in consideration of handling, safety, type of heat source, etc., but there is a method of generating a plasma flame by applying a voltage to the gas serving as the plasma source and sparking it. preferable.
- Argon (Ar) gas can be illustrated as a gas used as a plasma source.
- the voltage applied when generating the plasma flame is preferably a high-frequency voltage, and the frequency of the voltage is preferably 2 MHz to 2.45 GHz.
- the etching gas added to the plasma flame is preferably a fluorine-containing gas.
- the fluorine-containing gas may be any gas that contains a fluorine atom in its chemical structure. Preferred from the viewpoint of etching ability and cost, sulfur hexafluoride (SF 6 ), hexafluoroethane (C 2 F 6). ), Silicon tetrafluoride (SiF 4 ), and tetrafluoromethane (CF 4 ).
- a fluorine-containing gas may be used individually by 1 type, and may use 2 or more types together.
- oxygen (O 2 ) gas may be further added to the plasma flame as a combustion-supporting gas to promote decomposition of the etching gas.
- oxygen gas it is preferable to use oxygen gas in combination.
- the etching process can be performed by moving the plasma torch 6 relative to the core base material 10 along the longitudinal direction thereof.
- the phrase “moving the plasma torch 6 relative to the core base material 10” means (I) moving the plasma torch 6 while fixing the core base material 10, and (II) fixing the plasma torch 6 to the core base material. Or (III) the core base material 10 and the plasma torch 6 are both moved (except when the absolute value of the moving speed and the moving direction are both the same).
- the core base material 10 and the plasma torch 6 are both moved along the longitudinal direction (center axis direction) of the core base material 10. There are two directions of movement at this time, but any direction may be used.
- the core base material 10 and the plasma torch 6 may be moved in the same direction or in the opposite directions.
- the movement direction may be the same direction at all times, or may be different directions at all times (alternately one direction at a time). ), May be performed twice in each direction, or may be in different directions only in some times.
- the absolute value of the relative movement speed of the plasma torch 6 may be constant or may be varied, but is preferably constant. By making it constant, the effect of suppressing variation in the etching amount in the longitudinal direction of the core base material 10 is enhanced.
- the etching amount (etching distance in the depth direction from the surface of the core base material 10) by the etching process is preferably 0.25 mm or more, more preferably 0.3 mm or more. That is, it is preferable to reduce the outer diameter of the core base material 10 by 0.5 mm or more, and more preferably by 0.6 mm or more by etching. Thereby, foreign matters, impurities, and the like on the surface of the core base material 10 can be removed, and the surface of the core base material 10 can be cleaned. Moreover, the damage of the surface of the core base material 10 can be reduced. Therefore, it is possible to deposit quartz glass fine particles, which will be described later, with the surface of the core base material 10 being clean and free from scratches.
- the core base material 10 becomes a core through which most of the optical signal passes in the optical fiber, an increase in transmission loss (for example, transmission loss at a wavelength of 1.55 ⁇ m) is maintained by maintaining the core base material 10 in a clean state. It can be effectively suppressed. Moreover, since the core base material 10 can maintain a clean state, the frequency of disconnection can also be reduced in the spinning process.
- the outer diameter of the core base material 10 can be measured by a known method using, for example, a laser outer diameter measuring machine.
- the core base material 10 is rotated in the direction of arrow A, the core base material 10 is fixed in the longitudinal direction, and the plasma torch 6 is moved in the direction of arrow B (left side) along the longitudinal direction.
- Reference numeral 4 denotes a plasma flame.
- the rotation speed of the core base material 10 is 5 to 40 rpm.
- One side of the reaction vessel 7 is connected to an exhaust duct (not shown).
- the exhaust duct is normally at a negative pressure of about 20 to 300 Pa.
- the inside of the booth (not shown) where the reaction vessel 7 is placed is about 3 to 30 Pa. It is adjusted to be positive pressure.
- etching process scratches, foreign matters, impurities, etc. on the surface of the core base material 10 are removed.
- hydroxyl groups and the like generated by flame polishing performed when welding the dummy base material 9 and stretching the core base material 10 are removed.
- the plasma flame does not require the use of hydrogen gas at the time of generation. Therefore, water is not generated during the etching process, and the residual hydroxyl groups on the etching surface of the core base material 10 are suppressed.
- the etching surface of the core base material 10 may be preheated using a plasma flame separately from the etching process.
- a plasma flame by the plasma torch 6 can be used for the pre-heat treatment.
- the pre-heat treatment the remaining hydroxyl groups on the etched surface of the core base material 10 are suppressed.
- the core base material 10 can be efficiently heated.
- the temperature of the etched surface of the core base material 10 when starting the deposition of the quartz glass fine particles is preferably 50 ° C. or higher, and more preferably 60 ° C. or higher for the reasons described later.
- the temperature of the etched surface of the core base material 10 is preferably 400 ° C. or less, and more preferably 350 ° C. or less, for reasons described later.
- Argon (Ar) gas can be illustrated as a gas used as a plasma source.
- An oxygen (O 2 ) gas can be added to the argon gas as a combustion-supporting gas.
- the gas preferably does not contain fluorine or hydrogen.
- argon gas or argon-oxygen (O 2 ) mixed gas can be used.
- FIG. 2 is a schematic diagram for explaining a deposition process in the method for manufacturing a glass preform for an optical fiber according to the present embodiment.
- the soot deposition layer is formed by depositing, for example, quartz glass fine particles on the etching surface of the core preform 10 while the core preform 10 is placed in the reaction vessel 7.
- a quartz porous base material for optical fiber is obtained.
- the core base material 10 is kept in a clean state after removing foreign substances, impurities, etc. Fine particle deposition can begin. Therefore, an increase in transmission loss can be suppressed with good reproducibility. Since the core preform 10 is a core through which most of the optical signal passes in the optical fiber, an increase in transmission loss can be effectively suppressed by maintaining the core preform 10 in a clean state. Moreover, since the core base material 10 can maintain a clean state, the frequency of disconnection can also be reduced in the spinning process.
- the quartz glass fine particles are deposited while the core base material 10 is at a high temperature by heating in the previous step (etching step). Can start. For this reason, the soot bulk density of the soot deposition layer near the interface with the core base material 10 tends to be high (that is, it tends to become hard), and the soot deposition layer can be prevented from peeling off from the core base material 10 during sintering.
- the temperature of the etched surface of the core base material 10 when starting the deposition of the quartz glass fine particles is set to 50 ° C. or higher.
- the temperature of the etched surface of the core base material 10 is more preferably 60 ° C. or higher.
- the temperature of the etched surface of the core base material 10 when starting the deposition of the quartz glass fine particles is preferably 400 ° C. or lower, and more preferably 350 ° C. or lower.
- the effect of reducing the quantity of a hydroxyl group becomes higher, without affecting the characteristic.
- the lower the temperature of the etched surface the more difficult it is for water to bond (react) with the etched surface and it can be easily detached. Therefore, the dehydration effect during the dehydration and sintering process of the porous base material is enhanced.
- the temperature of the etched surface can be easily measured by a known method using, for example, a thermotracer or a non-contact type laser radiation thermometer.
- the quartz glass fine particles to be deposited are preferably produced in an oxyhydrogen flame using a quartz glass raw material gas, hydrogen (H 2 ) gas, oxygen gas, and inert gas.
- a quartz glass raw material gas hydrogen (H 2 ) gas
- oxygen gas oxygen gas
- inert gas examples include organic silicon-based gases such as OMCTS gas and HMDSO gas in addition to silicon tetrachloride (SiCl 4 ) gas.
- the inert gas include argon gas and nitrogen gas.
- the deposition temperature (deposition temperature) of the quartz glass fine particles is preferably 600 to 1250 ° C., more preferably 700 to 1200 ° C.
- the deposition of the quartz glass fine particles is performed by moving the quartz glass burner 5 that generates the quartz glass fine particles relative to the core preform 10 along the longitudinal direction while rotating the core preform in the direction of arrow A. It is preferred to do so.
- “relatively moving the quartz glass burner 5 relative to the core base material 10” is the same as in the case of the plasma torch 6, and (i) moving the quartz glass burner 5 while fixing the core base material 10. (Ii) fixing the quartz glass burner 5 and moving the core base material 10; (iii) moving the core base material 10 and the quartz glass burner 5 together (however, the absolute value of the moving speed and the moving direction are Or the case where both are the same).
- Both the core base material 10 and the quartz glass burner 5 are moved along the longitudinal direction (center axis direction) of the core base material 10.
- the moving direction at this time may be any one of the two directions.
- the core base material 10 and the quartz glass burner 5 may be moved in the same direction or in the opposite directions.
- the quartz glass fine particles are repeatedly deposited a plurality of times, the moving direction may be the same direction at all times or may be different directions at all times (by alternately performing one direction at a time). Or may be performed twice in each direction, or in different directions only in some times.
- quartz glass fine particles can be deposited by two burners in one movement, and thus it is counted as two depositions.
- n is an integer of 3 or more
- the quartz glass fine particles can be deposited by the number n of burners by one movement, and therefore the number (n times) of deposition is counted.
- the pressure in the exhaust duct and in the booth where the reaction vessel 7 is placed is the same as in the etching process.
- the core base material 10 may be rotated in the opposite direction with respect to the arrow A direction around the same axis, and the quartz glass burner 5 may be moved in the opposite direction (right side) with respect to the arrow B direction.
- the number of rotations of the core base material 10 is the same as in the etching process. That is, the rotation speed of the core base material 10 in the deposition process is 5 to 40 rpm.
- the deposition of quartz glass fine particles is repeated twice or more (that is, a plurality of times).
- the number of repetitions may be appropriately adjusted according to the size of the target glass preform for optical fiber, and can be, for example, about several hundred times.
- the flow rate of the quartz glass source gas is set to 50% or less (for example, 5 to 50%) of the quartz glass source gas with respect to the steady value in at least the first of the plurality of depositions.
- the flow rate of the quartz glass source gas is preferably continuously increased from the flow rate during the first deposition until reaching a steady value. It is preferable that the flow rate of the quartz glass raw material gas reaches a steady value in at least one of the depositions in the range from the start to 20% of the total number of depositions of the quartz glass fine particles. That is, it is preferable that the flow rate of the quartz glass source gas reaches a steady value at least at any time between the start and 20% of the total number of times of deposition. Thereby, a decrease in productivity can be suppressed.
- a thin deposited layer can be formed at the initial stage of the deposition process.
- the flow rate of the quartz glass raw material gas may reach a steady value in at least one of the depositions within a range from the start to 21% of the total number of depositions of the quartz glass fine particles a plurality of times.
- the flow rate of the quartz glass raw material gas may be 5 to 50% with respect to the steady value in at least one deposition until the steady value is reached.
- FIG. 3 is a diagram showing the relationship between the number of depositions of quartz glass fine particles (horizontal axis) and the flow rate of quartz glass source gas (vertical axis).
- the steady value S1 may be a value of 90% or more (for example, 90 to 100%) with respect to the maximum flow rate M1 of the quartz glass raw material gas.
- the maximum flow rate M1 is the flow rate of the quartz glass raw material gas in the final round of deposition of the quartz glass fine particles, but the maximum flow rate may not be the flow rate in the final round of deposition.
- the flow rate F1 of the quartz glass source gas in the first deposition is 50% or less (specifically, in the range of 5 to 50%) with respect to the steady value S1.
- the flow rate F1 of the quartz glass raw material gas is set to 50% or less with respect to the steady value S1 at least once in the deposition, so that it is thin and hard at the initial stage of the soot deposition layer formation.
- a deposited layer can be formed. Since the deposited layer is hard, the soot deposited layer is less likely to be displaced and separated from the core base material 10. Further, since the deposited layer is thin, fluorine atoms are easily diffused. Therefore, both fluorine diffusion in the soot deposition layer and prevention of displacement and peeling of the soot deposition layer can be achieved.
- the bulk density of the soot deposited layer 0.17g / cm 3 ⁇ 0.33g / cm 3 are preferred on average. If the bulk density of the soot deposition layer is too high, diffusion of fluorine as a dopant becomes difficult, so that the refractive index of the cladding does not become low, and if the bulk density is too low, the soot deposition layer tends to crack. When the bulk density of the soot deposition layer is within the above range, fluorine as a dopant is easily diffused and cracking of the soot deposition layer is difficult to occur.
- Chlorine addition process By heat-treating the porous base material in an atmosphere containing a chlorine atom, chlorine can be added to the soot deposition layer at the same time as the soot deposition layer is dehydrated.
- the gas containing a chlorine atom is an inert gas (eg, Ar, He) containing, for example, a chlorine-based gas (eg, SOCl 2 , Cl 2, etc.).
- the temperature of the heat treatment is preferably 1000 to 1300 ° C. Transmission loss can be reduced by adding chlorine.
- the soot deposition layer is the inner cladding 12 (a layer adjacent to the core 11, see FIG. 4), the effect of reducing transmission loss is high. Chlorine may be added to the soot deposition layer that becomes the outer cladding 13.
- fluorine addition process By subjecting the porous base material to heat treatment in an atmosphere of a gas containing fluorine atoms, fluorine can be added to the soot deposition layer in advance before the sintering step.
- the gas containing a fluorine atom is, for example, an inert gas (eg, Ar, He) containing a fluorine-based gas.
- the fluorine-containing gas at this time are the same as the fluorine-containing gas used as the etching gas in the etching process (SF 6 , C 2 F 6 , SiF 4 , CF 4 ).
- a fluorine-containing gas may be used individually by 1 type, and may use 2 or more types together.
- the temperature of the heat treatment is preferably 1000 to 1300 ° C.
- the fluorine addition step before the sintering step, it is possible to uniformly add fluorine to the base material.
- the fluorine addition step may be performed when the outer cladding 13 is formed, or may be omitted if fluorine can be added uniformly without the fluorine addition step.
- the chlorine addition step and the fluorine addition step can be performed simultaneously by flowing the gas containing chlorine atoms and the gas containing fluorine atoms at the same time.
- the obtained quartz porous preform for optical fiber is made into transparent glass.
- Transparent vitrification can be performed by sintering a quartz porous preform for optical fibers.
- fluorine By performing the sintering treatment in the presence of a fluorine-containing gas, fluorine can be added to reduce the refractive index of the transparent vitrified layer (external layer).
- fluorine-containing gas at this time are the same as the fluorine-containing gas used as the etching gas in the etching process (SF 6 , C 2 F 6 , SiF 4 , CF 4 ).
- a fluorine-containing gas may be used individually by 1 type, and may use 2 or more types together.
- the sintering treatment is preferably performed in the presence of an inert gas such as helium gas.
- an optical fiber glass preform can be formed by additionally forming an external layer on the outside of the formed transparent vitrification layer (external layer).
- the external layer to be additionally formed may be formed by a known method, or the glass base material obtained by the above transparent vitrification is used in place of the core base material 10 and is formed by applying the above manufacturing method. May be.
- the number and type of external layers to be additionally formed can be arbitrarily set according to the structure of the target glass preform for optical fiber.
- the outer diameter of the soot deposition layer after the sintering process is preferably 5 times or less the outer diameter of the core base material 10 (the outer diameter after the etching process). As a result, cracking of the soot deposition layer can be prevented, and productivity can be increased. In addition, the outer diameter of the soot deposition layer can be prevented from changing in the longitudinal direction of the core base material 10. Further, by setting the outer diameter of the soot deposition layer within the above range, fluorine atoms are easily diffused.
- FIG. 4 is a schematic view showing a cross section of an example of a glass preform for an optical fiber obtained by the manufacturing method of the present embodiment and the refractive index of each layer.
- the optical fiber glass preform 1 shown in FIG. 4 is provided with a core 11, an inner cladding 12, and an outer cladding 13 in this order in the direction from the center toward the outer side.
- the core 11 is formed from silica glass.
- the core 11 is preferably formed from silica glass substantially free of germanium.
- a dopant such as fluorine is added to the inner cladding 12 and the outer cladding 13.
- the optical fiber glass preform 1 can be manufactured by applying the above-described manufacturing method when the inner cladding 12 and the outer cladding 13 are formed.
- FIG. 5 is a schematic view showing a cross section of another example of the optical fiber glass preform obtained by the manufacturing method of the present embodiment and the refractive index of each layer.
- a core 11A, an inner cladding 12A, and an outer cladding 13A are provided in this order in the direction from the center toward the outer side.
- a dopant such as fluorine is added to the inner cladding 12A and the outer cladding 13A.
- the glass preform 2 for optical fiber can be manufactured by applying the above manufacturing method when forming the inner cladding 12A and the outer cladding 13A.
- FIG. 6 is a schematic view showing a cross section of another example of the optical fiber glass preform obtained by the manufacturing method of the present embodiment and the refractive index of each layer.
- a core 11B, an inner cladding 12B, a trench layer 14, and an outer cladding 13B are provided in this order in the direction from the center toward the outer side.
- a dopant such as fluorine is added to the inner cladding 12B, the trench layer 14, and the outer cladding 13B.
- the glass base material 3 for optical fibers can be manufactured by applying the manufacturing method when forming the inner cladding 12B, the trench layer 14, and the outer cladding 13B.
- the number of layers provided outside the core is not limited to two layers (see FIGS. 4 and 5) and three layers (see FIG. 6), and may be one layer or four or more layers.
- the etching process by plasma etching is indispensable when the inner cladding 12 (external layer) adjacent to the core 11 is formed, but for the second and subsequent layers (for example, the outer cladding 13 and the trench layer 14), If the loss increase at a wavelength of 1.55 ⁇ m due to the influence of the hydroxyl group is small, it is not necessary.
- flame polishing using an oxyhydrogen flame or the like can be performed instead.
- the thickness of the soot deposition layer is not limited, a thick soot deposition layer can be formed even when the outer diameter of the core base material 10 is large. Therefore, it is easy to increase the size of the optical fiber preform. Further, unlike the above-described manufacturing method in which a large number of core base materials and pipes need to be prepared, the thickness and refractive index of the soot deposition layer can be adjusted according to the outer diameter and refractive index of the core base material 10. . Therefore, manufacturing is easy, cost reduction is possible, and characteristics are easily stabilized. In addition, there is no problem caused by the pipe production or the collapse process (for example, holes are easily formed during pipe production or impurities are easily introduced during cleaning).
- a dummy base material 9 is coaxially connected to both ends of a core base material 10 (outer diameter 20.0 mm) obtained by stretching a base material manufactured by the VAD method. , 8.
- the surface of the core base material 10 was etched with a plasma flame by moving the plasma torch 6 along the longitudinal direction of the core base material 10. Since the outer diameter of the core preform 10 after the etching process was 19.4 mm, the outer diameter of the core preform 10 was reduced by 0.6 mm.
- the core glass 10 is moved to the core matrix 10 while moving the quartz glass burner 5 along the longitudinal direction of the core matrix 10 without leaving time after the etching process while the core matrix 10 is put in the reaction vessel 7.
- Quartz glass particles were deposited.
- the temperature of the core base material surface immediately before the quartz glass fine particles were deposited was 330 ° C.
- the quartz glass fine particles were deposited by moving the quartz glass burner 5 once in one direction from one end of the glass rod to the other end. By only moving the quartz glass burner 5 repeatedly in the same direction as the first time, the quartz glass fine particles were deposited 302 times.
- the quartz glass fine particles were deposited by being produced in an oxyhydrogen flame using quartz glass raw material gas, hydrogen gas, and oxygen gas, and further using argon gas and nitrogen gas as inert gases. Thereby, a quartz porous base material for optical fiber was produced.
- the flow rate of the quartz glass source gas is 1.5 SLM in the first deposition, reaches 5 SLM (steady value) at the 32nd time (10.6% from the start of the total number of depositions), and then the last 302th deposition. Up to 5 SLM was maintained.
- the flow rate 1.5 SLM of the quartz glass raw material gas in the first deposition is 30% with respect to the steady value (5 SLM).
- the flow rate of the quartz glass source gas was continuously increased from the first deposition to the 32nd deposition.
- the silica porous preform for optical fiber was placed in a sintering furnace and heated to 1100 degrees in a gas atmosphere containing chlorine gas and inert gas.
- the quartz porous preform for optical fiber was subjected to sintering treatment and fluorine addition in a mixed gas of SiF 4 and helium.
- the core 11 and the inner cladding 12 (hereinafter referred to as an intermediate preform) of the optical fiber glass preform 1 shown in FIG. 4 were produced.
- the outer clad 13 was formed by performing an etching process, a deposition process, a chlorine addition process, and a sintering process on the intermediate base material in the same manner as the production of the inner clad 12. Thereby, the glass preform 1 for optical fiber shown in FIG. 4 was obtained.
- the obtained optical fiber glass preform 1 was made into a strand by a conventional method, and an optical fiber having an outer cladding having an outer diameter of 125 ⁇ m was manufactured. And the loss (1.55 micrometer loss) of the obtained optical fiber was measured. The number of breaks during spinning was recorded. In addition, the presence or absence of displacement and peeling between the core 11 and the inner cladding 12 in the intermediate base material was examined. The measurement results are shown in Table 1.
- Test Example 2 After 1 hour after the etching process, the base material was sufficiently cooled, and then a preheating process for heating with a plasma flame was performed, and a deposition process was performed immediately thereafter. The surface temperature of the base material immediately before the deposition process was 310 ° C. Except for these, the optical fiber glass preform 1 and the optical fiber were produced in the same manner as in Test Example 1. The measurement results are shown in Table 1.
- Test Example 3 An optical fiber glass preform 1 and an optical fiber were produced in the same manner as in Test Example 1 except that the etching step was not performed.
- the temperature of the core base material surface immediately before the quartz glass fine particles were deposited was 21 ° C. The measurement results are shown in Table 1.
- Test Example 4 An optical fiber glass preform 1 and an optical fiber were produced in the same manner as in Test Example 1 except that the oxyhydrogen flame was polished instead of the etching step. The temperature of the surface of the core base material immediately before the quartz glass fine particles were deposited was 540 ° C. The measurement results are shown in Table 1.
- the glass preform 1 and the optical fiber for the optical fiber were formed in the same manner as in Test Example 1 except that the flow rate of the quartz glass raw material gas was 5 SLM from the first deposition to the last 296th deposition. Manufactured. The measurement results are shown in Table 1.
- Test Example 7 After 1 hour after the etching process, the base material was sufficiently cooled, and then the deposition process was performed without performing the preheating process of heating with a plasma flame. The surface temperature of the base material immediately before the deposition process was 22 ° C. Except for these, the optical fiber glass preform 1 and the optical fiber were produced in the same manner as in Test Example 1. The measurement results are shown in Table 1.
- Test Example 8 A preheating step of heating with a plasma flame was performed without performing an etching step, and a deposition step was performed immediately thereafter.
- the surface temperature of the base material immediately before the deposition process was 310 ° C. Except for these, the optical fiber glass preform 1 and the optical fiber were produced in the same manner as in Test Example 1. The measurement results are shown in Table 1.
- the flow rate of the quartz glass raw material gas is set to 3.5 SLM in the first deposition, and reaches 5 SLM (steady value) at the 32nd (10.5% from the start of the total number of depositions). The 5 SLM was maintained until the 304th deposition.
- the flow rate 3.5 SLM of the quartz glass raw material gas in the first deposition is 70% with respect to the steady value (5 SLM). Except for these, the optical fiber glass preform 1 and the optical fiber were produced in the same manner as in Test Example 1. The measurement results are shown in Table 1.
- the flow rate of the quartz glass source gas is set to 2.5 SLM in the first deposition, reaches 5 SLM (steady value) at the 64th time (20.9% from the start of the total number of depositions), and thereafter The 5 SLM was maintained until the 306th deposition.
- the flow rate 2.5 SLM of the quartz glass raw material gas in the first deposition is 50% with respect to the steady value (5 SLM). Except for these, the optical fiber glass preform 1 and the optical fiber were produced in the same manner as in Test Example 1. The measurement results are shown in Table 1.
- Test Examples 1, 2, 9, 10, and 12 the soot deposition layer did not shift or peel, loss was small, and no breakage occurred during spinning.
- Test Example 3 in which the etching process was not performed, the soot deposition layer shifted. Moreover, loss was large and disconnection occurred.
- soot was deposited without heating the base material by etching, soot bulk density of the soot deposition layer in the vicinity of the interface was lowered, and there was a possibility that deviation of the soot deposition layer occurred. Further, it is presumed that the OH loss increased because the hydroxyl group on the glass surface was not removed by etching.
- Test Example 7 since the preheating step of heating with the plasma flame was not performed, the soot bulk density of the soot deposition layer near the interface was lowered, and there was a possibility that the soot deposition layer was displaced.
- Test Example 8 it is presumed that the OH loss increased because the hydroxyl group on the glass surface was not removed by etching. Moreover, it can be estimated that the surface of the core base material 10 was not sufficiently cleaned, which caused disconnection.
- the manufacturing method of the present embodiment includes a core base material manufacturing process, an etching process, a preheating process, a deposition process, a chlorine addition process, and a sintering process.
- a core base material manufacturing process an etching process, a preheating process, a deposition process, a chlorine addition process, and a sintering process.
- the preheating process and the chlorine addition process are in the situation. Can be omitted.
- Examples of the method for producing the core base material include an oxidation method such as a plasma method and an MCVD method, but a soot method such as a VAD method is preferable.
- the optical fiber preform may be configured by a core and a clad provided outside the core. In that case, in the manufacturing method described above, an optical fiber preform is formed by forming an external layer on the outer surface of the core preform.
- SYMBOLS 1, 2 Glass base material for optical fibers, 4 ... Plasma flame, 5 ... Quartz glass burner, 6 ... Plasma torch, 7 ... Reaction container (chamber), 10 ... Core Base material 11, 11, 11A, 11B ... core, 12, 12A, 12B ... inner cladding, 13, 13A, 13B ... outer cladding, 14 ... trench layer, S1 ... steady value.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Melting And Manufacturing (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
光ファイバ母材の製造方法は、シリカガラスから形成されたコアと前記コアの外周に形成されたクラッドとを有する光ファイバを製造するための光ファイバ母材の製造方法であって、前記コアとなるコア母材の表面を、チャンバ内においてプラズマ火炎でエッチング処理するエッチング工程と、前記コア母材を前記チャンバ内に入れた状態のまま、前記コア母材のエッチング処理面にガラス微粒子を堆積させて前記クラッドとなる外付け層を形成し、多孔質母材を得る堆積工程と、前記多孔質母材を加熱し焼結する焼結工程と、を有し、前記堆積工程において、原料ガスの供給による前記ガラス微粒子の堆積を複数回繰り返して行うことによって前記外付け層を形成し、前記複数回のガラス微粒子の堆積のうち少なくとも最初の一回は、前記原料ガスの流量が定常値に対して50%以下であり、前記堆積工程を開始するときの、前記コア母材のエッチング処理面の温度が50℃以上である。
Description
本発明は、光ファイバ母材の製造方法に関する。
本願は、2016年10月25日に、日本に出願された特願2016-208687号に基づき優先権を主張し、その内容をここに援用する。
本願は、2016年10月25日に、日本に出願された特願2016-208687号に基づき優先権を主張し、その内容をここに援用する。
コアにほぼ純粋なシリカガラスを用い、クラッドにフッ素をドープしたシリカガラスを用いる、いわゆるシリカコア光ファイバは、一般的なゲルマニウムドープコア光ファイバ(コアにゲルマニウムをドープしたシリカガラスを用い、クラッドに純粋なシリカガラスを用いる)に比べて低い伝送損失が達成できる。これは、コアが純粋なシリカガラスから形成されるため、実質的に濃度揺らぎがなく、レーリー散乱が小さくなるためである。
このような光ファイバを製造するための光ファイバ母材は、例えば特許文献1に記載されているように、コア母材をVAD法で作製した後に、このコア母材を、内側クラッド層となるパイプ内に入れ、コラプスによりパイプと一体化し、さらに、外付け法により外側クラッド層となる層を形成するなどの方法により製造することができる。
このような光ファイバを製造するための光ファイバ母材は、例えば特許文献1に記載されているように、コア母材をVAD法で作製した後に、このコア母材を、内側クラッド層となるパイプ内に入れ、コラプスによりパイプと一体化し、さらに、外付け法により外側クラッド層となる層を形成するなどの方法により製造することができる。
しかし、特許文献1に記載の方法で光ファイバ母材を作製する場合には、コア母材とパイプとのそれぞれに寸法や屈折率にばらつきがあるため、最適な組み合わせで一体化するために多数のコア母材と多数のパイプとを用意しておく必要がある。また、コア母材及びパイプは長手方向で外径、内径が一定でないため、特性が長手方向でばらつくことがある。
また、特許文献1の製造方法は、一般的なGeコア光ファイバの製造時には通常必要のない、パイプの作製工程(穴開け、洗浄など)やコラプス工程が必要となるため高コストである。また、穴開けや洗浄中に不純物が入りやすく伝送損失が大きくなりやすい。さらに、パイプの肉厚が厚いとコラプスすることが容易ではないため、母材の大型化に不向きである。
また、特許文献1の製造方法は、一般的なGeコア光ファイバの製造時には通常必要のない、パイプの作製工程(穴開け、洗浄など)やコラプス工程が必要となるため高コストである。また、穴開けや洗浄中に不純物が入りやすく伝送損失が大きくなりやすい。さらに、パイプの肉厚が厚いとコラプスすることが容易ではないため、母材の大型化に不向きである。
内側クラッドの形成に外付け法を採用すれば、このような問題はある程度解決できる。
しかし、シリカコア光ファイバでは、コア母材と内側クラッドとの間の剥離やズレを防ぐためにスート堆積層のかさ密度を高めると、内側クラッドにおいてドーパントであるフッ素の拡散が不十分となる虞がある。
スート堆積層の形成時の原料ガスの流量を低くすればフッ素の拡散は改善されるが、その場合、生産性が低下する虞がある。
しかし、シリカコア光ファイバでは、コア母材と内側クラッドとの間の剥離やズレを防ぐためにスート堆積層のかさ密度を高めると、内側クラッドにおいてドーパントであるフッ素の拡散が不十分となる虞がある。
スート堆積層の形成時の原料ガスの流量を低くすればフッ素の拡散は改善されるが、その場合、生産性が低下する虞がある。
本発明は、上記事情に鑑みてなされたものであり、スート堆積層におけるフッ素拡散を改善でき、かつスート堆積層のズレ・剥離を防止でき、さらに生産性が低下しにくい光ファイバ母材の製造方法を提供することを課題とする。
本発明の一態様に係る光ファイバ母材の製造方法は、シリカガラスから形成されたコアと前記コアの外周に形成されたクラッドとを有する光ファイバを製造するための光ファイバ母材の製造方法であって、前記コアとなるコア母材の表面を、チャンバ内においてプラズマ火炎でエッチング処理するエッチング工程と、前記コア母材を前記チャンバ内に入れた状態のまま、前記コア母材のエッチング処理面にガラス微粒子を堆積させて前記クラッドとなる外付け層を形成し、多孔質母材を得る堆積工程と、前記多孔質母材を加熱し焼結する焼結工程と、を有し、前記堆積工程において、原料ガスの供給による前記ガラス微粒子の堆積を複数回繰り返して行うことによって前記外付け層を形成し、前記複数回のガラス微粒子の堆積のうち少なくとも最初の一回は、前記原料ガスの流量が定常値に対して50%以下であり、前記堆積工程を開始するときの、前記コア母材のエッチング処理面の温度が50℃以上である。
上記一態様において、前記堆積工程において、前記原料ガスの流量が最初の一回の前記堆積時の流量から定常値に達するまで、前記原料ガスの流量を連続的に増加させてもよい。
上記一態様において、前記外付け層のかさ密度の平均は、0.17g/cm3~0.33g/cm3であってもよい。
上記一態様において、前記堆積工程の後、前記焼結工程の前に、塩素原子を含むガスの雰囲気下で前記多孔質母材を加熱してもよい。
上記一態様において、前記焼結工程後の外付け層の外径は、前記コア母材の外径の5倍以下であってもよい。
上記一態様において、前記エッチング工程において、前記コア母材の外径を0.5mm以上小さくしてもよい。
上記一態様において、前記エッチング工程の後、前記堆積工程の前に、前記コア母材をプラズマ火炎により加熱してもよい。
上記一態様において、前記堆積工程において、前記原料ガスの流量が最初の一回の前記堆積時の流量から定常値に達するまで、前記原料ガスの流量を連続的に増加させてもよい。
上記一態様において、前記外付け層のかさ密度の平均は、0.17g/cm3~0.33g/cm3であってもよい。
上記一態様において、前記堆積工程の後、前記焼結工程の前に、塩素原子を含むガスの雰囲気下で前記多孔質母材を加熱してもよい。
上記一態様において、前記焼結工程後の外付け層の外径は、前記コア母材の外径の5倍以下であってもよい。
上記一態様において、前記エッチング工程において、前記コア母材の外径を0.5mm以上小さくしてもよい。
上記一態様において、前記エッチング工程の後、前記堆積工程の前に、前記コア母材をプラズマ火炎により加熱してもよい。
本発明の上記一態様によれば、原料ガスの流量は、定常値に達するまでの少なくとも一回の堆積において、定常値より低い値となる。このため、外付け層の形成の初期において、薄くかつ硬い堆積層を形成することができる。堆積層が硬いことにより、コア母材に対する外付け層のズレおよび剥離が起こりにくくなる。また、堆積層が薄いことにより、フッ素原子が拡散しやすくなる。よって、本発明の上記一態様によれば、外付け層における適切なフッ素拡散と、外付け層のズレ・剥離の防止とを両立できる。
また、石英ガラス原料ガスの流量は、全堆積回数のうち開始から20%までに定常値に達するため、生産性の低下を抑えることができる。
また、石英ガラス原料ガスの流量は、全堆積回数のうち開始から20%までに定常値に達するため、生産性の低下を抑えることができる。
以下、本発明の一実施形態の光ファイバ母材の製造方法について、工程ごとに詳しく説明する。
(コア母材作製工程)
コア母材の作製方法は、VAD法などのスート法を利用する方法が好ましい。例えば石英ガラス微粒子を、脱水剤(例えば、ハロゲン系ガス、特に塩素系ガス)雰囲気下で石英ガラス微粒子の形態を維持できる温度(例えば、1100~1300℃程度)で加熱して脱水(無水化)処理し、次いで、この脱水処理された石英ガラス微粒子を、不活性ガス(例えば、ヘリウムガス)雰囲気下で加熱(例えば、1400~1600℃)して焼結処理し、透明ガラス化する方法が好ましい。
コア母材は、ゲルマニウムを実質的に含まないシリカガラスから形成される。
コア母材は、長手方向に延伸されてもよい。
(コア母材作製工程)
コア母材の作製方法は、VAD法などのスート法を利用する方法が好ましい。例えば石英ガラス微粒子を、脱水剤(例えば、ハロゲン系ガス、特に塩素系ガス)雰囲気下で石英ガラス微粒子の形態を維持できる温度(例えば、1100~1300℃程度)で加熱して脱水(無水化)処理し、次いで、この脱水処理された石英ガラス微粒子を、不活性ガス(例えば、ヘリウムガス)雰囲気下で加熱(例えば、1400~1600℃)して焼結処理し、透明ガラス化する方法が好ましい。
コア母材は、ゲルマニウムを実質的に含まないシリカガラスから形成される。
コア母材は、長手方向に延伸されてもよい。
(エッチング工程)
図1は、本実施形態の光ファイバ用ガラス母材の製造方法におけるエッチング工程を説明するための模式図である。
図1に示すように、棒状(丸棒状)のコア母材10の両端部にはダミー母材9が同軸状に接続されている。ダミー母材9は、一対の回転チャック8,8で把持される。コア母材10は、矢印Aで示すように軸回りに回転可能であり、反応容器7(チャンバ)内に設置されている。
図1は、本実施形態の光ファイバ用ガラス母材の製造方法におけるエッチング工程を説明するための模式図である。
図1に示すように、棒状(丸棒状)のコア母材10の両端部にはダミー母材9が同軸状に接続されている。ダミー母材9は、一対の回転チャック8,8で把持される。コア母材10は、矢印Aで示すように軸回りに回転可能であり、反応容器7(チャンバ)内に設置されている。
コア母材10の表面をプラズマ火炎でエッチング処理する。
エッチング処理は、例えば、プラズマトーチ6(プラズマ火炎生成手段)を用いて生成されたプラズマ火炎で行うことができる。プラズマ火炎の生成方法は、取扱性、安全性、熱源の種類等を考慮して適宜選択すればよいが、プラズマ源となるガスに電圧を加えて、スパークさせることでプラズマ火炎を発生させる方法が好ましい。
プラズマ源となるガスとしては、アルゴン(Ar)ガスが例示できる。プラズマ火炎の生成時に加える電圧は、高周波電圧であることが好ましく、電圧の周波数は2MHz~2.45GHzであることが好ましい。
エッチング処理は、例えば、プラズマトーチ6(プラズマ火炎生成手段)を用いて生成されたプラズマ火炎で行うことができる。プラズマ火炎の生成方法は、取扱性、安全性、熱源の種類等を考慮して適宜選択すればよいが、プラズマ源となるガスに電圧を加えて、スパークさせることでプラズマ火炎を発生させる方法が好ましい。
プラズマ源となるガスとしては、アルゴン(Ar)ガスが例示できる。プラズマ火炎の生成時に加える電圧は、高周波電圧であることが好ましく、電圧の周波数は2MHz~2.45GHzであることが好ましい。
プラズマ火炎に添加するエッチングガスは、フッ素含有ガスであることが好ましい。フッ素含有ガスは、化学構造中にフッ素原子を含有するガスであればよく、エッチング能力およびコストの面から好ましいものとしては、六フッ化硫黄(SF6)、六フッ化エタン(C2F6)、四フッ化ケイ素(SiF4)、四フッ化メタン(CF4)が例示できる。
フッ素含有ガスは、一種を単独で用いてもよいし、二種以上を併用してもよい。
フッ素含有ガスは、一種を単独で用いてもよいし、二種以上を併用してもよい。
プラズマ火炎には、エッチングガスの種類に応じて、さらに支燃性ガスとして酸素(O2)ガスを添加することにより、エッチングガスの分解を促進してもよい。例えば、エッチングガスとしてC2F6ガスを用いる場合には、酸素ガスを併用することが好ましい。
エッチング処理は、コア母材10に対して、その長手方向に沿ってプラズマトーチ6を相対移動させることで行うことができる。「コア母材10に対してプラズマトーチ6を相対移動させる」とは、(I)コア母材10を固定してプラズマトーチ6を移動させる、(II)プラズマトーチ6を固定してコア母材10を移動させる、(III)コア母材10およびプラズマトーチ6を共に移動させる(ただし、移動速度の絶対値と移動方向とが共に同じである場合を除く)、のいずれかを意味する。
コア母材10およびプラズマトーチ6は、いずれもコア母材10の長手方向(中心軸方向)に沿って移動させる。このときの移動方向は二方向あるが、いずれの方向であってもよい。例えば、前記(III)の場合、コア母材10およびプラズマトーチ6は、同一方向に移動させてもよいし、反対方向に移動させてもよい。そして、エッチング処理を複数回繰り返して行う場合に、前記移動方向は、すべての回で同一方向であってもよいし、すべての回で異なる方向であっても(一方向ずつ交互に行っても)、一方向ずつ二回行ってもよく、一部の回のみ異なる方向であってもよい。
エッチング処理の開始から終了までの間において、プラズマトーチ6の前記相対移動の速度の絶対値は、一定としてもよいし、変動させてもよいが、一定とすることが好ましい。一定とすることで、コア母材10の長手方向におけるエッチング量の変動を抑制する効果が高くなる。
エッチング処理によるエッチング量(コア母材10の表面からの深さ方向のエッチング距離)は、好ましくは0.25mm以上、より好ましくは0.3mm以上とすることが好ましい。すなわち、エッチング処理により、コア母材10の外径を0.5mm以上小さくすることが好ましく、0.6mm以上小さくすることがより好ましい。
これによって、コア母材10の表面の異物、不純物等を除去し、コア母材10の表面を清浄とすることができる。また、コア母材10の表面の傷を少なくできる。そのため、コア母材10の表面が清浄、かつ傷がない状態で後述する石英ガラス微粒子の堆積が可能である。コア母材10は、光ファイバにおいて光信号の大部分が通るコアとなるため、コア母材10が清浄な状態を維持することによって、伝送損失(例えば波長1.55μmにおける伝送損失)の増加を効果的に抑制できる。また、コア母材10が清浄な状態を維持できるため、紡糸工程において断線の頻度を低くすることもできる。
コア母材10の外径は、例えば、レーザ外径測定機等を用いる公知の方法で測定できる。
これによって、コア母材10の表面の異物、不純物等を除去し、コア母材10の表面を清浄とすることができる。また、コア母材10の表面の傷を少なくできる。そのため、コア母材10の表面が清浄、かつ傷がない状態で後述する石英ガラス微粒子の堆積が可能である。コア母材10は、光ファイバにおいて光信号の大部分が通るコアとなるため、コア母材10が清浄な状態を維持することによって、伝送損失(例えば波長1.55μmにおける伝送損失)の増加を効果的に抑制できる。また、コア母材10が清浄な状態を維持できるため、紡糸工程において断線の頻度を低くすることもできる。
コア母材10の外径は、例えば、レーザ外径測定機等を用いる公知の方法で測定できる。
例えば、図1において、コア母材10を矢印A方向に回転させ、コア母材10をその長手方向においては固定し、その長手方向に沿って、プラズマトーチ6を矢印B方向(左側)に移動させることで、エッチング処理を行うことができる。符号4はプラズマ火炎である。エッチング工程における、コア母材10の回転数は5~40rpmである。
反応容器7の片側は排気ダクト(図示略)に接続されている。排気ダクト内は通常、20~300Pa程度の陰圧とされ、反応容器7の外部からクリーンエアを供給することで、反応容器7が置かれたブース(図示略)内が、3~30Pa程度の陽圧となるように調整される。
エッチング処理により、コア母材10の表面にある傷、異物、不純物等が除去される。
例えば、ダミー母材9の溶着、コア母材10の延伸等の際に行う火炎研磨などにより生成した水酸基等が除去される。プラズマ火炎は、酸水素火炎とは異なり生成時に水素ガスを用いる必要がないため、エッチング処理時に水が発生せず、コア母材10のエッチング処理面における水酸基の残存が抑制される。
例えば、ダミー母材9の溶着、コア母材10の延伸等の際に行う火炎研磨などにより生成した水酸基等が除去される。プラズマ火炎は、酸水素火炎とは異なり生成時に水素ガスを用いる必要がないため、エッチング処理時に水が発生せず、コア母材10のエッチング処理面における水酸基の残存が抑制される。
(予熱工程)
エッチング処理後は、このエッチング処理とは別途にプラズマ火炎を用いて、コア母材10のエッチング処理面を予熱処理してもよい。予熱処理には、プラズマトーチ6によるプラズマ火炎を用いることができる。予熱処理により、コア母材10のエッチング処理面における水酸基の残存が抑制される。プラズマ火炎を用いる場合、前工程(エッチング工程)で用いるプラズマトーチ6をそのまま使用できるため、コア母材10を効率よく加熱することができる。
エッチング処理後は、このエッチング処理とは別途にプラズマ火炎を用いて、コア母材10のエッチング処理面を予熱処理してもよい。予熱処理には、プラズマトーチ6によるプラズマ火炎を用いることができる。予熱処理により、コア母材10のエッチング処理面における水酸基の残存が抑制される。プラズマ火炎を用いる場合、前工程(エッチング工程)で用いるプラズマトーチ6をそのまま使用できるため、コア母材10を効率よく加熱することができる。
石英ガラス微粒子の堆積を開始するときの、コア母材10のエッチング処理面の温度は、後述の理由により、50℃以上とすることが好ましく、60℃以上とすることがより好ましい。コア母材10のエッチング処理面の温度は、後述の理由により、400℃以下とすることが好ましく、350℃以下とすることがより好ましい。
プラズマ源となるガスとしては、アルゴン(Ar)ガスが例示できる。アルゴンガスに、支燃性ガスとして酸素(O2)ガスを添加することもできる。前記ガスは、フッ素、水素を含まないことが好ましく、例えばアルゴンガスのみ、またはアルゴン酸素(O2)混合ガスが使用できる。
フッ素、水素が含まれないガスを使用することによって、コア母材10の過剰エッチングおよび水酸基生成を抑制することができる。
フッ素、水素が含まれないガスを使用することによって、コア母材10の過剰エッチングおよび水酸基生成を抑制することができる。
(堆積工程)
図2は、本実施形態の光ファイバ用ガラス母材の製造方法における堆積工程を説明するための模式図である。
本工程では、コア母材10を反応容器7に入れた状態のまま、コア母材10のエッチング処理面に、例えば石英ガラス微粒子を堆積させてスート堆積層(外付け層)を形成することにより光ファイバ用石英多孔質母材を得る。
図2は、本実施形態の光ファイバ用ガラス母材の製造方法における堆積工程を説明するための模式図である。
本工程では、コア母材10を反応容器7に入れた状態のまま、コア母材10のエッチング処理面に、例えば石英ガラス微粒子を堆積させてスート堆積層(外付け層)を形成することにより光ファイバ用石英多孔質母材を得る。
本工程では、コア母材10を反応容器7に入れた状態のままスート堆積層を形成するため、コア母材10を、異物、不純物等が除去されて清浄となった状態のままで石英ガラス微粒子の堆積を開始できる。そのため、再現性よく伝送損失の増加を抑制できる。コア母材10は、光ファイバにおいて光信号の大部分が通るコアとなるため、コア母材10が清浄な状態を維持することによって、伝送損失の増加を効果的に抑制できる。また、コア母材10が清浄な状態を維持できるため、紡糸工程において断線の頻度を低くすることもできる。
コア母材10を反応容器7に入れた状態のままスート堆積層を形成することによって、前工程(エッチング工程)における加熱によりコア母材10が高温となった状態のまま、石英ガラス微粒子の堆積を開始できる。そのため、コア母材10との界面付近のスート堆積層のスートかさ密度が高くなりやすく(すなわち硬くなりやすく)、焼結時にコア母材10からスート堆積層が剥離することを防ぐことができる。
石英ガラス微粒子の堆積を開始するときの、コア母材10のエッチング処理面の温度は50℃以上とされる。コア母材10のエッチング処理面の温度は60℃以上とすることがより好ましい。このようにすることで、光ファイバ用ガラス母材において、コア母材10とスート堆積層との間で剥離およびずれを抑制する効果がより高くなる。
石英ガラス微粒子の堆積を開始するときの、コア母材10のエッチング処理面の温度は、400℃以下とすることが好ましく、350℃以下とすることがより好ましい。このようにすることで、光ファイバ用ガラス母材について、その特性に影響を与えることなく、水酸基の量を低減する効果がより高くなる。通常は、エッチング処理面の温度が低いほど、水はエッチング処理面と結合(反応)し難くなり、容易に脱離可能となる。そのため、多孔質母材の脱水および焼結処理時における脱水効果が高くなる。
エッチング処理面の温度は、例えば、サーモトレーサや非接触式のレーザ放射温度計を用いる公知の方法により、簡便に測定できる。
石英ガラス微粒子の堆積を開始するときの、コア母材10のエッチング処理面の温度は、400℃以下とすることが好ましく、350℃以下とすることがより好ましい。このようにすることで、光ファイバ用ガラス母材について、その特性に影響を与えることなく、水酸基の量を低減する効果がより高くなる。通常は、エッチング処理面の温度が低いほど、水はエッチング処理面と結合(反応)し難くなり、容易に脱離可能となる。そのため、多孔質母材の脱水および焼結処理時における脱水効果が高くなる。
エッチング処理面の温度は、例えば、サーモトレーサや非接触式のレーザ放射温度計を用いる公知の方法により、簡便に測定できる。
堆積させる石英ガラス微粒子は、石英ガラス原料ガス、水素(H2)ガス、酸素ガス、および不活性ガスを用いて、酸水素火炎中で生成させることが好ましい。
前記石英ガラス原料ガスとしては、四塩化ケイ素(SiCl4)ガスの他に、OMCTSガス、HMDSOガスのような有機シリコン系のガス等が例示できる。
前記不活性ガスとしては、アルゴンガス、窒素ガスが例示できる。
前記石英ガラス原料ガスとしては、四塩化ケイ素(SiCl4)ガスの他に、OMCTSガス、HMDSOガスのような有機シリコン系のガス等が例示できる。
前記不活性ガスとしては、アルゴンガス、窒素ガスが例示できる。
石英ガラス微粒子の堆積温度(デポジション温度)は、600~1250℃であることが好ましく、700~1200℃であることがより好ましい。
石英ガラス微粒子の堆積は、コア母材を矢印A方向に回転させつつ、コア母材10に対して、その長手方向に沿って、石英ガラス微粒子を生成する石英ガラスバーナ5を相対移動させることで行うのが好ましい。ここで、「コア母材10に対して石英ガラスバーナ5を相対移動させる」とは、プラズマトーチ6の場合と同様であり、(i)コア母材10を固定して石英ガラスバーナ5を移動させる、(ii)石英ガラスバーナ5を固定してコア母材10を移動させる、(iii)コア母材10および石英ガラスバーナ5を共に移動させる(ただし、移動速度の絶対値と移動方向とが共に同じである場合を除く)、のいずれかを意味する。
コア母材10および石英ガラスバーナ5は、いずれもコア母材10の長手方向(中心軸方向)に沿って移動させる。このときの移動方向は、二方向のうちいずれの方向であってもよい。例えば、前記(iii)の場合、コア母材10および石英ガラスバーナ5は、同一方向に移動させてもよいし、反対方向に移動させてもよい。
石英ガラス微粒子の堆積を複数回繰り返して行う場合に、前記移動方向は、すべての回で同一方向であってもよいし、すべての回で異なる方向であっても(一方向ずつ交互に行っても)、一方向ずつ二回行ってもよく、一部の回のみ異なる方向であってもよい。
図2のように1つのユニットにバーナが2本設置されている場合は、1回の移動で2本分のバーナで石英ガラス微粒子を堆積できるので、2回の堆積と数える。3本以上(n本:nは3以上の整数)の場合は、1回の移動で当該数nのバーナで石英ガラス微粒子を堆積できるので、その数(n回)の堆積と数える。
石英ガラス微粒子の堆積を複数回繰り返して行う場合に、前記移動方向は、すべての回で同一方向であってもよいし、すべての回で異なる方向であっても(一方向ずつ交互に行っても)、一方向ずつ二回行ってもよく、一部の回のみ異なる方向であってもよい。
図2のように1つのユニットにバーナが2本設置されている場合は、1回の移動で2本分のバーナで石英ガラス微粒子を堆積できるので、2回の堆積と数える。3本以上(n本:nは3以上の整数)の場合は、1回の移動で当該数nのバーナで石英ガラス微粒子を堆積できるので、その数(n回)の堆積と数える。
石英ガラス微粒子の堆積の開始から終了までの間において、石英ガラスバーナ5の前記相対移動の速度の絶対値は、一定としてもよいし、変動させてもよいが、一定とすることが好ましい。一定とすることで、石英ガラス微粒子のスート堆積層の厚さが、コア母材10の長手方向においてより均一となる。
排気ダクト内と、反応容器7が置かれたブース内との圧力は、エッチング工程の場合と同様である。
コア母材10は、同じ軸回りに矢印A方向に対して反対方向に回転させてもよく、石英ガラスバーナ5は、矢印B方向に対して反対方向(右側)に移動させてもよい。コア母材10の前記回転の回転数は、エッチング工程の場合と同様である。つまり、堆積工程における、コア母材10の回転数は5~40rpmである。
コア母材10は、同じ軸回りに矢印A方向に対して反対方向に回転させてもよく、石英ガラスバーナ5は、矢印B方向に対して反対方向(右側)に移動させてもよい。コア母材10の前記回転の回転数は、エッチング工程の場合と同様である。つまり、堆積工程における、コア母材10の回転数は5~40rpmである。
石英ガラス微粒子の堆積は、二回以上(すなわち複数回)繰り返して行う。繰り返し数は、目的とする光ファイバ用ガラス母材の大きさに応じて適宜調節すればよく、例えば、数百回程度とすることができる。
石英ガラス原料ガスの流量は、前記複数回の堆積のうち少なくとも最初の一回において、石英ガラス原料ガスの流量が定常値に対して50%以下(例えば5~50%)とされる。
石英ガラス原料ガスの流量は、最初の一回の堆積時の流量から定常値に達するまで連続的に増加するのが好ましい。
石英ガラス原料ガスの流量は、複数回の石英ガラス微粒子の堆積の全堆積回数のうち、開始から20%までの範囲の少なくともいずれかの前記堆積で定常値に達することが好ましい。つまり、石英ガラス原料ガスの流量は、複数回の堆積の全回数のうち、開始から20%までの回数の間の、少なくともいずれかの回で定常値に達することが好ましい。これによって、生産性の低下を抑えることができる。また、堆積工程の初期において、薄い堆積層を形成することができる。
石英ガラス原料ガスの流量は、複数回の石英ガラス微粒子の堆積の全堆積回数のうち、開始から21%までの範囲の少なくともいずれかの前記堆積で定常値に達してもよい。
石英ガラス原料ガスの流量は、前記定常値に達するまでの少なくとも一回の堆積で、定常値に対して5~50%となってもよい。
石英ガラス原料ガスの流量は、最初の一回の堆積時の流量から定常値に達するまで連続的に増加するのが好ましい。
石英ガラス原料ガスの流量は、複数回の石英ガラス微粒子の堆積の全堆積回数のうち、開始から20%までの範囲の少なくともいずれかの前記堆積で定常値に達することが好ましい。つまり、石英ガラス原料ガスの流量は、複数回の堆積の全回数のうち、開始から20%までの回数の間の、少なくともいずれかの回で定常値に達することが好ましい。これによって、生産性の低下を抑えることができる。また、堆積工程の初期において、薄い堆積層を形成することができる。
石英ガラス原料ガスの流量は、複数回の石英ガラス微粒子の堆積の全堆積回数のうち、開始から21%までの範囲の少なくともいずれかの前記堆積で定常値に達してもよい。
石英ガラス原料ガスの流量は、前記定常値に達するまでの少なくとも一回の堆積で、定常値に対して5~50%となってもよい。
図3は、石英ガラス微粒子の堆積の回数(横軸)と石英ガラス原料ガスの流量(縦軸)との関係を示す図である。
この図に示す例では、全堆積回数のうち開始から20%に相当する回において、石英ガラス原料ガスの流量は定常値S1に達している。定常値S1は、石英ガラス原料ガスの最大流量M1に対して90%以上(例えば90~100%)の値であればよい。この例では、最大流量M1は、石英ガラス微粒子の堆積の最終の回における石英ガラス原料ガスの流量であるが、最大流量は、堆積の最終の回における流量でなくてもよい。
この例では、最初の回の堆積における石英ガラス原料ガスの流量F1は、定常値S1に対して50%以下(詳しくは5~50%の範囲)である。
この図に示す例では、全堆積回数のうち開始から20%に相当する回において、石英ガラス原料ガスの流量は定常値S1に達している。定常値S1は、石英ガラス原料ガスの最大流量M1に対して90%以上(例えば90~100%)の値であればよい。この例では、最大流量M1は、石英ガラス微粒子の堆積の最終の回における石英ガラス原料ガスの流量であるが、最大流量は、堆積の最終の回における流量でなくてもよい。
この例では、最初の回の堆積における石英ガラス原料ガスの流量F1は、定常値S1に対して50%以下(詳しくは5~50%の範囲)である。
この製造方法では、前記堆積のうち少なくとも最初の一回は、石英ガラス原料ガスの流量F1が定常値S1に対して50%以下とされるため、スート堆積層の形成の初期において、薄くかつ硬い堆積層を形成することができる。堆積層が硬いため、コア母材10に対するスート堆積層のズレおよび剥離が起こりにくくなる。また、堆積層が薄いため、フッ素原子が拡散しやすくなる。よって、スート堆積層におけるフッ素拡散と、スート堆積層のズレ・剥離の防止とを両立できる。
堆積工程において最初の一回の堆積から定常値S1に達するまで、石英ガラス原料ガスの流量を連続的に増加させることによって、定常値S1に達するまでの原料ガスの流量の変動を抑えることができる。よって、薄くかつ硬い堆積層を形成することができる。
スート堆積層のかさ密度は、平均で0.17g/cm3~0.33g/cm3が好ましい。
スート堆積層のかさ密度は、高すぎればドーパントとしてのフッ素の拡散が困難になるためクラッドの屈折率が低くならず、かさ密度が低すぎればスート堆積層が割れを起こしやすい。スート堆積層のかさ密度が前記範囲であると、ドーパントとしてのフッ素が拡散しやすく、かつスート堆積層の割れが起こりにくくなる。
スート堆積層のかさ密度は、高すぎればドーパントとしてのフッ素の拡散が困難になるためクラッドの屈折率が低くならず、かさ密度が低すぎればスート堆積層が割れを起こしやすい。スート堆積層のかさ密度が前記範囲であると、ドーパントとしてのフッ素が拡散しやすく、かつスート堆積層の割れが起こりにくくなる。
(塩素添加工程)
塩素原子を含むガスの雰囲気下で、多孔質母材を加熱処理することによって、スート堆積層を脱水処理すると同時にスート堆積層に塩素を添加することができる。
塩素原子を含むガスは、例えば塩素系ガス(例えばSOCl2、Cl2など)を含む不活性ガス(例えばAr、He)である。
加熱処理の温度は、1000~1300℃が好ましい。
塩素の添加によって、伝送損失を低減することが可能である。特に、スート堆積層が内側クラッド12(コア11に隣接する層。図4参照)である場合には、伝送損失を低減する効果が高い。なお、塩素は、外側クラッド13となるスート堆積層に添加してもよい。
塩素原子を含むガスの雰囲気下で、多孔質母材を加熱処理することによって、スート堆積層を脱水処理すると同時にスート堆積層に塩素を添加することができる。
塩素原子を含むガスは、例えば塩素系ガス(例えばSOCl2、Cl2など)を含む不活性ガス(例えばAr、He)である。
加熱処理の温度は、1000~1300℃が好ましい。
塩素の添加によって、伝送損失を低減することが可能である。特に、スート堆積層が内側クラッド12(コア11に隣接する層。図4参照)である場合には、伝送損失を低減する効果が高い。なお、塩素は、外側クラッド13となるスート堆積層に添加してもよい。
(フッ素添加工程)
フッ素原子を含むガスの雰囲気下で、多孔質母材を加熱処理することによって、焼結工程前に予めスート堆積層にフッ素を添加することができる。
フッ素原子を含むガスは、例えばフッ素系ガスを含む不活性ガス(例えばAr、He)である。このときのフッ素含有ガスとしては、前記エッチング処理においてエッチングガスとして用いるフッ素含有ガスと同じもの(SF6、C2F6、SiF4、CF4)が例示できる。フッ素含有ガスは、一種を単独で用いてもよいし、二種以上を併用してもよい。
加熱処理の温度は、1000~1300℃が好ましい。
焼結工程前にフッ素添加工程を設けることによって、母材に均一にフッ素を添加することが可能である。
フッ素添加工程は、外側クラッド13の形成時にも実施してもよく、フッ素添加工程無しでも均一にフッ素が添加できる場合は省略してもよい。また、前述の塩素原子を含むガスとフッ素原子を含むガスとを同時に流すことで、塩素添加工程とフッ素添加工程とを同時に実施することも可能である。
フッ素原子を含むガスの雰囲気下で、多孔質母材を加熱処理することによって、焼結工程前に予めスート堆積層にフッ素を添加することができる。
フッ素原子を含むガスは、例えばフッ素系ガスを含む不活性ガス(例えばAr、He)である。このときのフッ素含有ガスとしては、前記エッチング処理においてエッチングガスとして用いるフッ素含有ガスと同じもの(SF6、C2F6、SiF4、CF4)が例示できる。フッ素含有ガスは、一種を単独で用いてもよいし、二種以上を併用してもよい。
加熱処理の温度は、1000~1300℃が好ましい。
焼結工程前にフッ素添加工程を設けることによって、母材に均一にフッ素を添加することが可能である。
フッ素添加工程は、外側クラッド13の形成時にも実施してもよく、フッ素添加工程無しでも均一にフッ素が添加できる場合は省略してもよい。また、前述の塩素原子を含むガスとフッ素原子を含むガスとを同時に流すことで、塩素添加工程とフッ素添加工程とを同時に実施することも可能である。
(焼結工程)
コア母材10のエッチング処理面に石英ガラス微粒子を堆積させた後は、得られた光ファイバ用石英多孔質母材を透明ガラス化する。透明ガラス化は、光ファイバ用石英多孔質母材を焼結処理することで行うことができる。
コア母材10のエッチング処理面に石英ガラス微粒子を堆積させた後は、得られた光ファイバ用石英多孔質母材を透明ガラス化する。透明ガラス化は、光ファイバ用石英多孔質母材を焼結処理することで行うことができる。
焼結処理は、フッ素含有ガスの存在下で行うことにより、フッ素添加を行い、透明ガラス化した層(外付け層)の屈折率を低下させることができる。このときのフッ素含有ガスとしては、前記エッチング処理においてエッチングガスとして用いるフッ素含有ガスと同じもの(SF6、C2F6、SiF4、CF4)が例示できる。フッ素含有ガスは、一種を単独で用いてもよいし、二種以上を併用してもよい。フッ素添加工程を実施する場合は、フッ素添加工程で用いたフッ素含有ガスと同じものを用いることが好ましい。
前記焼結処理は、ヘリウムガス等の不活性ガスの存在下で行うことが好ましい。
前記焼結処理は、ヘリウムガス等の不活性ガスの存在下で行うことが好ましい。
透明ガラス化した後は、形成した透明ガラス化層(外付け層)の外側に、さらに外付け層を追加形成して光ファイバ用ガラス母材を形成することができる。
追加形成する外付け層は、公知の方法で形成してもよいし、上記の透明ガラス化で得られたガラス母材をコア母材10に代えて用い、上記の製造方法を適用して形成してもよい。
追加形成する外付け層の数および種類は、目的とする光ファイバ用ガラス母材の構造に応じて、任意に設定できる。
追加形成する外付け層は、公知の方法で形成してもよいし、上記の透明ガラス化で得られたガラス母材をコア母材10に代えて用い、上記の製造方法を適用して形成してもよい。
追加形成する外付け層の数および種類は、目的とする光ファイバ用ガラス母材の構造に応じて、任意に設定できる。
焼結工程後のスート堆積層の外径は、コア母材10の外径(エッチング工程後の外径)の5倍以下であることが好ましい。これによって、スート堆積層の割れを起こりにくくできるため、生産性を高めることができる。また、スート堆積層の外径がコア母材10の長手方向で変動するのを防ぐことができる。また、スート堆積層の外径を前記範囲とすることによって、フッ素原子が拡散しやすくなる。
図4は、本実施形態の製造方法により得られた光ファイバ用ガラス母材の例の断面と、各層の屈折率とを示す概略図である。
図4に示す光ファイバ用ガラス母材1は、コア11、内側クラッド12、および外側クラッド13が、中心から外側に向かう方向においてこの順に設けられている。
コア11は、シリカガラスから形成される。コア11は、ゲルマニウムを実質的に含まないシリカガラスから形成されることが好ましい。
内側クラッド12および外側クラッド13には、目的とする屈折率を得るために、フッ素等のドーパントが添加されている。
光ファイバ用ガラス母材1は、内側クラッド12および外側クラッド13の形成時に、それぞれ前記製造方法を適用することで製造できる。
図4に示す光ファイバ用ガラス母材1は、コア11、内側クラッド12、および外側クラッド13が、中心から外側に向かう方向においてこの順に設けられている。
コア11は、シリカガラスから形成される。コア11は、ゲルマニウムを実質的に含まないシリカガラスから形成されることが好ましい。
内側クラッド12および外側クラッド13には、目的とする屈折率を得るために、フッ素等のドーパントが添加されている。
光ファイバ用ガラス母材1は、内側クラッド12および外側クラッド13の形成時に、それぞれ前記製造方法を適用することで製造できる。
図5は、本実施形態の製造方法により得られた光ファイバ用ガラス母材の他の例の断面と、各層の屈折率とを示す概略図である。
図5に示す光ファイバ用ガラス母材2は、コア11A、内側クラッド12A、および外側クラッド13Aが、中心から外側に向かう方向においてこの順に設けられている。
内側クラッド12A、および外側クラッド13Aには、目的とする屈折率を得るために、フッ素等のドーパントが添加されている。
光ファイバ用ガラス母材2は、内側クラッド12A、および外側クラッド13Aの形成時に、それぞれ前記製造方法を適用することで製造できる。
図5に示す光ファイバ用ガラス母材2は、コア11A、内側クラッド12A、および外側クラッド13Aが、中心から外側に向かう方向においてこの順に設けられている。
内側クラッド12A、および外側クラッド13Aには、目的とする屈折率を得るために、フッ素等のドーパントが添加されている。
光ファイバ用ガラス母材2は、内側クラッド12A、および外側クラッド13Aの形成時に、それぞれ前記製造方法を適用することで製造できる。
図6は、本実施形態の製造方法により得られた光ファイバ用ガラス母材の他の例の断面と、各層の屈折率とを示す概略図である。
図6に示す光ファイバ用ガラス母材3は、コア11B、内側クラッド12B、トレンチ層14、および外側クラッド13Bが、中心から外側に向かう方向においてこの順に設けられている。
内側クラッド12B、トレンチ層14、および外側クラッド13Bには、目的とする屈折率を得るために、フッ素等のドーパントが添加されている。
光ファイバ用ガラス母材3は、内側クラッド12B、トレンチ層14、および外側クラッド13Bの形成時に、それぞれ前記製造方法を適用することで製造できる。
なお、コアの外側に設けられる層の数は、2層(図4、図5参照)、3層(図6参照)に限らず、1層または4層以上でもよい。
図6に示す光ファイバ用ガラス母材3は、コア11B、内側クラッド12B、トレンチ層14、および外側クラッド13Bが、中心から外側に向かう方向においてこの順に設けられている。
内側クラッド12B、トレンチ層14、および外側クラッド13Bには、目的とする屈折率を得るために、フッ素等のドーパントが添加されている。
光ファイバ用ガラス母材3は、内側クラッド12B、トレンチ層14、および外側クラッド13Bの形成時に、それぞれ前記製造方法を適用することで製造できる。
なお、コアの外側に設けられる層の数は、2層(図4、図5参照)、3層(図6参照)に限らず、1層または4層以上でもよい。
プラズマエッチングによるエッチング工程は、コア11に隣接する内側クラッド12(外付け層)を形成する際には必須であるが、2層目以降の層(例えば外側クラッド13、トレンチ層14)については、水酸基の影響による波長1.55μmにおける損失増が小さければ、なくてもよい。プラズマエッチングを行わない場合には、これに代えて、酸水素火炎などによる火炎研磨を行うことができる。
本実施形態の製造方法によれば、スート堆積層の厚さに制限がないため、コア母材10の外径が大きい場合でも厚いスート堆積層を形成することができる。よって、光ファイバ母材の大型化が容易である。
また、多数のコア母材とパイプとを用意しておく必要がある前述の製造方法とは異なり、コア母材10の外径や屈折率に応じてスート堆積層の厚さや屈折率を調整できる。そのため、製造が容易であってコスト低減が可能であり、特性も安定しやすい。また、パイプの作製やコラプス工程に起因する問題(パイプ作製時の穴開けや洗浄中に不純物が入りやすく伝送損失が大きくなりやすいなど)も生じない。
また、多数のコア母材とパイプとを用意しておく必要がある前述の製造方法とは異なり、コア母材10の外径や屈折率に応じてスート堆積層の厚さや屈折率を調整できる。そのため、製造が容易であってコスト低減が可能であり、特性も安定しやすい。また、パイプの作製やコラプス工程に起因する問題(パイプ作製時の穴開けや洗浄中に不純物が入りやすく伝送損失が大きくなりやすいなど)も生じない。
以下、実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されない。
[試験例1]
<光ファイバ用ガラス母材の製造>
図1および図2を参照して説明した方法により光ファイバ用ガラス母材を製造した。具体的には、以下の通りである。
<光ファイバ用ガラス母材の製造>
図1および図2を参照して説明した方法により光ファイバ用ガラス母材を製造した。具体的には、以下の通りである。
(エッチング工程)
VAD法で作製した母材を延伸して得られたコア母材10(外径20.0mm)の両端部にダミー母材9を同軸状に接続し、反応容器7内でこれを回転チャック8,8で把持した。コア母材10の長手方向に沿ってプラズマトーチ6を移動させることで、コア母材10の表面をプラズマ火炎でエッチング処理した。エッチング処理後のコア母材10の外径は19.4mmであったため、コア母材10の外径は0.6mm小さくなった。
VAD法で作製した母材を延伸して得られたコア母材10(外径20.0mm)の両端部にダミー母材9を同軸状に接続し、反応容器7内でこれを回転チャック8,8で把持した。コア母材10の長手方向に沿ってプラズマトーチ6を移動させることで、コア母材10の表面をプラズマ火炎でエッチング処理した。エッチング処理後のコア母材10の外径は19.4mmであったため、コア母材10の外径は0.6mm小さくなった。
(堆積工程)
次いで、コア母材10を反応容器7に入れた状態のまま、エッチング処理後時間を空けることなく、コア母材10の長手方向に沿って石英ガラスバーナ5を移動させつつ、コア母材10に石英ガラス微粒子を堆積させた。石英ガラス微粒子が堆積する直前のコア母材表面の温度は330℃であった。石英ガラス微粒子の堆積は、ガラスロッドの一端から他端に向けて石英ガラスバーナ5を一方向に一回移動させることで行った。一回目と同方向に石英ガラスバーナ5のみを複数回繰り返して移動させることにより、石英ガラス微粒子の堆積を302回行った。
石英ガラス微粒子は、石英ガラス原料ガス、水素ガス、および酸素ガスを用い、さらに不活性ガスとしてアルゴンガスおよび窒素ガスを用いて、酸水素火炎中で生成させることで堆積させた。
これにより、光ファイバ用石英多孔質母材を作製した。
石英ガラス原料ガスの流量は、1回目の堆積において1.5SLMとし、32回目(全堆積回数のうち開始から10.6%)で5SLM(定常値)に達し、以後、最後の302回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量1.5SLMは、定常値(5SLM)に対して30%である。石英ガラス原料ガスの流量は、1回目の堆積から32回目の堆積まで連続的に増加させた。
次いで、コア母材10を反応容器7に入れた状態のまま、エッチング処理後時間を空けることなく、コア母材10の長手方向に沿って石英ガラスバーナ5を移動させつつ、コア母材10に石英ガラス微粒子を堆積させた。石英ガラス微粒子が堆積する直前のコア母材表面の温度は330℃であった。石英ガラス微粒子の堆積は、ガラスロッドの一端から他端に向けて石英ガラスバーナ5を一方向に一回移動させることで行った。一回目と同方向に石英ガラスバーナ5のみを複数回繰り返して移動させることにより、石英ガラス微粒子の堆積を302回行った。
石英ガラス微粒子は、石英ガラス原料ガス、水素ガス、および酸素ガスを用い、さらに不活性ガスとしてアルゴンガスおよび窒素ガスを用いて、酸水素火炎中で生成させることで堆積させた。
これにより、光ファイバ用石英多孔質母材を作製した。
石英ガラス原料ガスの流量は、1回目の堆積において1.5SLMとし、32回目(全堆積回数のうち開始から10.6%)で5SLM(定常値)に達し、以後、最後の302回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量1.5SLMは、定常値(5SLM)に対して30%である。石英ガラス原料ガスの流量は、1回目の堆積から32回目の堆積まで連続的に増加させた。
(塩素添加工程)
前記光ファイバ用石英多孔質母材を焼結炉に入れ、塩素ガスと不活性ガスを含むガス雰囲気下で1100度に加熱した。
前記光ファイバ用石英多孔質母材を焼結炉に入れ、塩素ガスと不活性ガスを含むガス雰囲気下で1100度に加熱した。
(焼結工程)
前記焼結炉内で、前記光ファイバ用石英多孔質母材に対して、SiF4とヘリウムの混合ガス中で焼結処理およびフッ素添加を行った。
これにより、図4に示す光ファイバ用ガラス母材1のうち、コア11および内側クラッド12の部分(以下、中間母材という)を作製した。
前記焼結炉内で、前記光ファイバ用石英多孔質母材に対して、SiF4とヘリウムの混合ガス中で焼結処理およびフッ素添加を行った。
これにより、図4に示す光ファイバ用ガラス母材1のうち、コア11および内側クラッド12の部分(以下、中間母材という)を作製した。
前記中間母材に対し、内側クラッド12の作製と同様に、エッチング工程、堆積工程、塩素添加工程、焼結工程を行うことによって、外側クラッド13を形成した。
これにより、図4に示す光ファイバ用ガラス母材1を得た。
これにより、図4に示す光ファイバ用ガラス母材1を得た。
<光ファイバの製造>
得られた光ファイバ用ガラス母材1を、従来法により素線化して、外側クラッドの外径が125μmの光ファイバを製造した。そして、得られた光ファイバの損失(1.55μm損失)を測定した。また、紡糸中の断線回数を記録した。また、中間母材においてのコア11と内側クラッド12との間に生じるズレおよび剥離の有無を調べた。測定結果を表1に示す。
得られた光ファイバ用ガラス母材1を、従来法により素線化して、外側クラッドの外径が125μmの光ファイバを製造した。そして、得られた光ファイバの損失(1.55μm損失)を測定した。また、紡糸中の断線回数を記録した。また、中間母材においてのコア11と内側クラッド12との間に生じるズレおよび剥離の有無を調べた。測定結果を表1に示す。
[試験例2]
エッチング工程の後1時間経過して十分母材が冷却された後に、プラズマ火炎により加熱する予熱工程を行い、その直後から堆積工程を行った。堆積工程直前の母材表面温度は310℃であった。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
エッチング工程の後1時間経過して十分母材が冷却された後に、プラズマ火炎により加熱する予熱工程を行い、その直後から堆積工程を行った。堆積工程直前の母材表面温度は310℃であった。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
[試験例3]
エッチング工程を行わないこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。石英ガラス微粒子が堆積する直前のコア母材表面の温度は21℃であった。測定結果を表1に示す。
エッチング工程を行わないこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。石英ガラス微粒子が堆積する直前のコア母材表面の温度は21℃であった。測定結果を表1に示す。
[試験例4]
エッチング工程に代えて、酸水素火炎の火炎研磨を行ったこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。石英ガラス微粒子が堆積する直前のコア母材表面の温度は540℃であった。測定結果を表1に示す。
エッチング工程に代えて、酸水素火炎の火炎研磨を行ったこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。石英ガラス微粒子が堆積する直前のコア母材表面の温度は540℃であった。測定結果を表1に示す。
[試験例5]
エッチング工程後、コア母材10を反応容器7から取り出して放置した後、再び反応容器7に入れてプラズマ火炎により加熱する予熱工程を行い、堆積工程を行ったこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。堆積工程直前の母材表面温度は315℃であった。
エッチング工程後、コア母材10を反応容器7から取り出して放置した後、再び反応容器7に入れてプラズマ火炎により加熱する予熱工程を行い、堆積工程を行ったこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。堆積工程直前の母材表面温度は315℃であった。
[試験例6]
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積から最後の296回目の堆積に至るまで5SLMとしたこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積から最後の296回目の堆積に至るまで5SLMとしたこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
[試験例7]
エッチング工程の後1時間経過して十分母材が冷却された後に、プラズマ火炎により加熱する予熱工程を行わずに堆積工程を行った。堆積工程直前の母材表面温度は22℃であった。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
エッチング工程の後1時間経過して十分母材が冷却された後に、プラズマ火炎により加熱する予熱工程を行わずに堆積工程を行った。堆積工程直前の母材表面温度は22℃であった。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
[試験例8]
エッチング工程を行わずにプラズマ火炎により加熱する予熱工程を行い、その直後から堆積工程を行った。堆積工程直前の母材表面温度は310℃であった。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
エッチング工程を行わずにプラズマ火炎により加熱する予熱工程を行い、その直後から堆積工程を行った。堆積工程直前の母材表面温度は310℃であった。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
[試験例9]
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積において0.25SLMとし、32回目(全堆積回数のうち開始から10.7%)で5SLM(定常値)に達し、以後、最後の299回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量0.25SLMは、定常値(5SLM)に対して5%である。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積において0.25SLMとし、32回目(全堆積回数のうち開始から10.7%)で5SLM(定常値)に達し、以後、最後の299回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量0.25SLMは、定常値(5SLM)に対して5%である。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
[試験例10]
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積において2.5SLMとし、32回目(全堆積回数のうち開始から10.3%)で5SLM(定常値)に達し、以後、最後の312回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量2.5SLMは、定常値(5SLM)に対して50%である。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積において2.5SLMとし、32回目(全堆積回数のうち開始から10.3%)で5SLM(定常値)に達し、以後、最後の312回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量2.5SLMは、定常値(5SLM)に対して50%である。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
[試験例11]
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積において3.5SLMとし、32回目(全堆積回数のうち開始から10.5%)で5SLM(定常値)に達し、以後、最後の304回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量3.5SLMは、定常値(5SLM)に対して70%である。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積において3.5SLMとし、32回目(全堆積回数のうち開始から10.5%)で5SLM(定常値)に達し、以後、最後の304回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量3.5SLMは、定常値(5SLM)に対して70%である。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
[試験例12]
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積において2.5SLMとし、64回目(全堆積回数のうち開始から20.9%)で5SLM(定常値)に達し、以後、最後の306回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量2.5SLMは、定常値(5SLM)に対して50%である。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
堆積工程において、石英ガラス原料ガスの流量を、1回目の堆積において2.5SLMとし、64回目(全堆積回数のうち開始から20.9%)で5SLM(定常値)に達し、以後、最後の306回目の堆積まで5SLMを維持した。1回目の堆積における石英ガラス原料ガスの流量2.5SLMは、定常値(5SLM)に対して50%である。
これらのこと以外は試験例1と同様にして光ファイバ用ガラス母材1および光ファイバを製造した。測定結果を表1に示す。
表1に示すように、試験例1,2,9,10,12では、スート堆積層のズレまたは剥離が起こらず、損失も小さく、紡糸中の断線も起こらなかった。
これに対し、エッチング工程を行わなかった試験例3では、スート堆積層のずれが生じた。また、損失が大きく、断線も生じた。試験例3では、エッチングによって母材が加熱することなくスートが堆積されたことで、界面付近のスート堆積層のスートかさ密度が低くなりスート堆積層のズレが生じた可能性がある。さらに、エッチングによってガラス表面の水酸基が取り除かれなかったためにOH損失が増大したと推測される。また、コア母材10の表面の清浄化が不十分であったことは、断線の原因となったと推測できる。
試験例4では、酸水素火炎の火炎研磨により、コア母材10の表面に水酸基が残存したことがOH損失の増大を招いた可能性がある。
試験例5では、エッチング工程後、コア母材10を反応容器7から取り出したため、コア母材10の表面の清浄性が損なわれたことが断線の増加の原因となったと推測できる。
試験例6,11では、石英ガラス原料ガスの流量が最初から高いため、スート堆積層の形成の初期において、コア母材10からの剥離が起こりやすい堆積層が形成された可能性がある。
試験例7では、プラズマ火炎により加熱する予熱工程を行わなかったために、界面付近のスート堆積層のスートかさ密度が低くなり、スート堆積層にズレが生じた可能性がある。
試験例8では、エッチングによってガラス表面の水酸基を取り除かれなかったためにOH損失が増大したと推測される。また、コア母材10の表面の清浄化が不十分であったことは、断線の原因となったと推測できる。
これに対し、エッチング工程を行わなかった試験例3では、スート堆積層のずれが生じた。また、損失が大きく、断線も生じた。試験例3では、エッチングによって母材が加熱することなくスートが堆積されたことで、界面付近のスート堆積層のスートかさ密度が低くなりスート堆積層のズレが生じた可能性がある。さらに、エッチングによってガラス表面の水酸基が取り除かれなかったためにOH損失が増大したと推測される。また、コア母材10の表面の清浄化が不十分であったことは、断線の原因となったと推測できる。
試験例4では、酸水素火炎の火炎研磨により、コア母材10の表面に水酸基が残存したことがOH損失の増大を招いた可能性がある。
試験例5では、エッチング工程後、コア母材10を反応容器7から取り出したため、コア母材10の表面の清浄性が損なわれたことが断線の増加の原因となったと推測できる。
試験例6,11では、石英ガラス原料ガスの流量が最初から高いため、スート堆積層の形成の初期において、コア母材10からの剥離が起こりやすい堆積層が形成された可能性がある。
試験例7では、プラズマ火炎により加熱する予熱工程を行わなかったために、界面付近のスート堆積層のスートかさ密度が低くなり、スート堆積層にズレが生じた可能性がある。
試験例8では、エッチングによってガラス表面の水酸基を取り除かれなかったためにOH損失が増大したと推測される。また、コア母材10の表面の清浄化が不十分であったことは、断線の原因となったと推測できる。
本実施形態の製造方法は、コア母材作製工程、エッチング工程、予熱工程、堆積工程、塩素添加工程、焼結工程を有するが、これらのうち、予熱工程、塩素添加工程の一方または両方は状況によって省略することも可能である。
また、コア母材の作製方法としては、プラズマ法、MCVD法などの酸化法も例示できるが、VAD法などのスート法が好ましい。
光ファイバ母材は、コアと、その外側に設けられたクラッドとからなる構成も可能である。その場合には、前述の製造方法において、コア母材の外面に外付け層を形成したものが光ファイバ母材となる。
また、コア母材の作製方法としては、プラズマ法、MCVD法などの酸化法も例示できるが、VAD法などのスート法が好ましい。
光ファイバ母材は、コアと、その外側に設けられたクラッドとからなる構成も可能である。その場合には、前述の製造方法において、コア母材の外面に外付け層を形成したものが光ファイバ母材となる。
1,2・・・光ファイバ用ガラス母材、4・・・プラズマ火炎、5・・・石英ガラスバーナ、6・・・プラズマトーチ、7・・・反応容器(チャンバ)、10・・・コア母材、11,11A,11B・・・コア、12,12A,12B・・・内側クラッド、13,13A,13B・・・外側クラッド、14・・・トレンチ層、S1・・・定常値。
Claims (7)
- シリカガラスから形成されたコアと前記コアの外周に形成されたクラッドとを有する光ファイバを製造するための光ファイバ母材の製造方法であって、
前記コアとなるコア母材の表面を、チャンバ内においてプラズマ火炎でエッチング処理するエッチング工程と、
前記コア母材を前記チャンバ内に入れた状態のまま、前記コア母材のエッチング処理面にガラス微粒子を堆積させて前記クラッドとなる外付け層を形成し、多孔質母材を得る堆積工程と、
前記多孔質母材を加熱し焼結する焼結工程と、を有し、
前記堆積工程において、原料ガスの供給による前記ガラス微粒子の堆積を複数回繰り返して行うことによって前記外付け層を形成し、
前記複数回のガラス微粒子の堆積のうち少なくとも最初の一回は、前記原料ガスの流量が定常値に対して50%以下であり、
前記堆積工程を開始するときの、前記コア母材のエッチング処理面の温度が50℃以上である、光ファイバ母材の製造方法。 - 前記堆積工程において、前記原料ガスの流量が最初の一回の前記堆積時の流量から定常値に達するまで、前記原料ガスの流量を連続的に増加させる、請求項1に記載の光ファイバ母材の製造方法。
- 前記外付け層のかさ密度の平均は、0.17g/cm3~0.33g/cm3である、請求項1または2に記載の光ファイバ母材の製造方法。
- 前記堆積工程の後、前記焼結工程の前に、塩素原子を含むガスの雰囲気下で前記多孔質母材を加熱する、請求項1~3のうちいずれか1項に記載の光ファイバ母材の製造方法。
- 前記焼結工程後の外付け層の外径は、前記コア母材の外径の5倍以下である、請求項1~4のうちいずれか1項に記載の光ファイバ母材の製造方法。
- 前記エッチング工程において、前記コア母材の外径を0.5mm以上小さくする、請求項1~5のうちいずれか1項に記載の光ファイバ母材の製造方法。
- 前記エッチング工程の後、前記堆積工程の前に、前記コア母材をプラズマ火炎により加熱する、請求項1~6のうちいずれか1項に記載の光ファイバ母材の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17866113.8A EP3533769B1 (en) | 2016-10-25 | 2017-10-17 | Production method for optical fiber preform |
CN201780064884.9A CN109843815B (zh) | 2016-10-25 | 2017-10-17 | 光纤母材的制造方法 |
US16/390,906 US10995030B2 (en) | 2016-10-25 | 2019-04-22 | Manufacturing method of optical fiber preform |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016208687A JP6446421B2 (ja) | 2016-10-25 | 2016-10-25 | 光ファイバ母材の製造方法 |
JP2016-208687 | 2016-10-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/390,906 Continuation US10995030B2 (en) | 2016-10-25 | 2019-04-22 | Manufacturing method of optical fiber preform |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079341A1 true WO2018079341A1 (ja) | 2018-05-03 |
Family
ID=62024915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/037538 WO2018079341A1 (ja) | 2016-10-25 | 2017-10-17 | 光ファイバ母材の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10995030B2 (ja) |
EP (1) | EP3533769B1 (ja) |
JP (1) | JP6446421B2 (ja) |
CN (1) | CN109843815B (ja) |
WO (1) | WO2018079341A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111847866A (zh) * | 2020-07-14 | 2020-10-30 | 复旦大学 | 低损耗光纤预制棒外包层及制备设备和制备方法及光纤 |
CN114195379A (zh) * | 2021-12-21 | 2022-03-18 | 通鼎互联信息股份有限公司 | 一种低损耗截止波长位移单模光纤的拉丝方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62182132A (ja) * | 1986-02-03 | 1987-08-10 | Sumitomo Electric Ind Ltd | ガラス微粒子堆積体の製造方法 |
JPH0218334A (ja) * | 1988-07-06 | 1990-01-22 | Fujikura Ltd | 光フアイバ用母材の製造方法 |
JPH0725625A (ja) * | 1993-07-08 | 1995-01-27 | Sumitomo Electric Ind Ltd | ガラス微粒子堆積体の製造方法 |
JP2004010368A (ja) * | 2002-06-03 | 2004-01-15 | Furukawa Electric Co Ltd:The | 光ファイバ母材の製造方法とその製造装置 |
JP2004224649A (ja) * | 2003-01-23 | 2004-08-12 | Fujikura Ltd | 多孔質ガラス体 |
JP2013035722A (ja) * | 2011-08-09 | 2013-02-21 | Furukawa Electric Co Ltd:The | 光ファイバ母材および光ファイバの製造方法 |
JP2014028741A (ja) * | 2012-07-05 | 2014-02-13 | Fujikura Ltd | 光ファイバ用ガラス母材の製造方法 |
JP2015006971A (ja) * | 2013-04-08 | 2015-01-15 | 信越化学工業株式会社 | 光ファイバ用ガラス母材の製造方法および光ファイバ用ガラス母材 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863501A (en) * | 1985-09-26 | 1989-09-05 | Polaroid Corporation, Patent Department | Method of employing plasma for finishing start rods |
US6928841B2 (en) * | 2002-05-10 | 2005-08-16 | Furukawa Electric North America Inc | Optical fiber preform manufacture using improved VAD |
JP4463605B2 (ja) * | 2003-05-09 | 2010-05-19 | 株式会社フジクラ | 光ファイバ母材およびその製造方法 |
US7404302B2 (en) * | 2004-05-27 | 2008-07-29 | Corning Incorporated | Method of depositing glass soot |
WO2007054961A2 (en) * | 2005-09-05 | 2007-05-18 | Sterlite Optical Technologies Ltd. | Optical fiber preform having large size soot porous body and its method of preparation |
JP5671837B2 (ja) * | 2010-04-30 | 2015-02-18 | 住友電気工業株式会社 | ガラス母材製造方法 |
JP5771943B2 (ja) | 2010-10-18 | 2015-09-02 | 住友電気工業株式会社 | 光ファイバ及び光ファイバ用ガラス母材の製造方法 |
JP5578024B2 (ja) * | 2010-10-27 | 2014-08-27 | 住友電気工業株式会社 | ガラス母材の製造方法 |
-
2016
- 2016-10-25 JP JP2016208687A patent/JP6446421B2/ja active Active
-
2017
- 2017-10-17 CN CN201780064884.9A patent/CN109843815B/zh active Active
- 2017-10-17 WO PCT/JP2017/037538 patent/WO2018079341A1/ja unknown
- 2017-10-17 EP EP17866113.8A patent/EP3533769B1/en active Active
-
2019
- 2019-04-22 US US16/390,906 patent/US10995030B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62182132A (ja) * | 1986-02-03 | 1987-08-10 | Sumitomo Electric Ind Ltd | ガラス微粒子堆積体の製造方法 |
JPH0218334A (ja) * | 1988-07-06 | 1990-01-22 | Fujikura Ltd | 光フアイバ用母材の製造方法 |
JPH0725625A (ja) * | 1993-07-08 | 1995-01-27 | Sumitomo Electric Ind Ltd | ガラス微粒子堆積体の製造方法 |
JP2004010368A (ja) * | 2002-06-03 | 2004-01-15 | Furukawa Electric Co Ltd:The | 光ファイバ母材の製造方法とその製造装置 |
JP2004224649A (ja) * | 2003-01-23 | 2004-08-12 | Fujikura Ltd | 多孔質ガラス体 |
JP2013035722A (ja) * | 2011-08-09 | 2013-02-21 | Furukawa Electric Co Ltd:The | 光ファイバ母材および光ファイバの製造方法 |
JP2014028741A (ja) * | 2012-07-05 | 2014-02-13 | Fujikura Ltd | 光ファイバ用ガラス母材の製造方法 |
JP2015006971A (ja) * | 2013-04-08 | 2015-01-15 | 信越化学工業株式会社 | 光ファイバ用ガラス母材の製造方法および光ファイバ用ガラス母材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3533769A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN109843815A (zh) | 2019-06-04 |
EP3533769A1 (en) | 2019-09-04 |
JP6446421B2 (ja) | 2018-12-26 |
EP3533769A4 (en) | 2020-06-03 |
EP3533769B1 (en) | 2024-08-21 |
CN109843815B (zh) | 2022-03-01 |
US20190248695A1 (en) | 2019-08-15 |
US10995030B2 (en) | 2021-05-04 |
JP2018070388A (ja) | 2018-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8024945B2 (en) | Glass tube processing apparatus | |
JP5916966B2 (ja) | 光ファイバ母材の製造方法および光ファイバの製造方法 | |
JP2013035722A (ja) | 光ファイバ母材および光ファイバの製造方法 | |
JP2012162409A (ja) | 光ファイバ母材製造方法 | |
EP3178793B1 (en) | Method for producing an optical fiber preform and an optical fiber | |
US10995030B2 (en) | Manufacturing method of optical fiber preform | |
EP2743237B1 (en) | Method for activating an inner surface of a hollow glass substrate tube for the manufacturing of an optical fiber preform. | |
JP2010064915A (ja) | 光ファイバ母材の製造方法 | |
JP5147856B2 (ja) | 母材とファイバー製造のための半完成品としての石英ガラス管の製造方法 | |
JP6126907B2 (ja) | 光ファイバ用ガラス母材の製造方法 | |
CN106927686B (zh) | 蚀刻初级预制品的方法及由此得到的蚀刻初级预制品 | |
US20090260400A1 (en) | Method for Producing a Tubular Semifinished Product From Fluorine-Doped Quartz Glass | |
JP5952656B2 (ja) | 光ファイバ用ガラス母材の製造方法 | |
JP2004338992A (ja) | ガラス母材の製造方法 | |
JP2003212550A (ja) | ガラス管の製造方法およびこれに用いられるターゲットロッド | |
RU2385297C1 (ru) | Способ изготовления труб из кварцевого стекла | |
JP2004338958A (ja) | 光ファイバ用母材の製造方法及び光ファイバ | |
KR100800813B1 (ko) | 광섬유 모재의 제조 방법, 이 방법에 의해 제조된 광섬유모재 및 광섬유 | |
JP2022148517A (ja) | 光ファイバ母材の製造方法、及び光ファイバ母材の製造装置 | |
JP2017043512A (ja) | 光ファイバ母材の製造方法、光ファイバの製造方法およびレンズの製造方法 | |
US20180029921A1 (en) | Method for producing glass preform for optical fiber | |
JP2004352522A (ja) | 光ファイバ用母材の製造方法及び光ファイバ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17866113 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017866113 Country of ref document: EP Effective date: 20190527 |