WO2018078907A1 - 浸漬型バーナヒータ及び溶湯保持炉 - Google Patents

浸漬型バーナヒータ及び溶湯保持炉 Download PDF

Info

Publication number
WO2018078907A1
WO2018078907A1 PCT/JP2017/011330 JP2017011330W WO2018078907A1 WO 2018078907 A1 WO2018078907 A1 WO 2018078907A1 JP 2017011330 W JP2017011330 W JP 2017011330W WO 2018078907 A1 WO2018078907 A1 WO 2018078907A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
flow path
inner cylinder
molten metal
cylinder member
Prior art date
Application number
PCT/JP2017/011330
Other languages
English (en)
French (fr)
Inventor
城也太 望月
山田 学
Original Assignee
株式会社トウネツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トウネツ filed Critical 株式会社トウネツ
Publication of WO2018078907A1 publication Critical patent/WO2018078907A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/08Helical or twisted baffles or deflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • B22D41/015Heating means with external heating, i.e. the heat source not being a part of the ladle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D45/00Equipment for casting, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/126Radiant burners cooperating with refractory wall surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/005Radiant gas burners made of specific materials, e.g. rare earths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/20Burner material specifications metallic

Definitions

  • the present invention relates to a submerged burner heater and a molten metal holding furnace used, for example, for casting aluminum, an aluminum alloy or the like or melting an ingot.
  • a heater for molten metal inserted from the furnace wall has been used.
  • a heater for heating a molten metal a molten metal holding furnace using a metal heating element as a heat source has been put into practical use, but a system using a gas burner instead of the metal heating element as a heat source has been proposed.
  • Patent Document 1 discloses a burner heater in which an inner cylinder is disposed in an outer cylinder that is a heater protection pipe, and a metal that supplies combustion gas from between the inner cylinder and the outer cylinder and collects exhaust gas from the inner cylinder.
  • a combustion tube heater for heating molten metal is described.
  • Such a burner heater increases the temperature on the outer cylinder side by allowing combustion gas to flow between the inner cylinder and the outer cylinder, and efficiently heats the molten metal.
  • the furnace wall prevents the molten metal inside the furnace from leaking out of the furnace through the heater protective tube and the furnace wall. Even if the inside of the heater protective tube buried in the inside is made 600 ° C. or less (melting point of aluminum is 660 ° C.), even if the molten metal enters between the furnace wall and the heater protective tube, the molten metal is solidified and flows out. It is necessary to have a configuration that is prevented.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a submerged burner heater and a molten metal holding furnace capable of obtaining a high heat transfer coefficient and reducing the exhaust gas temperature.
  • the submerged burner heater according to the first aspect of the present invention has a combustion flow path between a heater protection tube that is installed in the furnace wall of the molten metal holding furnace in a penetrating state and whose tip is closed, and the heater protection tube.
  • the furnace wall includes an inner cylindrical member that is disposed in the heater protection tube and has an open end and an exhaust gas passage inside, and a gas burner section that supplies fuel gas and air to the combustion passage.
  • at least one of the outer peripheral surface of the inner cylinder member and the inner peripheral surface of the heater protective tube is provided with a spirally extending protrusion on the front end side of the portion penetrating through the portion.
  • a spirally extending protrusion is provided on at least one of the outer peripheral surface of the inner cylinder member and the inner peripheral surface of the heater protection tube on the tip side of the portion penetrating the furnace wall. Therefore, the combustion gas is guided by the ridge portion, and the combustion gas advances spirally in the combustion channel between the inner cylinder member and the heater protection tube, so that the combustion gas is compared with the case where there is no spiral ridge portion. Therefore, the heat transfer rate to the heater protective tube due to convection increases.
  • the combustion gas advances in a spiral shape, so that turbulent flow is generated, the combustion gas and air are more likely to be mixed and combustion efficiency is improved, and the combustion gas exhausted from the inner cylinder member without being combusted is improved. The amount can be reduced. Furthermore, since the heat transfer rate to the heater protection tube is improved, heat exchange between the molten metal and the heater is more actively performed, so that the temperature of the exhaust gas can be lowered.
  • the submerged burner heater according to a second aspect of the present invention is characterized in that, in the first aspect, the protrusions are provided between spiral grooves formed on the inner peripheral surface of the heater protective tube. . That is, in this submerged burner heater, since the protrusion is provided between the spiral grooves formed on the inner peripheral surface of the heater protective tube, the inner peripheral surface of the heater protective tube can be easily formed by groove processing or the like. In addition, the protrusions can be formed, and the flow velocity of the combustion gas can be easily set according to the groove width and the like. Further, the surface area of the heater protective tube is increased by the protrusions, and the heat exchange between the protective tube and the heater is improved.
  • the submerged burner heater according to a third aspect is characterized in that, in the first aspect, the protrusion is a helical fin provided on an outer peripheral surface of the inner cylinder member. That is, in this submerged burner heater, since the protrusion is a spiral fin provided on the outer peripheral surface of the inner cylinder member, the flow rate of the combustion gas and the like can be easily set according to the shape of the spiral fin. can do.
  • a submerged burner heater includes the air flow path for supplying the air into the combustion flow path in a portion penetrating the furnace wall in any one of the first to third aspects,
  • a heat exchange fin fixed to the inner cylinder member or the air supply pipe is provided in the air flow path. That is, in this submerged burner heater, since the heat exchange fin is provided in the air flow path, the air supplied into the air flow path and the heat exchange fin fixed to the inner cylinder member or the air supply pipe The air exchanged between the two can efficiently heat the supplied air.
  • a submerged burner heater is the heat sink material having lower thermal conductivity than the heater protective tube in the outer peripheral portion on the base end side of the inner cylindrical member in any one of the first to fourth aspects.
  • a formed heat insulating member is provided.
  • the base end portion of the inner cylinder member is overheated, the exhaust gas is heated at the base end portion of the inner cylinder tube, and the exhaust gas temperature rises. That is, the base end portion of the heater is very hot because the flame of the burner directly hits it. For this reason, if the inner cylinder member becomes too hot, the temperature of the exhaust gas passing through the inner cylinder member becomes high.
  • a heat insulating member made of a heat insulating material having a lower thermal conductivity than the heater protective tube is provided on the outer peripheral portion on the proximal end side of the inner cylindrical member, so that overheating of the inner cylindrical member is prevented. It is possible to efficiently apply heat to the heater protection tube.
  • the tip of the inner cylinder member is not directly exposed to the flame of the burner, the temperature is lower than that of the base end, so that the inner cylinder member is overheated by dissipating heat from the inner cylinder member without attaching a heat insulating material. It becomes possible to prevent.
  • a molten metal holding furnace includes a holding tank for holding the molten metal, and a submerged burner heater according to any one of the first to fifth aspects of the invention installed in a through state in the furnace wall of the holding tank. Yes. That is, since this molten metal holding furnace includes the immersion type burner heater according to any one of the first to fifth aspects of the invention, the immersion type burner heater of the present invention having good heat transfer rate and energy efficiency can be used with less energy than before. It becomes possible to hold the molten metal.
  • the present invention has the following effects. That is, according to the submerged burner heater according to the present invention, the protrusion extending in a spiral shape on at least one of the outer peripheral surface of the inner cylinder member and the inner peripheral surface of the heater protection tube on the tip side of the portion penetrating the furnace wall. Since the strip is provided, the heat transfer rate can be increased and the exhaust gas temperature can be lowered, and the combustion efficiency can be improved to reduce the amount of unburned combustion gas exhausted from the inner cylinder member. it can. Therefore, in the immersion type burner heater and the molten metal holding furnace according to the present invention, the temperature of the furnace wall can be lowered as compared with the prior art, and the molten metal leakage can be surely prevented.
  • FIGS. 1 to 3 a first embodiment of a submerged burner heater and a molten metal holding furnace according to the present invention will be described with reference to FIGS. 1 to 3.
  • the immersion burner heater 1 includes a heater protection tube 2 that is installed in a through state in a furnace wall 11 a of a molten metal holding furnace 10 and has a closed end portion, and a heater protection tube 2. Between the inner cylinder member 3 having a combustion flow path S and being disposed in the heater protection tube 2 and having an open end and an exhaust gas flow path inside, and the combustion flow path S with fuel gas and And a gas burner section 4 for supplying air. Further, as shown in FIG. 2, the molten metal holding furnace 10 of the present embodiment includes a holding tank 11 that holds the molten metal M, and the immersion burner heater 1 that is installed in a through state in the furnace wall 11 a of the holding tank 11. I have.
  • a ridge portion 2a extending in a spiral shape is provided on the inner peripheral surface of the heater protective tube 2 on the tip side of a portion penetrating the furnace wall 11a (portion embedded in the furnace wall 11a).
  • the spiral protrusion 2 a is provided between spiral grooves formed on the inner peripheral surface of the heater protection tube 2.
  • the spiral protrusion 2 a is formed up to the tip of the heater protection tube 2 with the same axis as the heater protection tube 2.
  • the heater protection tube 2 is made of, for example, fine ceramics or silicon carbide refractory.
  • the heater protection tube 2 has a mounting cylinder member 5 attached to the base end side, and the base end side is fixed to the furnace wall 11 a via the mounting cylinder member 5.
  • the mounting cylinder member 5 may be formed integrally with the heater protective tube.
  • the inner cylinder member 3 is made of a heat-resistant metal, ceramics or the like.
  • the gas burner section 4 includes a combustion gas supply pipe 7 having a jet nozzle 6 at the tip, and an air supply pipe 8 for supplying air to the combustion flow path S.
  • the gas supply pipe 7 has a proximal end connected to a combustion gas pipe (not shown) for supplying combustion gas.
  • the ejection nozzle 6 is arranged in a protruding state in the combustion flow path S in a portion immersed in the molten metal M inside (furnace tip side) from the furnace wall 11a in order to separate the flame from the furnace wall 11a as much as possible. ing.
  • the air supply pipe 8 is attached to the outer peripheral surface of the inner cylinder member 3 in the proximal end portion of the heater protection pipe 2, and is in the combustion flow path S in a portion penetrating the furnace wall 11a.
  • An air flow path 9 for supplying air is provided.
  • the air supply pipe 8 has a triple cylinder structure, an outer cylinder part 13 having an air hole 13a to which the air pipe 12 is connected on the base end side, and an outer cylinder part 13 arranged on the inner side of the outer cylinder part 13.
  • the air flow path 9 is composed of three layers of a first flow path 9a, a second flow path 9b, and a third flow path 9c.
  • the distal end of the intermediate cylindrical portion 14 is arranged on the proximal side from the distal ends of the outer cylindrical portion 13 and the inner cylindrical portion 15, and the proximal end of the inner cylindrical portion 15 is distal to the proximal end of the intermediate cylindrical portion 14. It is arranged on the side. Further, the air supply pipe 8 is closed except for the distal end opening (the distal end opening of the third flow path 9 c) of the inner cylindrical portion 15 and the proximal end is closed by the flange member 16.
  • the first channel 9a communicates with the tip side of the second channel 9b on the tip side.
  • the second flow path 9b communicates with the third flow path 9c on the flange member 16 side, and the third flow path 9c has an open end and communicates with the combustion flow path S. That is, the air supplied from the air hole 13a to the air supply pipe 8 first flows through the first flow path 9a toward the distal end side, then turns back at the distal end side, and flows through the second flow path 9b toward the flange member 16 side. Further, the air flowing through the second flow path 9b is folded back on the flange member 16 side, flows through the third flow path 9c toward the front end side, and is supplied into the combustion flow path S from the front end opening.
  • the gas supply pipe 7 passes through the flange member 16, is inserted into the second flow path 9b, and the ejection nozzle 6 is installed in a protruding state in the combustion flow path S.
  • Combustion gas is supplied from the ejection nozzle 6 into the combustion flow path S, and this combustion gas is mixed with the air supplied to the combustion flow path S and burned.
  • the 1st flow path 9a becomes a flow path of a thin layer by setting narrowly between the outer side cylinder part 13 and the intermediate
  • heat exchange fins 17 fixed to the inner cylinder member 3 are provided in the third flow path 9c of the air flow path 9.
  • the heat exchange fins 17 are spirally attached to the outer peripheral surface of the inner cylinder member 3. That is, the air flowing through the third flow path 9 c flows spirally by the heat exchange fins 17, is heat-exchanged with the inner cylinder member 3 and warmed, and then supplied into the combustion flow path S. .
  • the heat exchange fins 17 may be fixed to the air supply pipe 8.
  • a two-dot chain line arrow indicates the air flow
  • a one-dot chain line arrow indicates the combustion gas flow
  • a broken line arrow indicates the exhaust gas flow.
  • the ridge portion 2a extending in a spiral shape is provided on the inner peripheral surface of the heater protection tube 2 on the tip side of the portion penetrating the furnace wall 11a. Therefore, when the combustion gas advances spirally in the combustion flow path S between the inner cylinder member 3 and the heater protection tube 2 guided by the protrusion 2a, there is no spiral protrusion 2a. Since the flow velocity of the combustion gas is increased compared to the above, the heat transfer rate to the heater protection tube 2 due to convection is increased.
  • the combustion gas advances in a spiral shape, turbulent flow is generated, and the combustion gas and air are more likely to be mixed, improving the combustion efficiency, and the combustion gas exhausted from the inner cylinder member 3 without burning.
  • the amount of can be reduced.
  • the heat transfer rate to the heater protection tube 2 is improved, the heat exchange between the molten metal M and the heater 1 is more actively performed, whereby the temperature of the exhaust gas can be lowered. Further, the surface area of the heater protection tube 2 is increased by the protrusions 2a, and the heat exchange property is further improved.
  • the protrusion 2a is provided between the spiral grooves formed on the inner peripheral surface of the heater protective tube 2, the protrusion is easily formed on the inner peripheral surface of the heater protective tube 2 by groove processing or the like. 2a can be formed, and the flow velocity of the combustion gas can be easily set according to the groove width and the like. Further, since the heat exchange fins 17 are provided in the air flow path 9, the air supplied into the air flow path 9 and the heat exchange fins 17 fixed to the inner cylinder member 3 or the air supply pipe 8 Heat exchange between.
  • the protrusion 2a is provided between the spiral grooves formed on the inner peripheral surface of the heater protective tube 2.
  • the immersion burner heater 21 and the molten metal holding furnace of the second embodiment are such that the protrusion 23a is a helical fin provided on the outer peripheral surface of the inner cylinder member 23 as shown in FIG. .
  • the spiral fin constitutes the spiral protrusion 23a on the outer peripheral surface of the inner cylinder member 23, and the spiral combustion object is formed in the gap between the heater protection tube 22 and the inner cylinder member 23.
  • a flow path S is formed.
  • the protruding portion 23 a of the helical fin is detachably attached to the outer peripheral surface of the inner cylinder member 23.
  • the heater protective tube 22 of the second embodiment has no protrusion formed by a spiral groove on the inner peripheral surface.
  • the heater protection tube 22 is formed by integrating a mounting cylinder member, and has a mounting cylinder part 25 at the base end.
  • this attachment cylinder part 25 may be produced and attached as an attachment cylinder member separately from the heater protective tube as in the first embodiment.
  • the protruding portion 23a is a helical fin provided on the outer peripheral surface of the inner cylinder member 23, it corresponds to the shape of the helical fin.
  • the flow velocity of the combustion gas can be easily set.
  • the difference between the third embodiment and the first embodiment is that the inner cylinder member 3 of the first embodiment has an outer peripheral portion exposed in the heater protection tube 2, whereas the third embodiment is different from the third embodiment.
  • a heat insulating member formed of a heat insulating material having lower thermal conductivity than the heater protective tube 2 on the outer peripheral portion on the proximal end side of the inner cylindrical member 3. 33 is provided in the immersion type burner heater 31 and the molten metal holding furnace, as shown in FIG. 5, a heat insulating member formed of a heat insulating material having lower thermal conductivity than the heater protective tube 2 on the outer peripheral portion on the proximal end side of the inner cylindrical member 3. 33 is provided.
  • the heat insulating member 33 is formed in a cylindrical shape and is attached so as to cover the outer peripheral portion of the proximal end portion of the inner cylindrical member 3.
  • an alumina-based ceramic heat insulating material having a lower thermal conductivity than the heater protection tube 2 can be employed.
  • FIG. Is provided it is possible to prevent overheating of the inner cylinder member 3 and to efficiently apply heat to the heater protection tube 2.
  • the tip of the inner cylinder member 3 is not directly exposed to the flame of the burner, the temperature is lower than that of the base end, so that the inner cylinder member 3 can be radiated from the inner cylinder member 3 without attaching the heat insulating member 33. It becomes possible to prevent the member 3 from overheating.
  • the spiral ridge is formed on the inner peripheral surface of the heater protection tube, but the spiral ridge may be formed on the outer peripheral surface of the inner cylinder member. .
  • the protrusion part of the helical fin was attached to the outer peripheral surface of an inner cylinder member, you may attach a helical fin to the inner peripheral surface of a heater protective tube.
  • a protrusion having a shape other than a spiral shape may be formed on the inner peripheral surface of the heater protection tube to increase the surface area of the heater protection tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Gas Burners (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

高い熱伝達率が得られると共に排ガス温度を下げることが可能な浸漬型バーナヒータ及び溶湯保持炉を提供する。本発明に係る浸漬型バーナヒータは、溶湯保持炉の炉壁に貫通状態で設置され先端部が閉塞されたヒータ保護管2と、ヒータ保護管との間に燃焼用流路Sを有してヒータ保護管内に配され先端側が開口していると共に内部が排ガス流路となる内筒部材3と、燃焼用流路に燃料ガス及び空気を供給するガスバーナ部4とを備え、炉壁に貫通した部分よりも先端側において内筒部材の外周面及びヒータ保護管の内周面の少なくとも一方に、螺旋状に延在する突条部2aが設けられている。

Description

浸漬型バーナヒータ及び溶湯保持炉
 本発明は、例えばアルミニウム、アルミニウム合金等の鋳造やインゴットの溶解等に用いる浸漬型バーナヒータ及び溶湯保持炉に関する。
 従来、例えば鋳込み用のアルミニウムやアルミニウム合金等の溶湯を溶湯保持炉において加熱保持するため、炉壁から挿入する溶湯加熱用ヒータが使用されている。
 このような溶湯加熱用ヒータとしては、金属発熱体を熱源とした溶湯保持炉が実用化されているが、熱源として金属発熱体の代わりにガスバーナを使用する方式が提案されている。
 例えば、特許文献1には、ヒータ保護管である外筒内に内筒を配置したバーナヒータであって、内筒と外筒との間から燃焼ガスを供給して内筒から排ガスを回収する金属溶湯加熱用燃焼チューブヒータが記載されている。
 このようなバーナヒータは、燃焼ガスが内筒と外筒との間に流通することで外筒側の温度を高め、溶湯を効率的に加熱するものであり、また排ガスを内筒の先端開口部から内筒内を介して基端側の排ガス管へ回収している。
 一般的に、ヒータを炉壁から挿入して浸漬させるタイプの溶湯保持炉では、炉内の溶湯がヒータ保護管と炉壁との間を伝わって炉外に漏出することを防ぐため、炉壁内に埋まる部分のヒータ保護管の内部を例えば600℃以下にし(アルミニウムの融点は660℃)、万一溶湯が炉壁とヒータ保護管との間に浸入したとしても、溶湯が固まって流出が防止される構成にすることが必要である。
 しかしながら、ガスバーナを使用した場合、高温になった排ガスが炉壁を加熱し、溶湯を流出させてしまうおそれがある。そのため、特許文献1に記載のバーナヒータ及び溶湯保持炉では、内筒から排ガスを回収し、その外側を燃焼用空気が流れる構造にすることで、炉壁のすぐ内側を高温の排ガスが流通しないような構造とされている。
特開平11-347720号公報
 上記従来の技術には、以下の課題が残されている。
 上記特許文献1に記載のバーナヒータでは、排ガスを内筒から回収することで、炉壁側の温度が高温になることを抑制しているが、十分に炉壁側の温度を下げて溶湯漏れを完全に防止するために、排ガス温度のさらなる低下が要望されている。また、火炎の熱がヒータ保護管に効率的に伝わらないため、バーナヒータの温度が効率的に上昇しないと共に、燃焼ガスが全て燃焼し切らないうちに内筒に回収、排気されてしまう不都合があった。
 本発明は、前述の課題に鑑みてなされたもので、高い熱伝達率が得られると共に排ガス温度を下げることが可能な浸漬型バーナヒータ及び溶湯保持炉を提供することを目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る浸漬型バーナヒータは、溶湯保持炉の炉壁に貫通状態で設置され先端部が閉塞されたヒータ保護管と、前記ヒータ保護管との間に燃焼用流路を有して前記ヒータ保護管内に配され先端側が開口していると共に内部が排ガス流路となる内筒部材と、前記燃焼用流路に燃料ガス及び空気を供給するガスバーナ部とを備え、前記炉壁に貫通した部分よりも先端側において前記内筒部材の外周面及び前記ヒータ保護管の内周面の少なくとも一方に、螺旋状に延在する突条部が設けられていることを特徴とする。
 この浸漬型バーナヒータでは、炉壁に貫通した部分よりも先端側において内筒部材の外周面及びヒータ保護管の内周面の少なくとも一方に、螺旋状に延在する突条部が設けられているので、突条部によってガイドされて内筒部材とヒータ保護管との間の燃焼用流路内を燃焼ガスが螺旋状に進むことで、螺旋状の突条部が無い場合に比べて燃焼ガスの流速が上昇するため、対流によるヒータ保護管への熱伝達率が上昇する。また、燃焼ガスが螺旋状に進むことで、乱流が発生し、燃焼ガスと空気とがより混ざり合い易くなって燃焼効率が向上し、燃焼せずに内筒部材から排気される燃焼ガスの量を低減することができる。さらに、ヒータ保護管への熱伝達率が向上するため、溶湯とヒータとの熱交換がより活発に行われることで、排気ガスの温度も下げることが可能になる。
 第2の発明に係る浸漬型バーナヒータは、第1の発明において、前記突条部が、前記ヒータ保護管の内周面に形成された螺旋状溝の間に設けられていることを特徴とする。
 すなわち、この浸漬型バーナヒータでは、前記突条部が、ヒータ保護管の内周面に形成された螺旋状溝の間に設けられているので、ヒータ保護管の内周面に溝加工等により容易に突条部を形成可能であると共に、溝幅等に応じて燃焼ガスの流速等を容易に設定することができる。また、突条部によってヒータ保護管の表面積が増大し、さらに保護管とヒータとの熱交換性が向上する。
 第3の発明に係る浸漬型バーナヒータは、第1の発明において、前記突条部が、前記内筒部材の外周面に設けられた螺旋状フィンであることを特徴とする。
 すなわち、この浸漬型バーナヒータでは、前記突条部が、前記内筒部材の外周面に設けられた螺旋状フィンであるので、螺旋状フィンの形状等に応じて燃焼ガスの流速等を容易に設定することができる。
 第4の発明に係る浸漬型バーナヒータは、第1から第3の発明のいずれかにおいて、前記炉壁に貫通した部分における前記燃焼用流路内に前記空気を供給する空気流路を備え、前記空気流路内に前記内筒部材又は空気供給管に固定された熱交換用フィンが設けられていることを特徴とする。
 すなわち、この浸漬型バーナヒータでは、空気流路内に熱交換用フィンが設けられているので、空気流路内に供給される空気と内筒部材又は空気供給管に固定された熱交換用フィンとの間で熱交換され、供給される空気を効率的に暖めることができる。
 第5の発明に係る浸漬型バーナヒータは、第1から第4の発明のいずれかにおいて、前記内筒部材の基端側の外周部に、前記ヒータ保護管よりも熱伝導性の低い断熱材料で形成された断熱部材が設けられていることを特徴とする。
 上記特許文献1では、内筒部材の基端部が過熱され、排気ガスが内筒管の基端部で暖められ、排ガス温度が上昇してしまう不都合があった。すなわち、ヒータの基端部は、バーナの火炎が直接当たるため、非常に温度が高い。そのため、内筒部材が熱くなり過ぎると、中を通る排気ガスの温度が高くなってしまう。
 しかしながら、本発明では、内筒部材の基端側の外周部に、ヒータ保護管よりも熱伝導性の低い断熱材料で形成された断熱部材が設けられているので、内筒部材の過熱を防ぐことができると共に、ヒータ保護管に効率的に熱を与えることが可能になる。
 また、内筒部材の先端部は、バーナの火炎が直接当たらないため、基端部よりも温度が低いことから、断熱材料を取り付けずに内筒部材から放熱させることで、内筒部材の過熱を防ぐことが可能になる。
 第6の発明に係る溶湯保持炉は、溶湯を保持する保持槽と、前記保持槽の炉壁に貫通状態に設置された第1から第5の発明のいずれかの浸漬型バーナヒータとを備えている。
 すなわち、この溶湯保持炉では、第1から第5の発明のいずれかの浸漬型バーナヒータを備えているので、熱伝達率及びエネルギー効率が良い本発明の浸漬型バーナヒータによって、従来よりも少ないエネルギーで溶湯を保持することが可能になる。
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係る浸漬型バーナヒータによれば、炉壁に貫通した部分よりも先端側において内筒部材の外周面及びヒータ保護管の内周面の少なくとも一方に、螺旋状に延在する突条部が設けられているので、熱伝達率が上昇すると共に排ガス温度を下げることができると共に、燃焼効率が向上して内筒部材から排気される未燃焼の燃焼ガスの量を低減することができる。
 したがって、本発明の浸漬型バーナヒータ及び溶湯保持炉では、炉壁の温度を従来より下げることができ、溶湯漏れを確実に防止することが可能になる。
本発明に係る浸漬型バーナヒータ及び溶湯保持炉の第1実施形態において、浸漬型バーナヒータを示す断面図である。 第1実施形態において、溶湯保持炉を示す概略的な断面図である。 第1実施形態において、浸漬型バーナヒータの炉壁に貫通した部分を示す要部の断面図である。 本発明に係る浸漬型バーナヒータ及び溶湯保持炉の第2実施形態において、浸漬型バーナヒータを示す断面図である。 本発明に係る浸漬型バーナヒータ及び溶湯保持炉の第3実施形態において、浸漬型バーナヒータを示す断面図である。
 以下、本発明に係る浸漬型バーナヒータ及び溶湯保持炉の第1実施形態を、図1から図3を参照しながら説明する。
 本実施形態の浸漬型バーナヒータ1は、図1及び図2に示すように、溶湯保持炉10の炉壁11aに貫通状態で設置され先端部が閉塞されたヒータ保護管2と、ヒータ保護管2との間に燃焼用流路Sを有してヒータ保護管2内に配され先端側が開口していると共に内部が排ガス流路となる内筒部材3と、燃焼用流路Sに燃料ガス及び空気を供給するガスバーナ部4とを備えている。
 また、本実施形態の溶湯保持炉10は、図2に示すように、溶湯Mを保持する保持槽11と、保持槽11の炉壁11aに貫通状態に設置された上記浸漬型バーナヒータ1とを備えている。
 上記炉壁11aに貫通した部分(炉壁11a内に埋まる部分)よりも先端側においてヒータ保護管2の内周面には、螺旋状に延在する突条部2aが設けられている。
 上記螺旋状の突条部2aは、ヒータ保護管2の内周面に形成された螺旋状溝の間に設けられている。この螺旋状の突条部2aは、ヒータ保護管2と軸線を同じにしてヒータ保護管2の先端まで形成されている。
 上記ヒータ保護管2は、例えばファインセラミックスや炭化ケイ素系耐火物などで形成されている。このヒータ保護管2は、基端部側に取付用筒部材5が取り付けられ、この取付用筒部材5を介して炉壁11aに基端部側が固定されている。なお、取付用筒部材5は、ヒータ保護管と一体に成形しても構わない。
 上記内筒部材3は、耐熱金属やセラミックス等で形成されている。
 上記ガスバーナ部4は、先端に噴出ノズル6を有する燃焼ガスのガス供給管7と、空気を燃焼用流路Sに供給する空気供給管8とを備えている。
 上記ガス供給管7は、燃焼ガスを供給する燃焼ガス管(図示略)に基端が接続されている。
 上記噴出ノズル6は、火炎をできるだけ炉壁11aから離すために、炉壁11aよりも内側(ヒータ先端側)であって溶湯Mに浸漬する部分の燃焼用流路S内に突出状態に配されている。
 上記空気供給管8は、図3に示すように、ヒータ保護管2の基端部内であって内筒部材3の外周面に取り付けられ、炉壁11aに貫通した部分における燃焼用流路S内に空気を供給する空気流路9を備えている。
 この空気供給管8は、三重筒構造を有しており、空気管12が接続される空気用孔13aを基端側に有した外側筒部13と、外側筒部13の内側に配され外側筒部13との間に第1流路9aを有して設けられた中間筒部14と、中間筒部14の内側に配され中間筒部14との間に第2流路9bを有すると共に内筒部材3との間に第3流路9cを有して設けられた内側筒部15とを備えている。すなわち、上記空気流路9は、第1流路9a,第2流路9b及び第3流路9cの三層で構成されている。
 中間筒部14の先端は、外側筒部13及び内側筒部15の先端よりも基端側に配されていると共に、内側筒部15の基端は、中間筒部14の基端よりも先端側に配されている。
 また、空気供給管8は、先端が内側筒部15の先端開口部(第3流路9cの先端開口部)を除いて閉塞されていると共に基端がフランジ部材16によって閉塞されている。
 したがって、第1流路9aは、先端側で第2流路9bの先端側と連通している。また、第2流路9bは、フランジ部材16側で第3流路9cに連通し、第3流路9cは先端が開口しており、燃焼用流路Sと連通している。すなわち、空気用孔13aから空気供給管8に供給された空気は、まず第1流路9aを先端側に流れ、先端側で折り返して第2流路9bをフランジ部材16側に向けて流れる。さらに、第2流路9bを流れる空気は、フランジ部材16側で折り返して第3流路9cを先端側に向けて流れ、先端開口部から燃焼用流路S内へ供給される。
 一方、ガス供給管7は、フランジ部材16を貫通し、第2流路9b内に挿通されて噴出ノズル6が燃焼用流路S内に突出状態に設置されている。噴出ノズル6からは、燃焼用流路S内に燃焼ガスが供給され、この燃焼ガスが、燃焼用流路Sに供給された空気と混合されて燃焼する。
 なお、第1流路9aは、外側筒部13と中間筒部14との間を狭く設定することで薄い層の流路となり、空気の流速を早くすることができ、効率的な熱交換が可能になる。
 上記空気流路9の第3流路9c内には、内筒部材3に固定された熱交換用フィン17が設けられている。この熱交換用フィン17は、内筒部材3の外周面に螺旋状に取り付けられている。すなわち、第3流路9cを流れる空気は、熱交換用フィン17によって螺旋状に流れ、内筒部材3との間で熱交換されて暖められた後に、燃焼用流路S内に供給される。なお、熱交換用フィン17を、空気供給管8に固定しても構わない。
 また、燃焼ガスの燃焼時の温度は、1100℃程度であるが、上述したように、供給空気を暖めていることで、上記燃焼時の温度まで上げるためのエネルギーを節約することができる。
 なお、図3において、二点鎖線の矢印は空気の流れを示し、また一点鎖線の矢印は燃焼ガスの流れを示し、さらに破線の矢印は排ガスの流れを示している。
 このように本実施形態の浸漬型バーナヒータ1では、炉壁11aに貫通した部分よりも先端側においてヒータ保護管2の内周面に、螺旋状に延在する突条部2aが設けられているので、突条部2aによってガイドされて内筒部材3とヒータ保護管2との間の燃焼用流路S内を燃焼ガスが螺旋状に進むことで、螺旋状の突条部2aが無い場合に比べて燃焼ガスの流速が上昇するため、対流によるヒータ保護管2への熱伝達率が上昇する。
 また、燃焼ガスが螺旋状に進むことで、乱流が発生し、燃焼ガスと空気とがより混ざり合い易くなって燃焼効率が向上し、燃焼せずに内筒部材3から排気される燃焼ガスの量を低減することができる。さらに、ヒータ保護管2への熱伝達率が向上するため、溶湯Mとヒータ1との熱交換がより活発に行われることで、排気ガスの温度も下げることが可能になる。また、突条部2aによってヒータ保護管2の表面積が増大し、さらに熱交換性が向上する。
 また、突条部2aが、ヒータ保護管2の内周面に形成された螺旋状溝の間に設けられているので、ヒータ保護管2の内周面に溝加工等により容易に突条部2aが形成可能であると共に、溝幅等に応じて燃焼ガスの流速等を容易に設定することができる。
 また、空気流路9内に熱交換用フィン17が設けられているので、空気流路9内に供給される空気と内筒部材3または空気供給管8に固定された熱交換用フィン17との間で熱交換される。
 次に、本発明に係る浸漬型バーナヒータ及び溶湯保持炉の第2実施形態について、図4を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。
 第2実施形態と第1実施形態との異なる点は、第1実施形態では、突条部2aが、ヒータ保護管2の内周面に形成された螺旋状溝の間に設けられているのに対し、第2実施形態の浸漬型バーナヒータ21及び溶湯保持炉は、図4に示すように、突条部23aが、内筒部材23の外周面に設けられた螺旋状フィンである点である。
 すなわち、第2実施形態では、螺旋状フィンが内筒部材23の外周面上に螺旋状の突条部23aを構成し、ヒータ保護管22と内筒部材23との隙間に螺旋状の燃焼用流路Sを形成している。
 上記螺旋状フィンの突条部23aは、内筒部材23の外周面に取り外し可能に取り付けられている。
 なお、第2実施形態のヒータ保護管22は、内周面に螺旋状溝による突条部が形成されていない。また、ヒータ保護管22は、取付用筒部材が一体化させて形成され基端部に取付用筒部25を有している。なお、この取付用筒部25は、第1実施形態のようにヒータ保護管と別に取付用筒部材として作製し、取り付けても構わない。
 このように第2実施形態の浸漬型バーナヒータ21及び溶湯保持炉では、突条部23aが、内筒部材23の外周面に設けられた螺旋状フィンであるので、螺旋状フィンの形状等に応じて燃焼ガスの流速等を容易に設定することができる。
 次に、第3実施形態と第1実施形態との異なる点は、第1実施形態の内筒部材3は、外周部がヒータ保護管2内に露出しているのに対し、第3実施形態の浸漬型バーナヒータ31及び溶湯保持炉では、図5に示すように、内筒部材3の基端側の外周部に、ヒータ保護管2よりも熱伝導性の低い断熱材料で形成された断熱部材33が設けられている点である。
 上記断熱部材33は、筒状に形成され内筒部材3の基端部の外周部を覆って取り付けられている。この断熱部材33の断熱材料としては、例えばヒータ保護管2よりも熱伝導率が低いアルミナ系のセラミックス断熱材等が採用可能である。
 このように第3実施形態浸漬型バーナヒータ31及び溶湯保持炉では、内筒部材3の基端側の外周部に、ヒータ保護管2よりも熱伝導性の低い断熱材料で形成された断熱部材33が設けられているので、内筒部材3の過熱を防ぐことができると共に、ヒータ保護管2に効率的に熱を与えることが可能になる。
 また、内筒部材3の先端部は、バーナの火炎が直接当たらないため、基端部よりも温度が低いことから、断熱部材33を取り付けずに内筒部材3から放熱させることで、内筒部材3の過熱を防ぐことが可能になる。
 なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記第1実施形態では、ヒータ保護管の内周面に螺旋状の突条部が形成されているが、内筒部材の外周面に螺旋状の突条部を形成しても構わない。また、ヒータ保護管の内周面及び内筒部材の外周面の両方に螺旋状の突条部を形成しても構わない。この場合、両方に螺旋状の突条部は、同じ方向に同じ間隔で延在するように設定することが好ましい。
 また、上記第2実施形態では、内筒部材の外周面に螺旋状フィンの突条部を取り付けているが、ヒータ保護管の内周面に螺旋状フィンを取り付けても構わない。また、ヒータ保護管の内周面に、螺旋状以外の形状の突条部を形成し、ヒータ保護管の表面積を増大させても構わない。
 1,21,31…浸漬型バーナヒータ、2,22…ヒータ保護管、2a,23a…突条部、3,23…内筒部材、4…ガスバーナ部、9…空気流路、10…溶湯保持炉、11…保持槽、11a…炉壁、17…熱交換用フィン、33…断熱部材、M…溶湯、S…燃焼用流路

Claims (6)

  1.  溶湯保持炉の炉壁に貫通状態で設置され先端部が閉塞されたヒータ保護管と、
     前記ヒータ保護管との間に燃焼用流路を有して前記ヒータ保護管内に配され先端側が開口していると共に内部が排ガス流路となる内筒部材と、
     前記燃焼用流路に燃料ガス及び空気を供給するガスバーナ部とを備え、
     前記炉壁に貫通した部分よりも先端側において前記内筒部材の外周面及び前記ヒータ保護管の内周面の少なくとも一方に、螺旋状に延在する突条部が設けられていることを特徴とする浸漬型バーナヒータ。
  2.  請求項1に記載の浸漬型バーナヒータにおいて、
     前記突条部が、前記ヒータ保護管の内周面に形成された螺旋状溝の間に設けられていることを特徴とする浸漬型バーナヒータ。
  3.  請求項1に記載の浸漬型バーナヒータにおいて、
     前記突条部が、前記内筒部材の外周面に設けられた螺旋状フィンであることを特徴とする浸漬型バーナヒータ。
  4.  請求項1に記載の浸漬型バーナヒータにおいて、
     前記炉壁に貫通した部分における前記燃焼用流路内に前記空気を供給する空気流路を備え、
     前記空気流路内に前記内筒部材又は前記ヒータ保護管に固定された熱交換用フィンが設けられていることを特徴とする浸漬型バーナヒータ。
  5.  請求項1に記載の浸漬型バーナヒータにおいて、
     前記内筒部材の基端側の外周部に、前記ヒータ保護管よりも熱伝導性の低い断熱材料で形成された断熱部材が設けられていることを特徴とする浸漬型バーナヒータ。
  6.  溶湯を保持する保持槽と、
     前記保持槽の炉壁に貫通状態に設置された請求項1に記載の浸漬型バーナヒータとを備えている溶湯保持炉。

     
PCT/JP2017/011330 2016-10-28 2017-03-22 浸漬型バーナヒータ及び溶湯保持炉 WO2018078907A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-211632 2016-10-28
JP2016211632 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018078907A1 true WO2018078907A1 (ja) 2018-05-03

Family

ID=62023312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011330 WO2018078907A1 (ja) 2016-10-28 2017-03-22 浸漬型バーナヒータ及び溶湯保持炉

Country Status (6)

Country Link
US (1) US11020796B2 (ja)
JP (1) JP6623325B2 (ja)
CN (1) CN109863347B (ja)
DE (1) DE112017005451T5 (ja)
MX (1) MX2019003199A (ja)
WO (1) WO2018078907A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070946A (ja) * 2018-10-30 2020-05-07 株式会社伊原工業 ラジアントチューブバーナおよびその運転方法
USD910830S1 (en) 2019-04-12 2021-02-16 Saint-Gobain Ceramics & Plastics, Inc. Flame diffuser insert for immersion tube furnace
USD910829S1 (en) 2019-04-12 2021-02-16 Saint-Gobain Ceramics & Plastics, Inc. Flame diffuser insert for immersion tube furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109921B2 (ja) * 2018-01-09 2022-08-01 三井金属鉱業株式会社 ヒーターチューブ及びヒーター
DE102021111187A1 (de) * 2021-05-14 2022-11-17 Enertech Gmbh Wasserstoff-Gasbrennervorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162723U (ja) * 1979-05-08 1980-11-21
JPH04278108A (ja) * 1991-03-04 1992-10-02 Toho Gas Co Ltd 旋回流燃焼を用いた放射管バーナ
JPH11347720A (ja) * 1998-06-11 1999-12-21 Tounetsu:Kk 金属溶湯加熱用燃焼式チューブヒーターおよび 金属溶湯保持炉
JP2012122706A (ja) * 2010-12-10 2012-06-28 Osaka Gas Co Ltd シングルエンド型ラジアントチューブバーナ
JP2014214882A (ja) * 2013-04-22 2014-11-17 大阪瓦斯株式会社 混合気供給システム及び混合気供給システムに用いる混合気供給装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2115769A (en) * 1936-08-22 1938-05-03 Henry H Harris Radiant heating tube
GB669975A (en) 1947-05-05 1952-04-09 Alec Joseph Skinner Improvements in heaters for heating liquids in tanks, for heating ovens, and for like purposes
DE1230163B (de) 1962-12-28 1966-12-08 Aichelin K G Industrieofenbau Strahlheizrohr, insbesondere zur Beheizung von Ofenraeumen
AT251166B (de) * 1963-07-10 1966-12-27 Indugas Ges Fuer Ind Gasverwen Industrie-Gasbrenner
DE2706981A1 (de) 1977-02-18 1978-08-24 Rudolf Klefisch Strahlheizrohr fuer gasbeheizung
JPS55162723A (en) 1979-05-31 1980-12-18 Union Carbide Corp Ethylene separation
US4705260A (en) * 1982-06-04 1987-11-10 Republic Steel Corporation Furnace for heating and melting zinc
JPS61159024A (ja) * 1984-12-28 1986-07-18 Chugai Ro Kogyo Kaisha Ltd ラジアントチューブ式加熱装置の燃焼方法
JPS63236720A (ja) * 1987-03-25 1988-10-03 Koito Mfg Co Ltd 灯具用レンズの製造方法
JPH02150608A (ja) * 1988-11-29 1990-06-08 Toho Gas Co Ltd チューブバーナ
JPH0425912A (ja) 1990-05-22 1992-01-29 Nippon Telegr & Teleph Corp <Ntt> タイミング発生回路
JPH0616259A (ja) 1992-06-30 1994-01-25 Tokyo Electric Co Ltd 給紙装置
US5655599A (en) 1995-06-21 1997-08-12 Gas Research Institute Radiant tubes having internal fins
JP3855369B2 (ja) * 1997-05-26 2006-12-06 Jfeスチール株式会社 ラジアントチューブの支持装置
US6064748A (en) 1998-01-16 2000-05-16 Hewlett-Packard Company Method and apparatus for embedding and retrieving additional data in an encoded data stream
JP2001108207A (ja) * 1999-10-04 2001-04-20 Sanken Sangyo Co Ltd 浸漬管バーナー
US6321743B1 (en) * 2000-06-29 2001-11-27 Institute Of Gas Technology Single-ended self-recuperated radiant tube annulus system
JP2002228144A (ja) * 2001-02-06 2002-08-14 Toho Gas Co Ltd バーナ用蓄熱器及び高温リジェネラジアントチューブバーナ
FR2826710B1 (fr) * 2001-06-29 2003-10-03 Gaz De France Dispositif radiant a bruleur de gaz et recirculation, adapte en vue d'une production reduite d'oxydes d'azote
CN201072157Y (zh) * 2007-09-05 2008-06-11 李树东 燃煤对流-辐射采暖炉
US7762807B2 (en) 2008-04-24 2010-07-27 Gas Technology Institute Gas-fired radiant tube with internal recuperator
CN103574632B (zh) 2013-11-22 2017-02-01 中冶南方(武汉)威仕工业炉有限公司 折流板式辐射管烧嘴换热器及换热方法
CN205209006U (zh) * 2015-10-22 2016-05-04 上海中缘凌天热能科技股份有限公司 绿色地源热泵空调热回收系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162723U (ja) * 1979-05-08 1980-11-21
JPH04278108A (ja) * 1991-03-04 1992-10-02 Toho Gas Co Ltd 旋回流燃焼を用いた放射管バーナ
JPH11347720A (ja) * 1998-06-11 1999-12-21 Tounetsu:Kk 金属溶湯加熱用燃焼式チューブヒーターおよび 金属溶湯保持炉
JP2012122706A (ja) * 2010-12-10 2012-06-28 Osaka Gas Co Ltd シングルエンド型ラジアントチューブバーナ
JP2014214882A (ja) * 2013-04-22 2014-11-17 大阪瓦斯株式会社 混合気供給システム及び混合気供給システムに用いる混合気供給装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070946A (ja) * 2018-10-30 2020-05-07 株式会社伊原工業 ラジアントチューブバーナおよびその運転方法
USD910830S1 (en) 2019-04-12 2021-02-16 Saint-Gobain Ceramics & Plastics, Inc. Flame diffuser insert for immersion tube furnace
USD910829S1 (en) 2019-04-12 2021-02-16 Saint-Gobain Ceramics & Plastics, Inc. Flame diffuser insert for immersion tube furnace

Also Published As

Publication number Publication date
MX2019003199A (es) 2019-08-05
DE112017005451T5 (de) 2019-08-14
US20190255605A1 (en) 2019-08-22
JP2018075630A (ja) 2018-05-17
JP6623325B2 (ja) 2019-12-25
CN109863347B (zh) 2020-11-03
US11020796B2 (en) 2021-06-01
CN109863347A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2018078907A1 (ja) 浸漬型バーナヒータ及び溶湯保持炉
JP2010513029A5 (ja)
JP2010513029A (ja) 加熱しながら溶融金属を搬送する方法および装置
US3266485A (en) Recirculating immersion heater
CN209376723U (zh) 加热不燃烧电子烟装置
WO2018079482A1 (ja) 浸漬型バーナヒータ及び溶湯保持炉
US7574981B1 (en) Apparatus and method for improving the durability of a cooling tube in a fire tube boiler
JP4526177B2 (ja) ガラス溶解炉のバーナー設置構造
WO2016185624A1 (ja) 溶湯保持炉
JP6173178B2 (ja) シングルエンド型ラジアントチューブバーナ
JPH11347720A (ja) 金属溶湯加熱用燃焼式チューブヒーターおよび 金属溶湯保持炉
TW201018862A (en) Structure of molten metal holding furnace
JP6594749B2 (ja) ラジアントチューブバーナ
JP6663749B2 (ja) ボイラ及びボイラの耐火構造物
JP2004093086A (ja) 加熱炉のシングルエンド型燃焼バーナー
JP5342784B2 (ja) 熱処理炉
JP2002022109A (ja) 燃焼式金属溶湯加熱用チューブヒータ
BR112013030598A2 (pt) disposição e instalação de queimador
JP2010029898A (ja) 鋳造用ノズルの予熱方法
JP7174467B1 (ja) 溶解炉
JPH0125842Y2 (ja)
JP6382372B2 (ja) 溶解保持炉及び溶解保持炉用の蓋体
JP2012193879A (ja) 雰囲気処理炉用シングルエンド型ラジアントチューブバーナ
JP5581422B2 (ja) 熱処理炉
JP3936067B2 (ja) 半導体製造用燃焼装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863808

Country of ref document: EP

Kind code of ref document: A1